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Abstract

This thesis contains various new results in the areas of design theory and edge decom-

positions of graphs and hypergraphs. Most notably, we give a new proof of the existence

conjecture, dating back to the 19th century.

For r-graphs F and G, an F -decomposition of G is a collection of edge-disjoint copies

of F in G covering all edges of G. In a recent breakthrough, Keevash proved that every

sufficiently large quasirandom r-graph G has a K
(r)
f -decomposition (subject to necessary

divisibility conditions), thus proving the existence conjecture.

We strengthen Keevash’s result in two major directions: Firstly, our main result applies

to decompositions into any r-graph F , which generalises a fundamental theorem of Wilson

to hypergraphs. Secondly, our proof framework applies beyond quasirandomness, enabling

us e.g. to deduce a minimum degree version.

For graphs, we investigate the minimum degree setting further. In particular, we

determine the ‘decomposition threshold’ of every bipartite graph, and show that the

threshold of cliques is equal to its fractional analogue.

We also present theorems concerning optimal path and cycle decompositions of quasi-

random graphs.

This thesis is based on joint work with Daniela Kühn and Deryk Osthus [35, 36, 37, 39],

Allan Lo [35, 36, 37] and Richard Montgomery [35].
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CHAPTER 1

INTRODUCTION

1.1 Combinatorial designs

“Fifteen young ladies in a school walk out three abreast for seven days in
succession: it is required to arrange them daily so that no two shall walk twice
abreast.”

Nowadays known as ‘Kirkman’s schoolgirl problem’, the above rather innocent-looking

problem was proposed by Thomas Kirkman in 1850 in the recreational mathematics

journal The Lady’s and Gentleman’s Diary. A solution to this problem, i.e. an arrange-

ment of the ladies with the desired properties, is an example of a combinatorial design.

The latter term usually refers to a system of finite sets which satisfy some specified bal-

ance or symmetry condition, and the study of such systems is called design theory. Some

well known examples include balanced incomplete block designs, projective planes, Latin

squares and Hadamard matrices. These have applications in many areas such as finite

geometry, statistics, experiment design, coding theory and cryptography. Even laymen

will most likely have encountered combinatorial designs in their leisure time, namely in

form of Sudokus.

In this thesis, we consider block designs and Steiner systems. In fact, we study the

more general setting of hypergraph decompositions of which block designs and Steiner

systems are special cases (see Section 1.2). An (n, f, r, λ)-design (or r-(n, f, λ) design)

is a set X of f -subsets (called ‘blocks’) of some n-set V , such that every r-subset of V
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belongs to exactly λ elements of X. An (n, f, r, 1)-design is also called an (n, f, r)-Steiner

system, named in the honour of the Swiss mathematician Jakob Steiner, who asked in

1853 for which parameters these systems exist. Steiner systems with (f, r) = (3, 2) are

also referred to as Steiner triple systems of order n. Note that a solution to Kirkman’s

schoolgirl problem would yield a Steiner triple system of order 15 (but actually asks for

more in that the triples are to be arranged in ‘days’).

There are some obviously necessary ‘divisibility conditions’ for the existence of a

design: consider some subset S of V of size i < r and assume that X is an (n, f, r, λ)-

design. Then the number of elements of X which contain S is λ
(
n−i
r−i

)
/
(
f−i
r−i

)
. Indeed,

there are
(
n−i
r−i

)
r-subsets of V that contain S, and each of these must be contained in

exactly λ elements of X. On the other hand, every element of X that contains S contains(
f−i
r−i

)
r-sets which contain S, proving the claim. We say that the necessary divisibility

conditions are satisfied if
(
f−i
r−i

)
divides λ

(
n−i
r−i

)
for all 0 ≤ i < r.

In 1846, Kirkman [51] proved that Steiner triple systems exist whenever the necessary

divisibility conditions are satisfied (which take on a particularly simple form in this case,

namely n ≡ 1, 3 mod 6). Thus Kirkman answered Steiner’s question for triple systems

even before Steiner asked for it. We note that these triple systems had been considered

even earlier by Julius Plücker and Wesley Woolhouse. For more information on the early

history, see [83].

In general, it is not true that the necessary divisibility conditions are sufficient for the

existence of designs. However, it had been conjectured that there are only few exceptions.

More precisely, the ‘existence conjecture’ states that for given f, r, λ, the necessary divis-

ibility conditions are also sufficient for the existence of an (n, f, r, λ)-design, except for

a finite number of exceptional n. It is unclear who first proposed the conjecture in this

form, but it might be seen as a speculative answer to Steiner’s question.

Over a century later, in a ground-breaking series of papers which transformed the area

of design theory, Wilson [84, 85, 86, 87] resolved the case r = 2. (In the case when r = 2,

designs are called ‘balanced incomplete block designs’.)
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For r ≥ 3, much less was known until recently. We will revisit the history in Section 2.1.

To encapsulate the lack of knowledge at this point, we remark that even the existence of

infinitely many Steiner systems with r ≥ 4 was open and not a single Steiner system with

r ≥ 6 was known to exist.

In a recent breakthrough, Peter Keevash [49] proved the existence conjecture in gen-

eral. He refers to his proof method as ‘randomised algebraic constructions’.

We provide a new proof of the existence conjecture based on the so-called iterative

absorption method. Moreover, we are able to strengthen Keevash’s result in two major

directions. In order to discuss this, we need to introduce some hypergraph terminology

first.

1.2 Graphs and hypergraphs

A hypergraph G is a pair (V,E), where V = V (G) is the vertex set of G and the edge set E

is a set of subsets of V . We often identify G with E, in particular, we let |G| := |E|, and

e ∈ G means e ∈ E. We say that G is an r-graph if every edge has size r, and a 2-graph is

simply called a graph. We let K
(r)
n denote the complete r-graph on n vertices, also called

a clique. As usual, we just write Kn if r = 2. (We remark that within Chapter 2 however,

we use Kn for the complete complex on n vertices instead, see Section 2.2.2.)

We approach the existence conjecture using terminology and methods from extremal

graph theory. The basic question in this area is: how large or small can a (hyper-)graph

be subject to satisfying certain conditions. For example, let G and F be r-graphs. We say

that G is F -free if it does not contain a subgraph isomorphic to F . A natural question

to ask is what is the maximal number of edges an F -free r-graph G on n vertices can

have. This number is denoted by ex(n, F ), and π(F ) := limn→∞ ex(n, F )/
(
n
r

)
exists

and is called the Turán density of F . For graphs, this parameter is well-understood.

Turán himself determined the value for cliques. The Erdős-Simonovits-Stone theorem,

a cornerstone result in extremal graph theory, generalises this to arbitrary graphs F ,
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showing that π(F ) = 1− 1/(χ(F )− 1), where χ(F ) denotes the chromatic number of F .

For hypergraphs r ≥ 3, only few Turán densities are known.

Note that for the Turán problem, it is sufficient to find only one copy of F in G. A

more complicated question is the so-called factor (or tiling) problem. In this case, the

desired object is an F -factor of G, i.e. a collection of pairwise vertex-disjoint copies of F is

sought in G such that together they cover every vertex of G. Clearly, this is only possible

if |V (F )| | |V (G)|. If F is just a single edge, then this coincides with the perfect matching

problem. In order to guarantee an F -factor in G, it is no longer enough to assume that G

has many edges, as there might still be isolated vertices. Instead, a more suitable question

to ask is: if |V (F )| | |V (G)| and every vertex is contained in at least δ|V (G)| edges, does

this guarantee an F -factor in G, and what is the smallest such δ? Again, for graphs, this

question is satisfyingly answered. The classical Hajnal-Szemerédi theorem provides the

solution if F is a clique, and in [4, 53, 54, 59] the problem is solved for arbitrary F . And

again, for hypergraphs, much less is known, although some progress has been made using

the absorbing method (see Section 1.4). Note however that, even though an F -factor

includes all the vertices of G, it uses only a vanishing proportion of the edges of G. Also,

if G is complete, then the tiling problem is trivial, even for hypergraphs.

Not so if we move one step further and, instead of ‘just’ partitioning all the vertices,

want to partition the edge set of G into (now edge-disjoint) copies of F . More precisely,

an F -decomposition of G is a collection F of copies of F in G such that every edge of

G is contained in exactly one of these copies. Note that an (n, f, r)-Steiner system X is

equivalent to a K
(r)
f -decomposition F of K

(r)
n . Indeed, the blocks in X, i.e. sets of size f ,

correspond to the vertex sets of the copies of K
(r)
f in F .

The decomposition problem is trivial if F is just a single edge, but NP-complete for

all non-trivial graphs F (see [24]). It is thus of interest to find sufficient conditions for

the existence of an F -decomposition of a given graph G. As often, it is useful to consider

necessary conditions first. Clearly, for an F -decomposition of G to exist, we need to

require that the number of edges of G is divisible by the number of edges of F . But there
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are more such ‘divisibility conditions’. For example, suppose that F is a cycle. Then we

need to require that every vertex of G has even degree, as every cycle in a decomposition

would cover either 0 or 2 edges at every vertex. In the hypergraph case, we also need to

consider the 2-degrees, 3-degrees, etc. of F and G. If these divisibility conditions (which

we discuss in more detail in Section 2.1.2) are satisfied, we say that G is F -divisible.

Hence, F -divisibility of G is necessary for the existence of an F -decomposition of G.

On the other hand, it is not sufficient in general. For example, the 6-cycle C6 is K3-

divisible, but does not have a K3-decomposition. Our central question is thus:

When are the divisibility conditions sufficient for the existence of a decompos-
ition (or design)?

1.3 Overview of main results

In this section, we briefly outline some of our main results. More details on the history

of each problem and previous work as well as further contributions of ourselves can be

found in the corresponding chapters of this thesis.

1.3.1 Wilson’s theorem for hypergraphs

The following fundamental theorem of Wilson from 1975 gives a positive answer to the

above question if the host graph G is complete.

Theorem 1.3.1 (Wilson [87]). Let F be any graph. For sufficiently large n, Kn has an

F -decomposition if it is F -divisible.

Our results imply the following generalisation of Wilson’s theorem to hypergraphs.

Theorem A. Let F be any r-graph. For sufficiently large n, K
(r)
n has an F -decomposition

if it is F -divisible.

This answers a question asked e.g. by Keevash [49] who proved the case when F is a

clique, thereby settling the existence conjecture. Previous results in the case when r ≥ 3
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and F is not complete are very sporadic – for instance Hanani [43] settled the problem if

F is an octahedron (viewed as a 3-graph). The largest part of this thesis (Chapter 2) is

devoted to prove Theorem A.

A natural question is how this can be generalised to non-complete host graphs. Keevash

actually proved the existence conjecture in a quasirandom setting, i.e. his result already

applies to host graphs which can be far from complete, as long as they are ‘typical’ (see

Section 2.1.2 for the formal definition).

Our Theorem A also follows immediately from a more general result on F -designs

of typical r-graphs (Theorem 2.1.1) which we state later. We note that the proof of

this theorem does not rely on the concept of typicality, but a more flexible notion of

‘supercomplexes’ which applies beyond the quasirandom setting.

1.3.2 The decomposition threshold

As discussed above, one way to generalise Wilson’s theorem to non-complete host graphs

is to consider quasirandom graphs. Another natural way is to consider graphs of large

minimum degree. The central conjecture in this area is the triangle decomposition con-

jecture of Nash-Williams [69] that every sufficiently large K3-divisible graph G with

δ(G) ≥ 3|V (G)|/4 has a K3-decomposition. The bound on the minimum degree here

would be best possible. It would be very interesting to have a similar conjecture for hy-

pergraphs. Even for the simplest ‘real’ hyperclique, the tetrahedron K
(3)
4 , it is unclear

what the ‘decomposition threshold’ should be. Of course, this threshold cannot only be

defined for cliques, but for arbitrary r-graphs F .

Definition 1.3.2 (Decomposition threshold). Given an r-graph F , let δF be the infimum

of all δ ∈ [0, 1] with the following property: There exists n0 ∈ N such that for all n ≥ n0,

every F -divisible r-graph G on n vertices with δ(G) ≥ δn has an F -decomposition.

The result of Keevash [49] implies that if F is complete, then δF < 1, because every

almost complete r-graph G is still quasirandom. As mentioned before, our methods allow
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us to obtain results beyond the quasirandom setting. In particular, we obtain a minimum

degree version of our decomposition result, which yields the first ‘effective’ bounds for

the decomposition threshold of ‘real’ hypergraphs (see Section 2.1.3). We remark that

Yuster [89] studied the decomposition problem for so-called ‘linear’ hypertrees, which in

their behaviour are very similar to graphs.

For graphs, much more precise bounds on the decomposition threshold are known.

Yet the exact value is known only in few cases. We add to this body of work in various

ways. For instance, we determine the decomposition threshold for all bipartite graphs

F (see Theorem 3.3.1), and show that the threshold of cliques is equal to its fractional

analogue (see Corollary 3.1.2). In order to determine the decomposition threshold it is thus

sufficient to determine the fractional one. (To appreciate this, note that Wilson’s theorem,

a landmark result in design theory, becomes trivial in the fractional setting.) We also make

progress for general graphs F . Recall that every graph G with δ(G) ≥ (1−1/(χ(F )−1)+

o(1))|V (G)| contains a copy of F by the Erdős-Simonovits-Stone theorem, and every graph

G with |V (F )| | |V (G)| and δ(G) ≥ (1 − 1/χ(F ) + o(1))|V (G)| contains an F -factor [4].

We conjecture that every F -divisible graph G with δ(G) ≥ (1−1/(χ(F )+1)+o(1))|V (G)|

has an F -decomposition, or in other words, that δF ≤ 1− 1/(χ(F ) + 1). We again show

that it would be enough to obtain the desired bound for the fractional threshold. It is

unclear what the precise value of δF should be. We prove a ‘discretisation result’ (see

Theorem 3.1.1) that restricts the possible values of δF to a small set (where the above

values 1− 1/(χ(F )− 1), 1− 1/χ(F ), 1− 1/(χ(F ) + 1) play a crucial role).

1.3.3 Path and cycle decompositions

So far, we have considered edge decompositions of some host graph G into copies of one

given graph F . Clearly, if such a decomposition exists, then the number of copies in

the decomposition is |G|/|F |. We now consider decomposition problems with a different

emphasis. For example, a path decomposition is a partition of the edge set of a graph into

paths. Obviously, every graph has a path decomposition (e.g. into paths of length one).
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The existence question is thus immediately solved, yet the size of a decomposition can

vary. A natural question is thus: what is the minimal number of paths needed to decom-

pose a given graph? A conjecture of Gallai states that every connected graph on n vertices

can be decomposed into dn/2e paths. There are famous similar conjectures e.g. concern-

ing decompositions into cycles and linear forests. We investigate such decompositions for

dense quasirandom graphs and the binomial random graph (see Chapter 4). In partic-

ular, we determine the exact minimal number of paths/cycles/linear forests needed to

decompose such a graph.

1.4 Iterative absorption

Our results are proven using the iterative absorption method, which we now motivate and

briefly sketch. We begin by recalling the ‘classical’ absorption technique and give some

hints why it is not applicable to the edge decomposition setting.

The main idea of the absorbing technique is relatively straightforward. Suppose we

want to find some spanning structure in a graph or hypergraph, for instance a perfect

matching, a Hamilton cycle, or an F -factor. In many such cases, it is much easier to find

an ‘almost-spanning’ structure, i.e. a matching which covers almost all the vertices, say.

Of course, this is not satisfactory for the original problem. The idea of the absorbing

technique is to set aside, even before finding the almost-spanning structure, an absorbing

structure which is capable of ‘absorbing’ the leftover vertices into the almost-spanning

structure to obtain the desired spanning structure. Such an approach was introduced

systematically in the seminal paper by Rödl, Ruciński and Szemerédi [77] to prove an

analogue of Dirac’s theorem for 3-graphs (but actually goes back further than this, see

e.g. the work of Krivelevich [57] on triangle factors in random graphs, and the result of

Erdős, Gyárfás and Pyber [31] on vertex coverings with monochromatic cycles). Since

then, the absorbing technique has been successfully applied to a wealth of problems con-

cerning spanning structures. Of course, the success of the approach stands and falls with
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the ability to find this ‘magic’ absorbing structure. One key factor in this is the number of

possible leftover configurations. Intuitively, the more possible leftover configurations there

are, the more difficult it is to find an absorbing structure which can deal with all of them.

Loosely speaking, this makes it much harder (if not impossible) to apply the absorbing

technique for edge decomposition problems (see e.g. [9, p. 343] for a back-of-the-envelope

calculation).

The ‘iterative absorption’ method tries to overcome this issue by splitting up the

absorbing process into many steps, and in each step, the number of possible leftover

configurations is drastically reduced using a ‘partial absorbing procedure’, until finally one

has enough control over the leftover to absorb it completely. This approach was pioneered

by Kühn and Osthus [60] to find Hamilton decompositions of regular robust expanders.

The results we present in Chapter 4 are based on this result. The iterative procedure

using partial absorbers was also used in [52] to find optimal Hamilton packings in random

graphs (yet strictly speaking this is not a decomposition result). In the context of F -

decompositions, the method was first applied in [9] to find F -decompositions of graphs

of suitably high minimum degree. In particular, this yielded a combinatorial proof of

Wilson’s theorem (Theorem 1.3.1). The results from [9] are strengthened in [35]. Even

though the overall proof in [35] is more technical, the iterative absorption procedure itself

has been simplified therein (see Chapter 3). The method has also been successfully applied

to verify the Gyárfás-Lehel tree packing conjecture for bounded degree trees [48], as well

as to find decompositions of dense graphs in the partite setting [10].

Here, we develop the iterative absorption method for hypergraphs. We believe that

this will pave the way for further applications beyond the graph setting.

9



CHAPTER 2

WILSON’S THEOREM FOR HYPERGRAPHS

The content of this chapter largely overlaps with the preprints [36] and [37].

2.1 Introduction

In this chapter, we prove Theorem A and various stronger versions thereof.

2.1.1 More Background

Let G and F be r-graphs. Recall from Section 1.2 that an F -decomposition of G is a

collection F of copies of F in G such that every edge of G is contained in exactly one

of these copies. (Throughout the thesis, we always assume that F is non-empty without

mentioning this explicitly.) More generally, an (F, λ)-design of G is a collection F of

distinct copies of F in G such that every edge of G is contained in exactly λ of these

copies. As discussed in Section 2.1.2, such a design can only exist if G satisfies certain

divisibility conditions (e.g. if F is a graph triangle and λ = 1, then G must have even

vertex degrees and the number of edges must be a multiple of three). If F and G are

complete, such designs are also referred to as block designs. Recall that an (n, f, r, λ)-

design (or r-(n, f, λ) design) is a set X of f -subsets of some n-set V , such that every

r-subset of V belongs to exactly λ elements of X. The f -subsets are often called ‘blocks’.

An (n, f, r, 1)-design is also called an (n, f, r)-Steiner system. As noted before, an (n, f, r)-

10



Steiner system is equivalent to a K
(r)
f -decomposition of K

(r)
n . More generally, note that

an (n, f, r, λ)-design is equivalent to a (K
(r)
f , λ)-design of K

(r)
n .

The question of the existence of such designs goes back to the 19th century. For the

early history including the works of Plücker, Woolhouse, Kirkman and Steiner, as well as

the breakthrough result of Wilson who settled the graph case r = 2, we refer to Chapter 1.

For r ≥ 3, much less was known until very recently. Answering a question of Erdős

and Hanani [32], Rödl [75] was able to give an approximate solution to the existence

conjecture by constructing near optimal packings of edge-disjoint copies of K
(r)
f in K

(r)
n ,

i.e. constructing a collection of edge-disjoint copies of K
(r)
f which cover almost all the

edges of K
(r)
n . (For this, he introduced his now famous Rödl nibble method, which has

since had a major impact in many areas.) His bounds were subsequently improved by in-

creasingly sophisticated randomised techniques (see e.g. [3, 82]). Ferber, Hod, Krivelevich

and Sudakov [33] recently observed that this method can be used to obtain an ‘almost’

Steiner system in the sense that every r-set is covered by either one or two f -sets.

Teirlinck [81] was the first to prove the existence of infinitely many non-trivial (n, f, r, λ)-

block designs for arbitrary r ≥ 6, via an ingenious recursive construction based on the

symmetric group (this however requires f = r+1 and λ large compared to f). Kuperberg,

Lovett and Peled [62] proved a ‘localized central limit theorem’ for rigid combinatorial

structures, which implies the existence of designs for arbitrary f and r, but again for large

λ. There are many constructions resulting in sporadic and infinite families of designs (see

e.g. the handbook [20]). However, the set of parameters they cover is very restricted. In

particular, even the existence of infinitely many Steiner systems with r ≥ 4 was open

until recently, and not a single Steiner system with r ≥ 6 was known.

In a recent breakthrough, Keevash [49] proved the existence of (n, f, r, λ)-block designs

for arbitrary (but fixed) r, f and λ, provided n is sufficiently large. In particular, his result

implies the existence of Steiner systems for any admissible range of parameters as long as

n is sufficiently large compared to f . The approach in [49] involved ‘randomised algebraic

constructions’ and yielded a far-reaching generalisation to block designs in quasirandom
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r-graphs.

Here we develop a non-algebraic approach based on iterative absorption, which addi-

tionally yields resilience versions and the existence of block designs in hypergraphs of large

minimum degree. Moreover, we are able to go beyond the setting of block designs and

show that F -designs also exist for arbitrary r-graphs F whenever the necessary divisibility

conditions are satisfied.

2.1.2 F -designs in quasirandom hypergraphs

We now describe the degree conditions which are trivially necessary for the existence of an

F -design in an r-graph G. For a set S ⊆ V (G) with 0 ≤ |S| ≤ r, the (r−|S|)-graph G(S)

has vertex set V (G)\S and contains all (r−|S|)-subsets of V (G)\S that together with S

form an edge in G. (G(S) is often called the link graph of S.) Let δ(G) and ∆(G) denote

the minimum and maximum (r − 1)-degree of an r-graph G, respectively, that is, the

minimum/maximum value of |G(S)| over all S ⊆ V (G) of size r − 1. For a (non-empty)

r-graph F , we define the divisibility vector of F as Deg(F ) := (d0, . . . , dr−1) ∈ Nr, where

di := gcd{|F (S)| : S ∈
(
V (F )
i

)
}, and we set Deg(F )i := di for 0 ≤ i ≤ r − 1. Note that

d0 = |F |. So if F is a graph triangle K3, then Deg(F ) = (3, 2), and if F is the Fano plane

(viewed as a 3-graph), we have Deg(F ) = (7, 3, 1).

Given r-graphs F and G, G is called (F, λ)-divisible if Deg(F )i | λ|G(S)| for all

0 ≤ i ≤ r − 1 and all S ∈
(
V (G)
i

)
. Note that G must be (F, λ)-divisible in order to admit

an (F, λ)-design. For simplicity, we say that G is F -divisible if G is (F, 1)-divisible. Thus

F -divisibility of G is necessary for the existence of an F -decomposition of G.

As a special case, the following result implies that (F, λ)-divisibility is sufficient to

guarantee the existence of an (F, λ)-design when G is complete and λ is not too large.

This answers a question asked e.g. by Keevash [49].

In fact, rather than requiring G to be complete, it suffices that G is quasirandom in

the following sense. An r-graph G on n vertices is called (c, h, p)-typical if for any set A

of (r − 1)-subsets of V (G) with |A| ≤ h we have |
⋂
S∈AG(S)| = (1 ± c)p|A|n. Note that
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this is what one would expect in a random r-graph with edge probability p.

Theorem 2.1.1 (F -designs in typical hypergraphs). For all f, r ∈ N with f > r and all

c, p ∈ (0, 1] with

c ≤ 0.9(p/2)h/(qr4q), where q := 2f · f ! and h := 2r
(
q + r

r

)
,

there exist n0 ∈ N and γ > 0 such that the following holds for all n ≥ n0. Let F be any

r-graph on f vertices and let λ ∈ N with λ ≤ γn. Suppose that G is a (c, h, p)-typical

r-graph on n vertices. Then G has an (F, λ)-design if it is (F, λ)-divisible.

The main result in [49] is also stated in the setting of typical r-graphs, but additionally

requires that c� 1/h� p, 1/f and that λ = O(1) and F is complete.

Previous results in the case when r ≥ 3 and F is not complete are very sporadic –

for instance Hanani [43] settled the problem if F is an octahedron (viewed as a 3-uniform

hypergraph) and G is complete.

In Section 2.9, we will deduce Theorem 2.1.1 from a more general result on F -

decompositions in supercomplexes G (Theorem 2.4.7). The condition of G being a su-

percomplex is considerably less restrictive than typicality. Moreover, the F -designs we

obtain will have the additional property that |V (F ′) ∩ V (F ′′)| ≤ r for all distinct F ′, F ′′

which are included in the design. It is easy to see that with this additional property the

bound on λ in Theorem 2.1.1 is best possible up to the value of γ.

We can also deduce the following result which yields ‘near-optimal’ F -packings in

typical r-graphs which are not divisible. (An F -packing in G is a collection of edge-

disjoint copies of F in G.)

Theorem 2.1.2. For all f, r ∈ N with f > r and all c, p ∈ (0, 1] with

c ≤ 0.9ph/(qr4q), where q := 2f · f ! and h := 2r
(
q + r

r

)
,

there exist n0, C ∈ N such that the following holds for all n ≥ n0. Let F be any r-graph
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on f vertices. Suppose that G is a (c, h, p)-typical r-graph on n vertices. Then G has an

F -packing F such that the leftover L consisting of all uncovered edges satisfies ∆(L) ≤ C.

2.1.3 F -designs in hypergraphs of large minimum degree

Once the existence question is settled, a next natural step is to seek F -designs and F -

decompositions in r-graphs of large minimum degree. Our next result gives a bound on

the minimum degree which ensures an F -decomposition for ‘weakly regular’ r-graphs F .

These are defined as follows.

Definition 2.1.3 (weakly regular). Let F be an r-graph. We say that F is weakly

(s0, . . . , sr−1)-regular if for all 0 ≤ i ≤ r − 1 and all S ∈
(
V (F )
i

)
, we have |F (S)| ∈ {0, si}.

We simply say that F is weakly regular if it is weakly (s0, . . . , sr−1)-regular for suitable

si’s.

So for example, cliques, the Fano plane and the octahedron are all weakly regular but

a 3-uniform tight or loose cycle is not.

Theorem 2.1.4 (F -decompositions in hypergraphs of large minimum degree). Let F be

a weakly regular r-graph on f vertices. Let

c�F :=
r!

3 · 14rf 2r
.

There exists an n0 ∈ N such that the following holds for all n ≥ n0. Suppose that G is

an r-graph on n vertices with δ(G) ≥ (1− c�F )n. Then G has an F -decomposition if it is

F -divisible.

We will actually deduce Theorem 2.1.4 from a ‘resilience version’ (Theorem 2.9.3).

An analogous (but significantly worse) constant c�F for r-graphs F which are not weakly

regular immediately follows from the case p = 1 of Theorem 2.1.1.

Note that Theorem 2.1.4 implies that whenever X is a partial (n, f, r)-Steiner system

(i.e. a set of edge-disjoint K
(r)
f on n vertices) and n∗ ≥ max{n0, n/c

�
K

(r)
f

} satisfies the
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necessary divisibility conditions, then X can be extended to an (n∗, f, r)-Steiner system.

For the case of Steiner triple systems (i.e. f = 3 and r = 2), Bryant and Horsley [17]

showed that one can take n∗ = 2n+ 1, which proved a conjecture of Lindner.

Theorem 2.1.4 leads to the concept of the decomposition threshold δF of a given r-

graph F (see Definition 1.3.2). By Theorem 2.1.4, we have δF ≤ 1 − c�F whenever F is

weakly regular. It is not clear what the correct value should be. We note that for all

r, f, n0 ∈ N, there exists an r-graph Gn on n ≥ n0 vertices with δ(Gn) ≥ (1 − br log f
fr−1 )n

such that Gn does not contain a single copy of K
(r)
f , where br > 0 only depends on r. This

can be seen by adapting a construction from [56] as follows. Without loss of generality, we

may assume that 1/f � 1/r. By a result of [78], for every r ≥ 2, there exists a constant

br such that for any large enough f , there exists a partial (N, r, r− 1)-Steiner system SN

with independence number α(SN) < f/(r − 1) and 1/N ≤ br log f/f r−1. This partial

Steiner system can be ‘blown up’ (cf. [56]) to obtain arbitrarily large r-graphs Hn on n

vertices with α(Hn) < f and ∆(Hn) ≤ n/N ≤ brn log f/f r−1. Then the complement Gn

of Hn is K
(r)
f -free and satisfies δ(Gn) ≥ (1− br log f

fr−1 )n.

Previously, the only explicit result for the hypergraph case r ≥ 3 was due to Yuster [89],

who showed that if T is a linear r-uniform hypertree, then every T -divisible r-graph G on

n vertices with minimum vertex degree at least ( 1
2r−1 + o(1))

(
n
r−1

)
has a T -decomposition.

This is asymptotically best possible for nontrivial T . Moreover, the result implies that

δT ≤ 1/2r−1.

For the graph case r = 2, much more is known about the decomposition threshold.

We refer to Chapter 3 for more details.

2.1.4 Varying block sizes

We now briefly consider a more general notion of block designs, where more than just one

block order is admissible. Given n, r, λ ∈ N as before and A ⊆ N, we say that X is an

(n,A, r, λ)-design if X consists of subsets of an n-set V such that |x| ∈ A for every x ∈ X

and such that every r-subset of V is contained in precisely λ elements of X. Similarly,
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given an r-graph G and a family of r-graphs K, we say that F is a K-decomposition of

G if every edge of G lies in precisely one F ∈ F and if F ∈ K for each F ∈ F . For

instance, a {K(r)
a : a ∈ A}-decomposition of K

(r)
n is equivalent to an (n,A, r, 1)-design.

We say that G is K-divisible if gcd{Deg(F )i : F ∈ K} | Deg(G)i for all 0 ≤ i ≤ r − 1.

Clearly, K-divisibility is a necessary condition for the existence of a K-decomposition.

Theorem 2.1.1 easily implies the following result (see Section 2.9).

Theorem 2.1.5 (Designs with varying block sizes). For all f, r ∈ N and p ∈ (0, 1] there

exist c > 0, h ∈ N and n0 ∈ N such that the following holds for all n ≥ n0. Let K be a

family of r-graphs of order at most f each. Suppose that G is a (c, h, p)-typical r-graph

on n vertices. Then G has a K-decomposition if it is K-divisible.

As a very special case, Theorem 2.1.5 resolves a conjecture of Archdeacon on self-dual

embeddings of random graphs in orientable surfaces: as proved in [6], a graph has such an

embedding if it has a {K4, K5}-decomposition. (In this paragraph, we write Kn for K
(2)
n .)

Note that every graph with an even number of edges is {K4, K5}-divisible. Suppose G is a

(c, h, p)-typical graph on n vertices with an even number of edges and 1/n� c� 1/h� p

(which almost surely holds for the binomial random graph Gn,p if we remove at most one

edge). Then we can apply Theorem 2.1.5 to obtain a {K4, K5}-decomposition of G. It

was also shown in [6] that a graph has a self-dual embedding in a non-orientable surface

if it has a {Ka : a ≥ 4}-decomposition. Since every graph is {K4, K5, K6}-divisible, say,

Theorem 2.1.5 implies that almost every graph has a {K4, K5, K6}-decomposition and

thus a self-dual embedding.

2.1.5 Matchings and further results

As another illustration, we now state a consequence of our main result which concerns

perfect matchings in hypergraphs that satisfy certain uniformity conditions on their edge

distribution. Note that the conditions are much weaker than any standard pseudoran-

domness notion.
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Theorem 2.1.6. For all f ≥ 2 and ξ > 0 there exists n0 ∈ N such that the following

holds whenever n ≥ n0 and f | n. Let G be a f -graph on n vertices which satisfies the

following properties:

• for some d ≥ ξ, |G(v)| = (d± 0.01ξ)nf−1 for all v ∈ V (G);

• every vertex is contained in at least ξnf copies of K
(f)
f+1;

• |G(v) ∩G(w)| ≥ ξnf−1 for all v, w ∈ V (G).

Then G has at least 0.01ξnf−1 edge-disjoint perfect matchings.

Note that for G = K
(f)
n , this is strengthened by Baranyai’s theorem [7], which states

that K
(f)
n has a decomposition into

(
n−1
f−1

)
edge-disjoint perfect matchings. More gener-

ally, the interplay between designs and the existence of (almost) perfect matchings in

hypergraphs has resulted in major developments over the past decades, e.g. via the Rödl

nibble. For more recent progress on results concerning perfect matchings in hypergraphs

and related topics, see e.g. the surveys [76, 92, 95].

We discuss further applications of our main result in Section 2.4, e.g. to partite graphs

(see Example 2.4.11) and to (n, f, r, λ)-block designs where we allow any λ ≤ nf−r/(11 ·

7rf !), say (under more restrictive divisibility conditions, see Corollary 2.4.14).

2.1.6 Counting

An approximate F -decomposition of K
(r)
n is a set of edge-disjoint copies of F in K

(r)
n which

together cover almost all edges of K
(r)
n . Given good bounds on the number of approximate

F -decompositions ofK
(r)
n whose set of leftover edges forms a typical r-graph, one can apply

Theorem 2.1.1 to obtain corresponding bounds on the number of F -decompositions in K
(r)
n

(see [49, 50] for the clique case). Such lower bounds on the number of approximate F -

decompositions can be achieved by considering either a random greedy F -removal process

or an associated F -nibble removal process. Linial and Luria [64] developed an entropy-

based approach which they used to obtain good upper bounds e.g. on the number of
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Steiner triple systems. These developments also make it possible to systematically study

random designs (see Kwan [63] for an investigation of random Steiner triple systems).

2.1.7 Outline of the chapter

As mentioned earlier, our main result (Theorem 2.4.7) actually concerns F -decompositions

in so-called supercomplexes. We will define supercomplexes in Section 2.4 and derive The-

orems 2.1.1, 2.1.2, 2.1.4, 2.1.5 and 2.1.6 in Section 2.9. The definition of a supercomplex G

involves mainly the distribution of cliques of size f in G (where f = |V (F )|). The notion

is weaker than usual notions of quasirandomness. This has two main advantages: firstly,

our proof is by induction on r, and working with this weaker notion is essential to make the

induction proof work. Secondly, this allows us to deduce Theorems 2.1.1, 2.1.2, 2.1.4, 2.1.5

and 2.1.6 from a single statement.

However, Theorem 2.4.7 applies only to F -decompositions of a supercomplex G for

weakly regular r-graphs F (which allows us to deduce Theorem 2.1.4 but not The-

orem 2.1.1).

To deal with this, in Section 2.9 we first provide an explicit construction which shows

that every r-graph F can be ‘perfectly’ packed into a suitable weakly regular r-graph F ∗.

In particular, F ∗ has an F -decomposition. The idea is then to apply Theorem 2.4.7 to find

an F ∗-decomposition in G. Unfortunately, G may not be F ∗-divisible. To overcome this,

in Section 2.11 we show that we can remove a small set of copies of F from G to achieve

that the leftover G′ of G is now F ∗-divisible (see Lemma 2.9.4 for the statement). This

now implies Theorem 2.1.1 for F -decompositions, i.e. for λ = 1. However, by repeatedly

applying Theorem 2.4.7 in a suitable way, we can actually allow λ to be as large as required

in Theorem 2.1.1.

It thus remains to prove Theorem 2.4.7 itself. We achieve this via an approach based

on ‘iterative absorption’. We give a sketch of the argument in Section 2.3.

As a byproduct of the construction of the weakly regular r-graph F ∗ outlined above,

we prove the existence of resolvable clique decompositions in complete partite r-graphs G
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(see Theorem 2.9.1). The construction is explicit and exploits the property that all square

submatrices of so-called Cauchy matrices over finite fields are invertible. We believe this

construction to be of independent interest. A natural question leading on from the current

work would be to obtain such resolvable decompositions also in the general (non-partite)

case. For decompositions of K
(2)
n into K

(2)
f , this is due to Ray-Chaudhuri and Wilson [74].

For related results see [28, 66].

2.2 Notation

2.2.1 Basic terminology

We let [n] denote the set {1, . . . , n}, where [0] := ∅. Moreover, let [n]0 := [n] ∪ {0} and

N0 := N ∪ {0}. As usual,
(
n
i

)
denotes the binomial coefficient, where we set

(
n
i

)
:= 0 if

i > n or i < 0. Moreover, given a set X and i ∈ N0, we write
(
X
i

)
for the collection

of all i-subsets of X. Hence,
(
X
i

)
= ∅ if i > |X|. If F is a collection of sets, we define⋃

F :=
⋃
f∈F f . We write A ·∪ B for the union of A and B if we want to emphasise that

A and B are disjoint.

We write X ∼ B(n, p) if X has binomial distribution with parameters n, p, and we

write bin(n, p, i) :=
(
n
i

)
pi(1 − p)n−i. So by the above convention, bin(n, p, i) = 0 if i > n

or i < 0.

We say that an event holds with high probability (whp) if the probability that it holds

tends to 1 as n → ∞ (where n usually denotes the number of vertices). We let Hr(n, p)

denote the random binomial r-graph on [n] whose edges appear independently with prob-

ability p. If r = 2, we write G(n, p) instead.

We write x� y to mean that for any y ∈ (0, 1] there exists an x0 ∈ (0, 1) such that for

all x ≤ x0 the subsequent statement holds. Hierarchies with more constants are defined

in a similar way and are to be read from the right to the left. We will always assume that

the constants in our hierarchies are reals in (0, 1]. Moreover, if 1/x appears in a hierarchy,
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this implicitly means that x is a natural number. More precisely, 1/x� y means that for

any y ∈ (0, 1] there exists an x0 ∈ N such that for all x ∈ N with x ≥ x0 the subsequent

statement holds.

We write a = b ± c if b − c ≤ a ≤ b + c. Equations containing ± are always to be

interpreted from left to right, e.g. b1 ± c1 = b2 ± c2 means that b1 − c1 ≥ b2 − c2 and

b1 + c1 ≤ b2 + c2. We will often use the fact that for all 0 < x < 1 and n ∈ N we have

(1± x)n = 1± 2nx.

When dealing with multisets, we treat multiple appearances of the same element as

distinct elements. In particular, two subsets A,B of a multiset can be disjoint even if

they both contain a copy of the same element, and if A and B are disjoint, then the

multiplicity of an element in the union A ∪ B is obtained by adding the multiplicities of

this element in A and B (rather than just taking the maximum).

2.2.2 Hypergraphs and complexes

Let G be an r-graph. Note that G(∅) = G. For a set S ⊆ V (G) with |S| ≤ r and

L ⊆ G(S), let S ] L := {S ∪ e : e ∈ L}. Clearly, there is a natural bijection between L

and S ] L.

For i ∈ [r − 1]0, we define δi(G) and ∆i(G) as the minimum and maximum value of

|G(S)| over all i-subsets S of V (G), respectively. As before, we let δ(G) := δr−1(G) and

∆(G) := ∆r−1(G). Note that δ0(G) = ∆0(G) = |G(∅)| = |G|.

For two r-graphs G and G′, we let G − G′ denote the r-graph obtained from G by

deleting all edges of G′. We write G1 + G2 to mean the vertex-disjoint union of G1 and

G2, and t ·G to mean the vertex-disjoint union of t copies of G.

Let F and G be r-graphs. An F -packing in G is a set F of edge-disjoint copies of F in

G. We let F (r) denote the r-graph consisting of all covered edges ofG, i.e. F (r) =
⋃
F ′∈F F

′.

A multi-r-graph G consists of a set of vertices V (G) and a multiset of edges E(G),

where each e ∈ E(G) is a subset of V (G) of size r. We will often identify a multi-r-graph

with its edge set. For S ⊆ V (G), let |G(S)| denote the number of edges of G that contain
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S (counted with multiplicities). If |S| = r, then |G(S)| is called the multiplicity of S

in G. We say that G is F -divisible if Deg(F )|S| divides |G(S)| for all S ⊆ V (G) with

|S| ≤ r − 1. An F -decomposition of G is a collection F of copies of F in G such that

every edge e ∈ G is covered precisely once. (Thus if S ⊆ V (G) has size r, then there are

precisely |G(S)| copies of F in F in which S forms an edge.)

Definition 2.2.1. A complex G is a hypergraph which is closed under inclusion, that is,

whenever e′ ⊆ e ∈ G we have e′ ∈ G. If G is a complex and i ∈ N0, we write G(i) for the

i-graph on V (G) consisting of all e ∈ G with |e| = i. We say that a complex is empty if

∅ /∈ G(0), that is, if G does not contain any edges.

Suppose G is a complex and e ⊆ V (G). Define G(e) as the complex on vertex set

V (G) \ e containing all sets e′ ⊆ V (G) \ e such that e ∪ e′ ∈ G. Clearly, if e /∈ G, then

G(e) is empty. Observe that if |e| = i and r ≥ i, then G(r)(e) = G(e)(r−i). We say that

G′ is a subcomplex of G if G′ is a complex and a subhypergraph of G.

For a set U , define G[U ] as the complex on U ∩V (G) containing all e ∈ G with e ⊆ U .

Moreover, for an r-graph H, let G[H] be the complex on V (G) with edge set

G[H] := {e ∈ G :

(
e

r

)
⊆ H},

and define G − H := G[G(r) − H]. So for i ∈ [r − 1], G[H](i) = G(i). For i > r,

we might have G[H](i) $ G(i). Moreover, if H ⊆ G(r), then G[H](r) = H. Note that

for an r1-graph H1 and an r2-graph H2, we have (G[H1])[H2] = (G[H2])[H1]. Also,

(G−H1)−H2 = (G−H2)−H1, so we may write this as G−H1 −H2.

