21 research outputs found

    Optimal path and cycle decompositions of dense quasirandom graphs

    Get PDF
    Motivated by longstanding conjectures regarding decompositions of graphs into paths and cycles, we prove the following optimal decomposition results for random graphs. Let 0<p<10<p<1 be constant and let GGn,pG\sim G_{n,p}. Let odd(G)odd(G) be the number of odd degree vertices in GG. Then a.a.s. the following hold: (i) GG can be decomposed into Δ(G)/2\lfloor\Delta(G)/2\rfloor cycles and a matching of size odd(G)/2odd(G)/2. (ii) GG can be decomposed into max{odd(G)/2,Δ(G)/2}\max\{odd(G)/2,\lceil\Delta(G)/2\rceil\} paths. (iii) GG can be decomposed into Δ(G)/2\lceil\Delta(G)/2\rceil linear forests. Each of these bounds is best possible. We actually derive (i)--(iii) from `quasirandom' versions of our results. In that context, we also determine the edge chromatic number of a given dense quasirandom graph of even order. For all these results, our main tool is a result on Hamilton decompositions of robust expanders by K\"uhn and Osthus.Comment: Some typos from the first version have been correcte

    On edge disjoint spanning trees in a randomly weighted complete graph

    Full text link
    Assume that the edges of the complete graph KnK_n are given independent uniform [0,1][0,1] edges weights. We consider the expected minimum total weight μk\mu_k of k2k\geq 2 edge disjoint spanning trees. When kk is large we show that μkk2\mu_k\approx k^2. Most of the paper is concerned with the case k=2k=2. We show that \m_2 tends to an explicitly defined constant and that μ24.1704288\mu_2\approx 4.1704288\ldots.Comment: Fixed minor issue

    Survey of local algorithms

    Get PDF
    A local algorithm is a distributed algorithm that runs in constant time, independently of the size of the network. Being highly scalable and fault-tolerant, such algorithms are ideal in the operation of large-scale distributed systems. Furthermore, even though the model of local algorithms is very limited, in recent years we have seen many positive results for non-trivial problems. This work surveys the state-of-the-art in the field, covering impossibility results, deterministic local algorithms, randomised local algorithms, and local algorithms for geometric graphs.Peer reviewe

    Subject index volumes 1–92

    Get PDF

    GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

    Full text link
    We propose GraphMineSuite (GMS): the first benchmarking suite for graph mining that facilitates evaluating and constructing high-performance graph mining algorithms. First, GMS comes with a benchmark specification based on extensive literature review, prescribing representative problems, algorithms, and datasets. Second, GMS offers a carefully designed software platform for seamless testing of different fine-grained elements of graph mining algorithms, such as graph representations or algorithm subroutines. The platform includes parallel implementations of more than 40 considered baselines, and it facilitates developing complex and fast mining algorithms. High modularity is possible by harnessing set algebra operations such as set intersection and difference, which enables breaking complex graph mining algorithms into simple building blocks that can be separately experimented with. GMS is supported with a broad concurrency analysis for portability in performance insights, and a novel performance metric to assess the throughput of graph mining algorithms, enabling more insightful evaluation. As use cases, we harness GMS to rapidly redesign and accelerate state-of-the-art baselines of core graph mining problems: degeneracy reordering (by up to >2x), maximal clique listing (by up to >9x), k-clique listing (by 1.1x), and subgraph isomorphism (by up to 2.5x), also obtaining better theoretical performance bounds

    Decompositions of graphs and hypergraphs

    Get PDF
    This thesis contains various new results in the areas of design theory and edge decompositions of graphs and hypergraphs. Most notably, we give a new proof of the existence conjecture, dating back to the 19th century. For rr-graphs FF and GG, an FF-decomposition of G is a collection of edge-disjoint copies of F in G covering all edges of GG. In a recent breakthrough, Keevash proved that every sufficiently large quasirandom rr-graph G has a KKf_f(r)^{(r)} -decomposition (subject to necessary divisibility conditions), thus proving the existence conjecture. We strengthen Keevash's result in two major directions: Firstly, our main result applies to decompositions into any rr-graph FF, which generalises a fundamental theorem of Wilson to hypergraphs. Secondly, our proof framework applies beyond quasirandomness, enabling us e.g. to deduce a minimum degree version. For graphs, we investigate the minimum degree setting further. In particular, we determine the decomposition threshold' of every bipartite graph, and show that the threshold of cliques is equal to its fractional analogue. We also present theorems concerning optimal path and cycle decompositions of quasirandom graphs. This thesis is based on joint work with Daniela Kuhn and Deryk Osthus, Allan Lo and Richard Montgomery
    corecore