If G1 and G2 are complexes, we define G1 ∩G2 as the complex on vertex set V (G1) ∩

V (G2) containing all sets e with e ∈ G1 and e ∈ G2. We say that G1 and G2 are i-disjoint

if G
(i)
1 ∩G

(i)
2 is empty.

For any hypergraph H, let H≤ be the complex on V (H) generated by H, that is,

H≤ := {e ⊆ V (H) : ∃e′ ∈ H such that e ⊆ e′}.
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For an r-graph H, we let H↔ denote the complex on V (H) that is induced by H, that

is,

H↔ := {e ⊆ V (H) :

(
e

r

)
⊆ H}.

Note that H↔(r) = H and for each i ∈ [r − 1]0, H↔(i) is the complete i-graph on V (H).

Within this chapter, we let Kn denote the complete complex on n vertices (instead of the

complete 2-graph).

2.3 Outline of the methods

Rather than an algebraic approach as in [49], we pursue a combinatorial approach based

on ‘iterative absorption’. In particular, we do not make use of any nontrivial algebraic

techniques and results, but rely only on probabilistic tools.

2.3.1 Iterative absorption in vortices

Suppose for simplicity that we aim to find a K
(r)
f -decomposition of a suitable r-graph

G. The Rödl nibble (see e.g. [3, 71, 75, 82]) allows us to obtain an approximate K
(r)
f -

decomposition of G, i.e. a set of edge-disjoint copies of K
(r)
f covering almost all edges of

G. However, one has little control over the resulting uncovered leftover set of edges. The

basic aim of an absorbing approach is to overcome this issue by removing an absorbing

structure A right at the beginning and then applying the Rödl nibble to G−A, to obtain

an approximate decomposition with a very small uncovered remainder R. Ideally, A was

chosen in such a way that A ∪R has a K
(r)
f -decomposition.

In the context of decompositions, the first results based on an absorbing approach

were obtained in [52, 60]. In contrast to the construction of spanning subgraphs, the

decomposition setting gives rise to the additional challenge that the number of and possible

shape of uncovered remainder graphs R is comparatively large. So in general it is much

less clear how to construct a structure A which can deal with all such possibilities for R
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(to appreciate this issue, note that V (R) = V (G) in this scenario).

The method developed in [52, 60] consisted of an iterative approach: each iteration

consists of an approximate decomposition of the previous leftover, together with a partial

absorption (or ‘cleaning’) step, which further restricts the structure of the current leftover.

In our context, we carry out this iteration by considering a ‘vortex’. Such a vortex is a

nested sequence V (G) = U0 ⊇ U1 ⊇ · · · ⊇ U`, where |Ui|/|Ui+1| and |U`| are large but

bounded. Crucially, after the ith iteration, all r-edges belonging to the current leftover

Ri will be induced by Ui. In the (i + 1)th iteration, we make use of a suitable r-graph

Hi on Ui which we set aside at the start. We first apply the Rödl nibble to Ri to obtain

a sparse remainder R′i. We then apply what we refer to as the ‘Cover down lemma’ to

find a K
(r)
f -packing Ki of Hi ∪ R′i so that the remainder Ri+1 consists entirely of r-edges

induced by Ui+1 (see Lemma 2.7.7). Ultimately, we arrive at a leftover R` induced by U`.

Since |U`| is bounded, this means there are only a bounded number of possibilities

S1, . . . , Sb for R`. This gives a natural approach to the construction of an absorber A

for R`: it suffices to construct an ‘exclusive’ absorber Ai for each Si (in the sense that

Ai can absorb Si but nothing else). More precisely, we aim to construct edge-disjoint

r-graphs A1, . . . , Ab so that both Ai and Ai ∪ Si have a K
(r)
f -decomposition, and then let

A := A1 ∪ · · · ∪ Ab. Then A ∪R` must also have a K
(r)
f -decomposition.

Iterative absorption based on vortices was introduced in [35], building on a related

(but more complicated approach) in [9]. Developing the above approach in the setting

of hypergraph decompositions gives rise to two main challenges: constructing the ‘ex-

clusive’ absorbers and proving the Cover down lemma, which we discuss in the next two

subsections, respectively.

One difficulty with the iteration process is that after finishing one iteration, the error

terms are too large to carry out the next one. Fortunately, we are able to ‘boost’ our

regularity parameters before each iteration by excluding suitable f -cliques from future

consideration (see Lemma 2.6.3). For this, we adopt gadgets introduced in [8]. Moreover,

the ‘Boost lemma’ enables us to obtain explicit bounds e.g. in the minimum degree version

23



(Theorem 2.1.4).

2.3.2 The Cover down lemma

As indicated above, the goal here is as follows: Given an r-graph G and vertex sets

Ui+1 ⊆ Ui in G, we need to construct H∗ in G[Ui]
(r) so that for any sparse leftover R

on Ui, we can find a K
(r)
f -packing in H∗ ∪ R such that any leftover edges lie in Ui+1.

(In addition, we need to ensure that the distribution of the leftover edges within Ui+1 is

sufficiently well-behaved so that we can continue with the next iteration, but we do not

discuss this aspect here.)

We achieve this goal in several stages: given an edge e ∈ H∗ ∪ R, we refer to the size

of its intersection with Ui+1 as its type. Initially, we cover all edges of type 0. This can

be done using an appropriate greedy approach, i.e. for each edge e of type 0 in turn, we

extend e to a copy of K
(r)
f using edges of H∗. In the next stage, we cover all edges of

type 1, then all edges of type 2 up to and including type r − 1. When covering a given

set of edges of type j, we will inductively assume that our main decomposition result

holds for j-graphs (note that j < r). For example, consider the triangle case f = 3 and

r = 2, and suppose j = 1. Then for each vertex v ∈ Ui \ Ui+1, we will inductively find a

perfect matching (which can be viewed as a K
(1)
2 -decomposition) on the neighbours of v in

Ui+1. This yields a triangle packing which covers all (remaining) edges incident to v (note

that these edges have type 1). The resulting proof of the Cover down lemma is given in

Section 2.10 (which also includes a more detailed sketch of this part of the argument).

2.3.3 Transformers and absorbers

Recall that our remaining goal is to construct an exclusive absorberAS for a given ‘leftover’

r-graph S of bounded size. In other words, both AS ∪ S as well as AS need to have a

K
(r)
f -decomposition. Clearly, we must (and can) assume that S is K

(r)
f -divisible.

Based on an idea introduced in [9], we will construct AS as a concatenation of ‘trans-
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formers’: given S, a transformer TS can be viewed as transforming S into a new leftover

L (which has the same number of edges and is still divisible). Formally, we require that

S∪TS and TS ∪L both have a K
(r)
f -decomposition (and will set aside TS and L at the be-

ginning of the proof). Since transformers act transitively, the idea is to concatenate them

in order to transform S into a vertex-disjoint union of K
(r)
f , i.e. we gradually transform

the given leftover S into a graph which is trivially decomposable.

Roughly speaking, we approach this by choosing L to be a suitable ‘canonical’ graph

(i.e. L only depends on |S|). Let S ′ denote the vertex-disjoint union of copies of K
(r)
f

such that |S| = |S ′|, and let TS′ be the corresponding transformer from S ′ into L. Then

it is easy to see that we could let AS := TS ∪ L ∪ TS′ ∪ S ′. The construction of both the

canonical graph L as well as that of the transformer TS is based on an inductive approach,

i.e. we assume that our main decomposition result holds for r′-graphs with 1 ≤ r′ < r.

The above construction is given in Section 2.8.

2.4 Decompositions of supercomplexes

2.4.1 Supercomplexes

We prove our main decomposition theorem for so-called ‘supercomplexes’. The crucial

property appearing in the definition is that of ‘regularity’, which means that every r-set of

a given complex G is contained in roughly the same number of f -sets (where f = |V (F )|).

If we view G as a complex which is induced by some r-graph, this means that every edge

lies in roughly the same number of cliques of size f . It turns out that this set of conditions

is appropriate even when F is not a clique.

A key advantage of the notion of a supercomplex is that the conditions are very flexible,

which will enable us to ‘boost’ their parameters (see Lemma 2.4.4 below).

Definition 2.4.1. Let G be a complex on n vertices, f ∈ N and r ∈ [f −1]0, 0 ≤ ε, d, ξ ≤

1. We say that G is
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(i) (ε, d, f, r)-regular, if for all e ∈ G(r) we have

|G(f)(e)| = (d± ε)nf−r;

(ii) (ξ, f, r)-dense, if for all e ∈ G(r), we have

|G(f)(e)| ≥ ξnf−r;

(iii) (ξ, f, r)-extendable, if G(r) is empty or there exists a subset X ⊆ V (G) with |X| ≥ ξn

such that for all e ∈
(
X
r

)
, there are at least ξnf−r (f − r)-sets Q ⊆ V (G) \ e such

that
(
Q∪e
r

)
\ {e} ⊆ G(r).

We say that G is a full (ε, ξ, f, r)-complex if G is

• (ε, d, f, r)-regular for some d ≥ ξ,

• (ξ, f + r, r)-dense,

• (ξ, f, r)-extendable.

We say that G is an (ε, ξ, f, r)-complex if there exists an f -graph Y on V (G) such that

G[Y ] is a full (ε, ξ, f, r)-complex. Note that G[Y ](r) = G(r) (recall that r < f).

The additional flexibility offered by considering (ε, ξ, f, r)-complexes rather than full

(ε, ξ, f, r)-complexes is key to proving our minimum degree result (via the ‘boosting’ step

discussed below). We also note that for the scope of this thesis, it would be sufficient

to define extendability more restrictively, by letting X := V (G). However, for future

applications, it might turn out to be useful that we do not require X = V (G).

Fact 2.4.2. Note that G is an (ε, ξ, f, 0)-complex if and only if G is empty or |G(f)| ≥ ξnf .

In particular, every (ε, ξ, f, 0)-complex is a (0, ξ, f, 0)-complex.
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Definition 2.4.3. (supercomplex) Let G be a complex. We say that G is an (ε, ξ, f, r)-

supercomplex if for every i ∈ [r]0 and every set B ⊆ G(i) with 1 ≤ |B| ≤ 2i, we have that⋂
b∈B G(b) is an (ε, ξ, f − i, r − i)-complex.

In particular, taking i = 0 and B = {∅} implies that every (ε, ξ, f, r)-supercomplex is

also an (ε, ξ, f, r)-complex. Moreover, the above definition ensures that if G is a super-

complex and b, b′ ∈ G(i), then G(b) ∩G(b′) is also a supercomplex (cf. Proposition 2.5.5).

In Section 2.4.3, we will give some examples of supercomplexes. As mentioned above,

the following lemma allows us to ‘boost’ the regularity parameters (and thus deduce results

with ‘effective’ bounds). It is an easy consequence of our Boost lemma (Lemma 2.6.3).

The key to the proof is that we can (probabilistically) choose some Y ⊆ G(f) so that

the parameters of G[Y ] in Definition 2.4.1(i) are better than those of G, i.e. the resulting

distribution of f -sets is more uniform.

Lemma 2.4.4. Let 1/n � ε, ξ, 1/f and r ∈ [f − 1] with 2(2
√

e)rε ≤ ξ. Let ξ′ :=

0.9(1/4)(
f+r
f )ξ. If G is an (ε, ξ, f, r)-complex on n vertices, then G is an (n−1/3, ξ′, f, r)-

complex. In particular, if G is an (ε, ξ, f, r)-supercomplex, then it is a (2n−1/3, ξ′, f, r)-

supercomplex.

2.4.2 The main complex decomposition theorem

The statement of our main complex decomposition theorem involves the concept of ‘well

separated’ decompositions. This is crucial for our inductive proof to work in the context

of F -decompositions.

Definition 2.4.5 (well separated). Let F be an r-graph and let F be an F -packing (in

some r-graph G). We say that F is κ-well separated if the following hold:

(WS1) for all distinct F ′, F ′′ ∈ F , we have |V (F ′) ∩ V (F ′′)| ≤ r.

(WS2) for every r-set e, the number of F ′ ∈ F with e ⊆ V (F ′) is at most κ.

We simply say that F is well separated if (WS1) holds.
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For instance, any K
(r)
f -packing is automatically 1-well separated. Moreover, if an F -

packing F is 1-well separated, then for all distinct F ′, F ′′ ∈ F , we have |V (F ′)∩V (F ′′)| <

r. On the other hand, if F is not complete, we cannot require |V (F ′) ∩ V (F ′′)| < r in

(WS1): this would make it impossible to find an F -decomposition of K
(r)
n . The notion of

being well-separated is a natural relaxation of this requirement, we discuss this in more

detail after stating Theorem 2.4.7.

We now define F -divisibility and F -decompositions for complexes G (rather than r-

graphs G).

Definition 2.4.6. Let F be an r-graph and f := |V (F )|. A complex G is F -divisible if

G(r) is F -divisible. An F -packing in G is an F -packing F in G(r) such that V (F ′) ∈ G(f)

for all F ′ ∈ F . Similarly, we say that F is an F -decomposition of G if F is an F -packing

in G and F (r) = G(r).

Note that this implies that every copy F ′ of F used in an F -packing in G is ‘supported’

by a clique, i.e. G(r)[V (F ′)] ∼= K
(r)
f .

We can now state our main complex decomposition theorem.

Theorem 2.4.7 (Main complex decomposition theorem). For all r ∈ N, the following is

true.

(∗)r Let 1/n � 1/κ, ε � ξ, 1/f and f > r. Let F be a weakly regular r-graph on f

vertices and let G be an F -divisible (ε, ξ, f, r)-supercomplex on n vertices. Then G

has a κ-well separated F -decomposition.

Note that in light of Lemma 2.4.4, (∗)r already holds if ε ≤ ξ
2(2
√

e)r
. We will prove (∗)r

by induction on r in Section 2.9. We do not make any attempt to optimise the values

that we obtain for κ.

We now motivate Definitions 2.4.5 and 2.4.6. This involves the following additional

concepts, which are also convenient later.

Definition 2.4.8. Let f := |V (F )| and suppose that F is a well separated F -packing.

We let F≤ denote the complex generated by the f -graph {V (F ′) : F ′ ∈ F}. We say that
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well separated F -packings F1,F2 are i-disjoint if F≤1 ,F
≤
2 are i-disjoint (or equivalently,

if |V (F ′) ∩ V (F ′′)| < i for all F ′ ∈ F1 and F ′′ ∈ F2).

Note that if F is a well-separated F -packing, then the f -graph {V (F ′) : F ′ ∈ F}

is simple. Moreover, observe that (WS2) is equivalent to the condition ∆r(F≤(f)) ≤ κ.

Furthermore, if F is a well separated F -packing in a complex G, then F≤ is a subcomplex

of G by Definition 2.4.6. Clearly, we have F (r) ⊆ F≤(r), but in general equality does not

hold. On the other hand, if F is an F -decomposition of G, then F (r) = G(r) which implies

F (r) = F≤(r).

We now discuss (WS1). During our proof, we will need to find an F -packing which

covers a given set of edges. This gives rise to the following task of ‘covering down locally’.

(?) Given a set S ⊆ V (G) of size 1 ≤ i ≤ r− 1, find an F -packing F which covers all

edges of G that contain S.

(This is crucial in the proof of the Cover down lemma (Lemma 2.7.7). Moreover, a

two-sided version of this involving sets S, S ′ is needed to construct parts of our absorbers,

see Section 2.8.1.)

A natural approach to achieve (?) is as follows: Let T ∈
(
V (F )
i

)
. Suppose that by using

the main theorem inductively, we can find an F (T )-decomposition F ′ of G(S). We now

wish to obtain F by ‘extending’ F ′ as follows: For each copy F ′ of F (T ) in F ′, we define

a copy F ′/ of F by ‘adding S back’, that is, F ′/ has vertex set V (F ′) ∪ S and S plays the

role of T in F ′/. Then F ′/ covers all edges e with S ⊆ e and e \ S ∈ F ′. Since F ′ is an

F (T )-decomposition of G(S), the union of all F ′/ would indeed cover all edges of G that

contain S, as desired. There are two issues with this ‘extension’ though. Firstly, it is not

clear that F ′/ is a subgraph of G. Secondly, for distinct F ′, F ′′ ∈ F ′, it is not clear that

F ′/ and F ′′/ are edge-disjoint. Definition 2.4.6 (and the succeeding remark) allows us to

resolve the first issue. Indeed, if F ′ is an F (T )-decomposition of the complex G(S), then

from V (F ′) ∈ G(S)(f−i), we can deduce V (F ′/) ∈ G(f) and thus that F ′/ is a subgraph of

G(r).

We now consider the second issue. This does not arise if F is a clique. Indeed, in that
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case F (T ) is a copy of K
(r−i)
f−i , and thus for distinct F ′, F ′′ ∈ F ′ we have |V (F ′)∩V (F ′′)| <

r− i. Hence |V (F ′/)∩V (F ′′/ )| < r− i+ |S| = r, i.e. F ′/ and F ′′/ are edge-disjoint. If however

F is not a clique, then F ′, F ′′ ∈ F ′ can overlap in r − i or more vertices (they could in

fact have the same vertex set), and the above argument does not work. We will show

that under the assumption that F ′ is well separated, we can overcome this issue and still

carry out the above ‘extension’. (Moreover, the resulting F -packing F will in fact be well

separated itself, see Definition 2.7.8 and Proposition 2.7.9). For this it is useful to note

that F (T ) is an (r − i)-graph, and thus we already have |V (F ′) ∩ V (F ′′)| ≤ r − i if F ′ is

well separated.

The reason why we also include (WS2) in Definition 2.4.5 is as follows. Suppose we

have already found a well separated F -packing F1 in G and now want to find another well

separated F -packing F2 such that we can combine F1 and F2. If we find F2 in G−F (r)
1 ,

then F (r)
1 and F (r)

2 are edge-disjoint and thus F1 ∪F2 will be an F -packing in G, but it is

not necessarily well separated. We therefore find F2 in G−F (r)
1 −F

≤(r+1)
1 . This ensures

that F1 and F2 are (r + 1)-disjoint, which in turn implies that F1 ∪ F2 is indeed well

separated, as required. But in order to be able to construct F2, we need to ensure that

G − F (r)
1 − F

≤(r+1)
1 is still a supercomplex, which is true if ∆(F (r)

1 ) and ∆(F≤(r+1)
1 ) are

small (cf. Proposition 2.5.9). The latter in turn is ensured by (WS2) via Fact 2.5.4.

Finally, we discuss why we prove Theorem 2.4.7 for weakly regular r-graphs F . Most

importantly, the ‘regularity’ of the degrees will be crucial for the construction of our

absorbers (most notably in Lemma 2.8.25). Beyond that, weakly regular graphs also have

useful closure properties (cf. Proposition 2.5.3): they are closed under taking link graphs

and divisibility is inherited by link graphs in a natural way.

We prove Theorem 2.4.7 in Sections 2.6–2.8 and 2.9.1. As described in Section 2.1.7, we

generalise this to arbitrary F via Lemma 2.9.2 (proved in Section 2.9.2) and Lemma 2.9.4

(proved in Section 2.11): Lemma 2.9.2 shows that for every given r-graph F , there is a

weakly regular r-graph F ∗ which has an F -decomposition. Lemma 2.9.4 then complements

this by showing that every F -divisible r-graph G can be transformed into an F ∗-divisible
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r-graph G′ by removing a sparse F -decomposable subgraph of G.

2.4.3 Applications

As the definition of a supercomplex covers a broad range of settings, we give some ap-

plications here. We will use Examples 2.4.9, 2.4.10 and 2.4.12 in Section 2.9 to prove

Theorems 2.1.1, 2.1.2, 2.1.4, 2.1.5 and 2.1.6. We will also see that random subcomplexes

of a supercomplex are again supercomplexes with appropriately adjusted parameters (see

Corollary 2.5.19).

Example 2.4.9. Let 1/n� 1/f and r ∈ [f − 1]. It is straightforward to check that the

complete complex Kn is a (0, 0.99/f !, f, r)-supercomplex.

Recall that (c, h, p)-typicality was defined in Section 2.1.

Example 2.4.10 (Typicality). Suppose that 1/n� c, p, 1/f , that r ∈ [f −1] and that G

is a (c, 2r
(
f+r
r

)
, p)-typical r-graph on n vertices. Then G↔ is an (ε, ξ, f, r)-supercomplex,

where

ε := 2f−r+1c/(f − r)! and ξ := (1− 2f+1c)p2r(f+rr )/f !.

Proof. Let i ∈ [r]0 and B ⊆ G↔(i) with 1 ≤ |B| ≤ 2i. Let GB :=
⋂
b∈B G

↔(b) and

nB := |V (G) \
⋃
B|. Let e ∈ G

(r−i)
B . To estimate |G(f−i)

B (e)|, we let Qe be the set of

ordered (f − r)-tuples (v1, . . . , vf−r) consisting of distinct vertices in V (G) \ (e ∪
⋃
B)

such that for all b ∈ B,
(
b∪e∪{v1,...,vf−r}

r

)
⊆ G. Note that |G(f−i)

B (e)| = |Qe|/(f − r)!. We

estimate |Qe| by picking v1, . . . , vf−r sequentially. So let j ∈ [f − r] and suppose that we

have already chosen v1, . . . , vj−1 /∈ e ∪
⋃
B such that

(
b∪e∪{v1,...,vj−1}

r

)
⊆ G for all b ∈ B.

Let Dj =
⋃
b∈B
(
b∪e∪{v1,...,vj−1}

r−1

)
. Thus the possible candidates for vj are precisely the

vertices in
⋂
S∈Dj G(S). Note that dj := |Dj| ≤ |B|

(
r+j−1
r−1

)
, and that dj only depends on

the intersection pattern of the b ∈ B, but not on our previous choice of e and v1, . . . , vj−1.

Since G is typical, we have (1± c)pdjn choices for vj. We conclude that

|Qe| = (1± c)f−rp
∑f−r
j=1 djnf−r = (1± 2f−r+1c)dB(f − r)!nf−rB ,
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where dB := p
∑f−r
j=1 dj/(f − r)!. Thus, GB is (2f−r+1cdB, dB, f − i, r − i)-regular. Since∑f−r

j=1

(
r+j−1
r−1

)
=
(
f
r

)
− 1 we have 1/(f − r)! ≥ dB ≥ p|B|((

f
r)−1)/(f − r)! ≥ p2r(fr)/(f − r)!.

Similarly, we deduce that GB is ((1− 2f−r+1c)dB, f − i, r − i)-extendable. Moreover, we

have

|G(f+r−2i)
B (e)| ≥ (1− 2f−i+1c)p2r(f+r−ir )

(f − i)!
nf−iB ≥ ξnf−iB .

Thus, GB is (ξ, f + r − 2i, r − i)-dense. We conclude that GB is an (ε, ξ, f − i, r − i)-

complex. �

Example 2.4.11 (Partite graphs). Let 1/N � 1/k and 2 = r < f ≤ k − 6. Let

V1, . . . , Vk be vertex sets of size N each. Let G be the complete k-partite 2-graph on

V1, . . . , Vk. It is straightforward to check that G↔ is a (0, k−f , f, 2)-supercomplex. Thus,

using Theorem 2.4.7, we can deduce that G has an F -decomposition if it is F -divisible.

To obtain a minimum degree version (and more generally, a resilience version) along the

lines of Theorems 2.1.4 and 2.9.3, one can argue similarly as in the proof of Theorem 2.9.3

(cf. Section 2.9).

Results on (fractional) decompositions of dense f -partite 2-graphs into f -cliques are

proved in [10, 26, 27, 68]. These have applications to the completion of partial (mutually

orthogonal) Latin squares.

Example 2.4.12 (The matching case). Consider 1 = r < f . Let G be a f -graph on n

vertices such that the following conditions hold for some 0 < ε ≤ ξ ≤ 1:

• for some d ≥ ξ − ε, |G(v)| = (d± ε)nf−1 for all v ∈ V (G);

• every vertex is contained in at least ξnf copies of K
(f)
f+1;

• |G(v) ∩G(w)| ≥ ξnf−1 for all v, w ∈ V (G).

Then G↔ is an (ε, ξ − ε, f, 1)-supercomplex.
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2.4.4 Disjoint decompositions and designs

Recall that a K
(r)
f -decomposition of an r-graph is an (K

(r)
f , 1)-design. We now discuss

consequences of our main theorem for general (K
(r)
f , λ)-designs. We can deduce from

Theorem 2.4.7 that there are many f -disjoint K
(r)
f -decompositions, see Corollary 2.4.14.

This will easily follow from (∗)r and the next result.

Proposition 2.4.13. Let 1/n� ε, ξ, 1/f and r ∈ [f−1]. Suppose that G is an (ε, ξ, f, r)-

supercomplex on n vertices. Let Yused be an f -graph on V (G) with ∆r(Yused) ≤ εnf−r.

Then G− Yused is a (2r+2ε, ξ − 22r+1ε, f, r)-supercomplex.

We will apply this when K1, . . . ,Kt are K
(r)
f -packings in some complex G, in which

case Yused :=
⋃
j∈[t]K

(f)
j satisfies ∆r(Yused) ≤ t.

Proof. Fix i ∈ [r]0 andB ⊆ G(i) with 1 ≤ |B| ≤ 2i. Let nB := n−|
⋃
B|, G′ :=

⋂
b∈B G(b)

and G′′ :=
⋂
b∈B(G−Yused)(b). By assumption, there exists Y ⊆ G′(f−i) such that G′[Y ] is

a full (ε, ξ, f−i, r−i)-complex. We claim that G′′[Y ] is a full (2r+2ε, ξ−22r+1ε, f−i, r−i)-

complex.

First, there is some d ≥ ξ such that G′[Y ] is (ε, d, f − i, r− i)-regular. Let e ∈ G′(r−i).

We clearly have |G′′[Y ](f−i)(e)| ≤ |G′[Y ](f−i)(e)| ≤ (d + ε)nf−rB . Moreover, for each

b ∈ B, there are at most εnf−r f -sets in Yused that contain e ∪ b. Thus, |G′′[Y ](f−i)(e)| ≥

(d−ε)nf−rB −|B|εnf−r ≥ (d−ε−1.1·2iε)nf−rB . Thus, G′′[Y ] is (2r+2ε, d, f−i, r−i)-regular.

Next, by assumption we have that G′[Y ] is (ξ, f + r− 2i, r− i)-dense. Let e ∈ G′(r−i).

For each b ∈ B, we claim that the number Nb of (f +r− i)-sets in V (G) that contain e∪ b

and also contain some f -set from Yused is at most 2rεnf−i. Indeed, for any k ∈ {i, . . . , r}

and any K ∈ Yused with |(e∪b)∩K| = k, there are at most nk−i (f+r−i)-sets that contain

e ∪ b and K. Moreover, there are at most
(
r
k

)
∆k(Yused) ≤

(
r
k

)
nr−k∆r(Yused) ≤

(
r
k

)
εnf−k

f -sets K ∈ Yused with |(e ∪ b) ∩K| = k. Hence, Nb ≤
∑r

k=i n
k−i(r

k

)
εnf−k ≤ ε2rnf−i. We

then deduce that

|G′′[Y ](f+r−2i)(e)| ≥ ξnf−iB − |B|2rεnf−i ≥ ξnf−iB − ε2r+inf−i ≥ (ξ − 22r+1ε)nf−iB .
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Finally, since G′′[Y ](r−i) = G′[Y ](r−i), G′′[Y ] is (ξ, f − i, r − i)-extendable. Thus,

G− Yused is a (2r+2ε, ξ − 22r+1ε, f, r)-supercomplex. �

Clearly, any complex G on n vertices can have at most nf−r/(f − r)! f -disjoint K
(r)
f -

decompositions. Moreover, if G has λ f -disjoint K
(r)
f -decompositions, then G(r) has a

(K
(r)
f , λ)-design.

Corollary 2.4.14. Let 1/n� ε, ξ, 1/f and r ∈ [f − 1] with 10 · 7rε ≤ ξ and assume that

(∗)r is true. Suppose that G is a K
(r)
f -divisible (ε, ξ, f, r)-supercomplex on n vertices. Then

G has εnf−r f -disjoint K
(r)
f -decompositions. In particular, G(r) has a (K

(r)
f , λ)-design for

all 1 ≤ λ ≤ εnf−r.

Proof. Suppose that K1, . . . ,Kt are f -disjoint K
(r)
f -decompositions of G, where t ≤

εnf−r. By Proposition 2.4.13 (and the subsequent remark), G−
⋃
j∈[t]K

(f)
j is a (2r+2ε, ξ−

22r+1ε, f, r)-supercomplex. Since 2(2
√

e)r2r+2ε ≤ ξ − 22r+1ε, G −
⋃
j∈[t]K

(f)
j has a K

(r)
f -

decomposition Kt+1 by (the remark after) (∗)r, which is f -disjoint from K1, . . . ,Kt. �

Note that Corollary 2.4.14 together with Example 2.4.9 implies that whenever 1/n�

1/f and K
(r)
n is K

(r)
f -divisible, then K

(r)
n has a (K

(r)
f , λ)-design for all 1 ≤ λ ≤ 1

11·7rf !
nf−r,

which improves the bound λ/nf−r � 1 in [49].

Using (WS2), we can deduce that there are many f -disjoint F -decompositions of a

supercomplex. This will be an important tool in the proof of the Cover down lemma

(Lemma 2.7.7), where we will find many candidate F -decompositions and then pick one

at random.

Corollary 2.4.15. Let 1/n � ε � ξ, 1/f and r ∈ [f − 1] and assume that (∗)r is

true. Let F be a weakly regular r-graph on f vertices. Suppose that G is an F -divisible

(ε, ξ, f, r)-supercomplex on n vertices. Then the number of pairwise f -disjoint 1/ε-well

separated F -decompositions of G is at least ε2nf−r.

Proof. Suppose that F1, . . . ,Ft are f -disjoint 1/ε-well separated F -decompositions of

G, where t ≤ ε2nf−r. Let Yused :=
⋃
j∈[t]F

≤(f)
j . By (WS2), we have ∆r(Yused) ≤ t/ε ≤
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εnf−r. Thus, by Proposition 2.4.13, G − Yused is an F -divisible (2r+2ε, ξ − 22r+1ε, f, r)-

supercomplex and thus has a 1/ε-well separated F -decomposition Ft+1 by (∗)r, which is

f -disjoint from F1, . . . ,Ft. �

2.5 Tools

2.5.1 Basic tools

We will often use the following ‘handshaking lemma’ for r-graphs: Let G be an r-graph

and 0 ≤ i ≤ k ≤ r − 1. Then for every S ∈
(
V (G)
i

)
we have

|G(S)| =
(
r − i
r − k

)−1 ∑
T∈(V (G)

k ) : S⊆T

|G(T )|. (2.5.1)

Fact 2.5.1. Let L be an r-graph on n vertices with ∆(L) ≤ γn. Then for each i ∈ [r−1]0,

we have ∆i(L) ≤ γnr−i/(r − i)!, and for each S ∈
(
V (L)
i

)
, we have ∆(L(S)) ≤ γn.

Proposition 2.5.2. Let F be an r-graph. Then there exist infinitely many n ∈ N such

that K
(r)
n is F -divisible.

Proof. Let p :=
∏r−1

i=0 Deg(F )i. We will show that for every a ∈ N, if we let n =

r!ap+ r − 1 then K
(r)
n is F -divisible. Clearly, this implies the claim. In order to see that

K
(r)
n is F -divisible, it is sufficient to show that p |

(
n−i
r−i

)
for all i ∈ [r − 1]0. It is easy to

see that this holds for the above choice of n. �

The following proposition shows that the class of weakly regular uniform hypergraphs

is closed under taking link graphs.

Proposition 2.5.3. Let F be a weakly regular r-graph and let i ∈ [r − 1]. Suppose that

S ∈
(
V (F )
i

)
and that F (S) is non-empty. Then F (S) is a weakly regular (r− i)-graph and

Deg(F (S))j = Deg(F )i+j for all j ∈ [r − i− 1]0.
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Proof. Let s0, . . . , sr−1 be such that F is weakly (s0, . . . , sr−1)-regular. Note that since

F is non-empty, we have sj > 0 for all j ∈ [r− 1]0 (and the si’s are unique). Consider j ∈

[r−i−1]0. For all T ∈
(
V (F (S))

j

)
, we have |F (S)(T )| = |F (S∪T )| ∈ {0, si+j}. Hence, F (S)

is weakly (si, . . . , sr−1)-regular. Since F is non-empty, we have Deg(F ) = (s0, . . . , sr−1),

and since F (S) is non-empty too by assumption, we have Deg(F (S)) = (si, . . . , sr−1).

Therefore, Deg(F (S))j = Deg(F )i+j for all j ∈ [r − i− 1]0. �

We now list some useful properties of well separated F -packings.

Fact 2.5.4. Let G be a complex and F an r-graph on f > r vertices. Suppose that F is a

κ-well separated F -packing (in G) and F ′ is a κ′-well separated F -packing (in G). Then

the following hold.

(i) ∆(F≤(r+1)) ≤ κ(f − r).

(ii) If F (r) and F ′(r) are edge-disjoint and F and F ′ are (r+ 1)-disjoint, then F ∪F ′ is

a (κ+ κ′)-well separated F -packing (in G).

(iii) If F and F ′ are r-disjoint, then F ∪ F ′ is a max{κ, κ′}-well separated F -packing

(in G).

2.5.2 Some properties of supercomplexes

We first state two basic properties of supercomplexes that we will use in Section 2.8 to

construct absorbers.

Proposition 2.5.5. Let G be an (ε, ξ, f, r)-supercomplex and let B ⊆ G(i) with 1 ≤ |B| ≤

2i for some i ∈ [r]0. Then
⋂
b∈B G(b) is an (ε, ξ, f − i, r − i)-supercomplex.

Proof. Let i′ ∈ [r − i]0 and B′ ⊆ (
⋂
b∈B G(b))(i′) with 1 ≤ |B′| ≤ 2i

′
. Let B∗ := {b ∪ b′ :

b ∈ B, b′ ∈ B′}. Note that B∗ ⊆ G(i+i′) and |B∗| ≤ 2i+i
′
. Thus,

⋂
b′∈B′

(
⋂
b∈B

G(b))(b′) =
⋂

b∗∈B∗
G(b∗)

36



is an (ε, ξ, f − i− i′, r − i− i′)-complex by Definition 2.4.3, as required. �

Fact 2.5.6. If G is an (ε, ξ, f, r)-supercomplex, then for all distinct e, e′ ∈ G(r), we have

|G(f)(e) ∩G(f)(e′)| ≥ (ξ − ε)(n− 2r)f−r.

In what follows, we gather tools that show that supercomplexes are robust with respect

to small perturbations. We first bound the number of f -sets that can affect a given edge

e. We provide two bounds, one that we use when optimising our bounds (e.g. in the

derivation of Theorem 2.1.4) and a more convenient one that we use when the precise

value of the parameters is irrelevant (e.g. in the proof of Proposition 2.5.9).

Proposition 2.5.7. Let f, r′ ∈ N and r ∈ N0 with f > r. Let L be an r′-graph on n

vertices with ∆(L) ≤ γn. Then every e ∈
(
V (L)
r

)
that does not contain any edge of L is

contained in at most min{2r, (fr′)
(f−r)!}γn

f−r f -sets of V (L) that contain an edge of L.

Proof. Consider any e ∈
(
V (L)
r

)
that does not contain any edge of L. For a fixed edge

e′ ∈ L with |e∪e′| ≤ f and |e∩e′| = i, there are at most
(
n−|e∪e′|
f−|e∪e′|

)
≤ nf−r−r

′+i/(f−r−r′+i)!

f -sets of V (L) that contain both e and e′. Moreover, since e′ 6⊆ e, we have i < r′. Hence,

by Fact 2.5.1, there are at most
(
r
i

)
∆i(L) ≤

(
r
i

)
γnr

′−i/(r′−i)! edges e′ ∈ L with |e∩e′| = i.

Let s := max{r + r′ − f, 0}. Thus, the number of f -sets in V (L) that contain e and an

edge of L is at most

r′−1∑
i=s

γ

(
r

i

)
nr
′−i

(r′ − i)!
nf−r−r

′+i

(f − r − r′ + i)!
= γnf−r

r′−1∑
i=s

(
r

i

) (
f−r
r′−i

)
(f − r)!

.

Clearly,
(f−rr′−i)
(f−r)! ≤ 1, and we can bound

∑r′−1
i=s

(
r
i

)
≤ 2r. Also, using Vandermonde’s convo-

lution, we have
∑r′−1

i=s

(
r
i

) (f−rr′−i)
(f−r)! ≤

(fr′)
(f−r)! . �

Fact 2.5.8. Let 0 ≤ i ≤ r. For a complex G, an r-graph H and B ⊆ G(i), we have

⋂
b∈B

(G−H)(b) =
⋂
b∈B

G(b)−H −
⋃

S∈
⋃
B

H(S)−
⋃

S∈
⋃
b∈B (b2)

H(S)− · · · −
⋃
b∈B

H(b).
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If B 6⊆ (G−H)(i), then both sides are empty.

Proposition 2.5.9. Let f, r′ ∈ N and r ∈ N0 with f > r and r′ ≥ r. Let G be a complex

on n ≥ r2r+1 vertices and let H be an r′-graph on V (G) with ∆(H) ≤ γn. Then the

following hold:

(i) If G is (ε, d, f, r)-regular, then G−H is (ε+ 2rγ, d, f, r)-regular.

(ii) If G is (ξ, f, r)-dense, then G−H is (ξ − 2rγ, f, r)-dense.

(iii) If G is (ξ, f, r)-extendable, then G−H is (ξ − 2rγ, f, r)-extendable.

(iv) If G is an (ε, ξ, f, r)-complex, then G−H is an (ε+ 2rγ, ξ − 2rγ, f, r)-complex.

(v) If G is an (ε, ξ, f, r)-supercomplex, then G −H is an (ε + 22r+1γ, ξ − 22r+1γ, f, r)-

supercomplex.

Proof. (i)–(iii) follow directly from Proposition 2.5.7. (iv) follows from (i)–(iii). To see

(v), suppose that i ∈ [r]0 andB ⊆ (G−H)(i) with 1 ≤ |B| ≤ 2i. By assumption,
⋂
b∈B G(b)

is an (ε, ξ, f − i, r − i)-complex. By Fact 2.5.8, we can obtain
⋂
b∈B(G − H)(b) from⋂

b∈B G(b) by repeatedly deleting an (r′ − |S|)-graph H(S), where S ⊆ b ∈ B. There are

at most |B|2i ≤ 22i such graphs. Unless |S| = r′, we have ∆(H(S)) ≤ γn ≤ 2γ(n−|
⋃
B|)

by Fact 2.5.1. Note that if |S| = r′, then S ∈ B and hence H(S) is empty, in which case

we can ignore its removal. Thus, a repeated application of (iv) (with r′−|S|, r− i playing

the roles of r′, r) shows that
⋂
b∈B(G−H)(b) is an (ε+ 2r+i+1γ, ξ − 2r+i+1γ, f − i, r− i)-

complex. �

2.5.3 Probabilistic tools

The following Chernoff-type bounds form the basis of our concentration results that we

use for probabilistic arguments.

Lemma 2.5.10 (see [47, Corollary 2.3, Corollary 2.4, Remark 2.5 and Theorem 2.8]).

Let X be the sum of n independent Bernoulli random variables. Then the following hold.
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(i) For all t ≥ 0, P(|X − EX| ≥ t) ≤ 2e−2t2/n.

(ii) For all 0 ≤ ε ≤ 3/2, P(|X − EX| ≥ εEX) ≤ 2e−ε
2EX/3.

(iii) If t ≥ 7EX, then P(X ≥ t) ≤ e−t.

We will also use the following simple result.

Proposition 2.5.11 (Jain, see [73, Lemma 8]). Let X1, . . . , Xn be Bernoulli random

variables such that, for any i ∈ [n] and any x1, . . . , xi−1 ∈ {0, 1},

P(Xi = 1 | X1 = x1, . . . , Xi−1 = xi−1) ≤ p.

Let B ∼ B(n, p) and X := X1 + · · ·+Xn. Then P(X ≥ a) ≤ P(B ≥ a) for any a ≥ 0.

Lemma 2.5.12. Let 1/n � p, α, 1/a, 1/B. Let I be a set of size at least αna and let

(Xi)i∈I be a family of Bernoulli random variables with P(Xi = 1) ≥ p. Suppose that I can

be partitioned into at most Bna−1 sets I1, . . . , Ik such that for each j ∈ [k], the variables

(Xi)i∈Ij are independent. Let X :=
∑

i∈I Xi. Then we have

P(|X − EX| ≥ n−1/5EX) ≤ e−n
1/6

.

Proof. Let J1 := {j ∈ [k] : |Ij| ≥ n3/5} and J2 := [k] \ J1. Let Yj :=
∑

i∈Ij Xi and

ε := n−1/5. Suppose that |Yj − EYj| ≤ 0.9εEYj for all j ∈ J1. Then

|X − EX| ≤
∑
j∈[k]

|Yj − EYj| ≤ n3/5 ·Bna−1 +
∑
j∈J1

0.9εEYj ≤ Bna−2/5 + 0.9εEX ≤ εEX.

Thus,

P(|X − EX| ≥ εEX) ≤
∑
j∈J1

P(|Yj − EYj| ≥ 0.9εEYj)
Lemma 2.5.10(ii)

≤
∑
j∈J1

2e−0.81ε2EYj/3

≤ 2Bna−1e−0.27n−2/5pn3/5 ≤ e−n
1/6

.

�
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Similarly as in [42], Lemma 2.5.12 can be conveniently applied in the following situ-

ation: We are given an r-graph H on n vertices and H ′ is a random subgraph of H, where

every edge of H survives with some probability ≥ p. The following folklore observation

allows us to apply Lemma 2.5.12 in order to obtain a concentration result for |H ′|.

Fact 2.5.13. Every r-graph on n vertices can be decomposed into rnr−1 matchings.

Corollary 2.5.14. Let 1/n � p, 1/r, α. Let H be an r-graph on n vertices with |H| ≥

αnr. Let H ′ be a random subgraph of H, where each edge of H survives with some

probability ≥ p. Moreover, suppose that for every matching M in H, the edges of M

survive independently. Then we have

P(||H ′| − E|H ′|| ≥ n−1/5E|H ′|) ≤ e−n
1/6

.

Whenever we apply Corollary 2.5.14, it will be clear that for every matching M in H,

the edges of M survive independently, and we will not discuss this explicitly.

Lemma 2.5.15. Let 1/n � p, 1/r. Let H be an r-graph on n vertices. Let H ′ be a

random subgraph of H, where each edge of H survives with some probability ≤ p. Suppose

that for every matching M in H, the edges of M survive independently. Then we have

P(|H ′| ≥ 7pnr) ≤ rnr−1e−7pn/r.

Proof. Partition H into at most rnr−1 matchings M1, . . . ,Mk. For each i ∈ [k], by

Lemma 2.5.10(iii) we have P(|H ′ ∩Mi| ≥ 7pn/r) ≤ e−7pn/r since E|H ′ ∩Mi| ≤ pn/r.

�

2.5.4 Random subsets and subgraphs

In this subsection, we apply the above tools to obtain basic results about random sub-

complexes. The first one deals with taking a random subset of the vertex set, and the

second one considers the complex obtained by randomly sparsifying G(r).
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Proposition 2.5.16. Let 1/n � ε, ξ, 1/f and 1/n � γ � µ, 1/f and r ∈ [f − 1]0.

Let G be an (ε, ξ, f, r)-complex on n vertices. Suppose that U is a random subset of

V (G) obtained by including every vertex from V (G) independently with probability µ.

Then with probability at least 1 − e−n
1/7

, the following holds: for any W ⊆ V (G) with

|W | ≤ γn, G[U 4 W ] is an (ε + 2n−1/5 + γ̃2/3, ξ − n−1/5 − γ̃2/3, f, r)-complex, where

γ̃ := max{|W |/n, n−1/3}.

Proof. If G(r) is empty, there is nothing to prove, so assume the contrary.

By assumption, there exists Y ⊆ G(f) such that G[Y ] is (ε, d, f, r)-regular for some

d ≥ ξ, (ξ, f + r, r)-dense and (ξ, f, r)-extendable. The latter implies that there exists

X ⊆ V (G) with |X| ≥ ξn such that for all e ∈
(
X
r

)
, we have |Exte| ≥ ξnf−r, where Exte

is the set of all (f − r)-sets Q ⊆ V (G) \ e such that
(
Q∪e
r

)
\ {e} ⊆ G(r).

First, by Lemma 2.5.10(i), with probability at least 1− 2e−2n1/3
, we have |U | = µn±

n2/3, and with probability at least 1− 2e−2n1/4
, |X ∩ U | ≥ µ|X| − |X|2/3.

Claim 1: For all e ∈ G(r), with probability at least 1− e−n
1/6

, |G[Y ](f)(e)[U ]| = (d± (ε+

2n−1/5))(µn)f−r.

Proof of claim: Fix e ∈ G(r). Note that E|G[Y ](f)(e)[U ]| = µf−r|G[Y ](f)(e)| = (d ±

ε)(µn)f−r. Viewing G[Y ](f)(e) as a (f−r)-graph and G[Y ](f)(e)[U ] as a random subgraph,

we deduce with Corollary 2.5.14 that

P(|G[Y ](f)(e)[U ]| 6= (1± n−1/5)(d± ε)(µn)f−r) ≤ e−n
1/6

.

−

Claim 2: For all e ∈ G(r), with probability at least 1 − e−n
1/6

, |G[Y ](f+r)(e)[U ]| ≥ (ξ −

n−1/5)(µn)f .

Proof of claim: Note that E|G(f+r)(e)[U ]| = µf |G(f+r)(e)| ≥ ξ(µn)f . Viewing G(f+r)(e)

as a f -graph and G(f+r)(e)[U ] as a random subgraph, we deduce with Corollary 2.5.14
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that

P(|G(f+r)(e)[U ]| ≤ (1− n−1/5)ξ(µn)f ) ≤ e−n
1/6

.

−

For e ∈
(
X
r

)
, let Ext′e be the random subgraph of Exte containing all Q ∈ Exte with

Q ⊆ U .

Claim 3: For all e ∈
(
X
r

)
, with probability at least 1−e−n

1/6
, |Ext′e| ≥ (ξ−n−1/5)(µn)f−r.

Proof of claim: Let e ∈
(
X
r

)
. Note that E|Ext′e| = µf−r|Exte| ≥ ξ(µn)f−r. Again,

Corollary 2.5.14 implies that

P(|Ext′e| ≤ (1− n−1/5)ξ(µn)f−r) ≤ e−n
1/6

.

−

Hence, a union bound yields that with probability at least 1 − e−n
1/7

, we have |U | =

µn ± n2/3, |X ∩ U | ≥ µ|X| − |X|2/3 and the above claims hold for all relevant e sim-

ultaneously. Assume that this holds for some outcome U . We now deduce the desired

result deterministically. Let W ⊆ V (G) with |W | ≤ γn. Define G′ := G[U 4W ] and

n′ := |U 4W |. Note that µn = (1± 4µ−1γ̃)n′. For all e ∈ G′(r), we have

|G′[Y ](f)(e)| = |G[Y ](f)(e)[U ]| ± |W |nf−r−1 = (d± (ε+ 2n−1/5 +
|W |
µf−rn

))(µn)f−r

= (d± (ε+ 2n−1/5 + µ−(f−r)γ̃))(1± 2f−r4µ−1γ̃)n′f−r

= (d± (ε+ 2n−1/5 + γ̃2/3))n′f−r

and

|G′[Y ](f+r)(e)| ≥ |G[Y ](f+r)(e)[U ]| − |W |nf−1 ≥ (ξ − n−1/5 − |W |
µfn

)(µn)f

≥ (ξ − n−1/5 − µ−f γ̃)(1− 2f4µ−1γ̃)n′f−r ≥ (ξ − n−1/5 − γ̃2/3)n′f−r,
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so G′[Y ] is (ε+ 2n−1/5 + γ̃2/3, d, f, r)-regular and (ξ − n−1/5 − γ̃2/3, f + r, r)-dense.

Finally, let X ′ := (X ∩ U) \W . Clearly, X ′ ⊆ V (G′) and |X ′| ≥ (ξ − n−1/5 − γ̃2/3)n′.

Moreover, for every e ∈
(
X′

r

)
, there are at least

|Ext′e| − |W |nf−r−1 ≥ (ξ − n−1/5 − γ̃2/3)n′f−r

(f − r)-sets Q ⊆ V (G′) \ e such that
(
Q∪e
r

)
\ {e} ⊆ G′(r). Thus, G′ (and therefore G′[Y ])

is (ξ − n−1/5 − γ̃2/3, f, r)-extendable. �

The next result is a straightforward consequence of Proposition 2.5.16 and the defini-

tion of a supercomplex.

Corollary 2.5.17. Let 1/n � γ � µ � ε � ξ, 1/f and r ∈ [f − 1]. Let G be an

(ε, ξ, f, r)-supercomplex on n vertices. Suppose that U is a random subset of V (G) obtained

by including every vertex from V (G) independently with probability µ. Then whp for any

W ⊆ V (G) with |W | ≤ γn, G[U 4W ] is a (2ε, ξ − ε, f, r)-supercomplex.

Next, we investigate the effect on G of inducing to a random subgraph H of G(r). For

our applications, we need to be able to choose edges with different probabilities. It turns

out that under suitable restrictions on these probabilities, the relevant properties of G are

inherited by G[H].

Proposition 2.5.18. Let 1/n� ε, γ, p, ξ, 1/f and r ∈ [f − 1], i ∈ [r]0. Let

ξ′ := 0.95ξp2r(f+rr ) ≥ 0.95ξp(8f ) and γ′ := 1.1 · 2i
(
f+r
r

)
(f − r)!

γ.

Let G be a complex on n vertices and B ⊆ G(i) with 1 ≤ |B| ≤ 2i. Suppose that

GB :=
⋂
b∈B

G(b) is an (ε, ξ, f − i, r − i)-complex.

Assume that P is a partition of G(r) satisfying the following containment conditions:

(I) For every b ∈ B, there exists a class Eb ∈ P such that b ∪ e ∈ Eb for all e ∈ G(r−i)
B .
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(II) For every E ∈ P there exists DE ∈ N0 such that for all Q ∈ G(f−i)
B , we have that

|{e ∈ E : ∃b ∈ B : e ⊆ b ∪Q}| = DE .

Let β : P → [p, 1] assign a probability to every class of P. Now, suppose that H is a random

subgraph of G(r) obtained by independently including every edge of E ∈ P with probability

β(E) (for all E ∈ P). Then with probability at least 1− e−n
1/8

, the following holds: for all

L ⊆ G(r) with ∆(L) ≤ γn and all (r + 1)-graphs O on V (G) with ∆(O) ≤ f−5rγn,

⋂
b∈B

(G[H 4 L]−O)(b) is a (3ε+ γ′, ξ′ − γ′, f − i, r − i)-complex.

Note that (I) and (II) certainly hold if P = {G(r)}.

Proof. If G
(r−i)
B is empty, then the statement is vacuously true. So let us assume that

G
(r−i)
B is not empty. Let nB := |V (G) \

⋃
B| = |V (GB)|. By assumption, there exists

Y ⊆ G
(f−i)
B such thatGB[Y ] is (ε, dB, f−i, r−i)-regular for some dB ≥ ξ, (ξ, f+r−2i, r−i)-

dense and (ξ, f − i, r − i)-extendable. Define

pB :=

(∏
b∈B

β(Eb)

)−1 ∏
E∈P

(β(E))DE .

Note that pB ≥ p|B|(
f
r) ≥ p2r(f+rr ) and thus pBdB ≥ ξ′. For every e ∈ G(r−i)

B , let

Qe := GB[Y ](f−i)(e) and Q̃e := GB[Y ](f+r−2i)(e).

By assumption, we have |Qe| = (dB±ε)nf−rB and |Q̃e| ≥ ξnf−iB for all e ∈ G(r−i)
B . Moreover,

since GB[Y ] is (ξ, f − i, r − i)-extendable, there exists X ⊆ V (GB) with |X| ≥ ξnB such

that for all e ∈
(
X
r−i

)
, we have |Exte| ≥ ξnf−rB , where Exte is the set of all (f − r)-sets

Q ⊆ V (GB) \ e such that
(
Q∪e
r−i

)
\ {e} ⊆ G

(r−i)
B = GB[Y ](r−i).

We consider the following (random) subsets. For every e ∈ G(r−i)
B , let Q′e contain all

Q ∈ Qe such that for all b ∈ B, we have
(
b∪Q∪e
r

)
\ {b ∪ e} ⊆ H. Define Q̃′e analogously

with Q̃e playing the role of Qe. For every e ∈
(
X
r−i

)
, let Ext′e contain all Q ∈ Exte such
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that for all b ∈ B and e′ ∈
(
Q∪e
r−i

)
\ {e}, we have b ∪ e′ ∈ H.

Claim 1: For each e ∈ G(r−i)
B , with probability at least 1−e−n

1/6
B , |Q′e| = (pBdB±3ε)nf−rB .

Proof of claim: We view Qe as a (f − r)-graph and Q′e as a random subgraph. Note that

P(∀b ∈ B : b ∪ e ∈ H) =
∏
b∈B

P(b ∪ e ∈ H)
(I)
=
∏
b∈B

β(Eb).

Hence, we have for every Q ∈ Qe that

P(Q ∈ Q′e) =
P(∀b ∈ B :

(
b∪Q∪e
r

)
⊆ H)

P(∀b ∈ B : b ∪ e ∈ H)

=

(∏
b∈B

β(Eb)

)−1 ∏
e′∈G(r) : ∃b∈B : e′⊆b∪Q∪e

P(e′ ∈ H)

=

(∏
b∈B

β(Eb)

)−1 ∏
E∈P

(β(E))|{e
′∈E : ∃b∈B : e′⊆b∪Q∪e}|

(II)
=

(∏
b∈B

β(Eb)

)−1 ∏
E∈P

(β(E))DE = pB.

Thus, E|Q′e| = pB|Qe|. Hence, we deduce with Corollary 2.5.14 that with probability at

least 1− e−n
1/6
B we have |Q′e| = (1± ε)E|Q′e| = (pBdB ± 3ε)nf−rB . −

Claim 2: For each e ∈ G(r−i)
B , with probability at least 1− e−n

1/6
B , |Q̃′e| ≥ ξ′nf−iB .

Proof of claim: We view Q̃e as a (f − i)-graph and Q̃′e as a random subgraph. Observe

that for every Q ∈ Q̃e, we have

P(Q ∈ Q̃′e) ≥ p|B|((
f+r−i
r )−1) ≥ p2r(f+rr )

and thus E|Q̃′e| ≥ p2r(f+rr )|Q̃e| ≥ ξp2r(f+rr )nf−iB . Thus, we deduce with Corollary 2.5.14

that with probability at least 1− e−n
1/6
B we have |Q̃′e| ≥ ξ′nf−iB . −

Claim 3: For every e ∈
(
X
r−i

)
, with probability at least 1− e−n

1/6
B , |Ext′e| ≥ ξ′nf−rB .

Proof of claim: We view Exte as a (f−r)-graph and Ext′e as a random subgraph. Observe
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that for every Q ∈ Exte, we have

P(Q ∈ Ext′e) ≥ p|B|((
f−i
r−i)−1) ≥ p2r(f+rr )

and thus E|Ext′e| ≥ p2r(f+rr )|Exte| ≥ ξp2r(f+rr )nf−rB . Thus, we deduce with Corollary 2.5.14

that with probability at least 1− e−n
1/6
B we have |Ext′e| ≥ ξ′nf−rB . −

Applying a union bound, we can see that with probability at least 1−e−n
1/8

, H satisfies

Claims 1–3 simultaneously for all relevant e.

Assume that this applies. We now deduce the desired result deterministically. Let

L ⊆ G(r) be any graph with ∆(L) ≤ γn and let O be any (r + 1)-graph on V (G)

with ∆(O) ≤ f−5rγn. Let G′ :=
⋂
b∈B(G[H 4 L] − O)(b). First, we claim that G′[Y ]

is (3ε + γ′, pBdB, f − i, r − i)-regular. Consider e ∈ G′[Y ](r−i). We have that |Q′e| =

(pBdB ± 3ε)nf−rB .

Claim 4: If Q ∈ G′[Y ](f−i)(e)4Q′e, then there is some b ∈ B such that b∪Q∪e contains

some edge from L− {b ∪ e} or O.

Proof of claim: Clearly, Q ∈ GB[Y ](f−i)(e). First, suppose that Q ∈ G′[Y ](f−i)(e) − Q′e.

Since Q /∈ Q′e, there exists b ∈ B such that
(
b∪Q∪e
r

)
\ {b ∪ e} 6⊆ H, that is, there is

e′ ∈
(
b∪Q∪e
r

)
\{b∪e} with e′ /∈ H. But since Q ∈ G′[Y ](f−i)(e), we have e′ ∈ H4L. Thus,

e′ ∈ L. Next, suppose that Q ∈ Q′e −G′[Y ](f−i)(e). Since Q /∈ G′[Y ](f−i)(e), there exists

b ∈ B such that b ∪ Q ∪ e /∈ G[Y ][H 4 L] − O. We claim that b ∪ Q ∪ e contains some

edge from L−{b∪ e} or O. Since b∪Q∪ e ∈ G[Y ], there is e′ ∈
(
b∪Q∪e
r

)
with e′ /∈ H4L

or there is e′ ∈
(
b∪Q∪e
r+1

)
with e′ ∈ O. In the latter case we are done, so suppose that the

first case applies. Since e ∈ G′[Y ](r−i), we have that b ∪ e ∈ H 4 L, so e′ 6= b ∪ e. Thus,

since Q ∈ Q′e, we have that e′ ∈ H. Therefore, e′ ∈ L and hence e′ ∈ L− {b ∪ e}. −

For fixed b ∈ B, a double application of Proposition 2.5.7 implies that there are at

most
(fr)+( f

r+1)f−5r

(f−r)! γnf−r f -sets that contain b ∪ e and some edge from L − {b ∪ e} or O.
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Thus, we conclude with Claim 4 that |G′[Y ](f−i)(e)4Q′e| ≤ |B| ·
1.05(fr)
(f−r)! γn

f−r. Hence,

|G′[Y ](f−i)(e)| = |Q′e| ± γ′n
f−r
B = (pBdB ± (3ε+ γ′))nf−rB ,

meaning that G′[Y ] is indeed (3ε+ γ′, pBdB, f − i, r − i)-regular.

Next, we claim that G′[Y ] is (ξ′ − γ′, f + r− 2i, r− i)-dense. Consider e ∈ G′[Y ](r−i).

We have that |Q̃′e| ≥ ξ′nf−iB . Similarly to Claim 4, for every Q ∈ Q̃′e − G′[Y ](f+r−2i)(e)

there is some b ∈ B such that b∪Q∪ e contains some edge from L− {b∪ e} or O. Thus,

using Proposition 2.5.7 again (with f + r − i playing the role of f), we deduce that

|Q̃′e −G′[Y ](f+r−2i)(e)| ≤ |B| ·
(
f+r−i
r

)
+
(
f+r−i
r+1

)
f−5r

(f − i)!
γnf−i ≤ 2i ·

1.05
(
f+r
r

)
(f − r)!

γnf−i

and thus |G′[Y ](f+r−2i)(e)| ≥ (ξ′ − γ′)nf−iB .

Finally, we claim that G′[Y ] is (ξ′−γ′, f − i, r− i)-extendable. Let e ∈
(
X
r−i

)
. We have

that |Ext′e| ≥ ξ′nf−rB . Let Exte,G′ contain all Q ∈ Exte such that
(
Q∪e
r−i

)
\{e} ⊆ G′[Y ](r−i).

Suppose that Q ∈ Ext′e \ Exte,G′ . Then there are e′ ∈
(
Q∪e
r−i

)
\ {e} and b ∈ B such that

b ∪ e′ /∈ H 4 L. On the other hand, we have b ∪ e′ ∈ H as Q ∈ Ext′e. Thus, b ∪ e′ ∈ L.

Thus, for all Q ∈ Ext′e \ Exte,G′ , there is some b ∈ B such that b ∪ Q ∪ e contains some

edge from L − {b ∪ e}. Proposition 2.5.7 implies that there are at most |B| (fr)
(f−r)!γn

f−r

such Q. Thus,

|Exte,G′| ≥ |Ext′e| − 2i
(
f
r

)
(f − r)!

γnf−r ≥ (ξ′ − γ′)nf−rB .

We conclude that G′ is a (3ε+ γ′, ξ′ − γ′, f − i, r − i)-complex, as required. �

In particular, the above proposition implies the following.

Corollary 2.5.19. Let 1/n� ε, γ, ξ, p, 1/f and r ∈ [f − 1]. Let

ξ′ := 0.95ξp2r(f+rr ) ≥ 0.95ξp(8f ) and γ′ := 1.1 · 2r
(
f+r
r

)
(f − r)!

γ.
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Suppose that G is an (ε, ξ, f, r)-supercomplex on n vertices and that H ⊆ G(r) is a random

subgraph obtained by including every edge of G(r) independently with probability p. Then

whp the following holds: for all L ⊆ G(r) with ∆(L) ≤ γn, G[H 4 L] is a (3ε + γ′, ξ′ −

γ′, f, r)-supercomplex.

2.5.5 Rooted Embeddings

We now prove a result (Lemma 2.5.20) which allows us to find edge-disjoint embeddings

of graphs with a prescribed ‘root embedding’. Let T be an r-graph and suppose that

X ⊆ V (T ) is such that T [X] is empty. A root of (T,X) is a set S ⊆ X with |S| ∈ [r − 1]

and |T (S)| > 0.

For an r-graph G, we say that Λ: X → V (G) is a G-labelling of (T,X) if Λ is injective.

Our aim is to embed T into G such that the roots of (T,X) are embedded at their assigned

position. More precisely, given a G-labelling Λ of (T,X), we say that φ is a Λ-faithful

embedding of (T,X) into G if φ is an injective homomorphism from T to G with φ�X = Λ.

Moreover, for a set S ⊆ V (G) with |S| ∈ [r− 1], we say that Λ roots S if S ⊆ Im(Λ) and

|T (Λ−1(S))| > 0, i.e. if Λ−1(S) is a root of (T,X).

The degeneracy of T rooted at X is the smallest D such that there exists an ordering

v1, . . . , vk of the vertices of V (T ) \X such that for every ` ∈ [k], we have

|T [X ∪ {v1, . . . , v`}](v`)| ≤ D,

i.e. every vertex is contained in at most D edges which lie to the left of that vertex in the

ordering.

We need to be able to embed many copies of (T,X) simultaneously (with different

labellings) into a given host graph G such that the different embeddings are edge-disjoint.

In fact, we need a slightly stronger disjointness criterion. Ideally, we would like to have

that two distinct embeddings intersect in less than r vertices. However, this is in general

not possible because of the desired rooting. We therefore introduce the following concept
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of a hull. We will ensure that the hulls are edge-disjoint, which will be sufficient for our

purposes. Given (T,X) as above, the hull of (T,X) is the r-graph T ′ on V (T ) with e ∈ T ′

if and only if e ∩X = ∅ or e ∩X is a root of (T,X). Note that T ⊆ T ′ ⊆ K
(r)
V (T ) −K

(r)
X ,

where K
(r)
Z denotes the complete r-graph with vertex set Z. Moreover, the roots of (T ′, X)

are precisely the roots of (T,X).

Lemma 2.5.20. Let 1/n � γ � ξ, 1/t, 1/D and r ∈ [t]. Suppose that α ∈ (0, 1] is an

arbitrary scalar (which might depend on n) and let m ≤ αγnr be an integer. For every

j ∈ [m], let Tj be an r-graph on at most t vertices and Xj ⊆ V (Tj) such that Tj[Xj] is

empty and Tj has degeneracy at most D rooted at Xj. Let G be an r-graph on n vertices

such that for all A ⊆
(
V (G)
r−1

)
with |A| ≤ D, we have |

⋂
S∈AG(S)| ≥ ξn. Let O be an

(r + 1)-graph on V (G) with ∆(O) ≤ γn. For every j ∈ [m], let Λj be a G-labelling of

(Tj, Xj). Suppose that for all S ⊆ V (G) with |S| ∈ [r − 1], we have that

|{j ∈ [m] : Λj roots S}| ≤ αγnr−|S| − 1. (2.5.2)

Then for every j ∈ [m], there exists a Λj-faithful embedding φj of (Tj, Xj) into G such

that the following hold:

(i) for all distinct j, j′ ∈ [m], the hulls of (φj(Tj), Im(Λj)) and (φj′(Tj′), Im(Λj′)) are

edge-disjoint;

(ii) for all j ∈ [m] and e ∈ O with e ⊆ Im(φj), we have e ⊆ Im(Λj);

(iii) ∆(
⋃
j∈[m] φj(Tj)) ≤ αγ(2−r)n.

Note that (i) implies that φ1(T1), . . . , φm(Tm) are edge-disjoint. We also remark that

the Tj do not have to be distinct; in fact, they could all be copies of a single r-graph T .

Proof. For j ∈ [m] and a set S ⊆ V (G) with |S| ∈ [r − 1], let

root(S, j) := |{j′ ∈ [j] : Λj′ roots S}|.
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We will define φ1, . . . , φm successively. Once φj is defined, we let Kj denote the hull of

(φj(Tj), Im(Λj)). Note that φj(Tj) ⊆ Kj and that Kj is not necessarily a subgraph of G.

Suppose that for some j ∈ [m], we have already defined φ1, . . . , φj−1 such that

K1, . . . , Kj−1 are edge-disjoint, (ii) holds for all j′ ∈ [j − 1], and the following holds

for Gj :=
⋃
j′∈[j−1]Kj′ , all i ∈ [r − 1] and all S ∈

(
V (G)
i

)
:

|Gj(S)| ≤ αγ(2−i)nr−i + (root(S, j − 1) + 1)2t. (2.5.3)

Note that (2.5.3) together with (2.5.2) implies that for all i ∈ [r − 1] and all S ∈
(
V (G)
i

)
,

we have

|Gj(S)| ≤ 2αγ(2−i)nr−i. (2.5.4)

We will now define a Λj-faithful embedding φj of (Tj, Xj) into G such that Kj is

edge-disjoint from Gj, (ii) holds for j, and (2.5.3) holds with j replaced by j + 1. For

i ∈ [r − 1], define BADi := {S ∈
(
V (G)
i

)
: |Gj(S)| ≥ αγ(2−i)nr−i}. We view BADi as an

i-graph. We claim that for all i ∈ [r − 1],

∆(BADi) ≤ γ(2−r)n. (2.5.5)

Consider i ∈ [r−1] and suppose that there exists some S ∈
(
V (G)
i−1

)
such that |BADi(S)| >

γ(2−r)n. We then have that

|Gj(S)| = 1

r − i+ 1

∑
v∈V (G)\S

|Gj(S ∪ {v})| ≥ r−1
∑

v∈BADi(S)

|Gj(S ∪ {v})|

≥ r−1|BADi(S)|αγ(2−i)nr−i ≥ r−1γ(2−r)nαγ(2−i)nr−i = r−1αγ(2−r+2−i)nr−(i−1).

This contradicts (2.5.4) if i− 1 > 0 since 2−r + 2−i < 2−(i−1). If i = 1, then S = ∅ and we

have |Gj| ≥ r−1αγ(2−r+2−1)nr, which is also a contradiction since |Gj| ≤ m
(
t
r

)
≤
(
t
r

)
αγnr

and 2−r + 2−1 < 1 (as r ≥ 2 if i ∈ [r − 1]). This proves (2.5.5).
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We now embed the vertices of Tj such that the obtained embedding φj is Λj-faithful.

First, embed every vertex from Xj at its assigned position. Since Tj has degeneracy at

most D rooted at Xj, there exists an ordering v1, . . . , vk of the vertices of V (Tj)\Xj such

that for every ` ∈ [k], we have

|Tj[Xj ∪ {v1, . . . , v`}](v`)| ≤ D. (2.5.6)

Suppose that for some ` ∈ [k], we have already embedded v1, . . . , v`−1. We now want to

define φj(v`). Let U := {φj(v) : v ∈ Xj ∪ {v1, . . . , v`−1}} be the set of vertices which

have already been used as images for φj. Let A contain all (r − 1)-subsets S of U such

that φ−1
j (S)∪ {v`} ∈ Tj. We need to choose φj(v`) from the set (

⋂
S∈AG(S)) \U in order

to complete φj to an injective homomorphism from Tj to G. By (2.5.6), we have |A| ≤ D.

Thus, by assumption, |
⋂
S∈AG(S)| ≥ ξn.

For i ∈ [r − 1], let Oi consist of all vertices x ∈ V (G) such that there exists some

S ∈
(
U
i−1

)
such that S ∪ {x} ∈ BADi (so BAD1 =

(
O1

1

)
). We have

|Oi| ≤
(
|U |
i− 1

)
∆(BADi)

(2.5.5)

≤
(

t

i− 1

)
γ(2−r)n.

Let Or consist of all vertices x ∈ V (G) such that S ∪ {x} ∈ Gj for some S ∈
(
U
r−1

)
.

By (2.5.4), we have that |Or| ≤
( |U |
r−1

)
∆(Gj) ≤

(
t

r−1

)
2αγ(2−(r−1))n ≤

(
t

r−1

)
γ(2−r)n. Finally,

let Or+1 be the set of all vertices x ∈ V (G) such that there exists some S ∈
(
U
r

)
such that

S ∪ {x} ∈ O. By assumption, we have |Or+1| ≤
(|U |
r

)
∆(O) ≤

(
t
r

)
γn.

Crucially, we have

|
⋂
S∈A

G(S)| − |U | −
r+1∑
i=1

|Oi| ≥ ξn− t− 2tγ(2−r)n > 0.

Thus, there exists a vertex x ∈ V (G) such that x /∈ U ∪O1 ∪ · · · ∪Or+1 and S ∪ {x} ∈ G

for all S ∈ A. Define φj(v`) := x.

Continuing in this way until φj is defined for every v ∈ V (Tj) yields an injective
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homomorphism from Tj to G. By definition of Or+1, (ii) holds for j. Moreover, by

definition of Or, Kj is edge-disjoint from Gj. It remains to show that (2.5.3) holds with

j replaced by j + 1. Let i ∈ [r − 1] and S ∈
(
V (G)
i

)
. If S /∈ BADi, then we have

|Gj+1(S)| ≤ |Gj(S)| +
(
t−i
r−i

)
≤ αγ(2−i)nr−i + 2t, so (2.5.3) holds. Now, assume that

S ∈ BADi. If S ⊆ Im(Λj) and |Tj(Λ−1
j (S))| > 0, then root(S, j) = root(S, j − 1) + 1

and thus |Gj+1(S)| ≤ |Gj(S)| +
(
t−i
r−i

)
≤ αγ(2−i)nr−i + (root(S, j − 1) + 1)2t +

(
t−i
r−i

)
≤

αγ(2−i)nr−i+(root(S, j)+1)2t and (2.5.3) holds. Suppose next that S 6⊆ Im(Λj). We claim

that S 6⊆ V (φj(Tj)). Suppose, for a contradiction, that S ⊆ V (φj(Tj)). Let ` := max{`′ ∈

[k] : φj(v`′) ∈ S}. (Note that the maximum exists since (S ∩ V (φj(Tj))) \ Im(Λj) is not

empty.) Hence, x := φj(v`) ∈ S. Recall that when we defined φj(v`), φj(v) had already

been defined for all v ∈ Xj ∪{v1, . . . , v`−1} and hence S \ {x} ⊆ U . But since S ∈ BADi,

we have x ∈ Oi, in contradiction to x = φj(v`). Thus, S 6⊆ V (φj(Tj)) = V (Kj), which

clearly implies that |Gj+1(S)| = |Gj(S)| and (2.5.3) holds. The last remaining case is if

S ⊆ Im(Λj) but |Tj(Λ−1
j (S))| = 0. But then S is not a root of (φj(Tj), Im(Λj)) and thus

not a root of (Kj, Im(Λj)). Hence |Kj(S)| = 0 and therefore |Gj+1(S)| = |Gj(S)| as well.

Finally, if j = m, then the fact that (2.5.3) holds with j replaced by j + 1 together

with (2.5.2) implies that ∆(
⋃
j∈[m] φj(Tj)) ≤ 2αγ(2−(r−1))n ≤ αγ(2−r)n. �

2.6 Nibbles, boosting and greedy covers

2.6.1 The nibble

There are numerous results based on the Rödl nibble which guarantee the existence of

an almost perfect matching in a near regular hypergraph with small codegrees. Our

application of this is as follows: Let G be a complex. Define the auxiliary
(
f
r

)
-graph H

with V (H) = E(G(r)) and E(H) = {
(
Q
r

)
: Q ∈ G(f)}. Note that for every e ∈ V (H),

|H(e)| = |G(f)(e)|. Thus, if G is (ε, d, f, r)-regular, then every vertex of H has degree

(d± ε)nf−r. Moreover, for two vertices e, e′ ∈ V (H), we have |H({e, e′})| ≤ nf−r−1, thus
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∆2(H) ≤ nf−r−1. Standard nibble theorems would in this setting imply the existence of

an almost perfect matching in H, which translates into a K
(r)
f -packing in G that covers

all but o(nr) r-edges. We need a stronger result in the sense that we want the leftover

r-edges to induce an r-graph with small maximum degree. Alon and Yuster [5] observed

that one can use a result of Pippenger and Spencer [71] (on the chromatic index of uniform

hypergraphs) to show that a near regular hypergraph with small codegrees has an almost

perfect matching which is ‘well-behaved’. The following is an immediate consequence of

Theorem 1.2 in [5] (applied to the auxiliary hypergraph H above).

Theorem 2.6.1 ([5]). Let 1/n � ε � γ, d, 1/f and r ∈ [f − 1]. Suppose that G is an

(ε, d, f, r)-regular complex on n vertices. Then G contains a K
(r)
f -packing K such that

∆(G(r) −K(r)) ≤ γn.

2.6.2 The Boost lemma

We will now state and prove the ‘Boost lemma’, which ‘boosts’ the regularity of a complex

by restricting to a suitable set Y of f -sets. It will help us to keep the error terms under

control during the iteration process and also helps us to obtain meaningful resilience and

minimum degree bounds.

The proof is based on the following ‘edge-gadgets’, which were used in [8] to obtain frac-

tional K
(r)
f -decompositions of r-graphs with high minimum degree. These edge-gadgets

allow us to locally adjust a given weighting of f -sets so that this changes the total weight

at only one r-set.

Proposition 2.6.2 (see [8, Proposition 3.3]). Let f > r ≥ 1 and let e and J be disjoint

sets with |e| = r and |J | = f . Let G be the complete complex on e ∪ J . There exists a

function ψ : G(f) → R such that

(i) for all e′ ∈ G(r),
∑

Q∈G(f)(e′) ψ(Q ∪ e′) =


1, e′ = e,

0, e′ 6= e;
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(ii) for all Q ∈ G(f), |ψ(Q)| ≤ 2r−j(r−j)!
(f−r+jj )

, where j := |e ∩Q|.

We use these gadgets as follows. We start off with a complex that is (ε, d, f, r)-regular

for some reasonable ε and consider a uniform weighting of all f -sets. We then use the

edge-gadgets to shift weights until we have a ‘fractional K
(r)
f -equicovering’ in the sense

that the weight of each edge is exactly d′nf−r for some suitable d′. We then use this

fractional equicovering as an input for a probabilistic argument.

Lemma 2.6.3 (Boost lemma). Let 1/n� ε, ξ, 1/f and r ∈ [f − 1] such that 2(2
√

e)rε ≤

ξ. Let ξ′ := 0.9(1/4)(
f+r
f )ξ. Suppose that G is a complex on n vertices and that G is

(ε, d, f, r)-regular for some d ≥ ξ and (ξ, f + r, r)-dense. Then there exists Y ⊆ G(f) such

that G[Y ] is (n−(f−r)/2.01, d/2, f, r)-regular and (ξ′, f + r, r)-dense.

Proof. Let d′ := d/2. Assume that ψ : G(f) → [0, 1] is a function such that for every

e ∈ G(r), ∑
Q′∈G(f)(e)

ψ(Q′ ∪ e) = d′nf−r,

and 1/4 ≤ ψ(Q) ≤ 1 for all Q ∈ G(f). We can then choose Y ⊆ G(f) by including

every Q ∈ G(f) with probability ψ(Q) independently. We then have for every e ∈ G(r),

E|G[Y ](f)(e)| = d′nf−r. By Lemma 2.5.10(ii), we conclude that

P(|G[Y ](f)(e)| 6= (1± n−(f−r)/2.01)d′nf−r) ≤ 2e−
n−2(f−r)/2.01d′nf−r

3 ≤ e−n
0.004

.

Thus, whp G[Y ] is (n−(f−r)/2.01, d′, f, r)-regular. Moreover, for any e ∈ G(r) and Q ∈

G(f+r)(e), we have that

P(Q ∈ G[Y ](f+r)(e)) =
∏

Q′∈(Q∪ef )

ψ(Q′) ≥ (1/4)(
f+r
f ).

Therefore, E|G[Y ](f+r)(e)| ≥ (1/4)(
f+r
f )ξnf , and using Corollary 2.5.14 we deduce that

P(|G[Y ](f+r)(e)| ≤ 0.9(1/4)(
f+r
f )ξnf ) ≤ e−n

1/6

.
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Thus, whp G[Y ] is (0.9(1/4)(
f+r
f )ξ, f + r, r)-dense.

It remains to show that ψ exists. For every e ∈ G(r), define

ce :=
d′nf−r − 0.5|G(f)(e)|

|G(f+r)(e)|
.

Observe that |ce| ≤ εnf−r

2ξnf
= ε

2ξ
n−r for all e ∈ G(r).

By Proposition 2.6.2, for every e ∈ G(r) and J ∈ G(f+r)(e), there exists a function

ψe,J : G(f) → R such that

(i) ψe,J(Q) = 0 for all Q 6⊆ e ∪ J ;

(ii) for all e′ ∈ G(r),
∑

Q′∈G(f)(e′) ψe,J(Q′ ∪ e′) =


1, e′ = e,

0, e′ 6= e;

(iii) for all Q ∈ G(f), |ψe,J(Q)| ≤ 2r−j(r−j)!
(f−r+jj )

, where j := |e ∩Q|.

We now define ψ : G(f) → [0, 1] as

ψ := 1/2 +
∑
e∈G(r)

ce
∑

J∈G(f+r)(e)

ψe,J .

For every e ∈ G(r), we have

∑
Q′∈G(f)(e)

ψ(Q′ ∪ e) = 0.5|G(f)(e)|+
∑

e′∈G(r)

ce′
∑

J∈G(f+r)(e′)

∑
Q′∈G(f)(e)

ψe′,J(Q′ ∪ e)

(ii)
= 0.5|G(f)(e)|+ ce|G(f+r)(e)| = d′nf−r,

as desired. Moreover, for every Q ∈ G(f) and j ∈ [r]0, there are at most
(
n
r

)(
f
j

)(
r
r−j

)
pairs
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(e, J) for which e ∈ G(r), J ∈ G(f+r)(e), Q ⊆ e ∪ J and |Q ∩ e| = j. Hence,

|ψ(Q)− 1/2| =

∣∣∣∣∣∣
∑
e∈G(r)

ce
∑

J∈G(f+r)(e)

ψe,J(Q)

∣∣∣∣∣∣ (i)

≤
∑

e∈G(r),J∈G(f+r)(e) : Q⊆e∪J

|ce||ψe,J(Q)|

(iii)

≤
r∑
j=0

(
n

r

)(
f

j

)(
r

r − j

)
· ε

2ξ
n−r · 2r−j(r − j)!(

f−r+j
j

)
≤ 2r−1ε

ξ

r∑
j=0

2−j

j!

(
f

f − r + 1

)j
≤ 2r−1ε

ξ

r∑
j=0

(r/2)j

j!
≤ 1/4,

implying that 1/4 ≤ ψ(Q) ≤ 3/4 for all Q ∈ G(f), as needed. �

Proof of Lemma 2.4.4. Let G be an (ε, ξ, f, r)-complex on n vertices. By definition,

there exists Y ⊆ G(f) such that G[Y ] is (ε, d, f, r)-regular for some d ≥ ξ, (ξ, f+r, r)-dense

and (ξ, f, r)-extendable. We can thus apply the Boost lemma (Lemma 2.6.3) (with G[Y ]

playing the role of G). This yields Y ′ ⊆ Y such that G[Y ′] is (n−1/3, d/2, f, r)-regular and

(ξ′, f + r, r)-dense. Since G[Y ′](r) = G[Y ](r), G[Y ′] is also (ξ, f, r)-extendable. Thus, G is

an (n−1/3, ξ′, f, r)-complex.

Suppose now that G is an (ε, ξ, f, r)-supercomplex. Let i ∈ [r]0 and B ⊆ G(i) with

1 ≤ |B| ≤ 2i. We have that GB :=
⋂
b∈B G(b) is an (ε, ξ, f − i, r − i)-complex. If i < r,

we deduce by the above that GB is an (n
−1/3
B , ξ′, f − i, r − i)-complex. If i = r, this also

holds by Fact 2.4.2. �

Lemma 2.6.3 together with Theorem 2.6.1 immediately implies the following ‘Boosted

nibble lemma’. In contrast to Theorem 2.6.1, we do not need to require ε� γ here.

Lemma 2.6.4 (Boosted nibble lemma). Let 1/n � γ, ε � ξ, 1/f and r ∈ [f − 1]. Let

G be a complex on n vertices such that G is (ε, d, f, r)-regular and (ξ, f + r, r)-dense for

some d ≥ ξ. Then G contains a K
(r)
f -packing K such that ∆(G(r) −K(r)) ≤ γn.
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2.6.3 Approximate F -decompositions

We now prove an F -nibble lemma which allows us to find κ-well separated approximate

F -decompositions in supercomplexes. Whenever we need an approximate decomposition

in the proof of Theorem 2.4.7, we will obtain it via Lemma 2.6.5.

Lemma 2.6.5 (F -nibble lemma). Let 1/n� 1/κ� γ, ε� ξ, 1/f and r ∈ [f −1]. Let F

be an r-graph on f vertices. Let G be a complex on n vertices such that G is (ε, d, f, r)-

regular and (ξ, f + r, r)-dense for some d ≥ ξ. Then G contains a κ-well separated

F -packing F such that ∆(G(r) −F (r)) ≤ γn.

Let F be an r-graph on f vertices. Given a collection K of edge-disjoint copies of

K
(r)
f , we define the K-random F -packing F as follows: For every K ∈ K, choose a

random bijection from V (F ) to V (K) and let FK be a copy of F on V (K) embedded by

this bijection. Let F := {FK : K ∈ K}.

Clearly, if K is a K
(r)
f -decomposition of a complex G, then the K-random F -packing

F is a 1-well separated F -packing in G. Moreover, writing p := 1 − |F |/
(
f
r

)
, we have

|F (r)| = |F ||K| = |F ||G(r)|/
(
f
r

)
= (1 − p)|G(r)|, and for every e ∈ G(r), we have P(e ∈

G(r)−F (r)) = p. As turns out, the leftover G(r)−F (r) behaves essentially like a p-random

subgraph of G(r) (cf. Lemma 2.6.6). Our strategy to prove Lemma 2.6.5 is thus as follows:

We apply Lemma 2.6.4 to G to obtain a K
(r)
f -packing K1 such that ∆(G(r) −K(r)

1 ) ≤ γn.

The leftover here is negligible, so assume for the moment that K1 is a K
(r)
f -decomposition.

We then choose a K1-random F -packing F1 in G and continue the process with G−F (r)
1 .

In each step, the leftover decreases by a factor of p. Thus after logp γ steps, the leftover

will have maximum degree at most γn.

Lemma 2.6.6. Let 1/n� ε� ξ, 1/f and r ∈ [f − 1]. Let F be an r-graph on f -vertices

with p := 1−|F |/
(
f
r

)
∈ (0, 1). Let G be an (ε, d, f, r)-regular and (ξ, f+r, r)-dense complex

on n vertices for some d ≥ ξ. Suppose that K is a K
(r)
f -decomposition of G. Let F be the

K-random F -packing in G. Then whp the following hold for G′ := G−K≤(r+1) −F (r).

(i) G′ is (2ε, p(
f
r)−1d, f, r)-regular;
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(ii) G′ is (0.9p(
f+r
r )−1ξ, f + r, r)-dense;

(iii) ∆(G′(r)) ≤ 1.1p∆(G(r)).

Proof. For e ∈ G(r), we let Ke be the unique element of K≤(f) with e ⊆ Ke. Let

Gind := G−K≤(r+1). G′(r) is a random subgraph of G
(r)
ind, where for any I ⊆ G(r), the events

{e ∈ G′(r)}e∈I are independent if the sets {Ke}e∈I are distinct. Since ∆(K≤(r+1)) ≤ f − r,

Proposition 2.5.9 implies that Gind is (1.1ε, d, f, r)-regular and (ξ − ε, f + r, r)-dense.

For e ∈ G(r), let Qe := G
(f)
ind(e) and Q̃e := G

(f+r)
ind (e). Thus, |Qe| = (d ± 1.1ε)nf−r

and |Q̃e| ≥ 0.95ξnf . Let Q′e be the random subgraph of Qe consisting of all Q ∈ Qe

with
(
Q∪e
r

)
\ {e} ⊆ G′(r). Similarly, let Q̃′e be the random subgraph of Q̃e consisting of all

Q ∈ Q̃e with
(
Q∪e
r

)
\ {e} ⊆ G′(r). Note that if e ∈ G′(r), then Q′e = G′(f)(e). Moreover,

note that by definition of Gind, we have

|(e ∪Q) ∩K| ≤ r for all Q ∈ Qe, K ∈ K. (2.6.1)

Consider Q ∈ Qe. By (2.6.1), the Ke′ with e′ ∈
(
Q∪e
r

)
\ {e} are all distinct, hence we have

P(Q ∈ Q′e) = p(
f
r)−1. Thus, E|Q′e| = p(

f
r)−1|Qe|.

Define an auxiliary graph Ae on vertex set Qe where QQ′ ∈ Ae if and only if there

exists K ∈ K≤(f) \ {Ke} such that |(e∪Q)∩K| = r and |(e∪Q′)∩K| = r. Using (2.6.1),

it is easy to see that if Y is an independent set in Ae, then the events {Q ∈ Q′e}Q∈Y are

independent.

Claim 1: Qe can be partitioned into 2
(
f
r

)2
nf−r−1 independent sets in Ae.

Proof of claim: It is sufficent to prove that ∆(Ae) ≤
(
f
r

)2
nf−r−1. Fix Q ∈ V (Ae). There

are
(
f
r

)
− 1 r-subsets e′ of e ∪ Q other than e. For each of these, Ke′ is the unique

K ∈ K≤(f) \ {Ke} which contains e′. Each choice of Ke′ has
(
f
r

)
r-subsets e′′. If we want

e∪Q′ to contain e′′, then since e′′ 6= e, we have |e∪ e′′| ≥ r+ 1 and thus there are at most

nf−r−1 possibilities for Q′. −

By Lemma 2.5.12, we thus have P(|Q′e| 6= (1 ± n−1/5)E|Q′e|) ≤ e−n
1/6

. We conclude
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that with probability at least 1− e−n
1/6

we have |Q′e| = (p(
f
r)−1d±2ε)nf−r. Together with

a union bound, this implies that whp G′ is (2ε, p(
f
r)−1d, f, r)-regular, which proves (i).

A similar argument shows that whp G′ is (0.9p(
f+r
r )−1ξ, f + r, r)-dense.

To prove (iii), let S ∈
(
V (G)
r−1

)
. Clearly, we have E|G′(r)(S)| = p|G(r)(S)|. If |G(r)(S)| =

0, then we clearly have |G(r)(S)| ≤ 1.1p∆(G(r)), so assume that S ⊆ e ∈ G(r). Since e is

contained in at least 0.5ξnf−r f -sets in G, and every r-set e′ 6= e is contained in a most

nf−(r+1) of these, we can deduce that |G(r)(S)| ≥ 0.5ξn. Define the auxiliary graph AS

with vertex set G(r)(S) such that e1e2 ∈ AS if and only if KS∪e1 = KS∪e2 . Again, we have

∆(AS) ≤ f−r and thus G(r)(S) can be partitioned into f−r+1 sets which are independent

in AS. By Lemma 2.5.12, we thus have P(|G′(r)(S)| 6= (1 ± n−1/5)p|G(r)(S)|) ≤ e−n
1/6

.

Using a union bound, we conclude that whp ∆(G′(r)) ≤ 1.1p∆(G(r)). �

Proof of Lemma 2.6.5. Let p := 1 − |F |/
(
f
r

)
. If F = K

(r)
f , then we are done by

Lemma 2.6.4. We may thus assume that p ∈ (0, 1). Choose ε′ > 0 such that 1/n� ε′ �

1/κ� γ, ε� p, 1−p, ξ, 1/f . We will now repeatedly apply Lemma 2.6.4. More precisely,

let ξ0 := 0.9(1/4)(
f+r
f )ξ and define ξj := (0.5p)j(

f+r
r )ξ0 for j ≥ 1. For every j ∈ [κ]0, we

will find Fj and Gj such that the following hold:

(a)j Fj is a j-well separated F -packing in G and Gj ⊆ G−F (r)
j ;

(b)j ∆(Lj) ≤ jε′n, where Lj := G(r) −F (r)
j −G

(r)
j ;

(c)j Gj is (2(r+1)jε′, dj, f, r)-regular and (ξj, f + r, r)-dense for some dj ≥ ξj;

(d)j F≤j and Gj are (r + 1)-disjoint;

(e)j ∆(G
(r)
j ) ≤ (1.1p)jn.

First, apply Lemma 2.6.3 to G in order to find Y ⊆ G(f) such that G0 := G[Y ] is

(ε′, d/2, f, r)-regular and (ξ0, f+r, r)-dense. Hence, (a)0–(e)0 hold with F0 := ∅. Also note

that Fκ will be a κ-well separated F -packing in G and ∆(G(r)−F (r)
κ ) ≤ ∆(Lκ)+∆(G

(r)
κ ) ≤

κε′n+ (1.1p)κn ≤ γn, so we can take F := Fκ.
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Now, assume that for some j ∈ [κ], we have found Fj−1 and Gj−1 and now need to

find Fj and Gj. By (c)j−1, Gj−1 is (
√
ε′, dj−1, f, r)-regular and (ξj−1, f + r, r)-dense for

some dj−1 ≥ ξj−1. Thus, we can apply Lemma 2.6.4 to obtain a K
(r)
f -packing Kj in Gj−1

such that ∆(L′j) ≤ ε′n, where L′j := G
(r)
j−1 − K

(r)
j . Let G′j := Gj−1 − L′j. Clearly, Kj is

a K
(r)
f -decomposition of G′j. Moreover, by (c)j−1 and Proposition 2.5.9 we have that G′j

is (2(r+1)(j−1)+rε′, dj−1, f, r)-regular and (0.9ξj−1, f + r, r)-dense. By Lemma 2.6.6, there

exists a 1-well separated F -packing F ′j in G′j such that the following hold for Gj :=

G′j −F
′(r)
j −K≤(r+1)

j = G′j −F
′(r)
j −F ′≤(r+1)

j :

(i) Gj is (2(r+1)(j−1)+r+1ε′, p(
f
r)−1dj−1, f, r)-regular;

(ii) Gj is (0.81p(
f+r
r )−1ξj−1, f + r, r)-dense;

(iii) ∆(G
(r)
j ) ≤ 1.1p∆(G

′(r)
j ).

Let Fj := Fj−1 ∪ F ′j and Lj := G(r) − F (r)
j −G

(r)
j . Note that F (r)

j−1 ∩ F
′(r)
j = ∅ by (a)j−1.

Moreover, Fj−1 and F ′j are (r+1)-disjoint by (d)j−1. Thus, Fj is (j−1+1)-well separated

by Fact 2.5.4(ii). Moreover, using (a)j−1, we have

Gj ⊆ Gj−1 −F ′(r)j ⊆ G−F (r)
j−1 −F

′(r)
j ,

thus (a)j holds. Observe that Lj \ Lj−1 ⊆ L′j. Thus, we clearly have ∆(Lj) ≤ ∆(Lj−1) +

∆(L′j) ≤ jε′n, so (b)j holds. Moreover, (c)j follows directly from (i) and (ii), and (e)j

follows from (e)j−1 and (iii). To see (d)j, observe that F≤j−1 and Gj are (r + 1)-disjoint

by (d)j−1 and since Gj ⊆ Gj−1, and F ′≤j and Gj are (r + 1)-disjoint by definition of Gj.

Thus, (a)j–(e)j hold and the proof is completed. �

2.6.4 Greedy coverings and divisibility

The following lemma allows us to extend a given collection of r-sets into suitable r-disjoint

f -cliques (see Corollary 2.6.9). The full strength of Lemma 2.6.7 will only be needed in

Section 2.8. The proof consists of a sequential random greedy algorithm.
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Lemma 2.6.7. Let 1/n � γ � α, 1/s, 1/f and r ∈ [f − 1]. Let G be a complex on n

vertices and let L ⊆ G(r) satisfy ∆(L) ≤ γn. Suppose that L decomposes into L1, . . . , Lm

with 1 ≤ |Lj| ≤ s. Suppose that for every j ∈ [m], we are given some candidate set

Qj ⊆
⋂
e∈Lj G

(f)(e) with |Qj| ≥ αnf−r. Then there exists Qj ∈ Qj for each j ∈ [m] such

that, writing Kj := (Qj ] Lj)≤, we have that Kj and Kj′ are r-disjoint for all distinct

j, j′ ∈ [m], and ∆(
⋃
j∈[m] K

(r)
j ) ≤ √γn.

Proof. Let t := 0.5αnf−r and consider Algorithm 2.6.8. We claim that with positive

Algorithm 2.6.8

for j from 1 to m do
define the r-graph Tj :=

⋃j−1
j′=1K

(r)
j′ and letQ′j contain all Q ∈ Qj such that (Q]Lj)≤

does not contain any edge from Tj or L− Lj.
if |Q′j| ≥ t then

pick Q ∈ Q′j uniformly at random and let Kj := (Q ] Lj)≤
else

return ‘unsuccessful’
end if

end for

probability, Algorithm 2.6.8 outputs K1, . . . , Km as desired.

It is enough to ensure that with positive probability, ∆(Tj) ≤ sfrγ2/3n for all j ∈ [m].

Indeed, note that we have Lj ∩ Tj = ∅ by construction. Hence, if ∆(Tj) ≤ sfrγ2/3n, then

Proposition 2.5.7 implies that every e ∈ Lj is contained in at most (γ + sfrγ2/3)2rnf−r

f -sets of V (G) that also contain an edge of Tj ∪ (L − Lj). Thus, there are at most

s(γ + sfrγ2/3)2rnf−r ≤ 0.5αnf−r candidates Q ∈ Qj such that (Q ] Lj)≤ contains some

edge from Tj ∪ (L−Lj). Hence, |Q′j| ≥ |Qj| − 0.5αnf−r ≥ t, so the algorithm succeeds in

round j.

For every (r − 1)-set S ⊆ V (G) and j ∈ [m], let Y S
j be the indicator variable of the

event that S is covered by Kj.

For every (r−1)-set S ⊆ V (G) and k ∈ [r−1]0, define JS,k := {j ∈ [m] : maxe∈Lj |S∩

e| = k}. Observe that if Y S
j = 1, then Kj covers at most sf r-edges that contain S.
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Therefore, we have

|Tj(S)| ≤ sf

j−1∑
j′=1

Y S
j′ = sf

r−1∑
k=0

∑
j′∈JS,k∩[j−1]

Y S
j′ .

The following claim thus implies the lemma.

Claim 1: With positive probability, we have
∑

j′∈JS,k∩[j−1] Y
S
j′ ≤ γ2/3n for all (r− 1)-sets

S, k ∈ [r − 1]0 and j ∈ [m].

Fix an (r − 1)-set S, k ∈ [r − 1]0 and j ∈ [m]. For j′ ∈ JS,k, there are at most

∑
e∈Lj′

nf−|S∪e| ≤ sn
maxe∈Lj′

(f−|S∪e|)
= snf−2r+1+k

f -sets that contain S and some edge of Lj′ .

In order to apply Proposition 2.5.11, let j1, . . . , jb be an enumeration of JS,k ∩ [j − 1].

We then have for all a ∈ [b] and all y1, . . . , ya−1 ∈ {0, 1} that

P(Y S
ja = 1 | Y S

j1
= y1, . . . , Y

S
ja−1

= ya−1) ≤ snf−2r+1+k

t
= 2sα−1n−r+k+1.

Let p := min{2sα−1n−r+k+1, 1} and let B ∼ Bin(|JS,k ∩ [j − 1]|, p).

Note that |JS,k| ≤
(|S|
k

)
∆k(L) ≤

(
r−1
k

)
γnr−k by Fact 2.5.1. Thus,

7EB = 7|JS,k ∩ [j − 1]| · p ≤ 7 ·
(
r − 1

k

)
γnr−k · 2sα−1n−r+k+1 ≤ γ2/3n.

Therefore,

P(
∑

j′∈JS,k∩[j−1]

Y S
j′ ≥ γ2/3n)

Proposition 2.5.11

≤ P(B ≥ γ2/3n)
Lemma 2.5.10(iii)

≤ e−γ
2/3n.

A union bound now easily proves the claim. �

Corollary 2.6.9. Let 1/n � γ � α, 1/f and r ∈ [f − 1]. Suppose that F is an r-graph
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on f vertices. Let G be a complex on n vertices and let H ⊆ G(r) with ∆(H) ≤ γn and

|G(f)(e)| ≥ αnf−r for all e ∈ H. Then there is a 1-well separated F -packing F in G that

covers all edges of H and such that ∆(F (r)) ≤ √γn.

Proof. Let e1, . . . , em be an enumeration of H. For j ∈ [m], define Lj := {ej} and

Qj := G(f)(e). Apply Lemma 2.6.7 to obtain K1, . . . , Km. For each j ∈ [m], let Fj be

a copy of F with V (Fj) = Kj and such that ej ∈ Fj. Then F := {F1, . . . , Fm} is as

desired. �

We can conveniently combine Lemma 2.6.5 and Corollary 2.6.9 to deduce the following

result. It allows us to make an r-graph divisible by deleting a small fraction of edges (even

if we are forbidden to delete a certain set of edges H). We will prove a similar result

(Corollary 2.9.5) in Section 2.11 under different assumptions.

Corollary 2.6.10. Let 1/n � γ, ε � ξ, 1/f and r ∈ [f − 1]. Let F be an r-graph

on f vertices. Suppose that G is a complex on n vertices which is (ε, d, f, r)-regular for

some d ≥ ξ and (ξ, f + r, r)-dense. Let H ⊆ G(r) satisfy ∆(H) ≤ εn. Then there exists

L ⊆ G(r) −H such that ∆(L) ≤ γn and G(r) − L is F -divisible.

Proof. We clearly have |G(f)(e)| ≥ 0.5ξnf−r for all e ∈ H. Thus, by Corollary 2.6.9,

there exists an F -packing F0 in G which covers all edges of H and satisfies ∆(F (r)
0 ) ≤

√
εn. By Proposition 2.5.9(i) and (ii), G′ := G−F (r)

0 is still (2r+1
√
ε, d, f, r)-regular and

(ξ/2, f + r, r)-dense. Thus, by Lemma 2.6.5, there exists an F -packing Fnibble in G′ such

that ∆(L) ≤ γn, where L := G′(r) − F (r)
nibble = G(r) − F (r)

0 − F
(r)
nibble ⊆ G(r) −H. Clearly,

G(r) − L is F -divisible (in fact, F -decomposable). �

2.7 Vortices

A vortex is best thought of as a sequence of nested ‘random-like’ subsets of the vertex set

of a supercomplex G. In our approach, the final set of the vortex has bounded size.
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The main results of this section are Lemmas 2.7.4 and 2.7.5, where the first one shows

that vortices exist, and the latter one shows that given a vortex, we can find an F -packing

covering all edges which do not lie inside the final vortex set. We now give the formal

definition of what it means to be a ‘random-like’ subset.

Definition 2.7.1. Let G be a complex on n vertices. We say that U is (ε, µ, ξ, f, r)-

random in G if there exists an f -graph Y on V (G) such that the following hold:

(R1) U ⊆ V (G) with |U | = µn± n2/3;

(R2) there exists d ≥ ξ such that for all x ∈ [f − r]0 and all e ∈ G(r), we have that

|{Q ∈ G[Y ](f)(e) : |Q ∩ U | = x}| = (1± ε)bin(f − r, µ, x)dnf−r;

(R3) for all e ∈ G(r) we have |G[Y ](f+r)(e)[U ]| ≥ ξ(µn)f ;

(R4) for all h ∈ [r]0 and all B ⊆ G(h) with 1 ≤ |B| ≤ 2h we have that
⋂
b∈B G(b)[U ] is an

(ε, ξ, f − h, r − h)-complex.

We record the following easy consequences for later use.

Fact 2.7.2. The following hold.

(i) If G is an (ε, ξ, f, r)-supercomplex, then V (G) is (ε/ξ, 1, ξ, f, r)-random in G.

(ii) If U is (ε, µ, ξ, f, r)-random in G, then G[U ] is an (ε, ξ, f, r)-supercomplex.

Here, (ii) follows immediately from (R4). Note that (R4) is stronger in the sense that

B is not restricted to U . Having defined what it means to be a ‘random-like’ subset, we

can now define what a vortex is.

Definition 2.7.3 (Vortex). Let G be a complex. An (ε, µ, ξ, f, r,m)-vortex in G is a

sequence U0 ⊇ U1 ⊇ · · · ⊇ U` such that
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(V1) U0 = V (G);

(V2) |Ui| = bµ|Ui−1|c for all i ∈ [`];

(V3) |U`| = m;

(V4) for all i ∈ [`], Ui is (ε, µ, ξ, f, r)-random in G[Ui−1];

(V5) for all i ∈ [`− 1], Ui \ Ui+1 is (ε, µ(1− µ), ξ, f, r)-random in G[Ui−1].

We will show in Section 2.7.2 that a vortex can be found in a supercomplex by re-

peatedly taking random subsets.

Lemma 2.7.4. Let 1/m′ � ε� µ, ξ, 1/f such that µ ≤ 1/2 and r ∈ [f − 1]. Let G be an

(ε, ξ, f, r)-supercomplex on n ≥ m′ vertices. Then there exists a (2
√
ε, µ, ξ − ε, f, r,m)-

vortex in G for some µm′ ≤ m ≤ m′.

The following is the main lemma of this section. Given a vortex in a supercomplex

G, it allows us to cover all edges of G(r) except possibly some from inside the final vortex

set. We will prove Lemma 2.7.5 in Section 2.7.4.

Lemma 2.7.5. Let 1/m � 1/κ � ε � µ � ξ, 1/f and r ∈ [f − 1]. Assume that (∗)k

is true for all k ∈ [r − 1]. Let F be a weakly regular r-graph on f vertices. Let G be an

F -divisible (ε, ξ, f, r)-supercomplex and U0 ⊇ U1 ⊇ · · · ⊇ U` an (ε, µ, ξ, f, r,m)-vortex in

G. Then there exists a 4κ-well separated F -packing F in G which covers all edges of G(r)

except possibly some inside U`.

The proof of Lemma 2.7.5 consists of an ‘iterative absorption’ procedure, where the

key ingredient is the Cover down lemma (Lemma 2.7.7). Roughly speaking, given a

supercomplex G and a ‘random-like’ subset U ⊆ V (G), the Cover down lemma allows

us to find a ‘partial absorber’ H ⊆ G(r) such that for any sparse L ⊆ G(r), H ∪ L has

an F -packing which covers all edges of H ∪ L except possibly some inside U . Together

with the F -nibble lemma (Lemma 2.6.5), this allows us to cover all edges of G except

possibly some inside U whilst using only few edges inside U . Indeed, set aside H as above,
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which is reasonably sparse. Then apply the Lemma 2.6.5 to G−G(r)[U ]−H to obtain an

F -packing Fnibble with a very sparse leftover L. Combine H and L to find an F -packing

Fclean whose leftover lies inside U .

Now, if U0 ⊇ U1 ⊇ · · · ⊇ U` is a vortex, then U1 is ‘random-like’ in G and thus we

can cover all edges which are not inside U1 by using only few edges inside U1 (and in

this step we forbid edges inside U2 from being used.) Then U2 is still ‘random-like’ in the

remainder of G[U1], and hence we can iterate until we have covered all edges of G except

possibly some inside U`.

2.7.1 The Cover down lemma

We now provide the formal statement of the Cover down lemma. We will prove it in

Section 2.10.

Definition 2.7.6. Let G be a complex on n vertices and H ⊆ G(r). We say that G is

(ξ, f, r)-dense with respect to H if for all e ∈ G(r), we have |G[H ∪ {e}](f)(e)| ≥ ξnf−r.

Lemma 2.7.7 (Cover down lemma). Let 1/n � 1/κ � γ � ε � ν � µ, ξ, 1/f and

r ∈ [f − 1] with µ ≤ 1/2. Assume that (∗)i is true for all i ∈ [r − 1] and that F is a

weakly regular r-graph on f vertices. Let G be a complex on n vertices and suppose that

U is (ε, µ, ξ, f, r)-random in G. Let G̃ be a complex on V (G) with G ⊆ G̃ such that G̃ is

(ε, f, r)-dense with respect to G(r) −G(r)[Ū ], where Ū := V (G) \ U .

Then there exists a subgraph H∗ ⊆ G(r) −G(r)[Ū ] with ∆(H∗) ≤ νn such that for any

L ⊆ G̃(r) with ∆(L) ≤ γn and H∗ ∪L being F -divisible and any (r+ 1)-graph O on V (G)

with ∆(O) ≤ γn, there exists a κ-well separated F -packing in G̃[H∗∪L]−O which covers

all edges of H∗ ∪ L except possibly some inside U .

Roughly speaking, the proof of the Cover down lemma proceeds as follows. Suppose

that we have already chosen H∗ and that L is any sparse (leftover) r-graph. For an edge

e ∈ H∗ ∪ L, we refer to |e ∩ U | as its type. Since L is very sparse, we can greedily cover

all edges of L using edges of H∗ in a first step. In particular, this covers all type-0-edges.
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We will now continue and cover all type-1-edges. Note that every type-1-edge contains a

unique S ∈
(
V (G)\U
r−1

)
. For a given set S ∈

(
V (G)\U
r−1

)
, we would like to cover all remaining

edges of H∗ that contain S simultaneously. Assuming a suitable choice of H∗, this can be

achieved as follows. Let LS be the link graph of S after the first step. Let T ∈
(
V (F )
r−1

)
be

such that F (T ) is non-empty. By Proposition 2.5.3, LS will be F (T )-divisible. Thus, by

(∗)1, LS has a κ-well separated F (T )-decomposition F ′S. Proposition 2.7.9 below implies

that we can ‘extend’ F ′S to a κ-well separated F -packing FS which covers all edges that

contain S.

However, in order to cover all type-1-edges, we need to obtain such a packing FS for

every S ∈
(
V (G)\U
r−1

)
, and these packings are to be r-disjoint for their union to be a κ-well

separated F -packing again. The real difficulty thus lies in choosing H∗ in such a way that

the link graphs LS do not interfere too much with each other, and then to choose the

decompositions F ′S sequentially (see the discussion in the beginning of Section 2.10). We

would then continue to cover all type-2-edges using (∗)2, etc., until we finally cover all

type-(r − 1)-edges using (∗)r−1. The only remaining edges are then type-r-edges, which

are contained in U , as desired.

We now show how the notion of well separated F -packings allows us to ‘extend’ a

decomposition of a link complex to a packing which covers all edges that contain a given

set S (cf. the discussion in Section 2.4.2).

Definition 2.7.8. Let F be an r-graph, i ∈ [r − 1] and assume that T ∈
(
V (F )
i

)
is such

that F (T ) is non-empty. Let G be a complex and S ∈
(
V (G)
i

)
. Suppose that F ′ is a well

separated F (T )-packing in G(S). We then define S /F ′ as follows: For each F ′ ∈ F ′, let

F ′/ be an (arbitrary) copy of F on vertex set S ∪ V (F ′) such that F ′/(S) = F ′. Let

S / F ′ := {F ′/ : F ′ ∈ F ′}.

The following proposition is crucial and guarantees that the above extension yields

a packing which covers the desired set of edges. It is also used in the construction of

67



so-called ‘transformers’ (see Section 2.8.1).

Proposition 2.7.9. Let F , r, i, T , G, S be as in Definition 2.7.8. Let L ⊆ G(S)(r−i).

Suppose that F ′ is a κ-well separated F (T )-decomposition of G(S)[L]. Then F := S / F ′

is a κ-well separated F -packing in G and {e ∈ F (r) : S ⊆ e} = S ] L.

In particular, if L = G(S)(r−i), i.e. if F ′ is a κ-well separated F (T )-decomposition of

G(S), then F is a κ-well separated F -packing in G which covers all r-edges of G that

contain S.

Proof. We first check that F is an F -packing in G. Let f := |V (F )|. For each F ′ ∈

F ′, we have V (F ′) ∈ G(S)[L](f−i) ⊆ G(S)(f−i). Hence, V (F ′/) ∈ G(f). In particular,

G(r)[V (F ′/)] is a clique and thus F ′/ is a subgraph of G(r). Suppose, for a contradiction,

that for distinct F ′, F ′′ ∈ F ′, F ′/ and F ′′/ both contain e ∈ G(r). By (WS1) we have

that |V (F ′) ∩ V (F ′′)| ≤ r − i, and thus we must have e = S ∪ (V (F ′) ∩ V (F ′′)). Since

V (F ′) ∩ V (F ′′) ∈ G(S)[L], we have e \ S ∈ G(S)[L](r−i), and thus e \ S belongs to at

most one of F ′ and F ′′. Without loss of generality, assume that e \S /∈ F ′. Then we have

e \ S /∈ F ′/(S) and thus e /∈ F ′/, a contradiction. Thus, F is an F -packing in G.

We next show that F is κ-well separated. Clearly, for distinct F ′, F ′′ ∈ F ′, we have

|V (F ′/)∩ V (F ′′/ )| ≤ r− i+ |S| = r, so (WS1) holds. To check (WS2), consider e ∈
(
V (G)
r

)
.

Let e′ be an (r− i)-subset of e\S. By definition of F , we have that the number of F ′/ ∈ F

with e ⊆ V (F ′/) is at most the number of F ′ ∈ F ′ with e′ ⊆ V (F ′), where the latter is at

most κ since F ′ is κ-well separated.

Finally, we check that {e ∈ F (r) : S ⊆ e} = S ] L. Let e be any r-set with S ⊆ e.

By Definition 2.7.8, we have e ∈ F (r) if and only if e \ S ∈ F ′(r−i). Since F ′ is an F (T )-

decomposition of G(S)[L](r−i) = L, we have e \ S ∈ F ′(r−i) if and only if e \ S ∈ L. Thus,

e ∈ F (r) if and only if e ∈ S ] L. �
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2.7.2 Existence of vortices

The goal of this subsection is to prove Lemma 2.7.4, which guarantees the existence of a

vortex in a supercomplex.

Fact 2.7.10. For all p1, p2 ∈ [0, 1] and i, n ∈ N0, we have

n∑
j=i

bin(n, p1, j)bin(j, p2, i) = bin(n, p1p2, i). (2.7.1)

Proposition 2.7.11. Let 1/n � ε � µ1, µ2, 1 − µ2, ξ, 1/f and r ∈ [f − 1]. Let G be a

complex on n vertices and suppose that U is (ε, µ1, ξ, f, r)-random in G. Let U ′ be a ran-

dom subset of U obtained by including every vertex from U independently with probability

µ2. Then whp for all W ⊆ U of size |W | ≤ |U |3/5, U ′ 4W is (ε + 0.5|U |−1/6, µ1µ2, ξ −

0.5|U |−1/6, f, r)-random in G.

Proof. Let Y ⊆ G(f) and d ≥ ξ be such that (R1)–(R4) hold for U . By Lemma 2.5.10(i)

we have that whp |U ′| = µ2|U |±|U |3/5. So for any admissible W , we have that |U ′4W | =

µ2|U | ± 2|U |3/5 = µ1µ2n± (µ2n
2/3 + 2n3/5) = µ1µ2n± n2/3, implying (R1).

We next check (R2). For all x ∈ [f − r]0 and e ∈ G(r), we have that |Qe,x| =

(1 ± ε)bin(f − r, µ1, x)dnf−r, where Qe,x := {Q ∈ G[Y ](f)(e) : |Q ∩ U | = x}. Consider

e ∈ G(r) and x, y ∈ [f − r]0. We view Qe,x as a (f − r)-graph and consider the random

subgraph Qe,x,y containing all Q ∈ Qe,x such that |Q ∩ U ′| = y.

By the random choice of U ′, for all e ∈ G(r) and x, y ∈ [f − r]0, we have

E|Qe,x,y| = bin(x, µ2, y)|Qe,x|.

Thus, by Corollary 2.5.14 whp we have for all e ∈ G(r) and x, y ∈ [f − r]0 that

|Qe,x,y| = (1± n−1/5)bin(x, µ2, y)|Qe,x|

= (1± n−1/5)bin(x, µ2, y)(1± ε)bin(f − r, µ1, x)dnf−r

= (1± (ε+ 2n−1/5))bin(f − r, µ1, x)bin(x, µ2, y)dnf−r.
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Assuming that the above holds for U ′, we have for all y ∈ [f − r]0, e ∈ G(r) and W ⊆ U

of size |W | ≤ |U |3/5 that

|{Q ∈ G[Y ](f)(e) : |Q ∩ (U ′4W )| = y}| =
f−r∑
x=y

|Qe,x,y| ± |W |nf−r−1

=

f−r∑
x=y

(1± (ε+ 2n−1/5))bin(f − r, µ1, x)bin(x, µ2, y)dnf−r ± n−2/5nf−r

(2.7.1)
= (1± (ε+ 3n−1/5))bin(f − r, µ1µ2, y)dnf−r.

We now check (R3). Consider e ∈ G(r) and let Q̃e := G[Y ](f+r)(e)[U ]. We have

|Q̃e| ≥ ξ(µ1n)f . Consider the random subgraph of Q̃′e consisting of all f -sets Q ∈ Q̃e

satisfying Q ⊆ U ′. For every Q ∈ Q̃e, we have P(Q ⊆ U ′) = µf2 . Hence, E|Q̃′e| =

µf2 |Q̃e| ≥ ξ(µ1µ2n)f . Thus, using Corollary 2.5.14 and a union bound, we deduce that

whp for all e ∈ G(r), we have |G[Y ](f+r)(e)[U ′]| ≥ (1− |U |−1/5)ξ(µ1µ2n)f . Assuming that

this holds for U ′, it is easy to see that for all W ⊆ U of size |W | ≤ |U |3/5, we have

|G[Y ](f+r)(e)[U ′4W ]| ≥ (1− |U |−1/5)ξ(µ1µ2n)f − |W |nf−1 ≥ (ξ − 2|U |−1/5)(µ1µ2n)f .

Finally, we check (R4). Let h ∈ [r]0 and B ⊆ G(h) with 1 ≤ |B| ≤ 2h. Since U is

(ε, µ1, ξ, f, r)-random in G, we have that
⋂
b∈B G(b)[U ] is an (ε, ξ, f − h, r − h)-complex.

Then, by Proposition 2.5.16, with probability at least 1 − e−|U |/8,
⋂
b∈B G(b)[U ′ 4W ] is

an (ε + 4|U |−1/5, ξ − 3|U |−1/5, f − h, r − h)-complex for all W ⊆ U of size |W | ≤ |U |3/5.

Thus, a union bound yields the desired result. �

Proposition 2.7.12. Let 1/n � ε � µ1, µ2, 1 − µ2, ξ, 1/f and r ∈ [f − 1]. Let G be a

complex on n vertices and let U ⊆ V (G) be of size bµ1nc and (ε, µ1, ξ, f, r)-random in G.

Then there exists Ũ ⊆ U of size bµ2|U |c such that

(i) Ũ is (ε+ |U |−1/6, µ2, ξ − |U |1/6, f, r)-random in G[U ] and

(ii) U \ Ũ is (ε+ |U |−1/6, µ1(1− µ2), ξ − |U |1/6, f, r)-random in G.

Proof. Pick U ′ ⊆ U randomly by including every vertex from U independently with

probability µ2. Clearly, by Lemma 2.5.10(i), we have with probability at least 1−2e−2|U |1/7
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that |U ′| = µ2|U | ± |U |4/7.

It is easy to see that U is (ε+0.5|U |−1/6, 1, ξ−0.5|U |−1/6, f, r)-random in G[U ]. Hence,

by Proposition 2.7.11, whp U ′4W is (ε+ |U |−1/6, µ2, ξ− |U |1/6, f, r)-random in G[U ] for

all W ⊆ U of size |W | ≤ |U |3/5. Moreover, since U ′′ := U \U ′ is a random subset obtained

by including every vertex from U independently with probability 1−µ2, Proposition 2.7.11

implies that whp U ′′ 4W is (ε + 0.5|U |−1/6, µ1(1 − µ2), ξ − 0.5|U |1/6, f, r)-random in G

for all W ⊆ U of size |W | ≤ |U |3/5.

Let U ′ be a set that has the above properties. Let W ⊆ V (G) be a set with |W | ≤

|U |3/5 such that |U ′ 4W | = bµ2|U |c and let Ũ := U ′ 4W . By the above, Ũ satisfies (i)

and (ii). �

We can now obtain a vortex by inductively applying Proposition 2.7.12.

Proof of Lemma 2.7.4. Recursively define n0 := n and ni := bµni−1c. Observe that

µin ≥ ni ≥ µin − 1/(1 − µ). Further, for i ∈ N, let ai := 2n−1/6
∑

j∈[i] µ
−(j−1)/6. Let

` := 1 + max{i ≥ 0 : ni ≥ m′} and let m := n`. Note that bµm′c ≤ m ≤ m′. Moreover,

we have that

a` = 2n−1/6µ
−`/6 − 1

µ−1/6 − 1
≤ 2

(µ`−1n)−1/6

1− µ1/6
≤ 2

m′−1/6

1− µ1/6
≤ ε

since µ`−1n ≥ n`−1 ≥ m′.

By Fact 2.7.2, U0 := V (G) is (ε/ξ, 1, ξ, f, r)-random in G. Hence, by Proposi-

tion 2.7.12, there exists a set U1 ⊆ U0 of size n1 such that U1 is (
√
ε+ a1, µ, ξ − a1, f, r)-

random in G[U0]. If ` = 1, this completes the proof, so assume that ` ≥ 2.

Now, suppose that for some i ∈ [` − 1], we have already found a (
√
ε + ai, µ, ξ −

ai, f, r, ni)-vortex U0, . . . , Ui in G. Note that this is true for i = 1. In particular, Ui is

(
√
ε+ ai, µ, ξ − ai, f, r)-random in G[Ui−1] by (V4). By Proposition 2.7.12, there exists a

subset Ui+1 of Ui of size ni+1 such that Ui+1 is (
√
ε + ai + n

−1/6
i , µ, ξ − ai − n−1/6

i , f, r)-

random in G[Ui] and Ui \ Ui+1 is (
√
ε + ai + n

−1/6
i , µ(1− µ), ξ − ai − n−1/6

i , f, r)-random

in G[Ui−1]. Thus, U0, . . . , Ui+1 is a (
√
ε+ ai+1, µ, ξ − ai+1, f, r, ni+1)-vortex in G.
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Finally, U0, . . . , U` is an (
√
ε+ a`, µ, ξ − a`, f, r,m)-vortex in G. �

Proposition 2.7.13. Let 1/n � ε � µ, ξ, 1/f such that µ ≤ 1/2 and r ∈ [f − 1].

Suppose that G is a complex on n vertices and U is (ε, µ, ξ, f, r)-random in G. Suppose

that L ⊆ G(r) and O ⊆ G(r+1) satisfy ∆(L) ≤ εn and ∆(O) ≤ εn. Then U is still

(
√
ε, µ, ξ −

√
ε, f, r)-random in G− L−O.

Proof. Clearly, (R1) still holds. Moreover, using Proposition 2.5.7 it is easy to see that

(R2) and (R3) are preserved. To see (R4), let h ∈ [r]0 and B ⊆ (G − L − O)(h) with

1 ≤ |B| ≤ 2h. By assumption, we have that
⋂
b∈B G(b)[U ] is an (ε, ξ, f−h, r−h)-complex.

By Fact 2.5.8, we can obtain
⋂
b∈B(G − L − O)(b)[U ] from

⋂
b∈B G(b)[U ] by successively

deleting (r−|S|)-graphs L(S) and (r+1−|S|)-graphsO(S), where S ⊆ b ∈ B. There are at

most 2|B|2h ≤ 22h+1 such graphs. By Fact 2.5.1, we have ∆(L(S)) ≤ εn ≤ ε2/3|U −
⋃
B|

if |S| < r. If |S| = r, we have S ∈ B and thus L(S) is empty, in which case we can ignore

its removal. Moreover, again by Fact 2.5.1, we have ∆(O(S)) ≤ εn ≤ ε2/3|U−
⋃
B| for all

S ⊆ b ∈ B. Thus, a repeated application of Proposition 2.5.9(iv) (with r− |S|, r− h, f −

h, L(S), ε2/3 playing the roles of r′, r, f,H, γ or with r + 1 − |S|, r − h, f − h,O(S), ε2/3

playing the roles of r′, r, f,H, γ, respectively) shows that
⋂
b∈B(G − L − O)(b)[U ] is a

(
√
ε, ξ −

√
ε, f − h, r − h)-complex, as needed. �

2.7.3 Existence of cleaners

Recall that the Cover down down lemma guarantees the existence of a suitable ‘cleaning

graph’ or ‘partial absorber’ which allows us to ‘clean’ the leftover of an application of the

F -nibble lemma in the sense that the new leftover is guaranteed to lie in the next vortex

set. For technical reasons, we will in fact find all cleaning graphs first (one for each vortex

set) and set them aside even before the first nibble.

The aim of this subsection is to apply the Cover down lemma to each ‘level’ i of

the vortex to obtain a ‘cleaning graph’ Hi (playing the role of H∗) for each i ∈ [`] (see
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Lemma 2.7.15). Let G be a complex and U0 ⊇ U1 ⊇ · · · ⊇ U` a vortex in G. We say that

H1, . . . , H` is a (γ, ν, κ, F )-cleaner (for the said vortex) if the following hold for all i ∈ [`]:

(C1) Hi ⊆ G(r)[Ui−1]−G(r)[Ui+1], where U`+1 := ∅;

(C2) ∆(Hi) ≤ ν|Ui−1|;

(C3) Hi and Hi+1 are edge-disjoint, where H`+1 := ∅;

(C4) whenever L ⊆ G(r)[Ui−1] is such that ∆(L) ≤ γ|Ui−1| and Hi ∪ L is F -divisible and

O is an (r + 1)-graph on Ui−1 with ∆(O) ≤ γ|Ui−1|, there exists a κ-well separated

F -packing F in G[Hi∪L][Ui−1]−O which covers all edges of Hi∪L except possibly

some inside Ui.

Note that (C1) and (C3) together imply that H1, . . . , H` are edge-disjoint. The fol-

lowing proposition will be used to ensure (C3).

Proposition 2.7.14. Let 1/n � ε � µ, ξ, 1/f and r ∈ [f − 1]. Let ξ′ := ξ(1/2)(8f+1).

Let G be a complex on n vertices and let U ⊆ V (G) of size µn and (ε, µ, ξ, f, r)-random

in G. Suppose that H is a random subgraph of G(r) obtained by including every edge of

G(r) independently with probability 1/2. Then with probability at least 1− e−n
1/10

,

(i) U is (
√
ε, µ, ξ′, f, r)-random in G[H] and

(ii) G is (
√
ε, f, r)-dense with respect to H −G(r)[Ū ], where Ū := V (G) \ U .

Proof. Let Y ⊆ G(f) and d ≥ ξ be such that (R1)–(R4) hold for U and G. We first

consider (i). Clearly, (R1) holds. We next check (R2). For e ∈ G(r) and x ∈ [f − r]0, let

Qe,x := {Q ∈ G[Y ](f)(e) : |Q ∩ U | = x}. Thus, |Qe,x| = (1± ε)bin(f − r, µ, x)dnf−r.

Consider e ∈ G(r) and x ∈ [f − r]0. We view Qe,x as a (f − r)-graph and consider

the random subgraph Q′e,x containing all Q ∈ Qe,x such that
(
Q∪e
r

)
\ {e} ⊆ H. For each

Q ∈ Qe,x, we have P(Q ∈ Q′e,x) = (1/2)(
f
r)−1. Thus, using Corollary 2.5.14 we deduce
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that with probability at least 1− e−n
1/6

we have

|Q′e,x| = (1± ε)E|Q′e,x| = (1± ε)(1/2)(
f
r)−1(1± ε)bin(f − r, µ, x)dnf−r

= (1±
√
ε)d′bin(f − r, µ, x)dnf−r,

where d′ := d(1/2)(
f
r)−1 ≥ ξ′. Thus, a union bound yields that with probability at least

1− e−n
1/7

, (R2) holds.

Next, we check (R3). By assumption, we have |G[Y ](f+r)(e)[U ]| ≥ ξ(µn)f for all

e ∈ G(r). Let Qe := G[Y ](f+r)(e)[U ] and consider the random subgraph Q′e containing all

Q ∈ Qe such that
(
Q∪e
r

)
\ {e} ⊆ H. For each Q ∈ Qe, we have P(Q ∈ Q′e) = (1/2)(

f+r
r )−1.

Thus, using Corollary 2.5.14 we deduce that with probability at least 1− e−n
1/6

we have

|Q′e| = (1± ε)E|Q′e| ≥ (1− ε)(1/2)(
f+r
r )−1ξ(µn)f ≥ ξ′(µn)f ,

and a union bound implies that this is true for all e ∈ G(r) with probability at least

1− e−n
1/7

.

Next, we check (R4). Let h ∈ [r]0 and B ⊆ G(h) with 1 ≤ |B| ≤ 2h. We know

that
⋂
b∈B G(b)[U ] is an (ε, ξ, f − h, r − h)-complex. By Proposition 2.5.18 (applied with

G[U∪
⋃
B], {G[U∪

⋃
B](r)} playing the roles of G,P), with probability at least 1−e−|U |

1/8
,⋂

b∈B G[H](b)[U ] is a (
√
ε, ξ′, f −h, r−h)-complex. Thus, a union bound over all h ∈ [r]0

and B ⊆ G(h) with 1 ≤ |B| ≤ 2h yields that with probability at least 1 − e−n
1/9

, (R4)

holds.

Finally, we check (ii). Consider e ∈ G(r) and let Qe := G[(G(r) − G(r)[Ū ]) ∪ e](f)(e).

Note by (R2), we have |G[Y ](f)(e)[U ]| = (1 ± ε)bin(f − r, µ, f − r)dnf−r, so |Qe| ≥

|G[Y ](f)(e)[U ]| ≥ (1 − ε)ξµf−rnf−r. We view Qe as a (f − r)-graph and consider the

random subgraph Q′e containing all Q ∈ Qe such that
(
Q∪e
r

)
\ {e} ⊆ H. For each Q ∈ Qe,

we have P(Q ∈ Q′e) = (1/2)(
f
r)−1. Thus, using Corollary 2.5.14 we deduce that with
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probability at least 1− e−n
1/6

we have

|Q′e| ≥ 0.9E|Q′e| ≥ 0.9(1/2)(
f
r)−1(1− ε)ξµf−rnf−r ≥

√
εnf−r.

A union bound easily implies that with probability at least 1 − e−n
1/7

, this holds for all

e ∈ G(r). �

The following lemma shows that cleaners exist.

Lemma 2.7.15. Let 1/m � 1/κ � γ � ε � ν � µ, ξ, 1/f be such that µ ≤ 1/2 and

r ∈ [f − 1]. Assume that (∗)i is true for all i ∈ [r − 1] and that F is a weakly regular r-

graph on f vertices. Let G be a complex and U0 ⊇ U1 ⊇ · · · ⊇ U` an (ε, µ, ξ, f, r,m)-vortex

in G. Then there exists a (γ, ν, κ, F )-cleaner.

Proof. For i ∈ [`], define U ′i := Ui \ Ui+1, where U`+1 := ∅. For i ∈ [` − 1], let

µi := µ(1 − µ), and let µ` := µ. By (V4) and (V5), we have for all i ∈ [`] that U ′i is

(ε, µi, ξ, f, r)-random in G[Ui−1].

Split G(r) randomly into G0 and G1, that is, independently for every edge e ∈ G(r),

put e into G0 with probability 1/2 and into G1 otherwise. We claim that with positive

probability, the following hold for every i ∈ [`]:

(i) U ′i is (
√
ε, µi, ξ(1/2)(8f+1), f, r)-random in G[Gi mod 2][Ui−1];

(ii) G[Ui−1] is (
√
ε, f, r)-dense with respect to Gi mod 2[Ui−1]−G(r)[Ui−1 \ U ′i ].

By Proposition 2.7.14, the probability that (i) or (ii) do not hold for i ∈ [`] is at most

e−|Ui−1|1/10 ≤ |Ui−1|−2. Since
∑`

i=1 |Ui−1|−2 < 1, we deduce that with positive probability,

(i) and (ii) hold for all i ∈ [`].

Therefore, there exist G0, G1 satisfying the above properties. For every i ∈ [`], we will

find Hi using the Cover down lemma (Lemma 2.7.7). Let i ∈ [`]. Apply Lemma 2.7.7

with the following objects/parameters:

object/parameter G[Gi mod 2][Ui−1] U ′i G[Ui−1] F |Ui−1| κ γ
√
ε ν µi ξ(1/2)(8

f+1) f r

playing the role of G U G̃ F n κ γ ε ν µ ξ f r
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Hence, there exists

Hi ⊆ Gi mod 2[Ui−1]−Gi mod 2[Ui−1 \ U ′i ] ⊆ Gi mod 2[Ui−1]−G(r)[Ui+1]

with ∆(Hi) ≤ ν|Ui−1| and the following ‘cleaning’ property: for all L ⊆ G(r)[Ui−1] with

∆(L) ≤ γ|Ui−1| such that Hi ∪ L is F -divisible and all (r + 1)-graphs O on Ui−1 with

∆(O) ≤ γ|Ui−1|, there exists a κ-well separated F -packing F in G[Hi∪L][Ui−1]−O which

covers all edges of Hi∪L except possibly some inside U ′i ⊆ Ui. Thus, (C1), (C2) and (C4)

hold.

Since G0 and G1 are edge-disjoint, (C3) holds as well. Thus, H1, . . . , H` is a (γ, ν, κ, F )-

cleaner. �

2.7.4 Obtaining a near-optimal packing

Recall that Lemma 2.7.5 guarantees an F -packing covering all edges except those in the

final set U` of a vortex. We prove this by applying successively the F -nibble lemma

(Lemma 2.6.5) and the definition of a cleaner to each set Ui in the vortex.

Proof of Lemma 2.7.5. Choose new constants γ, ν > 0 such that

1/m� 1/κ� γ � ε� ν � µ� ξ, 1/f.

Apply Lemma 2.7.15 to obtain a (γ, ν, κ, F )-cleaner H1, . . . , H`. Note that by (V4)

and Fact 2.7.2(ii), G[Ui] is an (ε, ξ, f, r)-supercomplex for all i ∈ [`], and the same holds

for i = 0 by assumption. Let H`+1 := ∅ and U`+1 := ∅.

For i ∈ [`]0 and F∗i , define the following conditions:

(FP1∗) i F∗i is a 4κ-well separated F -packing in G−Hi+1 −G(r)[Ui+1];
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(FP2∗) i F∗i covers all edges of G(r) that are not inside Ui;

(FP3∗) i for all e ∈ G(r)[Ui], |F∗≤(f)
i (e)| ≤ 2κ;

(FP4∗) i ∆(F∗(r)i [Ui]) ≤ µ|Ui|.

Note that (FP1∗)0–(FP4∗)0 hold trivially with F∗0 := ∅. We will now proceed induct-

ively until we obtain F∗` satisfying (FP1∗)`–(FP4∗)`. Clearly, taking F := F∗` completes

the proof (using (FP1∗)` and (FP2∗)`).

Suppose that for some i ∈ [`], we have found F∗i−1 such that (FP1∗)i−1–(FP4∗)i−1 hold.

Let

Gi := G[Ui−1]− (F∗(r)i−1 ∪Hi+1 ∪G(r)[Ui+1])−F∗≤(r+1)
i−1 .

We now intend to find Fi such that:

(FP1) Fi is a 2κ-well separated F -packing in Gi;

(FP2) Fi covers all edges from G(r)[Ui−1]−F∗(r)i−1 that are not inside Ui;

(FP3) ∆(F (r)
i [Ui]) ≤ µ|Ui|.

We first observe that this is sufficient for F∗i := F∗i−1∪Fi to satisfy (FP1∗)i–(FP4∗)i. Note

that F (r)
i and F∗(r)i−1 are edge-disjoint, and Fi and F∗i−1 are (r + 1)-disjoint by definition

of Gi. Together with (FP1∗)i−1 this implies that F∗i is a well separated F -packing in

G − Hi+1 − G(r)[Ui+1]. Let e ∈ G(r). If e 6⊆ Ui−1, then |F≤(f)
i (e)| = 0 and hence

|F∗≤(f)
i (e)| = |F∗≤(f)

i−1 (e)| ≤ 4κ. If e ⊆ Ui−1, then we have |F∗≤(f)
i (e)| = |F∗≤(f)

i−1 (e)| +

|F≤(f)
i (e)| ≤ 4κ by (FP3∗)i−1 and (FP1). Thus, F∗i is 4κ-well separated and (FP1∗)i

holds.

Clearly, (FP2∗)i−1 and (FP2) imply (FP2∗)i. Moreover, observe that F∗≤(r)
i−1 [Ui] is

empty by (FP1∗)i−1. Thus, (FP3∗)i holds since Fi is 2κ-well separated, and (FP3) implies

(FP4∗)i.

It thus remains to show that Fi satisfying (FP1)–(FP3) exists. We will obtain Fi as

the union of two packings, one obtained from the F -nibble lemma (Lemma 2.6.5) and one
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using (C4). Let Gi,nibble := G[Ui−1]−(F∗(r)i−1 ∪Hi∪G(r)[Ui])−F∗≤(r+1)
i−1 . Recall that G[Ui−1]

is an (ε, ξ, f, r)-supercomplex. In particular, it is (ε, d, f, r)-regular for some d ≥ ξ, and

(ξ, f + r, r)-dense. Note that by (FP4∗)i−1, (C2) and (V2) we have

∆(F∗(r)i−1 [Ui−1] ∪Hi ∪G(r)[Ui]) ≤ µ|Ui−1|+ ν|Ui−1|+ µ|Ui−1| ≤ 3µ|Ui−1|.

Moreover, ∆(F∗≤(r+1)
i−1 ) ≤ 4κ(f − r) ≤ µ|Ui−1| by Fact 2.5.4(i). Thus, Proposition 2.5.9(i)

and (ii) imply that Gi,nibble is still (2r+3µ, d, f, r)-regular and (ξ/2, f + r, r)-dense. Since

µ � ξ, we can apply Lemma 2.6.5 to obtain a κ-well separated F -packing Fi,nibble in

Gi,nibble such that ∆(Li,nibble) ≤ 1
2
γ|Ui−1|, where Li,nibble := G

(r)
i,nibble − F

(r)
i,nibble. Since by

(FP2∗)i−1,

G(r) −F∗(r)i−1 −F
(r)
i,nibble = G(r)[Ui−1]−F∗(r)i−1 −F

(r)
i,nibble

= (G
(r)
i,nibble ∪Hi ∪G(r)[Ui])−F (r)

i,nibble

= Hi ∪G(r)[Ui] ∪ Li,nibble,

we know that Hi ∪ G(r)[Ui] ∪ Li,nibble is F -divisible. By (C1) and (C3), we know that

Hi+1 ∪ G(r)[Ui+1] ⊆ G(r)[Ui] − Hi. Moreover, by (C2) and Proposition 2.5.9(v) we have

that G[Ui] − Hi is a (2µ, ξ/2, f, r)-supercomplex. We can thus apply Corollary 2.6.10

(with G[Ui]−Hi, Hi+1 ∪G(r)[Ui+1], 2µ playing the roles of G,H, ε) to find an F -divisible

subgraph Ri of G(r)[Ui] − Hi containing Hi+1 ∪ G(r)[Ui+1] such that ∆(Li,res) ≤ 1
2
γ|Ui|,

where Li,res := G(r)[Ui]−Hi −Ri.

Let Li := Li,nibble ∪ Li,res. Clearly, Li ⊆ G(r)[Ui−1] and ∆(Li) ≤ γ|Ui−1|. Note that

Hi ∪ Li = (Hi ·∪ (G(r)[Ui]−Hi) ·∪ Li,nibble)−Ri = G(r) −F∗(r)i−1 −F
(r)
i,nibble −Ri (2.7.2)

is F -divisible. Moreover, ∆(F∗≤(r+1)
i−1 ∪ F≤(r+1)

i,nibble ) ≤ 5κ(f − r) by Fact 2.5.4(i). Thus, by

78



(C4) there exists a κ-well separated F -packing Fi,clean in

Gi,clean := G[Hi ∪ Li][Ui−1]−F∗≤(r+1)
i−1 −F≤(r+1)

i,nibble

which covers all edges of Hi ∪ Li except possibly some inside Ui.

We claim that Fi := Fi,nibble∪Fi,clean is the desired packing. Since F (r)
i,nibble and F (r)

i,clean

are edge-disjoint and Fi,nibble and Fi,clean are (r + 1)-disjoint, we have that Fi is a 2κ-

well separated F -packing by Fact 2.5.4(ii). Moreover, it is easy to see from (C1) that

Gi,nibble ⊆ Gi. Crucially, since Ri was chosen to contain Hi+1 ∪ G(r)[Ui+1], we have from

(FP2∗)i−1 that

Hi ∪ Li
(2.7.2)

⊆ G(r)[Ui−1]−Ri −F∗(r)i−1 ⊆ G(r)[Ui−1]− (F∗(r)i−1 ∪Hi+1 ∪G(r)[Ui+1])

and thus Gi,clean ⊆ Gi as well. Hence, (FP1) holds.

Clearly, Fi covers all edges of G(r)[Ui−1]−F∗(r)i−1 that are not inside Ui, thus (FP2) holds.

Finally, since F (r)
i,nibble[Ui] is empty, we have ∆(F (r)

i [Ui]) ≤ ∆(Hi∪Li) ≤ ν|Ui−1|+γ|Ui−1| ≤

µ|Ui|, as needed for (FP3). �

2.8 Absorbers

In this section we show that for any (divisible) r-graph H in a supercomplex G, we can

find an ‘exclusive’ absorber r-graph A (as discussed in Section 2.1.7, one may think of

H as a potential leftover from an approximate F -decomposition and A will be set aside

earlier to absorb H into an F -decomposition). The following definition makes this precise.

The main result of this section is Lemma 2.8.2, which constructs an absorber provided

that F is weakly regular. Building on [9], we will construct absorbers as a concatenation

of ‘transformers’ and special ‘canonical graphs’. The goal is to transform an arbitrary

divisible r-graph H into a canonical graph. In the following subsection, we will construct
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transformers. In Section 2.8.2, we will prove the existence of suitable canonical graphs.

We will prove Lemma 2.8.2 in Section 2.8.3.

Definition 2.8.1 (Absorber). Let F , H and A be r-graphs. We say that A is an

F -absorber for H if A and H are edge-disjoint and both A and A ∪ H have an F -

decomposition. More generally, if G is a complex and H ⊆ G(r), then A ⊆ G(r) is a κ-well

separated F -absorber for H in G if A and H are edge-disjoint and there exist κ-well

separated F -packings F◦ and F• in G such that F (r)
◦ = A and F (r)

• = A ∪H.

Lemma 2.8.2 (Absorbing lemma). Let 1/n� 1/κ� γ, 1/h, ε� ξ, 1/f and r ∈ [f − 1].

Assume that (∗)i is true for all i ∈ [r−1]. Let F be a weakly regular r-graph on f vertices,

let G be an (ε, ξ, f, r)-supercomplex on n vertices and let H be an F -divisible subgraph of

G(r) with |H| ≤ h. Then there exists a κ-well separated F -absorber A for H in G with

∆(A) ≤ γn.

We now briefly discuss the case r = 1. We write V (F ) = {x1, . . . , xf} and can assume

that F = {{x1}, . . . , {xt}} for some t ∈ [f ].

Assume first that H = {e1, . . . , et}. Choose any f -set Q0 ∈ G(f) and write Q0 =

{v1, . . . , vf}. Let F0 be a copy of F with vertex set Q0 such that F0 = {{v1}, . . . , {vt}}.

Now, for every i ∈ [t], choose a Qi ∈ G(f)(ei) ∩ G(f)({vi}) (cf. Fact 2.5.6). Choose these

sets such that
⋃
H,Q0, . . . , Qt are pairwise disjoint. For every i ∈ [t], let Fi and F ′i be

copies of F such that V (Fi) = Qi ∪ ei, V (F ′i ) = Qi ∪ {vi} and Fi4 F ′i = {ei, {vi}}.

Now, let A :=
⋃
i∈[t] F

′
i . Then F◦ := {F ′1, . . . , F ′t} is a 1-well separated F -packing in

G with F (1)
◦ = A, and F• := {F0, F1, . . . , Ft} is a 1-well separated F -packing in G with

F (1)
• = A ∪H. Thus, A is a 1-well separated F -absorber for H in G. More generally, if

H is any F -divisible 1-graph, then t | |H|, so we can partition the edges of H into |H|/t

subgraphs of size t and then find an absorber for each of these subgraphs (successively

so that they are appropriately disjoint.) Thus, for the remainder of this section, we will

assume that r ≥ 2.
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2.8.1 Transformers

Roughly speaking, a transformer T can be viewed as transforming a given leftover graph

H into a new leftover H ′ (where we set aside T and H ′ earlier).

Definition 2.8.3 (Transformer). Let F be an r-graph, G a complex and assume that

H,H ′ ⊆ G(r). A subgraph T ⊆ G(r) is a κ-well separated (H,H ′;F )-transformer in G if T

is edge-disjoint from both H and H ′ and there exist κ-well separated F -packings F and

F ′ in G such that F (r) = T ∪H and F ′(r) = T ∪H ′.

Our ‘Transforming lemma’ (Lemma 2.8.5) guarantees the existence of a transformer for

H and H ′ if H ′ is obtained from H by identifying vertices (modulo deleting some isolated

vertices from H ′). To make this more precise, given a multi-r-graph H and x, x′ ∈ V (H),

we say that x and x′ are identifiable if |H({x, x′})| = 0, that is, if identifying x and x′ does

not create an edge of size less than r. For multi-r-graphs H and H ′, we write H   H ′ if

there is a sequence H0, . . . , Ht of multi-r-graphs such that H0
∼= H, Ht is obtained from

H ′ by deleting isolated vertices, and for every i ∈ [t], there are two identifiable vertices

x, x′ ∈ V (Hi−1) such that Hi is obtained from Hi−1 by identifying x and x′.

If H and H ′ are (simple) r-graphs and H   H ′, we just write H  H ′ to indicate the

fact that during the identification steps, only vertices x, x′ ∈ V (Hi−1) with Hi−1({x}) ∩

Hi−1({x′}) = ∅ were identified (i.e. if we did not create multiple edges).

Clearly,   is a reflexive and transitive relation on the class of multi-r-graphs, and  

is a reflexive and transitive relation on the class of r-graphs.

It is easy to see that H  H ′ if and only if there is an edge-bijective homomorphism

from H to H ′ (see Proposition 2.8.4(i)). Given r-graphs H,H ′, a homomorphism from

H to H ′ is a map φ : V (H) → V (H ′) such that φ(e) ∈ H ′ for all e ∈ H. Note that

this implies that φ�e is injective for all e ∈ H. We let φ(H) denote the subgraph of H ′

with vertex set φ(V (H)) and edge set {φ(e) : e ∈ H}. We say that φ is edge-bijective

if |H| = |φ(H)| = |H ′|. For two r-graphs H and H ′, we write H
φ
 H ′ if φ is an

edge-bijective homomorphism from H to H ′.
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We now record a few simple observations about the relation  for future reference.

Proposition 2.8.4. The following hold.

(i) H  H ′ if and only if there exists φ such that H
φ
 H ′.

(ii) Let H1, H
′
1, . . . , Ht, H

′
t be r-graphs such that H1, . . . , Ht are vertex-disjoint and H ′1, . . . , H

′
t

are edge-disjoint and Hi
∼= H ′i for all i ∈ [t]. Then

H1 + · · ·+Ht  H ′1 ·∪ · · · ·∪H ′t.

(iii) If H  H ′ and H is F -divisible, then H ′ is F -divisible.

The following lemma guarantees the existence of a transformer from H to H ′ if F is

weakly regular and H  H ′. The proof relies inductively on the assertion of the main

complex decomposition theorem (Theorem 2.4.7).

Lemma 2.8.5 (Transforming lemma). Let 1/n� 1/κ� γ, 1/h, ε� ξ, 1/f and 2 ≤ r <

f . Assume that (∗)i is true for all i ∈ [r − 1]. Let F be a weakly regular r-graph on f

vertices, let G be an (ε, ξ, f, r)-supercomplex on n vertices and let H,H ′ be vertex-disjoint

F -divisible subgraphs of G(r) of order at most h and such that H  H ′. Then there exists

a κ-well separated (H,H ′;F )-transformer T in G with ∆(T ) ≤ γn.

A key operation in the proof of Lemma 2.8.5 is the ability to find ‘localised trans-

formers’. Let i ∈ [r − 1] and let S ⊆ V (H), S ′ ⊆ V (H ′) and S∗ ⊆ V (F ) be sets of size

i. For an (r − i)-graph L in the link graph of both S and S ′, we can view an F (S∗)-

decomposition FL of L (which exists by (∗)r−i) as a localised transformer between S ] L

and S ′ ] L. Indeed, similarly to the situation described in Sections 2.4.2 and 2.7.1, we

can extend FL ‘by adding S back’ to obtain an F -packing F which covers all edges of

S ]L. By ‘mirroring’ this extension, we can also obtain an F -packing F ′ which covers all

edges of S ′ ] L (see Definition 2.8.8 and Proposition 2.8.9). To make this more precise,

we introduce the following notation.
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Definition 2.8.6. Let V be a set and let V1, V2 be disjoint subsets of V having equal size.

Let φ : V1 → V2 be a bijection. For a set S ⊆ V \ V2, define φ(S) := (S \ V1) ∪ φ(S ∩ V1).

Moreover, for an r-graph R with V (R) ⊆ V \ V2, we let φ(R) be the r-graph on φ(V (R))

with edge set {φ(e) : e ∈ R}.

The following facts are easy to see.

Fact 2.8.7. Suppose that V , V1, V2 and φ are as above. Then the following hold for every

r-graph R with V (R) ⊆ V \ V2:

(i) φ(R) ∼= R;

(ii) if R = R1 ·∪ . . . ·∪ Rk, then φ(R) = φ(R1) ·∪ . . . ·∪ φ(Rk) and thus φ(R1) = φ(R) −

φ(R2)− · · · − φ(Rk).

The following definition is a two-sided version of Definition 2.7.8.

Definition 2.8.8. Let F be an r-graph, i ∈ [r − 1] and assume that S∗ ∈
(
V (F )
i

)
is

such that F (S∗) is non-empty. Let G be a complex and assume that S1, S2 ∈
(
V (G)
i

)
are

disjoint and that a bijection φ : S1 → S2 is given. Suppose that F ′ is a well separated

F (S∗)-packing in G(S1)∩G(S2). We then define S1 /F ′ . S2 as follows: For each F ′ ∈ F ′

and j ∈ {1, 2}, let F ′j be a copy of F on vertex set Sj ∪ V (F ′) such that F ′j(Sj) = F ′ and

such that φ(F ′1) = F ′2. Let

F1 := {F ′1 : F ′ ∈ F ′};

F2 := {F ′2 : F ′ ∈ F ′};

S1 / F ′ . S2 := (F1,F2).

The next proposition is proved using its one-sided counterpart, Proposition 2.7.9. As

in Proposition 2.7.9, the notion of well separatedness (Definition 2.4.5) is crucial here.

Proposition 2.8.9. Let F , r, i, S∗, G, S1, S2 and φ be as in Definition 2.8.8. Suppose

that L ⊆ G(S1)(r−i) ∩G(S2)(r−i) and that F ′ is a κ-well separated F (S∗)-decomposition of

(G(S1) ∩G(S2))[L]. Then the following holds for (F1,F2) = S1 / F ′ . S2:
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(i) for j ∈ [2], Fj is a κ-well separated F -packing in G with {e ∈ F (r)
j : Sj ⊆ e} =

Sj ] L;

(ii) V (F (r)
1 ) ⊆ V (G) \ S2 and φ(F (r)

1 ) = F (r)
2 .

Proof. Let j ∈ [2]. Since (G(S1) ∩ G(S2))[L] ⊆ G(Sj), we can view Fj as Sj / F ′

(cf. Definition 2.7.8). Moreover, since (G(S1) ∩ G(S2))[L](r−i) = L = G(Sj)[L](r−i), we

can conclude that F ′ is a κ-well separated F (S∗)-decomposition of G(Sj)[L]. Thus, by

Proposition 2.7.9, Fj is a κ-well separated F -packing in G with {e ∈ F (r)
j : Sj ⊆ e} =

Sj ] L.

Moreover, we have V (F (r)
1 ) ⊆

⋃
F ′∈F ′ V (F ′1) ⊆ V (G) \ S2 and by Fact 2.8.7(ii)

φ(F (r)
1 ) = φ(

⋃̇
F ′∈F ′

F ′1) =
⋃̇

F ′∈F ′
φ(F ′1) =

⋃̇
F ′∈F ′

F ′2 = F (r)
2 .

�

We now sketch the proof of Lemma 2.8.5. Suppose for simplicity that H ′ is simply a

copy of H, i.e. H ′ = φ(H) where φ is an isomorphism from H to H ′. We aim to construct

an (H,H ′;F )-transformer. In a first step, for every edge e ∈ H, we introduce a set Xe of

|V (F )| − r new vertices and let Fe be a copy of F such that V (Fe) = e ∪Xe and e ∈ Fe.

Let T1 :=
⋃
e∈H Fe[Xe] and R1 :=

⋃
e∈H Fe − T1 − H. Clearly, {Fe : e ∈ H} is an F -

decomposition of H ∪R1 ∪T1. By Fact 2.8.7(ii), we also have that {φ(Fe) : e ∈ H} is an

F -decomposition of H ′∪φ(R1)∪T1. Hence, T1 is an (H ∪R1, H
′∪φ(R1);F )-transformer.

Note that at this stage, it would suffice to find an (R1, φ(R1);F )-transformer T ′1, as then

T1 ∪ T ′1 ∪ R1 ∪ φ(R1) would be an (H,H ′;F )-transformer. The crucial difference now to

the original problem is that every edge of R1 contains at most r − 1 vertices from V (H).

On the other hand, every edge in R1 contains at least one vertex in V (H) as otherwise

it would belong to T1. We view this as Step 1 and will now proceed inductively. After

Step i, we will have an r-graph Ri and an (H∪Ri, H
′∪φ(Ri);F )-transformer Ti such that

every edge e ∈ Ri satisfies 1 ≤ |e ∩ V (H)| ≤ r − i. Thus, after Step r we can terminate

the process as Rr must be empty and thus Tr is an (H,H ′;F )-transformer.
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In Step i+ 1, where i ∈ [r− 1], we use (∗)i inductively as follows. Let R′i consist of all

edges of Ri which intersect V (H) in r − i vertices. We decompose R′i into ‘local’ parts.

For every edge e ∈ R′i, there exists a unique set S ∈
(
V (H)
r−i

)
such that S ⊆ e. For each

S ∈
(
V (H)
r−i

)
, let LS := R′i(S). Note that the ‘local’ parts S ] LS form a decomposition

of R′i. The problem of finding Ri+1 and Ti+1 can be reduced to finding a ‘localised

transformer’ between S]LS and φ(S)]LS for every S, as described above. At this stage,

by Proposition 2.5.3, LS will automatically be F (S∗)-divisible, where S∗ ∈
(
V (F )
r−i

)
is such

that F (S∗) is non-empty. If we were given an F (S∗)-decomposition F ′S of LS, we could

use Proposition 2.8.9 to extend F ′S to an F -packing FS which covers all edges of S ] LS,

and all new edges created by this extension intersect S (and V (H)) in at most r − i− 1

vertices, as desired. It is possible to combine these localised transformers with Ti and Ri

in such a way that we obtain Ti+1 and Ri+1.

Unfortunately, (G(S) ∩G(φ(S)))[LS] might not be a supercomplex (one can think of

LS as some leftover from previous steps) and so F ′S may not exist. However, by Propos-

ition 2.5.5, we have that G(S) ∩ G(φ(S)) is a supercomplex. Thus we can (randomly)

choose a suitable i-subgraph AS of (G(S) ∩ G(φ(S)))(i) such that AS is F (S∗)-divisible

and edge-disjoint from LS. Instead of building a localised transformer for LS directly, we

will now build one for AS and one for AS ∪ LS, using (∗)i both times to find the desired

F (S∗)-decomposition. These can then be combined into a localised transformer for LS.

Lemma 2.8.10. Let 1/n � γ′ � γ, 1/κ, ε � ξ, 1/f and 1 ≤ i < r < f . Assume that

(∗)r−i is true. Let F be a weakly regular r-graph on f vertices and assume that S∗ ∈
(
V (F )
i

)
is such that F (S∗) is non-empty. Let G be an (ε, ξ, f, r)-supercomplex on n vertices, let

S1, S2 ∈ G(i) with S1 ∩ S2 = ∅, and let φ : S1 → S2 be a bijection. Moreover, suppose that

L is an F (S∗)-divisible subgraph of G(S1)(r−i) ∩G(S2)(r−i) with |V (L)| ≤ γ′n.

Then there exist T,R ⊆ G(r) such that the following hold:

(TR1) V (R) ⊆ V (G) \ S2 and |e ∩ S1| ∈ [i− 1] for all e ∈ R (so if i = 1, then R must be

empty since [0] = ∅);
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(TR2) T is a (κ+ 1)-well separated ((S1 ] L) ∪ φ(R), (S2 ] L) ∪R;F )-transformer in G;

(TR3) |V (T ∪R)| ≤ γn.

Proof. We may assume that γ′ � γ � 1/κ, ε. Choose µ > 0 with γ′ � µ� γ � 1/κ, ε.

We split the argument into two parts. First, we will establish the following claim, which

is the essential part and relies on (∗)r−i.

Claim 1: There exist T̂ , R1,A, R1,A∪L ⊆ G(r) and κ-well separated F -packings F̂1, F̂2 in G

such that the following hold:

(tr1) V (R1,A ∪R1,A∪L) ⊆ V (G) \ S2 and |e ∩ S1| ∈ [i− 1] for all e ∈ R1,A ∪R1,A∪L;

(tr2) T̂ , S1 ] L, S2 ] L, R1,A, φ(R1,A), R1,A∪L, φ(R1,A∪L) are pairwise edge-disjoint sub-

graphs of G(r);

(tr3) F̂ (r)
1 = T̂ ∪ (S1 ]L)∪R1,A∪L ∪ φ(R1,A) and F̂ (r)

2 = T̂ ∪ (S2 ]L)∪R1,A ∪ φ(R1,A∪L);

(tr4) |V (T̂ ∪R1,A ∪R1,A∪L)| ≤ 2µn.

Proof of claim: By Corollary 2.5.17 and Lemma 2.5.10(i), there exists a subset U ⊆

V (G) with 0.9µn ≤ |U | ≤ 1.1µn such that G′ := G[U ∪ S1 ∪ S2 ∪ V (L)] is a (2ε, ξ −

ε, f, r)-supercomplex. By Proposition 2.5.5, G′′ := G′(S1) ∩ G′(S2) is a (2ε, ξ − ε, f −

i, r − i)-supercomplex. Clearly, L ⊆ G′′(r−i) and ∆(L) ≤ γ′n ≤
√
γ′|U |. Thus, by

Proposition 2.5.9(v), G′′−L is a (3ε, ξ−2ε, f−i, r−i)-supercomplex. By Corollary 2.6.10,

there exists H ⊆ G′′(r−i) − L such that A := G′′(r−i) − L − H is F (S∗)-divisible and

∆(H) ≤ γ′n. In particular, by Proposition 2.5.9(v) we have that

(i) G′′[A] is an F (S∗)-divisible (3ε, ξ/2, f − i, r − i)-supercomplex;

(ii) G′′[A ∪ L] is an F (S∗)-divisible (3ε, ξ/2, f − i, r − i)-supercomplex.

Recall that F being weakly regular implies that F (S∗) is weakly regular as well (see

Proposition 2.5.3). By (i) and (∗)r−i, there exists a κ-well separated F (S∗)-decomposition

FA of G′′[A]. By Fact 2.5.4(i), ∆(F≤(r−i+1)
A ) ≤ κf . Thus, by (ii), Proposition 2.5.9(v)
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and (∗)r−i, there also exists a κ-well separated F (S∗)-decomposition FA∪L of G′′[A∪L]−

F≤(r−i+1)
A . In particular, FA and FA∪L are (r − i+ 1)-disjoint.

We define

(F1,A,F2,A) := S1 / FA . S2,

(F1,A∪L,F2,A∪L) := S1 / FA∪L . S2.

By Proposition 2.8.9(i), for j ∈ [2], Fj,A is a κ-well separated F -packing in G′ ⊆ G with

{e ∈ F (r)
j,A : Sj ⊆ e} = Sj ]A and Fj,A∪L is a κ-well separated F -packing in G′ ⊆ G with

{e ∈ F (r)
j,A∪L : Sj ⊆ e} = Sj ] (A ∪ L).

For j ∈ [2], let

Tj,A := {e ∈ F (r)
j,A : |e ∩ Sj| = 0},

Tj,A∪L := {e ∈ F (r)
j,A∪L : |e ∩ Sj| = 0},

Rj,A := {e ∈ F (r)
j,A : |e ∩ Sj| ∈ [i− 1]},

Rj,A∪L := {e ∈ F (r)
j,A∪L : |e ∩ Sj| ∈ [i− 1]}.

By Definition 2.8.8, we have that T1,A = T2,A and T1,A∪L = T2,A∪L. We thus set

TA := T1,A = T2,A and TA∪L := T1,A∪L = T2,A∪L.

Moreover, we have

φ(R1,A) = R2,A and φ(R1,A∪L) = R2,A∪L. (2.8.1)

Note that R1,A, R2,A, R1,A∪L, R2,A∪L are empty if i = 1. Crucially, since FA and FA∪L

are (r − i + 1)-disjoint, it is easy to see (by contradiction) that TA and TA∪L are edge-

disjoint, and that for j ∈ [2], Rj,A and Rj,A∪L are edge-disjoint. Further, since A and L

are edge-disjoint, we clearly have for j ∈ [2] that Sj ] L and Sj ] A are edge-disjoint.
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Using this, it is straightforward to see that

(†) S1 ] L, S2 ] L, S1 ] A, S2 ] A, TA, TA∪L, R1,A, R2,A, R1,A∪L, R2,A∪L are pairwise

edge-disjoint subgraphs of G(r).

Observe that for j ∈ [2], we have

F (r)
j,A = (Sj ] A) ·∪Rj,A ·∪ TA; (2.8.2)

F (r)
j,A∪L = (Sj ] (A ∪ L)) ·∪Rj,A∪L ·∪ TA∪L. (2.8.3)

Define

T̂ := (S1 ] A) ∪ (S2 ] A) ∪ TA ∪ TA∪L;

F̂1 := F1,A∪L ∪ F2,A;

F̂2 := F1,A ∪ F2,A∪L.

We now check that (tr1)–(tr4) hold. First note that by (†) we clearly have T̂ , R1,A, R1,A∪L ⊆

G(r). Moreover, since FA and FA∪L are (r− i+ 1)-disjoint, we have that F1,A∪L and F2,A

are r-disjoint and thus F̂1 is a κ-well separated F -packing in G by Fact 2.5.4(iii). Similarly,

F̂2 is a κ-well separated F -packing in G.

To check (tr1), note that V (R1,A) ⊆ V (F (r)
1,A) ⊆ V (G)\S2 and V (R1,A∪L) ⊆ V (F (r)

1,A∪L) ⊆

V (G) \S2 by Proposition 2.8.9(ii). Moreover, for all e ∈ R1,A ∪R1,A∪L, we have |e∩S1| ∈

[i − 1] by definition. Hence, (tr1) holds. Clearly, (2.8.1) and (†) imply (tr2). Crucially,

by (2.8.1)–(2.8.3) we have that

F̂ (r)
1 = F (r)

1,A∪L ·∪ F
(r)
2,A = T̂ ∪ (S1 ] L) ∪R1,A∪L ∪ φ(R1,A);

F̂ (r)
2 = F (r)

1,A
·∪ F (r)

2,A∪L = T̂ ∪ (S2 ] L) ∪R1,A ∪ φ(R1,A∪L).

Thus, (tr3) is satisfied. Finally, |V (T̂ ∪ R1,A ∪ R1,A∪L)| ≤ |V (G′)| ≤ 2µn, proving the

claim. −
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The transformer T̂ almost has the required properties, except that to satisfy (TR2) we

would have needed R1,A∪L and φ(R1,A∪L) to be on the ‘other side’ of the transformation.

In order to resolve this, we carry out an additional transformation step. (Since R1,A and

R1,A∪L are empty if i = 1, this additional step is vacuous in this case.)

Claim 2: There exist T ′, R′ ⊆ G(r) and 1-well separated F -packings F ′1,F ′2 in G −

F̂≤(r+1)
1 − F̂≤(r+1)

2 such that the following hold:

(tr1′) V (R′) ⊆ V (G) \ S2 and |e ∩ S1| ∈ [i− 1] for all e ∈ R′;

(tr2′) T ′, R′, φ(R′), T̂ , S1 ] L, S2 ] L, R1,A, φ(R1,A), R1,A∪L, φ(R1,A∪L) are pairwise

edge-disjoint r-graphs;

(tr3′) F ′(r)1 = T ′ ∪R1,A∪L ∪R′ and F ′(r)2 = T ′ ∪ φ(R1,A∪L) ∪ φ(R′);

(tr4′) |V (T ′ ∪R′)| ≤ 0.7γn.

Proof of claim: Let H ′ := T̂ ∪R1,A∪φ(R1,A)∪ (S1]L)∪ (S2]L). Clearly, ∆(H ′) ≤ 5µn.

Let W := V (R1,A∪L) ∪ V (φ(R1,A∪L)). By (tr4), we have that |W | ≤ 4µn. Similarly

to the beginning of the proof of Claim 1, by Corollary 2.5.17 and Lemma 2.5.10(i), there

exists a subset U ′ ⊆ V (G) with 0.4γn ≤ |U ′| ≤ 0.6γn such that G′′′ := G[U ′ ∪W ] is a

(2ε, ξ − ε, f, r)-supercomplex. Let ñ := |U ′ ∪W |. Note that

∆(H ′) ≤ 5µn ≤ √µñ and ∆(F̂≤(r+1)
j ) ≤ κ(f − r)

for j ∈ [2] by Fact 2.5.4(i). Thus, by Proposition 2.5.9(v),

G̃ := G′′′ −H ′ − F̂≤(r+1)
1 − F̂≤(r+1)

2

is still a (3ε, ξ − 2ε, f, r)-supercomplex. For every e ∈ R1,A∪L, let

Qe := {Q ∈ G̃(f)(e) ∩ G̃(f)(φ(e)) : Q ∩ (S1 ∪ S2) = ∅}.

By Fact 2.5.6, for every e ∈ R1,A∪L ⊆ G̃(r), we have that |G̃(f)(e)∩G̃(f)(φ(e))| ≥ 0.5ξñf−r.
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Thus, we have that |Qe| ≥ 0.4ξñf−r. Since ∆(R1,A∪L ∪ φ(R1,A∪L)) ≤ 4µn ≤ √µñ, we can

apply Lemma 2.6.7 (with |R1,A∪L|, 2, {e, φ(e)},Qe playing the roles of m, s, Lj,Qj) to find

for every e ∈ R1,A∪L some Qe ∈ Qe such that, writing Ke := (Qe ] {e, φ(e)})≤, we have

that

Ke and Ke′ are r-disjoint for distinct e, e′ ∈ R1,A∪L. (2.8.4)

For each e ∈ R1,A∪L, let F̃e,1 and F̃e,2 be copies of F with V (F̃e,1) = e∪Qe and V (F̃e,2) =

φ(e) ∪ Qe and such that e ∈ F̃e,1 and φ(F̃e,1) = F̃e,2. Clearly, we have that φ(e) ∈ F̃e,2.

Moreover, since e ⊆ V (R1,A∪L) ⊆ V (G) \ S2 by (tr1) and Qe ∩ (S1 ∪ S2) = ∅, we have

V (F̃e,1) ⊆ V (G) \ S2. Let

F ′1 := {F̃e,1 : e ∈ R1,A∪L}; (2.8.5)

F ′2 := {F̃e,2 : e ∈ R1,A∪L}. (2.8.6)

By (2.8.4), F ′1 and F ′2 are both 1-well separated F -packings in G̃ ⊆ G−F̂≤(r+1)
1 −F̂≤(r+1)

2 .

Moreover, V (F ′(r)1 ) ⊆ V (G) \ S2 and φ(F ′(r)1 ) = F ′(r)2 . Let

T ′ := F ′(r)1 ∩ F ′(r)2 ; (2.8.7)

R′ := F ′(r)1 − T ′ −R1,A∪L. (2.8.8)

We clearly have T ′, R′ ⊆ G(r) and now check (tr1′)–(tr4′). Note that no edge of

T ′ intersects S1 ∪ S2. For (tr1′), we first have that V (R′) ⊆ V (F ′(r)1 ) ⊆ V (G) \ S2.

Now, consider e′ ∈ R′. There exists e ∈ R1,A∪L with e′ ∈ F̃e,1 and thus e′ ⊆ e ∪ Qe.

If we had e′ ∩ S1 = ∅, then e′ ⊆ (e \ S1) ∪ Qe. Since φ(F̃e,1) = F̃e,2, it follows that

e′ ∈ T ′, a contradiction to (2.8.8). Hence, |e′ ∩ S1| > 0. Moreover, by (tr1) we have

|e′ ∩ S1| ≤ |(e∪Qe)∩ S1| = |e∩ S1| ≤ i− 1. Therefore, |e′ ∩ S1| ∈ [i− 1] and (tr1′) holds.

In order to check (tr3′), observe first that by (2.8.8) and (2.8.5), we have F ′(r)1 =
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T ′ ·∪R1,A∪L ·∪R′. Hence, by Fact 2.8.7(ii), we have

F ′(r)2 = φ(F ′(r)1 ) = φ(T ′) ·∪ φ(R1,A∪L) ·∪ φ(R′) = T ′ ·∪ φ(R1,A∪L) ·∪ φ(R′), (2.8.9)

so (tr3′) is satisfied.

We now check (tr2′). Note that T ′, R′, φ(R′) ⊆ G̃(r) ⊆ G(r) − H ′. Thus, by (tr2), it

is enough to check that T ′, R′, φ(R′), R1,A∪L, φ(R1,A∪L) are pairwise edge-disjoint. Recall

that no edge of T ′ intersects S1 ∪ S2. Moreover, for every e ∈ R′ ∪ R1,A∪L, we have

|e∩S1| ∈ [i−1] and e∩S2 = ∅, and for every e ∈ φ(R′)∪φ(R1,A∪L), we have |e∩S2| ∈ [i−1]

and e∩S1 = ∅. Since R′ and R1,A∪L are edge-disjoint by (2.8.8) and φ(R′) and φ(R1,A∪L)

are edge-disjoint by (2.8.9), this implies that T ′, R′, φ(R′), R1,A∪L, φ(R1,A∪L) are indeed

pairwise edge-disjoint, proving (tr2′).

Finally, we can easily check that |V (T ′ ∪R′)| ≤ ñ ≤ 0.7γn. −

We now combine the results of Claims 1 and 2. Let

T := T̂ ∪R1,A∪L ∪ φ(R1,A∪L) ∪ T ′;

R := R1,A ∪R′;

F1 := F̂1 ∪ F ′2;

F2 := F̂2 ∪ F ′1.

Clearly, (tr1) and (tr1′) imply that (TR1) holds. Moreover, (tr2′) implies that T is edge-

disjoint from both (S1 ] L) ∪ φ(R) and (S2 ] L) ∪ R. Using (tr3) and (tr3′), observe

that

T ∪ (S1 ] L) ∪ φ(R) = T̂ ∪R1,A∪L ∪ φ(R1,A∪L) ∪ T ′ ∪ (S1 ] L) ∪ φ(R1,A) ∪ φ(R′)

= (T̂ ∪ (S1 ] L) ∪R1,A∪L ∪ φ(R1,A)) ·∪ (T ′ ∪ φ(R1,A∪L) ∪ φ(R′))

= F̂ (r)
1 ·∪ F ′(r)2 = F (r)

1 .
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Similarly, F (r)
2 = F̂ (r)

2 ·∪ F ′(r)1 = T ∪ (S2 ] L) ∪ R. In particular, by Fact 2.5.4(ii) we can

see that F1 and F2 are (κ+ 1)-well separated F -packings in G. Thus, T is a (κ+ 1)-well

separated ((S1 ] L) ∪ φ(R), (S2 ] L) ∪ R;F )-transformer in G, so (TR2) holds. Finally,

we have |V (T ∪R)| ≤ 4µn+ 0.7γn ≤ γn by (tr4) and (tr4′). �

So far, our maps φ : S1 → S2 were bijections. When φ is an edge-bijective homo-

morphism from H to H ′, φ is in general not injective. In order to still have a meaningful

notion of ‘mirroring’ as before, we introduce the following notation.

Definition 2.8.11. Let V be a set and let V1, V2 be disjoint subsets of V , and let φ : V1 →

V2 be a map. For a set S ⊆ V \ V2, define φ(S) := (S \ V1) ∪ φ(S ∩ V1). Let r ∈ N and

suppose that R is an r-graph with V (R) ⊆ V and i ∈ [r]0. We say that R is (φ, V, V1, V2, i)-

projectable if the following hold:

(Y1) for every e ∈ R, we have that e ∩ V2 = ∅ and |e ∩ V1| ∈ [i] (so if i = 0, then R must

be empty since [0] = ∅);

(Y2) for every e ∈ R, we have |φ(e)| = r;

(Y3) for every two distinct edges e, e′ ∈ R, we have φ(e) 6= φ(e′).

Note that if φ is injective and e∩V2 = ∅ for all e ∈ R, then (Y2) and (Y3) always hold. If

R is (φ, V, V1, V2, i)-projectable, then let φ(R) be the r-graph on φ(V (R) \ V2) with edge

set {φ(e) : e ∈ R}. For an r-graph P with V (P ) ⊆ V \ V2 that satisfies (Y2), let P φ be

the r-graph on V (P ) ∪ V1 that consists of all e ∈
(
V \V2
r

)
such that φ(e) = φ(e′) for some

e′ ∈ P .

The following facts are easy to see.

Proposition 2.8.12. Let V, V1, V2, φ, R, r, i be as above and assume that R is (φ, V, V1, V2, i)-

projectable. Then the following hold:

(i) R φ(R);

(ii) every subgraph of R is (φ, V, V1, V2, i)-projectable;
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(iii) for all e′ ∈ φ(R), we have e′ ∩ V1 = ∅ and |e′ ∩ V2| ∈ [i];

(iv) assume that for all e ∈ R, we have |e ∩ V1| = i, and let S contain all S ∈
(
V1
i

)
such

that S is contained in some edge of R, then

R =
⋃̇
S∈S

(S ]R(S)) and φ(R) =
⋃̇
S∈S

(φ(S) ]R(S)).

We can now prove the Transforming lemma by combining many localised transformers.

Proof of Lemma 2.8.5. We can assume that 1/κ� γ � 1/h, ε. Choose new constants

κ′ ∈ N and γ2, . . . , γr, γ
′
2 . . . , γ

′
r > 0 such that

1/n� 1/κ� γr � γ′r � γr−1 � γ′r−1 � · · · � γ2 � γ′2 � γ � 1/κ′, 1/h, ε� ξ, 1/f.

Let φ : V (H)→ V (H ′) be an edge-bijective homomorphism from H to H ′. Extend φ as

in Definition 2.8.11 with V (H), V (H ′) playing the roles of V1, V2. Since φ is edge-bijective,

we have that

φ�S is injective whenever S ⊆ e for some e ∈ H. (2.8.10)

For every e ∈ H, we have |G(f)(e) ∩G(f)(φ(e))| ≥ 0.5ξnf−r by Fact 2.5.6. It is thus easy

to find for each e ∈ H some Qe ∈ G(f)(e)∩G(f)(φ(e)) with Qe∩ (V (H)∪V (H ′)) = ∅ such

that Qe∩Qe′ = ∅ for all distinct e, e′ ∈ H. For each e ∈ H, let F̃e,1 and F̃e,2 be copies of F

with V (F̃e,1) = e∪Qe and V (F̃e,2) = φ(e)∪Qe and such that e ∈ F̃e,1 and φ(F̃e,1) = F̃e,2.

Clearly, we have that φ(e) ∈ F̃e,2. For j ∈ [2], define F∗r,j := {F̃e,j : e ∈ H}. Clearly, F∗r,1

and F∗r,2 are both 1-well separated F -packings in G. Define

T ∗r := F∗(r)r,1 ∩ F
∗(r)
r,2 , (2.8.11)

R∗r := F∗(r)r,1 − T ∗r −H.
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Let γ1 := γ. Furthermore, let κr := 1 and recursively define κi := κi+1 +
(
h
i

)
κ′ for all

i ∈ [r − 1].

Given i ∈ [r − 1]0 and T ∗i+1, R
∗
i+1,F∗i+1,1,F∗i+1,2, we define the following conditions:

(TR1∗) i R
∗
i+1 is (φ, V (G), V (H), V (H ′), i)-projectable;

(TR2∗) i T
∗
i+1, R

∗
i+1, φ(R∗i+1), H,H ′ are edge-disjoint subgraphs of G(r);

(TR3∗) i F∗i+1,1 and F∗i+1,2 are κi+1-well separated F -packings in G with F∗(r)i+1,1 = T ∗i+1 ∪H ∪

R∗i+1 and F∗(r)i+1,2 = T ∗i+1 ∪H ′ ∪ φ(R∗i+1);

(TR4∗) i |V (T ∗i+1 ∪R∗i+1)| ≤ γi+1n.

We will first show that the above choices of T ∗r , R
∗
r ,F∗r,1,F∗r,2 satisfy (TR1∗)r−1–(TR4∗)r−1.

We will then proceed inductively until we obtain T ∗1 , R
∗
1,F∗1,1,F∗1,2 satisfying (TR1∗)0–

(TR4∗)0, which will then easily complete the proof.

Claim 1: T ∗r , R
∗
r ,F∗r,1,F∗r,2 satisfy (TR1∗)r−1–(TR4∗)r−1.

Proof of claim: (TR4∗)r−1 clearly holds. To see (TR1∗)r−1, consider any e′ ∈ R∗r . There

exists e ∈ H such that e′ ∈ F̃e,1. In particular, e′ ⊆ e ∪ Qe. If e′ ⊆ V (H), then

e′ = e ∈ H, and if e′ ∩ V (H) = ∅, then e′ ∈ F̃e,2 since φ(F̃e,1) = F̃e,2 and thus e′ ∈ T ∗r .

Hence, by definition of R∗r , we must have |e′ ∩ V (H)| ∈ [r − 1]. Clearly, e′ ∩ V (H ′) ⊆

(e ∪ Qe) ∩ V (H ′) = ∅, so (Y1) holds. Moreover, e′ ∩ V (H) ⊆ e, so φ�e′∩V (H) is injective

by (2.8.10), and (Y2) holds. Let e′, e′′ ∈ R∗r and suppose that φ(e′) = φ(e′′). We thus have

e′ \ V (H) = e′′ \ V (H) 6= ∅. Since the Qe’s were chosen to be vertex-disjoint, we must

have e′, e′′ ⊆ e ∪ Qe for some e ∈ H. Hence, (e′ ∪ e′′) ∩ V (H) ⊆ e and so φ�(e′∪e′′)∩V (H)

is injective by (2.8.10). Since φ(e′ ∩ V (H)) = φ(e′′ ∩ V (H)) by assumption, we have

e′ ∩ V (H) = e′′ ∩ V (H), and thus e′ = e′′. Altogether, (Y3) holds, so (TR1∗)r−1 is

satisfied. In particular, φ(R∗r) is well-defined. Observe that

φ(R∗r) = F∗(r)r,2 − T ∗r −H ′.
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Clearly, T ∗r , R
∗
r , φ(R∗r), H,H

′ are subgraphs of G(r). Using Proposition 2.8.12(iii), it is

easy to see that they are indeed edge-disjoint, so (TR2∗) holds. Moreover, note that F∗r,1

and F∗r,2 are 1-well separated F -packings in G with F∗(r)r,1 = T ∗r ∪ H ∪ R∗r and F∗(r)r,2 =

T ∗r ∪H ′ ∪ φ(R∗r), so T ∗r satisfies (TR3∗)r−1. −

Suppose that for some i ∈ [r − 1], we have already found T ∗i+1, R
∗
i+1,F∗i+1,1,F∗i+1,2

such that (TR1∗)i–(TR4∗)i hold. We will now find T ∗i , R
∗
i ,F∗i,1,F∗i,2 such that (TR1∗)i−1–

(TR4∗)i−1 hold. To this end, let

Ri := {e ∈ R∗i+1 : |e ∩ V (H)| = i}.

By Proposition 2.8.12(ii), Ri is (φ, V (G), V (H), V (H ′), i)-projectable. Let Si be the set

of all S ∈
(
V (H)
i

)
such that S is contained in some edge of Ri. For each S ∈ Si, let

LS := Ri(S). By Proposition 2.8.12(iv), we have that

Ri =
⋃̇
S∈Si

(S ] LS) and φ(Ri) =
⋃̇
S∈Si

(φ(S) ] LS). (2.8.12)

We intend to apply Lemma 2.8.10 to each pair S, φ(S) with S ∈ Si individually. For each

S ∈ Si, define

VS := (V (G) \ (V (H) ∪ V (H ′))) ∪ S ∪ φ(S).

Claim 2: For every S ∈ Si, LS ⊆ G[VS](S)(r−i) ∩ G[VS](φ(S))(r−i) and |V (LS)| ≤

1.1γi+1|VS|.

Proof of claim: The second assertion clearly holds by (TR4∗)i. To see the first one,

let e′ ∈ LS = Ri(S). Since Ri ⊆ R∗i+1 ⊆ G(r), we have e′ ∈ G(S)(r−i). Moreover,

φ(S) ∪ e′ ∈ φ(Ri) ⊆ φ(R∗i+1) ⊆ G(r) by (2.8.12). Since R∗i+1 is (φ, V (G), V (H), V (H ′), i)-

projectable, we have that e′∩ (V (H)∪V (H ′)) = ∅. Thus, S ∪ e′ ⊆ VS and φ(S)∪ e′ ⊆ VS.

−

Let S∗ ∈
(
V (F )
i

)
be such that F (S∗) is non-empty.

Claim 3: For every S ∈ Si, LS is F (S∗)-divisible.
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Proof of claim: Consider b ⊆ V (LS) with |b| < r−i. We have to check that Deg(F (S∗))|b| |

|LS(b)|. By (TR3∗)i, both T ∗i+1 ∪ H ∪ R∗i+1 and T ∗i+1 ∪ H ′ ∪ φ(R∗i+1) are necessarily F -

divisible. Clearly, H ′ does not contain an edge that contains S. Note that by (TR1∗)i and

Proposition 2.8.12(iii), φ(R∗i+1) does not contain an edge that contains S either, hence

|T ∗i+1(S∪b)| = |(T ∗i+1∪H ′∪φ(R∗i+1))(S∪b)| ≡ 0 mod Deg(F )|S∪b|. Moreover, since H is F -

divisible, we have |(T ∗i+1∪R∗i+1)(S∪b)| ≡ |(T ∗i+1∪H∪R∗i+1)(S∪b)| ≡ 0 mod Deg(F )|S∪b|.

Thus, we have Deg(F )|S∪b| | |R∗i+1(S∪b)|. Moreover, |R∗i+1(S∪b)| = |Ri(S∪b)| = |LS(b)|.

Hence, Deg(F )|S∪b| | |LS(b)|, which proves the claim as Deg(F )|S∪b| = Deg(F (S∗))|b| by

Proposition 2.5.3. −

We now intend to apply Lemma 2.8.10 for every S ∈ Si in order to define TS, RS ⊆ G(r)

and κ′-well separated F -packings FS,1,FS,2 in G such that the following hold:

(TR1′) RS is (φ, V (G), V (H), V (H ′), i− 1)-projectable;

(TR2′) TS, RS, φ(RS), S ] LS, φ(S) ] LS are edge-disjoint;

(TR3′) F (r)
S,1 = TS ∪ (S ] LS) ∪ φ(RS) and F (r)

S,2 = TS ∪ (φ(S) ] LS) ∪RS;

(TR4′) |V (TS ∪RS)| ≤ γ′i+1n.

We also need to ensure that all these graphs and packings satisfy several ‘disjointness

properties’ (see (a)–(c)), and we will therefore choose them successively. Recall that P φ

(for a given r-graph P ) was defined in Definition 2.8.11. Let S ′ ⊆ Si be the set of all

S ′ ∈ Si for which TS′ , RS′ and FS′,1,FS′,2 have already been defined such that (TR1′)–

(TR4′) hold. Suppose that next we want to find TS, RS, FS,1 and FS,2. Let

PS := R∗i+1 ∪
⋃
S′∈S′

RS′ ,

MS := T ∗i+1 ∪R∗i+1 ∪ φ(R∗i+1) ∪
⋃
S′∈S′

(TS′ ∪RS′ ∪ φ(RS′)),

OS := F∗≤(r+1)
i+1,1 ∪ F∗≤(r+1)

i+1,2 ∪
⋃
S′∈S′

F≤(r+1)
S′,1 ∪ F≤(r+1)

S′,2 ,

GS := G[VS]− ((MS ∪ P φ
S )− ((S ] LS) ∪ (φ(S) ] LS)))−OS.
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Observe that (TR4∗)i and (TR4′) imply that

|V (MS ∪ PS)| ≤ |V (T ∗i+1 ∪R∗i+1 ∪ φ(R∗i+1))|+
∑
S′∈S′

|V (TS′ ∪RS′ ∪ φ(RS′))|

≤ 2γi+1n+ 2

(
h

i

)
γ′i+1n ≤ γin.

In particular, |V (P φ
S )| ≤ |V (PS) ∪ V (H)| ≤ γin + h. Moreover, by Fact 2.5.4(i), (TR3∗)i

and (TR3′), we have that ∆(OS) ≤ (2κi+1 +2
(
h
i

)
κ′)(f −r). Thus, by Proposition 2.5.9(v)

GS is still a (2ε, ξ/2, f, r)-supercomplex. Moreover, note that LS ⊆ GS(S)(r−i)∩GS(φ(S))(r−i)

and |V (LS)| ≤ 1.1γi+1|VS| by Claim 2 and that LS is F (S∗)-divisible by Claim 3.

Finally, by definition of Si, S is contained in some e ∈ Ri. Since Ri satisfies (Y2) by

(TR1∗)i, we know that φ�e is injective. Thus, φ�S : S → φ(S) is a bijection. We can thus

apply Lemma 2.8.10 with the following objects/parameters:

object/parameter GS i S φ(S) φ�S LS 1.1γi+1 γ′i+1 2ε |VS | ξ/2 f r F S∗ κ′/2

playing the role of G i S1 S2 φ L γ′ γ ε n ξ f r F S∗ κ

This yields TS, RS ⊆ G
(r)
S and κ′/2-well separated F -packings FS,1,FS,2 such that

(TR2′)–(TR4′) hold, V (RS) ⊆ V (GS)\φ(S) and |e∩S| ∈ [i−1] for all e ∈ RS. Note that

the latter implies that RS is (φ, V (G), V (H), V (H ′), i−1)-projectable as V (H)∩V (GS) =

S and V (H ′) ∩ V (GS) = φ(S), so (TR1′) holds as well. Moreover, using (TR2∗)i and

(TR2′) it is easy to see that our construction ensures that

(a) H,H ′, T ∗i+1, R
∗
i+1, φ(R∗i+1), (TS)S∈Si , (RS)S∈Si , (φ(RS))S∈Si are pairwise edge-disjoint;

(b) for all distinct S, S ′ ∈ Si and all e ∈ RS, e′ ∈ RS′ , e
′′ ∈ R∗i+1−Ri we have that φ(e),

φ(e′) and φ(e′′) are pairwise distinct;

(c) for any j, j′ ∈ [2] and all distinct S, S ′ ∈ Si, FS,j is (r + 1)-disjoint from F∗i+1,j′ and

from FS′,j′ .

Indeed, (a) holds by the choice of MS, (b) holds by definition of P φ
S , and (c) holds by
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definition of OS. Let

T ∗i := T ∗i+1 ∪Ri ∪ φ(Ri) ∪
⋃
S∈Si

TS;

R∗i := (R∗i+1 −Ri) ∪
⋃
S∈Si

RS;

F∗i,1 := F∗i+1,1 ∪
⋃
S∈Si

FS,2;

F∗i,2 := F∗i+1,2 ∪
⋃
S∈Si

FS,1.

Using (TR3∗)i, (TR3′), (a) and (2.8.12), it is easy to check that both F∗i,1 and F∗i,2 are

F -packings in G. We check that (TR1∗)i−1–(TR4∗)i−1 hold. Using (TR4∗)i and (TR4′),

we can confirm that

|V (T ∗i ∪R∗i )| ≤ |V (T ∗i+1 ∪R∗i+1 ∪ φ(R∗i+1))|+
∑
S∈Si

|V (TS ∪RS)|

≤ 2γi+1n+

(
h

i

)
γ′i+1n ≤ γin,

so (TR4∗)i−1 holds.

In order to check (TR1∗)i−1, i.e. that R∗i is (φ, V (G), V (H), V (H ′), i− 1)-projectable,

note that (Y1) and (Y2) hold by (TR1∗)i, the definition of Ri and (TR1′). Moreover,

(Y3) is implied by (TR1∗)i, (TR1′) and (b).

Moreover, (TR2∗)i−1 follows from (a). Finally, we check (TR3∗)i−1. Observe that

T ∗i ∪H ∪R∗i = T ∗i+1 ∪Ri ∪ φ(Ri) ∪
⋃
S∈Si

TS ∪H ∪ (R∗i+1 −Ri) ∪
⋃
S∈Si

RS

(2.8.12)
= (T ∗i+1 ∪H ∪R∗i+1) ∪

⋃
S∈Si

(TS ∪ (φ(S) ] LS) ∪RS),

T ∗i ∪H ′ ∪ φ(R∗i ) = T ∗i+1 ∪Ri ∪ φ(Ri) ∪
⋃
S∈Si

TS ∪H ′ ∪ (φ(R∗i+1)− φ(Ri)) ∪
⋃
S∈Si

φ(RS)

(2.8.12)
= (T ∗i+1 ∪H ′ ∪ φ(R∗i+1)) ∪

⋃
S∈Si

(TS ∪ (S ] LS) ∪ φ(RS)).
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Thus, by (TR3∗)i and (TR3′), F∗i,1 is an F -decomposition of T ∗i ∪ H ∪ R∗i and F∗i,2 is

an F -decomposition of T ∗i ∪ H ′ ∪ φ(R∗i ). Moreover, by (c) and Fact 2.5.4(ii), F∗i,1 and

F∗i,2 are both (κi+1 +
(
h
i

)
κ′)-well separated in G. Since κi+1 +

(
h
i

)
κ′ = κi, this establishes

(TR3∗)i−1.

Finally, let T ∗1 , R
∗
1,F∗1,1,F∗1,2 satisfy (TR1∗)0–(TR4∗)0. Note that R∗1 is empty by

(TR1∗)0 and (Y1). Moreover, T ∗1 ⊆ G(r) is edge-disjoint from H and H ′ by (TR2∗)0

and ∆(T ∗1 ) ≤ γ1n by (TR4∗)0. Most importantly, F∗1,1 and F∗1,2 are κ1-well separated

F -packings in G with F∗(r)1,1 = T ∗1 ∪H and F∗(r)1,2 = T ∗1 ∪H ′ by (TR3∗)0. Therefore, T ∗1 is

a κ1-well separated (H,H ′;F )-transformer in G with ∆(T ∗1 ) ≤ γ1n. Recall that γ1 = γ

and note that κ1 ≤ 2hκ′ ≤ κ. Thus, T ∗1 is the desired transformer. �

2.8.2 Canonical multi-r-graphs

Roughly speaking, the aim of this section is to show that any F -divisible r-graph H can be

transformed into a canonical multigraph Mh which does not depend on the structure of H.

However, it turns out that for this we need to move to a ‘dual’ setting, where we consider

∇H which is obtained from H by applying an F -extension operator ∇. This operator

allows us to switch between multi-r-graphs (which arise naturally in the construction

but are not present in the complex G we are decomposing) and (simple) r-graphs (see

e.g. Fact 2.8.18).

Given a multi-r-graph H and a set X of size r, we say that ψ is an X-orientation

of H if ψ is a collection of bijective maps ψe : X → e, one for each e ∈ H. (For r = 2

and X = {1, 2}, say, this coincides with the notion of an oriented multigraph, e.g. by

viewing ψe(1) as the tail and ψe(2) as the head of e, where parallel edges can be oriented

in opposite directions.)

Given an r-graph F and a distinguished edge e0 ∈ F , we introduce the following

‘extension’ operators ∇̃(F,e0) and ∇(F,e0).

Definition 2.8.13 (Extension operators ∇̃ and ∇). Given a (multi-)r-graph H with an
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e0-orientation ψ, let ∇̃(F,e0)(H,ψ) be obtained from H by extending every edge of H into

a copy of F , with e0 being the rooted edge. More precisely, let Ze be vertex sets of size

|V (F ) \ e0| such that Ze ∩ Ze′ = ∅ for all distinct (but possibly parallel) e, e′ ∈ H and

V (H) ∩ Ze = ∅ for all e ∈ H. For each e ∈ H, let Fe be a copy of F on vertex set e ∪ Ze

such that ψe(v) plays the role of v for all v ∈ e0 and Ze plays the role of V (F ) \ e0. Then

∇̃(F,e0)(H,ψ) :=
⋃
e∈H Fe. Let ∇(F,e0)(H,ψ) := ∇̃(F,e0)(H,ψ)−H.

Note that ∇(F,e0)(H,ψ) is a (simple) r-graph even if H is a multi-r-graph. If F , e0 and

ψ are clear from the context, or if we only want to motivate an argument before giving

the formal proof, we just write ∇̃H and ∇H.

Fact 2.8.14. Let F be an r-graph and e0 ∈ F . Let H be a multi-r-graph and let ψ be any

e0-orientation of H. Then the following hold:

(i) ∇̃(F,e0)(H,ψ) is F -decomposable;

(ii) ∇(F,e0)(H,ψ) is F -divisible if and only if H is F -divisible.

The goal of this subsection is to show that for every h ∈ N, there is a multi-r-graph

Mh such that for any F -divisible r-graph H on at most h vertices, we have

∇(∇(H + t · F ) + s · F ) ∇Mh (2.8.13)

for suitable s, t ∈ N. The multigraph Mh is canonical in the sense that it does not depend

on H, but only on h. The benefit is, very roughly speaking, that it allows us to transform

any given leftover r-graph H into the empty r-graph, which is trivially decomposable,

and this will enable us to construct an absorber for H. Indeed, to see that (2.8.13) allows

us to transform H into the empty r-graph, let

H ′ := ∇(∇(H + t · F ) + s · F ) = ∇∇H + t · ∇∇F + s · ∇F

and observe that the r-graph T := ∇H+ t · ∇̃F + s ·F ‘between’ H and H ′ can be chosen
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in such a way that

T ∪H = ∇̃H + t · ∇̃F + s · F,

T ∪H ′ = ∇̃(∇H) + t · (∇̃(∇F ) ·∪ F ) + s · ∇̃F,

i.e. T is an (H,H ′;F )-transformer (cf. Fact 2.8.14(i)). Hence, together with (2.8.13) and

Lemma 2.8.5, this means that we can transform H into ∇Mh. Since Mh does not depend

on H, we can also transform the empty r-graph into ∇Mh, and by transitivity we can

transform H into the empty graph, which amounts to an absorber for H (the detailed

proof of this can be found in Section 2.8.3).

We now give the rigorous statement of (2.8.13), which is the main lemma of this

subsection.

Lemma 2.8.15. Let r ≥ 2 and assume that (∗)i is true for all i ∈ [r − 1]. Let F be a

weakly regular r-graph and e0 ∈ F . Then for all h ∈ N, there exists a multi-r-graph Mh

such that for any F -divisible r-graph H on at most h vertices, we have

∇(F,e0)(∇(F,e0)(H + t · F, ψ1) + s · F, ψ3) ∇(F,e0)(Mh, ψ2)

for suitable s, t ∈ N, where ψ1 and ψ2 can be arbitrary e0-orientations of H + t · F and

Mh, respectively, and ψ3 is an e0-orientation depending on these.

The above graphs∇(∇(H+t·F )+s·F ) and∇Mh will be part of our F -absorber for H.

We therefore need to make sure that we can actually find them in a supercomplex G. This

requirement is formalised by the following definition.

Definition 2.8.16. Let G be a complex, X ⊆ V (G), F an r-graph with f := |V (F )| and

e0 ∈ F . Suppose that H ⊆ G(r) and that ψ is an e0-orientation of H. By extending H

with a copy of ∇(F,e0)(H,ψ) in G (whilst avoiding X) we mean the following: for each

e ∈ H, let Ze ∈ G(f)(e) be such that Ze∩(V (H)∪X) = ∅ for every e ∈ H and Ze∩Ze′ = ∅

for all distinct e, e′ ∈ H. For each e ∈ H, let Fe be a copy of F on vertex set e ∪ Ze
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(so Fe ⊆ G(r)) such that ψe(v) plays the role of v for all v ∈ e0 and Ze plays the role of

V (F ) \ e0. Let H∇ :=
⋃
e∈H Fe −H and F := {Fe : e ∈ H} be the output of this.

For our purposes, the set |V (H) ∪ X| will have a small bounded size compared to

|V (G)|. Thus, if the G(f)(e) are large enough (which is the case e.g. in an (ε, ξ, f, r)-

supercomplex), then the above extension can be carried out simply by picking the sets Ze

one by one.

Fact 2.8.17. Let (H∇,F) be obtained by extending H ⊆ G(r) with a copy of ∇(F,e0)(H,ψ)

in G. Then H∇ ⊆ G(r) is a copy of ∇(F,e0)(H,ψ) and F is a 1-well separated F -packing

in G with F (r) = H ∪H∇ such that for all F ′ ∈ F , |V (F ′) ∩ V (H)| ≤ r.

For a partition P = {Vx}x∈X whose classes are indexed by a set X, we define VY :=⋃
x∈Y Vx for every subset Y ⊆ X. Recall that for a multi-r-graph H and e ∈

(
V (H)
r

)
,

|H(e)| denotes the multiplicity of e in H. For multi-r-graphs H,H ′, we write H
P
  H ′ if

P = {Vx′}x′∈V (H′) is a partition of V (H) such that

(I1) for all x′ ∈ V (H ′) and e ∈ H, |Vx′ ∩ e| ≤ 1;

(I2) for all e′ ∈
(
V (H′)
r

)
,
∑

e∈(Ve′r ) |H(e)| = |H ′(e′)|.

Given P , define φP : V (H) → V (H ′) as φP(x) := x′ where x′ is the unique x′ ∈ V (H ′)

such that x ∈ Vx′ . Note that by (I1), we have |{φP(x) : x ∈ e}| = r for all e ∈ H.

Further, by (I2), there exists a bijection ΦP : H → H ′ between the multi-edge-sets of H

and H ′ such that for every edge e ∈ H, the image ΦP(e) is an edge consisting of the

vertices φP(x) for all x ∈ e. It is easy to see that H   H ′ if and only if there is some P

such that H
P
  H ′.

The extension operator ∇ is well behaved with respect to the identification relation

  in the following sense: if H   H ′, then ∇H  ∇H ′. More precisely, let H and H ′ be

multi-r-graphs and suppose that H
P
  H ′. Let φP and ΦP be defined as above. Let F be

an r-graph and e0 ∈ F . For any e0-orientation ψ′ of H ′, we define an e0-orientation ψ of

H induced by ψ′ as follows: for every e ∈ H, let e′ := ΦP(e) be the image of e with respect
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to
P
  . We have that φP�e : e→ e′ is a bijection. We now define the bijection ψe : e0 → e

as ψe := φP�e
−1 ◦ ψ′e′ , where ψ′e′ : e0 → e′. Thus, the collection ψ of all ψe, e ∈ H, is an

e0-orientation of H. It is easy to see that ψ satisfies the following.

Fact 2.8.18. Let F be an r-graph and e0 ∈ F . Let H,H ′ be multi-r-graphs and sup-

pose that H   H ′. Then for any e0-orientation ψ′ of H ′, we have ∇(F,e0)(H,ψ)  

∇(F,e0)(H
′, ψ′), where ψ is induced by ψ′.

We now define the multi-r-graphs which will serve as the canonical multi-r-graphs Mh

in (2.8.13). For r ∈ N, let Mr contain all pairs (k,m) ∈ N2
0 such that m

r−i

(
k−i
r−1−i

)
is an

integer for all i ∈ [r − 1]0.

Definition 2.8.19 (Canonical multi-r-graph). Let F ∗ be an r-graph and e∗ ∈ F ∗. Let

V ′ := V (F ∗) \ e∗. If (k,m) ∈Mr, define the multi-r-graph M
(F ∗,e∗)
k,m on vertex set [k] ·∪ V ′

such that for every e ∈
(

[k]∪V ′
r

)
, the multiplicity of e is

|M (F ∗,e∗)
k,m (e)| =



0 if e ⊆ [k];

m
r−|e∩[k]|

(
k−|e∩[k]|
r−1−|e∩[k]|

)
if |e ∩ [k]| > 0, |e ∩ V ′| > 0;

0 if e ⊆ V ′, e /∈ F ∗;

m
r

(
k
r−1

)
if e ⊆ V ′, e ∈ F ∗.

We will require the graph F ∗ in Definition 2.8.19 to have a certain symmetry property

with respect to e∗, which we now define. We will prove the existence of a suitable (F -

decomposable) symmetric r-extender in Lemma 2.8.26.

Definition 2.8.20 (symmetric r-extender). We say that (F ∗, e∗) is a symmetric r-extender

if F ∗ is an r-graph, e∗ ∈ F ∗ and the following holds:

(SE) for all e′ ∈
(
V (F ∗)
r

)
with e′ ∩ e∗ 6= ∅, we have e′ ∈ F ∗.

Note that if (F ∗, e∗) is a symmetric r-extender, then the operators ∇̃(F ∗,e∗),∇(F ∗,e∗) are

labelling-invariant, i.e. ∇̃(F ∗,e∗)(H,ψ1) ∼= ∇̃(F ∗,e∗)(H,ψ2) and∇(F ∗,e∗)(H,ψ1) ∼= ∇(F ∗,e∗)(H,ψ2)
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for all e∗-orientations ψ1, ψ2 of a multi-r-graph H. We therefore simply write ∇̃(F ∗,e∗)H

and ∇(F ∗,e∗)H in this case.

To prove Lemma 2.8.15 we introduce so called strong colourings. Let H be an r-

graph and C a set. A map c : V (H) → C is a strong C-colouring of H if for all distinct

x, y ∈ V (H) with |H({x, y})| > 0, we have c(x) 6= c(y), that is, no colour appears twice

in one edge. For α ∈ C, we let c−1(α) denote the set of all vertices coloured α. For a set

C ′ ⊆ C, we let c⊆(C ′) := {e ∈ H : C ′ ⊆ c(e)}. We say that c is m-regular if |c⊆(C ′)| = m

for all C ′ ∈
(
C
r−1

)
. For example, an r-partite r-graph H trivially has a strong |H|-regular

[r]-colouring.

Fact 2.8.21. Let H be an r-graph and let c be a strong m-regular [k]-colouring of H.

Then |c⊆(C ′)| = m
r−i

(
k−i
r−1−i

)
for all i ∈ [r − 1]0 and all C ′ ∈

(
[k]
i

)
.

Lemma 2.8.22. Let (F ∗, e∗) be a symmetric r-extender. Suppose that H is an r-graph

and suppose that c is a strong m-regular [k]-colouring of H. Then (k,m) ∈Mr and

∇(F ∗,e∗)H   M
(F ∗,e∗)
k,m .

Proof. By Fact 2.8.21, (k,m) ∈ Mr, thus M
(F ∗,e∗)
k,m is defined. Recall that M

(F ∗,e∗)
k,m has

vertex set [k] ∪ V ′, where V ′ := V (F ∗) \ e∗. Let V (H) ∪
⋃
e∈H Ze be the vertex set of

∇(F ∗,e∗)H as in Definition 2.8.13, with Ze = {ze,v : v ∈ V ′}. We define a partition

P of V (H) ∪
⋃
e∈H Ze as follows: for all i ∈ [k], let Vi := c−1(i). For all v ∈ V ′, let

Vv := {ze,v : e ∈ H}. We now claim that ∇(F ∗,e∗)H
P
  M

(F ∗,e∗)
k,m .

Clearly, P satisfies (I1) because c is a strong colouring of H. For a set e′ ∈
(

[k]∪V ′
r

)
,

define

Se′ := {e′′ ∈ ∇(F ∗,e∗)H : e′′ ⊆ Ve′}.

Since ∇(F ∗,e∗)H is simple, in order to check (I2), it is enough to show that for all e′ ∈(
[k]∪V ′
r

)
, we have |Se′| = |M (F ∗,e∗)

k,m (e′)|. We distinguish three cases.

Case 1: e′ ⊆ [k]
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In this case, |M (F ∗,e∗)
k,m (e′)| = 0. Since Ve′ ⊆ V (H) and (∇(F ∗,e∗)H)[V (H)] is empty, we

have Se′ = ∅, as desired.

Case 2: e′ ⊆ V ′

In this case, Se′ consists of all edges of ∇(F ∗,e∗)H which play the role of e′ in F ∗e for

some e ∈ H. Hence, if e′ /∈ F ∗, then |Se′| = 0, and if e′ ∈ F ∗, then |Se′ | = |H|. Fact 2.8.21

applied with i = 0 yields |H| = m
r

(
k
r−1

)
, as desired.

Case 3: |e′ ∩ [k]| > 0 and |e′ ∩ V ′| > 0

We claim that |Se′| = |c⊆(e′∩ [k])|. In order to see this, we define a bijection π : c⊆(e′∩

[k])→ Se′ as follows: for every e ∈ H with e′ ∩ [k] ⊆ c(e), define

π(e) := (e ∩ c−1(e′ ∩ [k])) ∪ {ze,v : v ∈ e′ ∩ V ′}.

We first show that π(e) ∈ Se′ . Note that e ∩ c−1(e′ ∩ [k]) is a subset of e of size |e′ ∩ [k]|

and {ze,v : v ∈ e′ ∩ V ′} is a subset of Ze of size |e′ ∩ V ′|. Hence, π(e) ∈
(
V (F ∗e )
r

)
and

|π(e)∩ e| = |e′ ∩ [k]| > 0. Thus, by (SE), we have π(e) ∈ F ∗e ⊆ ∇(F ∗,e∗)H. (This is in fact

the crucial point where we need (SE).) Moreover,

π(e) ⊆ c−1(e′ ∩ [k]) ∪ {ze,v : v ∈ e′ ∩ V ′} ⊆ Ve′∩[k] ∪ Ve′∩V ′ = Ve′ .

Therefore, π(e) ∈ Se′ . It is straightforward to see that π is injective. Finally, for every

e′′ ∈ Se′ , we have e′′ = π(e), where e ∈ H is the unique edge of H with e′′ ∈ F ∗e .

This establishes our claim that π is bijective and hence |Se′ | = |c⊆(e′ ∩ [k])|. Since

1 ≤ |e′ ∩ [k]| ≤ r − 1, Fact 2.8.21 implies that

|Se′ | = |c⊆(e′ ∩ [k])| = m

r − |e′ ∩ [k]|

(
k − |e′ ∩ [k]|

r − 1− |e′ ∩ [k]|

)
= |M (F ∗,e∗)

k,m (e′)|,

as required. �

Next, we establish the existence of suitable strong regular colourings. As a tool we
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need the following result about decompositions of very dense multi-r-graphs (which we

will apply with r − 1 playing the role of r).

Lemma 2.8.23. Let r ∈ N and assume that (∗)r is true. Let 1/n � 1/h, 1/f with

f > r, let F be a weakly regular r-graph on f vertices and assume that K
(r)
n is F -divisible.

Let m ∈ N. Suppose that H is an F -divisible multi-r-graph on [h] with multiplicity at

most m − 1 and let K be the complete multi-r-graph on [n] with multiplicity m. Then

K −H has an F -decomposition.

Proof. Choose ε > 0 such that 1/n� ε� 1/h, 1/f . Fix an edge e0 ∈ F . Let ψ be any

e0-orientation of H. We may assume that H̃ := ∇̃(F,e0)(H,ψ) is a multi-r-graph on [n]. Let

ψ̃ be any e0-orientation of H∗ := H̃ −H. We may also assume that Ĥ := ∇̃(F,e0)(H
∗, ψ̃)

is an r-graph on [n]. Let H† := Ĥ − H∗. Using Fact 2.8.14, observe that the following

are true:

(a) H̃ can be decomposed into m − 1 (possibly empty) F -decomposable (simple) r-

graphs H ′1, . . . , H
′
m−1;

(b) Ĥ is an F -decomposable (simple) r-graph;

(c) H† is an F -divisible (simple) r-graph;

(d) H ∪ Ĥ = H̃ ∪H†.

By (d), we have that

K −H = (K −H − Ĥ) ∪ Ĥ = Ĥ ∪ (K − H̃ −H†).

Let K ′ be the complete (simple) r-graph on [n]. For each i ∈ [m−1], define Hi := K ′−H ′i,

and let Hm := K ′ −H†. We thus have K − H̃ −H† =
⋃
i∈[m] Hi by (a).

Recall that K ′↔ is a (0, 0.99/f !, f, r)-supercomplex (cf. Example 2.4.9). We conclude

with Proposition 2.5.9(v) that H↔i = K ′↔ − H ′i is an (ε, 0.5/f !, f, r)-supercomplex for

every i ∈ [m]. Recall that K ′ is F -divisible by assumption. Thus, by (a) and (c), each Hi
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is F -divisible. Hence, by (∗)r, Hi is F -decomposable for every i ∈ [m]. Thus,

K −H = Ĥ ∪ (K − H̃ −H†) = Ĥ ∪
⋃
i∈[m]

Hi

has an F -decomposition by (b). �

The next lemma guarantees the existence of a suitable strong regular colouring. For

this, we apply Lemma 2.8.23 to the shadow of F . For an r-graph F , define the shadow

F sh of F to be the (r − 1)-graph on V (F ) where an (r − 1)-set S is an edge if and only

if |F (S)| > 0. We need the following fact.

Fact 2.8.24. If F is a weakly (s0, . . . , sr−1)-regular r-graph, then F sh is a weakly (s′0, . . . , s
′
r−2)-

regular (r − 1)-graph, where s′i := r−i
sr−1

si for all i ∈ [r − 2]0.

Proof. Let i ∈ [r− 2]0. For every T ∈
(
V (F )
i

)
, we have |F sh(T )| = r−i

sr−1
|F (T )| since every

edge of F which contains T contains r − i edges of F sh which contain T , but each such

edge of F sh is contained in sr−1 such edges of F . This implies the claim. �

Lemma 2.8.25. Let r ≥ 2 and assume that (∗)r−1 holds. Let F be a weakly regular

r-graph. Then for all h ∈ N, there exist k,m ∈ N such that for any F -divisible r-graph

H on at most h vertices, there exists t ∈ N such that H + t · F has a strong m-regular

[k]-colouring.

Proof. Let f := |V (F )| and suppose that F is weakly (s0, . . . , sr−1)-regular. Thus, for

every S ∈
(
V (F )
r−1

)
, we have

|F (S)| =


sr−1 if S ∈ F sh;

0 otherwise.

(2.8.14)

By Proposition 2.5.2, we can choose k ∈ N such that 1/k � 1/h, 1/f and such that

K
(r−1)
k is F sh-divisible. Let G be the complete multi-(r−1)-graph on [k] with multiplicity

m′ := h+ 1 and let m := sr−1m
′.
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Let H be any F -divisible r-graph on at most h vertices. By adding isolated vertices to

H if necessary, we may assume that V (H) = [h]. We first define a multi-(r− 1)-graph H ′

on [h] as follows: For each S ∈
(

[h]
r−1

)
, let the multiplicity of S in H ′ be |H ′(S)| := |H(S)|.

Clearly, H ′ has multiplicity at most h. Observe that for each S ⊆ [h] with |S| ≤ r − 1,

we have

|H ′(S)| = (r − |S|)|H(S)|. (2.8.15)

Note that since H is F -divisible, we have that sr−1 | |H(S)| for all S ∈
(

[h]
r−1

)
. Thus, the

multiplicity of each S ∈
(

[h]
r−1

)
in H ′ is divisible by sr−1. Let H ′′ be the multi-(r−1)-graph

on [h] obtained from H ′ by dividing the multiplicity of each S ∈
(

[h]
r−1

)
by sr−1. Hence,

by (2.8.15), for all S ⊆ [h] with |S| ≤ r − 1, we have

|H ′′(S)| = |H
′(S)|
sr−1

=
r − |S|
sr−1

|H(S)|. (2.8.16)

For each S ∈
(

[k]
r−1

)
with S 6⊆ [h], we set |H ′′(S)| := |H(S)| := 0. Then (2.8.16) still holds.

We claim that H ′′ is F sh-divisible. Recall that by Fact 2.8.24,

F sh is weakly (
r

sr−1

s0, . . . ,
r − i
sr−1

si, . . . ,
2

sr−1

sr−2)-regular.

Let i ∈ [r − 2]0 and let S ∈
(

[h]
i

)
. We need to show that |H ′′(S)| ≡ 0 mod Deg(F sh)i,

where Deg(F sh)i = r−i
sr−1

si. Since H is F -divisible, we have |H(S)| ≡ 0 mod si. Together

with (2.8.16), we deduce that |H ′′(S)| ≡ 0 mod r−i
sr−1

si. Hence, H ′′ is F sh-divisible. There-

fore, by Lemma 2.8.23 (with k,m′, r−1, F sh playing the roles of n,m, r, F ) and our choice

of k, G−H ′′ has an F sh-decomposition F into t edge-disjoint copies F ′1, . . . , F
′
t of F sh.

We will show that t is as required in Lemma 2.8.25. To do this, let F1, . . . , Ft be

vertex-disjoint copies of F which are also vertex-disjoint from H. We will now define a
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strong m-regular [k]-colouring c of

H+ := H ∪
⋃
j∈[t]

Fj.

Let c0 be the identity map on V (H) = [h], and for each j ∈ [t], let

cj : V (Fj)→ V (F ′j) be an isomorphism from F sh
j to F ′j (2.8.17)

(recall that V (F sh
j ) = V (Fj)). SinceH,F1, . . . , Ft are vertex-disjoint and V (H)∪

⋃
j∈[t] V (F ′j) ⊆

[k], we can combine c0, c1, . . . , ct to a map

c : V (H+)→ [k],

i.e. for x ∈ V (H+), we let c(x) := cj(x), where either j is the unique index for which

x ∈ V (Fj) or j = 0 if x ∈ V (H). For every edge e ∈ H+, we have e ⊆ V (H) or e ⊆ V (Fj)

for some j ∈ [t], thus c�e is injective. Therefore, c is a strong [k]-colouring of H+.

It remains to check that c ism-regular. Let C ∈
(

[k]
r−1

)
. Clearly, |c⊆(C)| =

∑t
j=0 |c

⊆
j (C)|.

Since every cj is a bijection, we have

|c⊆0 (C)| = |{e ∈ H : c−1
0 (C) ⊆ e}| = |H(c−1

0 (C))| = |H(C)| and

|c⊆j (C)| = |Fj(c−1
j (C))| (2.8.14)

=


sr−1 if c−1

j (C) ∈ F sh
j

(2.8.17)⇔ C ∈ F ′j ;

0 otherwise.

Thus, we have |c⊆(C)| = |H(C)|+ sr−1|J(C)|, where

J(C) := {j ∈ [t] : C ∈ F ′j}.

Now crucially, since F is an F sh-decomposition of G−H ′′, we have that |J(C)| is equal
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to the multiplicity of C in G−H ′′, i.e. |J(C)| = m′ − |H ′′(C)|. Thus,

|c⊆(C)| = |H(C)|+ sr−1|J(C)| (2.8.16)
= sr−1(|H ′′(C)|+ |J(C)|) = sr−1m

′ = m,

completing the proof. �

Before we can prove Lemma 2.8.15, we need to show the existence of a symmetric

r-extender F ∗ which is F -decomposable. For some F we could actually take F ∗ = F

(e.g. if F is a clique). For general (weakly regular) r-graphs F , we will use the Cover

down lemma (Lemma 2.7.7) to find F ∗. At first sight, appealing to the Cover down lemma

may seem rather heavy handed, but a direct construction seems to be quite difficult.

Lemma 2.8.26. Let F be a weakly regular r-graph, e0 ∈ F and assume that (∗)i is true

for all i ∈ [r − 1]. There exists a symmetric r-extender (F ∗, e∗) such that F ∗ has an

F -decomposition F with e∗ ∈ F ′ ∈ F and e∗ plays the role of e0 in F ′.

Proof. Let f := |V (F )|. By Proposition 2.5.2, we can choose n ∈ N and γ, ε, ν, µ > 0 such

that 1/n� γ � ε� ν � µ� 1/f and such that K
(r)
n is F -divisible. By Example 2.4.9,

Kn is a (0, 0.99/f !, f, r)-supercomplex. By Fact 2.7.2(i) and Proposition 2.7.12, there

exists U ⊆ V (Kn) of size bµnc which is (ε, µ, 0.9/f !, f, r)-random in Kn. Let Ū :=

V (Kn) \ U . Using (R2) of Definition 2.7.1, it is easy to see that Kn is (ε, f, r)-dense

with respect to K
(r)
n − K(r)

n [Ū ] (see Definition 2.7.6). Thus, by the Cover down lemma

(Lemma 2.7.7), there exists a subgraph H∗ of K
(r)
n −K(r)

n [Ū ] with ∆(H∗) ≤ νn and the

following property: for all L ⊆ K
(r)
n such that ∆(L) ≤ γn and H∗ ∪ L is F -divisible,

H∗ ∪ L has an F -packing which covers all edges except possibly some inside U .

Let F ′ be a copy of F with V (F ′) ⊆ Ū . Let Gnibble := Kn − H∗ − F ′. By Proposi-

tion 2.5.9(v), Gnibble is a (22r+2ν, 0.8/f !, f, r)-supercomplex. Thus, by Lemma 2.6.5, there

exists an F -packing Fnibble in G
(r)
nibble such that ∆(L) ≤ γn, where L := G

(r)
nibble − F

(r)
nibble.

Clearly, H∗ ∪ L = K
(r)
n − F (r)

nibble − F ′ is F -divisible. Thus, there exists an F -packing

F∗ in H∗ ∪ L which covers all edges of H∗ ∪ L except possibly some inside U . Let

F := {F ′}∪Fnibble ∪F∗. Let F ∗ := F (r) and let e∗ be the edge in F ′ which plays the role
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of e0.

Clearly, F is an F -decomposition of F ∗ with e∗ ∈ F ′ ∈ F and e∗ plays the role of e0 in

F ′. It remains to check (SE). Let e′ ∈
(
V (K

(r)
n )
r

)
with e′ ∩ e∗ 6= ∅. Since e∗ ⊆ Ū , e′ cannot

be inside U . Thus, e′ is covered by F and we have e′ ∈ F ∗. �

Note that |V (F ∗)| is quite large here, in particular 1/|V (F ∗)| � 1/f for f = |V (F )|.

This means that G being an (ε, ξ, f, r)-supercomplex does not necessarily allow us to

extend a given subgraph H of G(r) to a copy of ∇(F ∗,e∗)H as described in Definition 2.8.16.

Fortunately, this will in fact not be necessary, as F ∗ will only serve as an abstract auxiliary

graph and will not appear as a subgraph of the absorber. (This is crucial since otherwise

we would not be able to prove our main theorems with explicit bounds, let alone the

bounds given in Theorem 2.1.4.)

We are now ready to prove Lemma 2.8.15.

Proof of Lemma 2.8.15. Given F and e0, we first apply Lemma 2.8.26 to obtain a

symmetric r-extender (F ∗, e∗) such that F ∗ has an F -decomposition F with e∗ ∈ F ′ ∈ F

and e∗ plays the role of e0 in F ′. For given h ∈ N, let k,m ∈ N be as in Lemma 2.8.25.

Clearly, we may assume that there exists an F -divisible r-graph on at most h vertices.

Together with Lemma 2.8.22, this implies that (k,m) ∈Mr. Define

Mh := M
(F ∗,e∗)
k,m .

Now, let H be any F -divisible r-graph on at most h vertices. By Lemma 2.8.25, there

exists t ∈ N such that H + t · F has a strong m-regular [k]-colouring. By Lemma 2.8.22,

we have

∇(F ∗,e∗)(H + t · F )  Mh.

Let ψ1 be any e0-orientation of H + t ·F . Observe that since e∗ plays the role of e0 in F ′,

∇(F ∗,e∗)(H + t ·F ) can be decomposed into a copy of ∇(F,e0)(H + t ·F, ψ1) and s copies of
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F (where s = |H + t · F | · |F \ {F ′}|). Hence, we have

∇(F,e0)(H + t · F, ψ1) + s · F  ∇(F ∗,e∗)(H + t · F )

by Proposition 2.8.4(ii). Thus, ∇(F,e0)(H + t · F, ψ1) + s · F   Mh by transitivity of   .

Finally, let ψ2 be any e0-orientation of Mh. By Fact 2.8.18, there exists an e0-orientation

ψ3 of ∇(F,e0)(H + t · F, ψ1) + s · F such that

∇(F,e0)(∇(F,e0)(H + t · F, ψ1) + s · F, ψ3) ∇(F,e0)(Mh, ψ2).

�

2.8.3 Proof of the Absorbing lemma

As discussed at the beginning of Section 2.8.2, we can now combine Lemma 2.8.5 and

Lemma 2.8.15 to construct the desired absorber by concatenating transformers between

certain auxiliary r-graphs, in particular the extension ∇Mh of the canonical multi-r-

graph Mh. It is relatively straightforward to find these auxiliary r-graphs within a given

supercomplex G. The step when we need to find ∇Mh is the reason why the definition of

a supercomplex includes the notion of extendability.

Proof of Lemma 2.8.2. If H is empty, then we can take A to be empty, so let us

assume that H is not empty. In particular, G(r) is not empty. Recall also that we assume

r ≥ 2. Let e0 ∈ F and let Mh be as in Lemma 2.8.15. Fix any e0-orientation ψ of Mh.

By Lemma 2.8.15, there exist t1, t2, s1, s2, ψ1, ψ2, ψ
′
1, ψ

′
2 such that

∇(F,e0)(∇(F,e0)(H + t1 · F, ψ1) + s1 · F, ψ′1) ∇(F,e0)(Mh, ψ); (2.8.18)

∇(F,e0)(∇(F,e0)(t2 · F, ψ2) + s2 · F, ψ′2) ∇(F,e0)(Mh, ψ). (2.8.19)

We can assume that 1/n� 1/` where ` := max{|V (Mh)|, t1, t2, s1, s2}.
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Since G is (ξ, f + r, r)-dense, there exist disjoint Q1,1, . . . , Q1,t1 , Q2,1, . . . , Q2,t2 ∈ G(f)

which are also disjoint from V (H). For i ∈ [2] and j ∈ [ti], let Fi,j be a copy of F with

V (Fi,j) = Qi,j. Let H1 := H ∪
⋃
j∈[t1] F1,j and H2 :=

⋃
j∈[t2] F2,j and for i ∈ [2], define

Fi := {Fi,j : j ∈ [ti]}.

So H1 is a copy of H + t1 · F and H2 is a copy of t2 · F . In fact, we will from now on

assume (by redefining ψi and ψ′i) that for i ∈ [2], we have

∇(F,e0)(∇(F,e0)(Hi, ψi) + si · F, ψ′i) ∇(F,e0)(Mh, ψ). (2.8.20)

For i ∈ [2], let (H ′i,F ′i) be obtained by extending Hi with a copy of ∇(F,e0)(Hi, ψi) in G

(cf. Definition 2.8.16). We can assume that H ′1 and H ′2 are vertex-disjoint by first choosing

H ′1 whilst avoiding V (H2) and subsequently choosing H ′2 whilst avoiding V (H ′1). (To see

that this is possible we can e.g. use the fact that G is (ε, d, f, r)-regular for some d ≥ ξ.)

There exist disjoint Q′1,1, . . . , Q
′
1,s1
, Q′2,1, . . . , Q

′
2,s2
∈ G(f) which are also disjoint from

V (H ′1) ∪ V (H ′2). For i ∈ [2] and j ∈ [si], let F ′i,j be a copy of F with V (F ′i,j) = Q′i,j. For

i ∈ [2], let

H ′′i := H ′i ∪
⋃
j∈[si]

F ′i,j;

F ′′i := {F ′i,j : j ∈ [si]}.

Since H ′′i is a copy of ∇(F,e0)(Hi, ψi) + si · F , we can assume (by redefining ψ′i) that

∇(F,e0)(H
′′
i , ψ

′
i) ∇(F,e0)(Mh, ψ). (2.8.21)

For i ∈ [2], let (H ′′′i ,F ′′′i ) be obtained by extending H ′′i with a copy of ∇(F,e0)(H
′′
i , ψ

′
i) in

G (cf. Definition 2.8.16). We can assume that H ′′′1 and H ′′′2 are vertex-disjoint.

Since G is (ξ, f, r)-extendable, it is straightforward to find a copy M ′ of ∇(F,e0)(Mh, ψ)
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in G(r) which is vertex-disjoint from H ′′′1 and H ′′′2 .

Since H ′′′i is a copy of ∇(F,e0)(H
′′
i , ψ

′
i), by (2.8.21) we have H ′′′i  M ′ for i ∈ [2]. Using

Fact 2.8.14(ii) repeatedly, we can see that both H ′′′1 and H ′′′2 are F -divisible. Together

with Proposition 2.8.4(iii), this implies that M ′ is F -divisible as well.

Let T1 := (H1 −H) ∪H ′′1 and T2 := H2 ∪H ′′2 . For i ∈ [2], let

Fi,1 := F ′i ∪ F ′′i and Fi,2 := Fi ∪ F ′′′i .

We claim that F1,1,F1,2,F2,1,F2,2 are 2-well separated F -packings in G such that

F (r)
1,1 = T1 ∪H, F (r)

1,2 = T1 ∪H ′′′1 , F (r)
2,2 = T2 ∪H ′′′2 and F (r)

2,1 = T2. (2.8.22)

(In particular, T1 is a 2-well separated (H,H ′′′1 ;F )-transformer in G and T2 is a 2-well

separated (H ′′′2 , ∅;F )-transformer in G.) Indeed, we clearly have that F1,F2,F ′′1 ,F ′′2 are

1-well separated F -packings in G, where F (r)
1 = H1 − H, F (r)

2 = H2, and for i ∈ [2],

F ′′(r)i = H ′′i −H ′i. Moreover, by Fact 2.8.17, for i ∈ [2], F ′i and F ′′′i are 1-well separated

F -packings in G with F ′(r)i = Hi ∪H ′i and F ′′′(r)i = H ′′i ∪H ′′′i . Note that

T1 ∪H = H1 ∪H ′′1 = (H1 ∪H ′1) ·∪ (H ′′1 −H ′1) = F ′(r)1 ·∪ F ′′(r)1 = F (r)
1,1 ;

T1 ∪H ′′′1 = (H1 −H) ·∪ (H ′′1 ∪H ′′′1 ) = F (r)
1 ·∪ F ′′′(r)1 = F (r)

1,2 ;

T2 ∪H ′′′2 = H2 ·∪ (H ′′2 ∪H ′′′2 ) = F (r)
2 ·∪ F ′′′(r)2 = F (r)

2,2 ;

T2 = H2 ∪H ′′2 = (H2 ∪H ′2) ·∪ (H ′′2 −H ′2) = F ′(r)2 ·∪ F ′′(r)2 = F (r)
2,1 .

To check that F1,1, F1,2, F2,1 and F2,2 are 2-well separated F -packings, by Fact 2.5.4(ii)

it is now enough to show for i ∈ [2] that F ′i and F ′′i are (r + 1)-disjoint and that Fi and

F ′′′i are (r + 1)-disjoint. Note that for all F ′ ∈ F ′i and F ′′ ∈ F ′′i , we have V (F ′) ⊆ V (H ′i)

and V (F ′′) ∩ V (H ′i) = ∅, thus V (F ′) ∩ V (F ′′) = ∅. For all F ′ ∈ Fi and F ′′ ∈ F ′′′i , we

have V (F ′) ⊆ V (Hi) and |V (F ′′) ∩ V (Hi)| ≤ |V (F ′′) ∩ V (H ′′i )| ≤ r by Fact 2.8.17, thus

|V (F ′) ∩ V (F ′′)| ≤ r. This completes the proof of (2.8.22).
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Let

Or := H1 ∪H ′′1 ∪H2 ∪H ′′2 ;

Or+1,3 := F≤(r+1)
1,1 ∪ F≤(r+1)

1,2 ∪ F≤(r+1)
2,1 ∪ F≤(r+1)

2,2 .

By Fact 2.5.4(i), ∆(Or+1,3) ≤ 8(f − r). Note that H ′′′1 ,M
′ ⊆ G(r) − (Or ∪H ′′′2 ). Thus, by

Proposition 2.5.9(v) and Lemma 2.8.5, there exists a (κ/3)-well separated (H ′′′1 ,M
′;F )-

transformer T3 in G − (Or ∪ H ′′′2 ) − Or+1,3 with ∆(T3) ≤ γn/3. Let F3,1 and F3,2 be

(κ/3)-well separated F -packings in G− (Or ∪H ′′′2 )−Or+1,3 such that F (r)
3,1 = T3∪H ′′′1 and

F (r)
3,2 = T3 ∪M ′.

Similarly, let Or+1,4 := Or+1,3 ∪ F≤(r+1)
3,1 ∪ F≤(r+1)

3,2 . By Fact 2.5.4(i), ∆(Or+1,4) ≤

(8 + 2κ/3)(f − r). Note that H ′′′2 ,M
′ ⊆ G(r)− (Or ∪H ′′′1 ∪T3). Using Proposition 2.5.9(v)

and Lemma 2.8.5 again, we can find a (κ/3)-well separated (H ′′′2 ,M
′;F )-transformer T4

in G − (Or ∪ H ′′′1 ∪ T3) − Or+1,4 with ∆(T4) ≤ γn/3. Let F4,1 and F4,2 be (κ/3)-well

separated F -packings in G − (Or ∪ H ′′′1 ∪ T3) − Or+1,4 such that of F (r)
4,1 = T4 ∪ H ′′′2 and

F (r)
4,2 = T4 ∪M ′.

Let

A := T1 ·∪H ′′′1 ·∪ T3 ·∪M ′ ·∪ T4 ·∪H ′′′2 ·∪ T2;

F◦ := F1,2 ∪ F3,2 ∪ F4,1 ∪ F2,1;

F• := F1,1 ∪ F3,1 ∪ F4,2 ∪ F2,2.

Clearly, A ⊆ G(r), and ∆(A) ≤ γn. Moreover, A and H are edge-disjoint. Using (2.8.22),

we can check that

F (r)
◦ = F (r)

1,2 ·∪ F
(r)
3,2 ·∪ F

(r)
4,1 ·∪ F

(r)
2,1 = (T1 ∪H ′′′1 ) ·∪ (T3 ∪M ′) ·∪ (T4 ∪H ′′′2 ) ·∪ T2 = A;

F (r)
• = F (r)

1,1 ·∪ F
(r)
3,1 ·∪ F

(r)
4,2 ·∪ F

(r)
2,2 = (H ∪ T1) ·∪ (H ′′′1 ∪ T3) ·∪ (M ′ ∪ T4) ·∪ (H ′′′2 ∪ T2) = A ∪H.

By definition of Or+1,3 and Or+1,4, we have that F1,2,F3,2,F4,1,F2,1 are (r + 1)-disjoint.
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Thus, F◦ is a (2 · κ/3 + 4)-well separated F -packing in G by Fact 2.5.4(ii). Similarly,

F• is a (2 · κ/3 + 4)-well separated F -packing in G. So A is indeed a κ-well separated

F -absorber for H in G. �

2.9 Proof of the main theorems

2.9.1 Main complex decomposition theorem

We can now deduce our main decomposition result for supercomplexes (modulo the proof

of the Cover down lemma). The main ingredients for the proof of Theorem 2.4.7 are

Lemma 2.7.4 (to find a vortex), Lemma 2.8.2 (to find absorbers for the possible leftovers

in the final vortex set), and Lemma 2.7.5 (to cover all edges outside the final vortex set).

Proof of Theorem 2.4.7. We proceed by induction on r. The case r = 1 forms the

base case of the induction and in this case we do not rely on any inductive assumption.

Suppose that r ∈ N and that (∗)i is true for all i ∈ [r − 1].

We may assume that 1/n� 1/κ� ε. Choose new constants κ′,m′ ∈ N and γ, µ > 0

such that

1/n� 1/κ� γ � 1/m′ � 1/κ′ � ε� µ� ξ, 1/f

and suppose that F is a weakly regular r-graph on f > r vertices.

Let G be an F -divisible (ε, ξ, f, r)-supercomplex on n vertices. We are to show the

existence of a κ-well separated F -decomposition of G. By Lemma 2.7.4, there exists a

(2
√
ε, µ, ξ− ε, f, r,m)-vortex U0, U1, . . . , U` in G for some µm′ ≤ m ≤ m′. Let H1, . . . , Hs

be an enumeration of all spanning F -divisible subgraphs of G[U`]
(r). Clearly, s ≤ 2(mr ). We

will now find edge-disjoint subgraphs A1, . . . , As of G(r) and
√
κ-well separated F -packings

F1,◦,F1,•, . . . ,Fs,◦,Fs,• in G such that for all i ∈ [s] we have that

(A1) F (r)
i,◦ = Ai and F (r)

i,• = Ai ∪Hi;

(A2) ∆(Ai) ≤ γn;
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(A3) Ai[U1] is empty;

(A4) F≤i,•, G[U1],F≤1,◦, . . . ,F
≤
i−1,◦,F

≤
i+1,◦, . . . ,F≤s,◦ are (r + 1)-disjoint.

Suppose that for some t ∈ [s], we have already found edge-disjoint A1, . . . , At−1 together

with F1,◦,F1,•, . . . ,Ft−1,◦,Ft−1,• that satisfy (A1)–(A4) (with t− 1 playing the role of s).

Let

Tt := (G(r)[U1]−Ht) ∪
⋃

i∈[t−1]

Ai;

T ′t := G(r+1)[U1] ∪
⋃

i∈[t−1]

(F≤(r+1)
i,◦ ∪ F≤(r+1)

i,• ).

Clearly, ∆(Tt) ≤ µn+ sγn ≤ 2µn by (V2) and (A2). Also, ∆(T ′t) ≤ µn+ 2s
√
κ(f − r) ≤

2µn by (V2) and Fact 2.5.4(i). Thus, applying Proposition 2.5.9(v) twice we see that

Gabs,t := G − Tt − T ′t is still a (
√
µ, ξ/2, f, r)-supercomplex. Moreover, Ht ⊆ G

(r)
abs,t

by (A3). Hence, by Lemma 2.8.2, there exists a
√
κ-well separated F -absorber At for

Ht in Gabs,t with ∆(At) ≤ γn. Let Ft,◦ and Ft,• be
√
κ-well separated F -packings in

Gabs,t ⊆ G such that F (r)
t,◦ = At and F (r)

t,• = At ∪ Ht. Clearly, At is edge-disjoint from

A1, . . . , At−1. Moreover, (A3) holds since G
(r)
abs,t[U1] = Ht and At is edge-disjoint from Ht,

and (A4) holds with t playing the role of s due to the definition of T ′t .

Let A∗ := A1 ∪ · · · ∪ As and T ∗ :=
⋃
i∈[s](F

≤(r+1)
i,◦ ∪ F≤(r+1)

i,• ). We claim that the

following hold:

(A1′) for every F -divisible subgraph H∗ of G[U`]
(r), A∗ ∪ H∗ has an s

√
κ-well separated

F -decomposition F∗ with F∗≤ ⊆ G[T ∗];

(A2′) ∆(A∗) ≤ εn and ∆(T ∗) ≤ 2s
√
κ(f − r) ≤ εn;

(A3′) A∗[U1] and T ∗[U1] are empty.

For (A1′), we have that H∗ = Ht for some t ∈ [s]. Then F∗ := Ft,•∪
⋃
i∈[s]\{t}Fi,◦ is an

F -decomposition of A∗ ∪H∗ = (At ∪Ht) ∪
⋃
i∈[s]\{t}Ai by (A1) and since Ht, A1, . . . , As

are pairwise edge-disjoint. By (A4) and Fact 2.5.4(ii), F∗ is s
√
κ-well separated. We
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clearly have F∗≤ ⊆ G and F∗≤(r+1) ⊆ T ∗. Thus F∗≤ ⊆ G[T ∗] and so (A1′) holds. It is

straightforward to check that (A2′) follows from (A2) and Fact 2.5.4(i), and that (A3′)

follows from (A3) and (A4).

Let Galmost := G − A∗ − T ∗. By (A2′) and Proposition 2.5.9(v), Galmost is an

(
√
ε, ξ/2, f, r)-supercomplex. Moreover, since A∗ must be F -divisible, we have thatGalmost

is F -divisible. By (A3′), U1, . . . , U` is a (2
√
ε, µ, ξ − ε, f, r,m)-vortex in Galmost[U1].

Moreover, (A2′) and Proposition 2.7.13 imply that U1 is (ε1/5, µ, ξ/2, f, r)-random in

Galmost and U1 \ U2 is (ε1/5, µ(1 − µ), ξ/2, f, r)-random in Galmost. Hence, U0, U1, . . . , U`

is still an (ε1/5, µ, ξ/2, f, r,m)-vortex in Galmost. Thus, by Lemma 2.7.5, there exists a

4κ′-well separated F -packing Falmost in Galmost which covers all edges of G
(r)
almost except

possibly some inside U`. Let H∗ := (G
(r)
almost−F

(r)
almost)[U`]. Since H∗ is F -divisible, A∗∪H∗

has an s
√
κ-well separated F -decomposition F∗ with F∗≤ ⊆ G[T ∗] by (A1′). Clearly,

G(r) = G
(r)
almost

·∪ A∗ = F (r)
almost

·∪H∗ ·∪ A∗ = F (r)
almost

·∪ F∗(r),

and Falmost and F∗ are (r+1)-disjoint. Thus, by Fact 2.5.4(ii), Falmost∪F∗ is a (4κ′+s
√
κ)-

well separated F -decomposition of G, completing the proof. �

2.9.2 Resolvable partite designs

Perhaps surprisingly, it is much easier to obtain decompositions of complete partite r-

graphs than of complete (non-partite) r-graphs. In fact, we can obtain (explicit) resolvable

decompositions (sometimes referred to as Kirkman systems) in the partite setting using

basic linear algebra. We believe that this result and the corresponding construction are

of independent interest. Here, we will use this result to show that for every r-graph F ,

there is a weakly regular r-graph F ∗ which is F -decomposable (see Lemma 2.9.2).

Let G be a complex. We say that a K
(r)
f -decomposition K of G is resolvable if K can

be partitioned into K
(r−1)
f -decompositions of G, that is, K≤(f) can be partitioned into sets

Y1, . . . , Yt such that for each i ∈ [t], Ki := {G(r−1)[Q] : Q ∈ Yi} is a K
(r−1)
f -decomposition
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of G. Clearly, K1, . . . ,Kt are r-disjoint.

Let Kn×k be the complete k-partite complex with each vertex class having size n.

More precisely, Kn×k has vertex set V1 ·∪ . . . ·∪ Vk such that |Vi| = n for all i ∈ [k] and

e ∈ Kn×k if and only if e is crossing, that is, intersects with each Vi in at most one vertex.

Since every subset of a crossing set is crossing, this defines a complex.

Theorem 2.9.1. Let q be a prime power and 2f ≤ q. Then for every r ∈ [f − 1], Kq×f

has a resolvable K
(r)
f -decomposition.

Let us first motivate the proof of Theorem 2.9.1. Let F be the finite field of order

q. Assume that each class of Kq×f is a copy of F. Suppose further that we are given a

matrix A ∈ F(f−r)×f with the property that every (f−r)×(f−r)-submatrix is invertible.

Identifying K
(f)
q×f with Ff in the obvious way, we let K be the set of all Q ∈ K(f)

q×f with

AQ = 0. Fixing the entries of r coordinates of Q (which can be viewed as fixing an r-set)

transforms this into an equation A′Q′ = b′, where A′ is an (f − r)× (f − r)-submatrix of

A. Thus, there exists a unique solution, which will translate into the fact that every r-set

of Kq×f is contained in exactly one f -set of K, i.e. we have a K
(r)
f -decomposition.

There are several known classes of matrices over finite fields which have the desired

property that every square submatrix is invertible. We use so-called Cauchy matrices,

introduced by Cauchy [18], which are very convenient for our purposes. For an application

of Cauchy matrices to coding theory, see e.g. [11].

Let F be a field and let x1, . . . , xm, y1, . . . , yn be distinct elements of F. The Cauchy

matrix generated by (xi)i∈[m] and (yj)j∈[n] is the m × n-matrix A ∈ Fm×n defined by

ai,j := (xi − yj)
−1. Obviously, every submatrix of a Cauchy matrix is itself a Cauchy

matrix. For m = n, it is well known that the Cauchy determinant is given by the

following formula (cf. [79]):

det(A) =

∏
1≤i<j≤n(xj − xi)(yi − yj)∏

1≤i,j≤n(xi − yj)
.

In particular, every square Cauchy matrix is invertible.
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Proof of Theorem 2.9.1. Let F be the finite field of order q. Since 2f ≤ q, there

exists a Cauchy matrix A ∈ F(f−r+1)×f . Let â be the final row of A and let A′ ∈ F(f−r)×f

be obtained from A by deleting â.

We assume that the vertex set of Kq×f is F× [f ]. Hence, for every e ∈ Kq×f , there are

unique 1 ≤ i1 < · · · < i|e| ≤ f and x1, . . . , x|e| ∈ F such that e = {(xj, ij) : j ∈ [|e|]}. Let

Ie := {i1, . . . , i|e|} ⊆ [f ] and xe :=


x1

...

x|e|

 ∈ F|e|.

Clearly, Q ∈ K(f)
q×f is uniquely determined by xQ.

Define Y ⊆ K
(f)
q×f as the set of all Q ∈ K

(f)
q×f which satisfy A′ · xQ = 0. Moreover,

for each x∗ ∈ F, define Yx∗ ⊆ Y as the set of all Q ∈ Y which satisfy â · xQ = x∗.

Clearly, {Yx∗ : x∗ ∈ F} is a partition of Y . Let K := {K(r)
q×f [Q] : Q ∈ Y } and

Kx∗ := {K(r−1)
q×f [Q] : Q ∈ Yx∗} for each x∗ ∈ F. We claim that K is a K

(r)
f -decomposition

of Kq×f and that Kx∗ is a K
(r−1)
f -decomposition of Kq×f for each x∗ ∈ F.

For I ⊆ [f ], let AI be the (f − r + 1) × |I|-submatrix of A obtained by deleting the

columns which are indexed by [f ] \ I. Similarly, for I ⊆ [f ], let A′I be the (f − r) × |I|-

submatrix of A′ obtained by deleting the columns which are indexed by [f ] \ I. Finally,

for a vector x ∈ Ff and I ⊆ [f ], let xI ∈ F|I| be the vector obtained from x by deleting

the coordinates not in I.

Observe that for all e ∈ Kq×f and Q ∈ K(f)
q×f , we have

e ⊆ Q if and only if xQIe
= xe. (2.9.1)

Consider e ∈ K
(r)
q×f . By (2.9.1), the number of Q ∈ Y containing e is equal to the

number of x ∈ Ff such that A′ · x = 0 and xIe = xe, or equivalently, the number of

x′ ∈ Ff−r satisfying A′Ie · xe +A′[f ]\Ie · x
′ = 0. Since A′[f ]\Ie is an (f − r)× (f − r)-Cauchy

matrix, the equation A′[f ]\Ie · x
′ = −A′Ie · xe has a unique solution x′ ∈ Ff−r, i.e. there is
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exactly one Q ∈ Y which contains e. Thus, K is a K
(r)
f -decomposition of Kq×f .

Now, fix x∗ ∈ F and e ∈ K(r−1)
q×f . By (2.9.1), the number of Q ∈ Yx∗ containing e is

equal to the number of x ∈ Ff such that A′ ·x = 0, â·x = x∗ and xIe = xe, or equivalently,

the number of x′ ∈ Ff−(r−1) satisfying AIe · xe +A[f ]\Ie · x′ =

 0

x∗

. Since A[f ]\Ie is an

(f − r+ 1)× (f − r+ 1)-Cauchy matrix, this equation has a unique solution x′ ∈ Ff−r+1,

i.e. there is exactly one Q ∈ Yx∗ which contains e. Hence, Kx∗ is a K
(r−1)
f -decomposition

of Kq×f . �

Our application of Theorem 2.9.1 is as follows.

Lemma 2.9.2. Let 2 ≤ r < f . Let F be any r-graph on f vertices. There exists a weakly

regular r-graph F ∗ on at most 2f ·f ! vertices which has a 1-well separated F -decomposition.

Proof. Choose a prime power q with f ! ≤ q ≤ 2f !. Let V (F ) = {v1, . . . , vf}. By The-

orem 2.9.1, there exists a resolvable K
(r)
f -decomposition K of Kq×f . Let the vertex classes

of Kq×f be V1, . . . , Vf . Let K1, . . . ,Kq be a partition of K into K
(r−1)
f -decompositions of

Kq×f . (We will only need K1, . . . ,Kf !.) We now construct F ∗ with vertex set V (Kq×f ) as

follows: Let π1, . . . , πf ! be an enumeration of all permutations on [f ]. For every i ∈ [f !]

and Q ∈ K≤(f)
i , let Fi,Q be a copy of F with V (F ) = Q such that for every j ∈ [f ], the

unique vertex in Q ∩ Vπi(j) plays the role of vj. Let

F ∗ :=
⋃

i∈[f !],Q∈K≤(f)
i

Fi,Q;

F := {Fi,Q : i ∈ [f !], Q ∈ K≤(f)
i }.

Since K1, . . . ,Kf ! are r-disjoint, we have |V (F ′) ∩ V (F ′′)| < r for all distinct F ′, F ′′ ∈ F .

Thus, F is a 1-well separated F -decomposition of F ∗.

We now show that F ∗ is weakly regular. Let i ∈ [r − 1]0 and S ∈
(
V (F ∗)
i

)
. If S is not

crossing, then |F ∗(S)| = 0, so assume that S is crossing. If i = r−1, then S plays the role

of every (r − 1)-subset of V (F ) exactly k times, where k is the number of permutations
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on [f ] that map [r − 1] to [r − 1]. Hence,

|F ∗(S)| = |F |rk = |F | · r!(f − r + 1)! =: sr−1.

If i < r− 1, then S is contained in exactly ci :=
(
f−i
r−1−i

)
qr−1−i crossing (r− 1)-sets. Thus,

|F ∗(S)| = sr−1ci
r − i

=: si.

Therefore, F ∗ is weakly (s0, . . . , sr−1)-regular. �

2.9.3 Proofs of Theorems 2.1.1, 2.1.2, 2.1.4, 2.1.5 and 2.1.6

We now prove our main theorems which guarantee F -decompositions in r-graphs of high

minimum degree (for weakly regular r-graphs F , see Theorem 2.1.4), and F -designs in

typical r-graphs (for arbitrary r-graphs F , see Theorem 2.1.1). We will also derive The-

orems 2.1.2, 2.1.5 and 2.1.6.

We first prove the minimum degree version (for weakly regular r-graphs F ). Instead

of directly proving Theorem 2.1.4 we actually prove a stronger ‘local resilience version’.

Recall that Hr(n, p) denotes the random binomial r-graph on [n] whose edges appear

independently with probability p.

Theorem 2.9.3 (Resilience version). Let p ∈ (0, 1] and f, r ∈ N with f > r and let

c(f, r, p) :=
r!p2r(f+rr )

3 · 14rf 2r
.

Then the following holds whp for H ∼ Hr(n, p). For every weakly regular r-graph F on f

vertices and any r-graph L on [n] with ∆(L) ≤ c(f, r, p)n, H4L has an F -decomposition

whenever it is F -divisible.

The case p = 1 immediately implies Theorem 2.1.4.
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Proof. Choose n0 ∈ N and ε > 0 such that 1/n0 � ε� p, 1/f and let n ≥ n0,

c′ :=
1.1 · 2r

(
f+r
r

)
(f − r)!

c(f, r, p), ξ := 0.99/f !, ξ′ := 0.95ξp2r(f+rr ), ξ′′ := 0.9(1/4)(
f+r
f )(ξ′−c′).

Recall that the complete complex Kn is an (ε, ξ, f, r)-supercomplex (cf. Example 2.4.9).

Let H ∼ Hr(n, p). We can view H as a random subgraph of K
(r)
n . By Corollary 2.5.19,

the following holds whp for all L ⊆ K
(r)
n with ∆(L) ≤ c(f, r, p)n:

Kn[H 4 L] is a (3ε+ c′, ξ′ − c′, f, r)-supercomplex.

Note that c′ ≤ p
2r(f+rr )

2.7(2
√
e)rf !

. Thus, 2(2
√
e)r · (3ε + c′) ≤ ξ′ − c′. Lemma 2.4.4 now implies

that Kn[H 4 L] is an (ε, ξ′′, f, r)-supercomplex. Hence, if H 4 L is F -divisible, it has an

F -decomposition by Theorem 2.4.7. �

Next, we derive Theorem 2.1.1. As indicated previously, we cannot apply The-

orem 2.4.7 directly, but have to carry out two reductions. As shown in Lemma 2.9.2,

we can ‘perfectly’ pack any given r-graph F into a weakly regular r-graph F ∗. We also

need the following lemma, which we will prove later in Section 2.11. It allows us to remove

a sparse F -decomposable subgraph L from an F -divisible r-graph G to achieve that G−L

is F ∗-divisible. Note that we do not need to assume that F ∗ is weakly regular.

Lemma 2.9.4. Let 1/n � γ � ξ, 1/f ∗ and r ∈ [f ∗ − 1]. Let F be an r-graph. Let

F ∗ be an r-graph on f ∗ vertices which has a 1-well separated F -decomposition. Let G

be an r-graph on n vertices such that for all A ⊆
(
V (G)
r−1

)
with |A| ≤

(
f∗−1
r−1

)
, we have

|
⋂
S∈AG(S)| ≥ ξn. Let O be an (r + 1)-graph on V (G) with ∆(O) ≤ γn. Then there

exists an F -divisible subgraph D ⊆ G with ∆(D) ≤ γ−2 such that the following holds:

for every F -divisible r-graph H on V (G) which is edge-disjoint from D, there exists a

subgraph D∗ ⊆ D such that H ∪ D∗ is F ∗-divisible and D − D∗ has a 1-well separated

F -decomposition F such that F≤(r+1) and O are edge-disjoint.

In particular, we will apply this lemma when G is F -divisible and thus H := G −D
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is F -divisible. Then L := D − D∗ is a subgraph of G with ∆(L) ≤ γ−2 and has a 1-

well separated F -decomposition F such that F≤(r+1) and O are edge-disjoint. Moreover,

G− L = H ∪D∗ is F ∗-divisible.

We can deduce the following corollary from the case F = K
(r)
r of Lemma 2.9.4.

Corollary 2.9.5. Let 1/n � γ � ξ, 1/f and r ∈ [f − 1]. Let F be an r-graph on f

vertices. Let G be an r-graph on n vertices such that for all A ⊆
(
V (G)
r−1

)
with |A| ≤

(
f−1
r−1

)
,

we have |
⋂
S∈AG(S)| ≥ ξn. Then there exists a subgraph D ⊆ G with ∆(D) ≤ γ−2 such

that the following holds: for any r-graph H on V (G) which is edge-disjoint from D, there

exists a subgraph D∗ ⊆ D such that H ∪D∗ is F -divisible.

In particular, using H := G − D, there exists a subgraph L := D − D∗ ⊆ G with

∆(L) ≤ γ−2 such that G− L = H ∪D∗ is F -divisible.

Proof. Apply Lemma 2.9.4 with F,K
(r)
r playing the roles of F ∗, F . �

We now prove the following theorem, which immediately implies the case λ = 1 of

Theorem 2.1.1.

Theorem 2.9.6. Let 1/n� γ, 1/κ� c, p, 1/f and r ∈ [f − 1], and

c ≤ ph/(qr4q), where h := 2r
(
q + r

r

)
and q := 2f · f !. (2.9.2)

Let F be any r-graph on f vertices. Suppose that G is a (c, h, p)-typical F -divisible r-graph

on n vertices. Let O be an (r+ 1)-graph on V (G) with ∆(O) ≤ γn. Then G has a κ-well

separated F -decomposition F such that F≤(r+1) and O are edge-disjoint.

Proof. By Lemma 2.9.2, there exists a weakly regular r-graph F ∗ on f ∗ ≤ q vertices

which has a 1-well separated F -decomposition.

By Lemma 2.9.4 (with 0.5p(
f∗−1
r−1 ) playing the role of ξ), there exists a subgraph

L ⊆ G with ∆(L) ≤ γ−2 such that G − L is F ∗-divisible and L has a 1-well separ-

ated F -decomposition Fdiv such that F≤(r+1)
div and O are edge-disjoint. By Fact 2.5.4(i),
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∆(F≤(r+1)
div ) ≤ f − r. Let

G′ := G↔ − L−F≤(r+1)
div −O.

By Example 2.4.10, G↔ is an (ε, ξ, f ∗, r)-supercomplex, where ε := 2f
∗−r+1c/(f ∗ − r)!

and ξ := (1 − 2f
∗+1c)p2r(f

∗+r
r )/f ∗!. Observe that assumption (2.9.2) now guarantees

that 2(2
√

e)rε ≤ ξ. Thus, by Lemma 2.4.4, G↔ is a (γ, ξ′, f ∗, r)-supercomplex, where

ξ′ := 0.9(1/4)(
f∗+r
r )ξ. By Proposition 2.5.9(v), we have that G′ is a (

√
γ, ξ′/2, f ∗, r)-

supercomplex. Moreover, G′ is F ∗-divisible. Thus, by Theorem 2.4.7, G′ has a (κ − 1)-

well separated F ∗-decomposition F∗. Since F ∗ has a 1-well separated F -decomposition,

we can conclude that G′ has a (κ − 1)-well separated F -decomposition Fcomplex. Let

F := Fdiv ∪ Fcomplex. By Fact 2.5.4(ii), F is a κ-well separated F -decomposition of G.

Moreover, F≤(r+1) and O are edge-disjoint. �

We next derive Theorem 2.1.1 from Theorem 2.9.6 and Corollary 2.9.5.

Proof of Theorem 2.1.1. Choose a new constant κ ∈ N such that

1/n� γ � 1/κ� c, p, 1/f.

Suppose that G is a (c, h, p)-typical (F, λ)-divisible r-graph on n vertices. Split G into

two subgraphs G′1 and G′2 which are both (c+γ, h, p/2)-typical (a standard Chernoff-type

bound shows that whp a random splitting of G yields the desired property).

By Corollary 2.9.5 (applied with G′2, 0.5(p/2)(
f−1
r−1) playing the roles of G, ξ), there

exists a subgraph L∗ ⊆ G′2 with ∆(L∗) ≤ κ such that G2 := G′2 − L∗ is F -divisible. Let

G1 := G′1 ∪ L∗ = G − G2. Clearly, G1 is still (F, λ)-divisible. By repeated applications

of Corollary 2.9.5, we can find edge-disjoint subgraphs L1, . . . , Lλ of G1 such that Ri :=

G1−Li is F -divisible and ∆(Li) ≤ κ for all i ∈ [λ]. Indeed, suppose that we have already

found L1, . . . , Li−1. Then ∆(L1 ∪ · · · ∪ Li−1) ≤ λκ ≤ γ1/2n (recall that λ ≤ γn). Thus,

by Corollary 2.9.5, there exists a subgraph Li ⊆ G′1 − (L1 ∪ · · · ∪ Li−1) with ∆(Li) ≤ κ

such that G1 − Li is F -divisible.
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Let G′′2 := G2 ∪ L1 ∪ · · · ∪ Lλ. We claim that G′′2 is F -divisible. Indeed, let S ⊆ V (G)

with |S| ≤ r − 1. We then have that |G′′2(S)| = |G2(S)| +
∑

i∈[λ] |(G1 − Ri)(S)| =

|G2(S)|+ λ|G1(S)| −
∑

i∈[λ] |Ri(S)| ≡ 0 mod Deg(F )|S|.

Since G′1 and G′2 are both (c+γ, h, p/2)-typical and ∆(L∗∪L1∪· · ·∪Lλ) ≤ 2γ1/2n, we

have that each of G2, G′′2, R1, . . . , Rλ is (c+ γ1/3, h, p/2)-typical (and they are F -divisible

by construction).

Using Theorem 2.9.6 repeatedly, we can thus find κ-well separated F -decompositions

F1, . . . ,Fλ−1 of G2, a κ-well separated F -decomposition F∗ of G′′2, and for each i ∈ [λ],

a κ-well separated F -decomposition F ′i of Ri. Moreover, we can assume that all these

decompositions are pairwise (r+1)-disjoint. Indeed, this can be achieved by choosing them

successively: Let O consist of the (r + 1)-sets which are covered by the decompositions

we have already found. Then by Fact 2.5.4(i) we have that ∆(O) ≤ 2λ ·κ(f − r) ≤ γ1/2n.

Hence, using Theorem 2.9.6, we can find the next κ-well separated F -decomposition which

is (r + 1)-disjoint from the previously chosen ones.

Then F := F∗ ∪
⋃
i∈[λ−1]Fi ∪

⋃
i∈[λ]F ′i is the desired (F, λ)-design. Indeed, every edge

of G1 − (L1 ∪ · · · ∪ Lλ) is covered by each of F ′1, . . . ,F ′λ. For each i ∈ [λ], every edge of

Li is covered by F∗ and each of F ′1, . . . ,F ′i−1,F ′i+1, . . . ,F ′λ. Finally, every edge of G2 is

covered by each of F1, . . . ,Fλ−1 and F∗. �

Using the same strategy, a similar result which holds in the more general setting of

supercomplexes can be obtained by using Corollary 2.6.10 instead of Corollary 2.9.5.

Theorem 2.1.2 is an immediate consequence of Theorem 2.9.6 and Corollary 2.9.5.

Proof of Theorem 2.1.2. Apply Corollary 2.9.5 (with G, 0.5p(
f−1
r−1) playing the roles of

G, ξ) to find a subgraph L ⊆ G with ∆(L) ≤ C such that G− L is F -divisible. It is easy

to see that G − L is (1.1c, h, p)-typical. Thus, we can apply Theorem 2.9.6 to obtain an

F -decomposition F of G− L. �

Proof of Theorem 2.1.6. By Example 2.4.12, we have thatG↔ is an (0.01ξ, 0.99ξ, f, 1)-

supercomplex. Moreover, since f | n, G↔ is K
(1)
f -divisible. Thus, by Corollary 2.4.14, G↔
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has 0.01ξnf−1 f -disjoint K
(1)
f -decompositions, i.e. G has 0.01ξnf−1 edge-disjoint perfect

matchings. �

Finally, we also prove Theorem 2.1.5, which is an easy corollary of Theorem 2.1.1.

Proof of Theorem 2.1.5. Choose c, h, n0 such that 1/n0 � c � 1/h � p, 1/f . Let

K = {F1, . . . , Ft}. Thus t ≤ 2(fr). Let F ∗ := F1 + · · · + Ft and let a1, . . . , at be integers

such that e := gcd{|F1|, . . . , |Ft|} = a1|F1|+ · · ·+ at|Ft|.

Now, assume that G is (c, h, p)-typical and K-divisible. In particular, e | |G|. Since

e | |F ∗|, we have |G| ≡ xe mod |F ∗| for some x ∈ Z. With the above, |G| ≡
∑

i∈[t] a
′
i|Fi|

mod |F ∗| for some integers a′i. Clearly, we may assume that 0 ≤ a′i < |F ∗|. Let F0 be a

set of a′i copies of Fi in G for all i ∈ [t], all edge-disjoint. Let G′ := G − F (r)
0 . It is easy

to check that G′ is F ∗-divisible. Thus, since G′ is still (2c, h, p)-typical, Theorem 2.1.1

implies that G′ has an F ∗-decomposition. In particular, G′ has a K-decomposition F1.

Finally, F0 ∪ F1 is a K-decomposition of G. �

2.10 Covering down

The aim of this section is to prove the Cover down lemma (Lemma 2.7.7). Suppose that

G is a supercomplex and U is a ‘random-like’ subset of V (G). The Cover down lemma

shows the existence of a ‘cleaning graph’ H∗ so that for any sparse leftover graph L∗,

G[H∗∪L∗] has an F -packing covering all edges of H∗∪L∗ except possibly some inside U .

We now briefly sketch how one can attempt to construct such a graph H∗. As in

Section 2.7.1, for an edge e, we refer to |e∩U | as its type. For the moment, suppose that

H∗ and L∗ are given. A natural way (for divisibility reasons) to try to cover all edges of

H∗ ∪ L∗ which are not inside U is to first cover all type-0-edges, then all type-1-edges,

etc. and finally all type-(r − 1)-edges. It is comparatively easy to cover all type-0-edges.

The reason for this is that a type-0-edge can be covered by a copy of F that contains no

other type-0-edge. Thus, if H∗ is a random subgraph of G(r)−G(r)[V (G) \U ], then every
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type-0-edge (from L∗) is contained in many copies of F . Since ∆(L∗) is very small, this

allows us to apply Corollary 2.6.9 in order to cover all type-0-edges with edge-disjoint

copies of F .

The situation is very different for edges of higher types. Suppose that for some i ∈

[r − 1], we have already covered all edges of types 0, . . . , r − i − 1 and now want to

cover all edges of type r − i. Every such edge contains a unique S ∈
(
V (G)\U

i

)
. As

indicated in Section 2.7.1, we seek to cover all edges containing a fixed S ∈
(
V (G)\U

i

)
simultaneously using Proposition 2.7.9 as follows: Let T ∈

(
V (F )
i

)
. Roughly speaking, for

every S ∈
(
V (G)\U

i

)
, we reserve a random subgraph HS of G(S)[U ](r−i) and protect all the

HS’s when applying the nibble. Let L be the leftover resulting from this application and

let LS := L(S). Assuming that there are no more leftover edges of types 0, . . . , r − i− 1

implies that LS ⊆ G(S)[U ](r−i) and that HS ∪ LS is F (T )-divisible. We want to use

(∗)r−i inductively to find a well separated F (T )-decomposition FS of HS ∪ LS (provided

that HS ∪ LS is quasirandom). Using Proposition 2.7.9, FS can then be ‘extended’ to an

F -packing S / FS which covers all edges that contain S. The hope is that the HS’s do

not intersect too much, so that it is possible to find an F (T )-decomposition FS for each

S such that the extended F -packings S /FS are r-disjoint. Their union would then yield

an F -packing covering all edges of type r − i.

There are two natural candidates for selecting HS:

(A) Choose HS by including every edge of G(S)[U ](r−i) with probability ν.

(B) Choose a random subset US of U of size ρ|U | and let HS := G(S)(r−i)[US].

The advantage of Strategy (A) is that HS ∪ LS is quasirandom if LS is sparse. This

is not the case for (B): even if the maximum degree of LS is sublinear, its edges might

be spread out over the whole of U (while HS is restricted to US). Unfortunately, when

pursuing Strategy (A), the HS intersect too much, so it is not clear how to find the desired

decompositions due to the interference between different HS. However, it turns out that

under the additional assumption that V (LS) ⊆ US, Strategy (B) does work. We call the
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corresponding result the ‘Localised cover down lemma’ (Lemma 2.10.8).

We will combine both strategies as follows: For each S, we will choose HS as in (A)

and US as in (B) and let JS := G(S)(r−i)[US]. In a first step we use HS to find an

F (T )-packing covering all edges e ∈ HS ∪LS with e 6⊆ US, and then afterwards we apply

the Localised cover down lemma to cover all remaining edges. Note that the first step

resembles the original problem: We are given a graph HS ∪ LS on U and want to cover

all edges that are not inside US ⊆ U . But the resulting types are now more restricted.

This enables us to prove a more general Cover down lemma, the ‘Cover down lemma for

setups’ (Lemma 2.10.24), by induction on r − i, which will allow us to perform the first

step in the above combined strategy for all S simultaneously.

2.10.1 Systems and focuses

In this subsection, we prove the Localised cover down lemma, which shows that Strategy (B)

works under the assumption that each LS is ‘localised’.

Definition 2.10.1. Given i ∈ N0, an i-system in a set V is a collection S of distinct

subsets of V of size i. A subset of V is called S-important if it contains some S ∈ S,

otherwise we call it S-unimportant. We say that U = (US)S∈S is a focus for S if for each

S ∈ S, US is a subset of V \ S.

Definition 2.10.2. Let G be a complex and S an i-system in V (G). We call G r-exclusive

with respect to S if every e ∈ G with |e| ≥ r contains at most one element of S. Let U be a

focus for S. If G is r-exclusive with respect to S, the following functions are well-defined:

For r′ ≥ r, let Er′ denote the set of S-important r′-sets in G. Define τr′ : Er′ → [r′ − i]0

as τr′(e) := |e ∩ US|, where S is the unique S ∈ S contained in e. We call τr′ the type

function of G(r′), S, U .

Fact 2.10.3. Let r ∈ N and i ∈ [r− 1]0. Let G be a complex and S an i-system in V (G).

Let U be a focus for S and suppose that G is r-exclusive with respect to S. For r′ ≥ r,
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let τr′ : Er′ → [r′ − i]0 denote the type function of G(r′),S,U . Let e ∈ G with |e| ≥ r be

S-important and let E ′ := Er ∩
(
e
r

)
. Then we have

(i) maxe′∈E ′ τr(e
′) ≤ τ|e|(e) ≤ |e| − r + mine′∈E ′ τr(e

′),

(ii) mine′∈E ′ τr(e
′) = max{r + τ|e|(e)− |e|, 0}.

Proof. Let S ⊆ e with S ∈ S. Clearly, for every S-important r-subset e′ of e, S is the

unique element from S that e′ contains. For any such e′, we have τ|e|(e) = |e ∩ US| ≥

|e′ ∩ US| = τr(e
′), implying the first inequality of (i). Also, |e| − τ|e|(e) = |e \ US| ≥

|e′ \ US| = r − τr(e′), implying the second inequality of (i).

This also implies that mine′∈E ′ τr(e
′) ≥ max{r + τ|e|(e) − |e|, 0}. To see the converse,

note that |e \ US| = |e| − τ|e|(e). Hence, we can choose an r-set e′ ⊆ e with S ⊆ e′

and |e′ \ US| = min{|e| − τ|e|(e), r}. Note that e′ ∈ E ′ and τr(e
′) = r − |e′ \ US| =

r−min{|e| − τ|e|(e), r} = max{r+ τ|e|(e)− |e|, 0}. This completes the proof of (ii). �

Definition 2.10.4. Let G be a complex and S an i-system in V (G). Let U be a focus

for S and suppose that G is r-exclusive with respect to S. For i′ ∈ {i + 1, . . . , r − 1},

we define T as the set of all i′-subsets T of V (G) which satisfy S ⊆ T ⊆ e \ US for some

S ∈ S and e ∈ G(r). We call T the i′-extension of S in G around U .

Clearly, T is an i′-system in V (G). Moreover, note that for every T ∈ T , there

is a unique S ∈ S with S ⊆ T because G is r-exclusive with respect to S. We let

T �S := S denote this element. (On the other hand, we may have |T | < |S|.) Note that

U ′ := {UT �S : T ∈ T } is a focus for T as T ∩ UT �S = ∅ for all T ∈ T .

The following proposition contains some basic properties of i′-extensions.

Proposition 2.10.5. Let 0 ≤ i < i′ < r. Let G be a complex and S an i-system in V (G).

Let U be a focus for S and suppose that G is r-exclusive with respect to S. Let T be the

i′-extension of S in G around U . For r′ ≥ r, let τr′ be the type function of G(r′), S, U .

Then the following hold for

G′ := G− {e ∈ G(r) : e is S-important and τr(e) < r − i′} :
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(i) G′ is r-exclusive with respect to T ;

(ii) for all e ∈ G with |e| ≥ r, we have

e /∈ G′ ⇔ e is S-important and τ|e|(e) < |e| − i′;

(iii) for r′ ≥ r, the T -important elements of G′(r
′) are precisely the elements of τ−1

r′ (r′−i′).

Proof. To see (i), suppose, for a contradiction, that there is some e′ ∈ G′ with |e′| ≥ r

and distinct T, T ′ ∈ T such that e′ contains both T and T ′. Let S := T �S and S ′ := T ′�S .

Clearly, S, S ′ ⊆ e′ ∈ G. Since G is r-exclusive with respect to S, we must have S = S ′ and

thus US = US′ . Since T and T ′ are distinct, we have that |T ∪ T ′| > i′. Let e be a subset

of e′ of size r containing S and at least i′ + 1 vertices from T ∪ T ′. Since e ⊆ e′ ∈ G′,

we must have e ∈ G′(r). On the other hand, since S ⊆ e, e is S-important. However, as

T ∪ T ′ ⊆ V (G) \ US, we have τr(e) = |e ∩ US| < r − i′, contradicting the definition of G′.

For (ii), let Ee be the set of S-important r-sets in e. By definition of G′, we have e /∈ G′

if and only if e is S-important, Ee 6= ∅ and mine′∈Ee τr(e
′) < r − i′. Then Fact 2.10.3(ii)

implies the claim.

Finally, we prove (iii). Suppose first that e ∈ G′(r′) is T -important. Clearly, we have

τr′(e) ≤ r′ − i′. Also, since e must also be S-important, but e ∈ G′, (ii) implies that

τr′(e) ≥ r′ − i′. Hence, e ∈ τ−1
r′ (r′ − i′). Now, suppose that e ∈ τ−1

r′ (r′ − i′). By (ii), we

have e ∈ G′ and it remains to show that e is T -important. Since e is S-important, there

is a unique S ∈ S such that S ⊆ e. Let T := e \ US. Clearly, S ⊆ T ⊆ e \ US. Moreover,

|T | = |e|− |e∩US| = r′− τr′(e) = i′. Thus, T ∈ T , implying that e is T -important. �

Let Zr,i be the set of all quadruples (z0, z1, z2, z3) ∈ N4
0 such that z0 +z1 < i, z0 +z3 < i

and z0 + z1 + z2 + z3 = r. Clearly, |Zr,i| ≤ (r + 1)3, and Zr,i = ∅ if i = 0.

Definition 2.10.6. Let V be a set of size n, let S be an i-system in V and let U be a

focus for S. We say that U is a µ-focus for S if each US ∈ U has size µn ± n2/3. For all
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S ∈ S, z = (z0, z1, z2, z3) ∈ Zr,i and all (z1 + z2 − 1)-sets b ⊆ V \ S, define

J b
S,z := {S ′ ∈ S : |S ∩ S ′| = z0, b ⊆ S ′ ∪ US′ , |US′ ∩ S| ≥ z3},

J b
S,z,1 := {S ′ ∈ J b

S,z : |b ∩ S ′| = z1},

J b
S,z,2 := {S ′ ∈ J b

S,z : |b ∩ S ′| = z1 − 1, |US ∩ (S ′ \ b)| ≥ 1}.

We say that U is a (ρsize, ρ, r)-focus for S if

(F1) each US has size ρsizeρn± n2/3;

(F2) |US ∩ US′| ≤ 2ρ2n for distinct S, S ′ ∈ S;

(F3) for all S ∈ S, z = (z0, z1, z2, z3) ∈ Zr,i and (z1 + z2 − 1)-sets b ⊆ V \ S, we have

|J b
S,z,1| ≤ 26rρz2+z3−1ni−z0−z1 ,

|J b
S,z,2| ≤ 29rρz2+z3+1ni−z0−z1+1.

The sets S ′ in J b
S,z,1 and J b

S,z,2 are those which may give rise to interference when

covering the edges containing S. (F3) ensures that there are not too many of them. The

next lemma states that a suitable random choice of the US yields a (ρsize, ρ, r)-focus.

Lemma 2.10.7. Let 1/n � ρ � ρsize, 1/r and i ∈ [r − 1]. Let V be a set of size n, let

S be an i-system in V and let U ′ = (U ′S)S∈S be a ρsize-focus for S. Let U = (US)S∈S be a

random focus obtained as follows: independently for all pairs S ∈ S and x ∈ U ′S, retain x

in US with probability ρ. Then whp U is a (ρsize, ρ, r)-focus for S.

Proof. Clearly, US ⊆ V \ S for all S ∈ S.

Step 1: Probability estimates for (F1) and (F2)

For S ∈ S, Lemma 2.5.10(i) implies that with probability at least 1− 2e−0.5|U ′S |
1/3

, we

have |US| = E(|US|)± 0.5|U ′S|2/3 = ρρsizen± (ρn2/3 + 0.5|U ′S|2/3). Thus, with probability

at least 1− e−n
1/4

, (F1) holds.
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Let S, S ′ ∈ S be distinct. If |U ′S ∩ U ′S′| ≤ ρ2n, then we surely have |US ∩ US′| ≤ ρ2n,

so assume that |U ′S ∩ U ′S′ | ≥ ρ2n. Lemma 2.5.10(i) implies that with probability at least

1− 2e−2ρ4|U ′S∩U
′
S′ |, we have |US ∩ US′ | ≤ E(|US ∩ US′|) + ρ2|U ′S ∩ U ′S′ | ≤ 2ρ2n. Thus, with

probability at least 1− e−n
1/2

, (F2) holds.

Step 2: Probability estimates for (F3)

Now, fix S ∈ S, z = (z0, z1, z2, z3) ∈ Zr,i and an (z1 + z2 − 1)-set b ⊆ V \ S. In order

to estimate |J b
S,z,1| and |J b

S,z,2|, define

J ′ := {S ′ ∈ S : |S ∩ S ′| = z0, |b ∩ S ′| = z1},

J ′′ := {S ′ ∈ S : |S ∩ S ′| = z0, |b ∩ S ′| = z1 − 1}.

Clearly, J b
S,z,1 ⊆ J ′ and J b

S,z,2 ⊆ J ′′. Moreover, since b ∩ S = ∅, we have that

|J ′| ≤
(
i

z0

)(
z1 + z2 − 1

z1

)
ni−z0−z1 ≤ 22rni−z0−z1 ,

|J ′′| ≤
(
i

z0

)(
z1 + z2 − 1

z1 − 1

)
ni−z0−z1+1 ≤ 22rni−z0−z1+1.

Consider S ′ ∈ J ′. By the random choice of US′ and since b ∩ S = ∅, we have that

P(S ′ ∈ J b
S,z,1) = P(b \ S ′ ⊆ US′ , |US′ ∩ S| ≥ z3) = P(b \ S ′ ⊆ US′) · P(|US′ ∩ S| ≥ z3).

Note that P(b \ S ′ ⊆ US′) ≤ ρz2−1 since |b \ S ′| = z2 − 1. Moreover, P(|US′ ∩ S| ≥ z3) ≤(
i
z3

)
ρz3 ≤ 2iρz3 .

Hence, 7E|J b
S,z,1| ≤ 232iρz2+z3−122rni−z0−z1 . Since i− z0 − z1 ≥ 1 and US′ and US′′ are

chosen independently for any two distinct S ′, S ′′ ∈ J ′, Lemma 2.5.10(iii) implies that

P(|J b
S,z,1| ≥ 26rρz2+z3−1ni−z0−z1) ≤ e−26rρz2+z3−1ni−z0−z1 ≤ e−

√
n. (2.10.1)
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Now, consider S ′ ∈ J ′′. By the random choice of US and US′ , we have that

P(S ′ ∈ J b
S,z,2) = P(b \ S ′ ⊆ US′ , |US′ ∩ S| ≥ z3, |US ∩ (S ′ \ b)| ≥ 1)

= P(b \ S ′ ⊆ US′) · P(|US′ ∩ S| ≥ z3) · P(|US ∩ (S ′ \ b)| ≥ 1)

≤ ρz2 ·
(
i

z3

)
ρz3 · (i− z1 + 1)ρ ≤ r2rρz2+z3+1.

However, note that the events S ′ ∈ J b
S,z,2 and S ′′ ∈ J b

S,z,2 are not necessarily independent.

To deal with this, define the auxiliary (i − z0 − z1 + 1)-graph A on V with edge set

{S ′ \ (S∪ b) : S ′ ∈ J ′′} and let A′ be the (random) subgraph with edge set {S ′ \ (S∪ b) :

S ′ ∈ J b
S,z,2}. Note that for every edge e ∈ A, there are at most

(
i
z0

)(
z1+z2−1
z1−1

)
≤ 22r

elements S ′ ∈ J ′′ with e = S ′ \ (S ∪ b). Hence, |J b
S,z,2| ≤ 22r|A′|. Moreover, every edge

of A survives (i.e. lies in A′) with probability at most 22r · r2rρz2+z3+1, and for every

matching M in A, the edges of M survive independently. Thus, by Lemma 2.5.15, we

have that

P(|A′| ≥ 7r23rρz2+z3+1ni−z0−z1+1) ≤ (i− z0 − z1 + 1)ni−z0−z1e−7·23rρz2+z3+1n

and thus

P(|J b
S,z,2| ≥ 7r25rρz2+z3+1ni−z0−z1+1) ≤ rnre−7·23rρz2+z3+1n ≤ e−

√
n. (2.10.2)

Since |S| ≤ ni, a union bound applied to (2.10.1) and (2.10.2) shows that with probability

at least 1− e−n
1/3

, (F3) holds. �

The following ‘Localised cover down lemma’ allows us to simultaneously cover all S-

important edges of an i-system S provided that the associated focus U satisfies (F1)–(F3)

and all S-important edges are ‘localised’ in the sense that their links are contained in the

respective focus set (or, equivalently, their type is maximal).

Lemma 2.10.8 (Localised cover down lemma). Let 1/n � ρ � ρsize, ξ, 1/f and 1 ≤
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i < r < f . Assume that (∗)r−i is true. Let F be a weakly regular r-graph on f vertices

and S∗ ∈
(
V (F )
i

)
such that F (S∗) is non-empty. Let G be a complex on n vertices and

let S = {S1, . . . , Sp} be an i-system in G such that G is r-exclusive with respect to S.

Let U = {U1, . . . , Up} be a (ρsize, ρ, r)-focus for S. Suppose further that whenever Sj ⊆

e ∈ G(r), we have e \ Sj ⊆ Uj. Finally, assume that G(Sj)[Uj] is an F (S∗)-divisible

(ρ, ξ, f − i, r − i)-supercomplex for all j ∈ [p].

Then there exists a ρ−1/12-well separated F -packing F in G covering all S-important

r-edges.

Proof. Recall that by Proposition 2.5.3, F (S∗) is a weakly regular (r − i)-graph. We

will use (∗)r−i together with Corollary 2.4.15 in order to find many F (S∗)-decompositions

of G(Sj)[Uj] and then pick one of these at random. Let t := ρ1/6(0.5ρρsizen)f−r and

κ := ρ−1/12. For all j ∈ [p], define Gj := G(Sj)[Uj]. Consider Algorithm 2.10.9 which, if

successful, outputs a κ-well separated F (S∗)-decomposition Fj of Gj for every j ∈ [p].

Algorithm 2.10.9

for j from 1 to p do
for all z = (z0, z1, z2, z3) ∈ Zr,i, define T jz as the (z1 + z2)-graph on Uj containing all

Z1 ·∪Z2 ⊆ Uj with |Z1| = z1, |Z2| = z2 such that for some j′ ∈ [j−1] with |Sj ∩Sj′| = z0

and some K ′ ∈ F≤(f−i)
j′ , we have Z1 ⊆ Sj′ , Z2 ⊆ K ′ and |K ′ ∩ Sj| = z3

if there exist κ-well separated F (S∗)-decompositions Fj,1, . . . ,Fj,t of Gj−
⋃
z∈Zr,i T

j
z

which are pairwise (f − i)-disjoint then
pick s ∈ [t] uniformly at random and let Fj := Fj,s

else
return ‘unsuccessful’

end if
end for

Claim 1: If Algorithm 2.10.9 outputs F1, . . . ,Fp, then F :=
⋃
j∈[p] F̃j is a packing as

desired, where F̃j := Sj / Fj.

Proof of claim: Since z1 + z2 > r− i, we have G
(r−i)
j = (Gj−

⋃
z∈Zr,i T

j
z )(r−i). Hence, Fj is

indeed an F (S∗)-decomposition of Gj. Thus, by Proposition 2.7.9, F̃j is a κ-well separated

F -packing in G covering all r-edges containing Sj. Therefore, F covers all S-important

r-edges of G. By Fact 2.5.4(iii) it suffices to show that F̃1, . . . , F̃p are r-disjoint.
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To this end, let j′ < j and suppose, for a contradiction, that there exist K̃ ∈ F̃≤(f)
j

and K̃ ′ ∈ F̃≤(f)
j′ such that |K̃ ∩ K̃ ′| ≥ r. Let K := K̃ \ Sj and K ′ := K̃ ′ \ Sj′ . Then

K ∈ F≤(f−i)
j and K ′ ∈ F≤(f−i)

j′ and |(Sj ∪K) ∩ (Sj′ ∪K ′)| ≥ r. Let z0 := |Sj ∩ Sj′| and

z3 := |Sj ∩K ′|. Hence, we have |K ∩ (Sj′ ∪K ′)| ≥ r − z0 − z3. Choose X ⊆ K such that

|X ∩ (Sj′ ∪K ′)| = r − z0 − z3 and let Z1 := X ∩ Sj′ and Z2 := X ∩K ′. We claim that

z := (z0, |Z1|, |Z2|, z3) ∈ Zr,i. Clearly, we have z0 + |Z1| + |Z2| + z3 = r. Furthermore,

note that z0 + z3 < i. Indeed, we clearly have z0 + z3 = |Sj ∩ (Sj′ ∪K ′)| ≤ |Sj| = i, and

equality can only hold if Sj ⊆ Sj′ ∪K ′ = K̃ ′, which is impossible since G is r-exclusive.

Similarly, we have z0 + |Z1| < i. Thus, z ∈ Zr,i. But this implies that Z1 ∪ Z2 ∈ T jz , in

contradiction to Z1 ∪ Z2 ⊆ K. −

In order to prove the lemma, it is thus sufficient to prove that with positive probability,

∆(T jz ) ≤ 22rfκρ1/2|Uj| for all j ∈ [p] and z ∈ Zr,i. Indeed, this would imply that

∆(
⋃
z∈Zr,i T

j
z ) ≤ (r + 1)322rfρ1/2−1/12|Uj|, and by Proposition 2.5.9(v), Gj −

⋃
z∈Zr,i T

j
z

would be a (ρ1/12, ξ/2, f − i, r − i)-supercomplex. By Corollary 2.4.15 and since |Uj| ≥

0.5ρρsizen, the number of pairwise (f − i)-disjoint κ-well separated F (S∗)-decompositions

in Gj −
⋃
z∈Zr,i T

j
z is at least ρ2/12|Uj|(f−i)−(r−i) ≥ t, so the algorithm would succeed.

In order to analyse ∆(T jz ), we define the following variables. Suppose that 1 ≤ j′ <

j ≤ p, that z = (z0, z1, z2, z3) ∈ Zr,i and b ⊆ Uj is a (z1 + z2− 1)-set. Let Y b,j′

j,z denote the

random indicator variable of the event that each of the following holds:

(a) there exists some K ′ ∈ F≤(f−i)
j′ with |K ′ ∩ Sj| = z3;

(b) there exist Z1 ⊆ Sj′ , Z2 ⊆ K ′ with |Z1| = z1, |Z2| = z2 such that b ⊆ Z1 ∪ Z2 ⊆ Uj;

(c) |Sj ∩ Sj′ | = z0.

We say that v ∈
(
Uj\b

1

)
is a witness for j′ if (a)–(c) hold with Z1 ·∪ Z2 = b ·∪ v. For all

j ∈ [p], z = (z0, z1, z2, z3) ∈ Zr,i and (z1 + z2 − 1)-sets b ⊆ Uj, let Xb
j,z :=

∑j−1
j′=1 Y

b,j′

j,z .

Claim 2: For all j ∈ [p], z = (z0, z1, z2, z3) ∈ Zr,i and (z1 + z2 − 1)-sets b ⊆ Uj, we have

|T jz (b)| ≤ 22rfκXb
j,z.
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Proof of claim: Let j, z and b be fixed. Clearly, if v ∈ T jz (b), then by Algorithm 2.10.9, v

is a witness for some j′ ∈ [j − 1]. Conversely, we claim that for each j′ ∈ [j − 1], there

are at most 22rfκ witnesses for j′. Clearly, this would imply that |T jz (b)| ≤ 22rfκ|{j′ ∈

[j − 1] : Y b,j′

j,z = 1}| = 22rfκXb
j,z.

Fix j′ ∈ [j − 1]. If v is a witness for j′, then there exists Kv ∈ F≤(f−i)
j′ such that

(a)–(c) hold with Z1 ·∪ Z2 = b ·∪ v and Kv playing the role of K ′. By (b) we must have

v ⊆ Z1 ∪Z2 ⊆ Sj′ ∪Kv. Since |Sj′ ∪Kv| = f , there are at most f witnesses v′ for j′ such

that Kv can play the role of Kv′ . It is thus sufficient to show that there are at most 22rκ

K ′ ∈ F≤(f−i)
j′ such that (a)–(c) hold.

Note that for any possible choice of Z1, Z2, K
′, we must have |b ∩ Z2| ∈ {z2, z2 − 1}

and b ∩ Z2 ⊆ Z2 ⊆ K ′ by (b). For any Z ′2 ⊆ b with |Z ′2| ∈ {z2, z2 − 1} and any Z3 ∈
(
Sj
z3

)
,

there can be at most κ K ′ ∈ F≤(f−i)
j′ with Z ′2 ⊆ K ′ and K ′ ∩Sj = Z3. This is because Fj′

is a κ-well separated F (S∗)-decomposition and |Z ′2 ∪ Z3| ≥ z2 − 1 + z3 ≥ r − i. Hence,

there can be at most 2|b|
(
i
z3

)
κ ≤ 22rκ possible choices for K ′. −

The following claim thus implies the lemma.

Claim 3: With positive probability, we have Xb
j,z ≤ ρ1/2|Uj| for all j ∈ [p], z = (z0, z1, z2, z3) ∈

Zr,i and (z1 + z2 − 1)-sets b ⊆ Uj.

Proof of claim: Fix j, z, b as above. We split Xb
j,z into two sums. For this, let

J b
j,z := {j′ ∈ [j − 1] : |Sj ∩ Sj′ | = z0, b \ Sj′ ⊆ Uj′ , |Uj′ ∩ Sj| ≥ z3},

J b
j,z,1 := {j′ ∈ J b

j,z : |b ∩ Sj′| = z1},

J b
j,z,2 := {j′ ∈ J b

j,z : |b ∩ Sj′| = z1 − 1, |Uj ∩ (Sj′ \ b)| ≥ 1}.

Since U is a (ρsize, ρ, r)-focus for S, (F3) implies that

|J b
j,z,1| ≤ 26rρz2+z3−1ni−z0−z1 , (2.10.3)

|J b
j,z,2| ≤ 29rρz2+z3+1ni−z0−z1+1. (2.10.4)
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Note that if Y b,j′

j,z = 1, then j′ ∈ J b
j,z,1 ∪ J b

j,z,2. Hence, we have Xb
j,z = Xb

j,z,1 + Xb
j,z,2,

where Xb
j,z,1 :=

∑
j′∈J bj,z,1

Y b,j′

j,z and Xb
j,z,2 :=

∑
j′∈J bj,z,2

Y b,j′

j,z . We will bound Xb
j,z,1 and

Xb
j,z,2 separately.

For j′ ∈ J b
j,z,1 ∪ J b

j,z,2, define

Kb,j
′

j,z := {K ′ ∈
(
Uj′

f − i

)
: b ⊆ Sj′ ∪K ′, |K ′ ∩ Uj| ≥ z2, |K ′ ∩ Sj| = z3}. (2.10.5)

Note that if Y b,j′

j,z = 1, then F≤(f−i)
j′,k ∩Kb,j

′

j,z 6= ∅. Recall that the candidates Fj′,1, . . . ,Fj′,t

in Algorithm 2.10.9 from which Fj′ was chosen at random are (f − i)-disjoint. We thus

have

P(Y b,j′

j,z = 1) ≤
|{k ∈ [t] : F≤(f−i)

j′,k ∩ Kb,j
′

j,z 6= ∅}|
t

≤
|Kb,j

′

j,z |
t

.

This upper bound still holds if we condition on variables Y b,j′′

j,z , j′′ 6= j′. We thus need to

bound |Kb,j
′

j,z | in order to bound Xb
j,z,1 and Xb

j,z,2.

Step 1: Estimating Xb
j,z,1

Consider j′ ∈ J b
j,z,1. For all K ′ ∈ Kb,j

′

j,z , we have b\Sj′ ⊆ K ′ and |b∩K ′| = |b|−|b∩Sj′| =

z2 − 1, and the sets b ∩K ′, K ′ ∩ Sj, (K ′ \ b) ∩ (Uj ∩ Uj′) are disjoint. Moreover, we have

|(K ′ \ b) ∩ (Uj ∩ Uj′)| = |(K ′ \ b) ∩ Uj| ≥ |K ′ ∩ Uj| − |b ∩K ′| ≥ 1. We can thus count

|Kb,j
′

j,z | ≤
(
|Sj|
z3

)
· |Uj ∩ Uj′| · |Uj′|f−i−(z2−1)−1−z3 ≤ 2i · 2ρ2n · (2ρρsizen)f−i−z2−z3 .

Let ρ̃1 := ρz0+z1−i+5/3ρsizen
1+z0+z1−i ∈ [0, 1]. In order to apply Proposition 2.5.11, let

j1, . . . , jm be an enumeration of J b
j,z,1. We then have for all k ∈ [m] and all y1, . . . , yk−1 ∈

{0, 1} that

P(Y b,jk
j,z = 1 | Y b,j1

j,z = y1, . . . , Y
b,jk−1

j,z = yk−1) ≤
|Kb,jkj,z |
t
≤ 2i · 2ρ2n · (2ρρsizen)f−i−z2−z3

ρ1/6(0.5ρρsizen)f−r

= 22f−r+1−z2−z3ρ11/6(ρρsize)
z0+z1−in1+z0+z1−i

≤ ρ̃1.
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Let B1 ∼ Bin(|J b
j,z,1|, ρ̃1) and observe that

7EB1 = 7|J b
j,z,1|ρ̃1

(2.10.3)

≤ 7 · 26rρz2+z3−1ni−z0−z1 · ρz0+z1−i+5/3ρsizen
1+z0+z1−i

= 7 · 26rρr−i+2/3ρsizen ≤ 0.5ρ1/2|Uj|.

Thus,

P(Xb
j,z,1 ≥ 0.5ρ1/2|Uj|)

Proposition 2.5.11

≤ P(B1 ≥ 0.5ρ1/2|Uj|)
Lemma 2.5.10(iii)

≤ e−0.5ρ1/2|Uj |.

Step 2: Estimating Xb
j,z,2

Consider j′ ∈ J b
j,z,2. This time, since |b∩Sj′| = z1− 1, we have |K ′∩ b| = |b \Sj′| = z2

for all K ′ ∈ Kb,j
′

j,z . Thus, we count

|Kb,j
′

j,z | ≤
(
|Sj|
z3

)
· |Uj′|f−i−z2−z3 ≤ 2i · (2ρρsizen)f−i−z2−z3 .

Let ρ̃2 := ρz0+z1−i−1/5ρsizen
z0+z1−i ∈ [0, 1]. In order to apply Proposition 2.5.11, let

j1, . . . , jm be an enumeration of J f
j,z,2. We then have for all k ∈ [m] and all y1, . . . , yk−1 ∈

{0, 1} that

P(Y b,jk
j,z = 1 | Y b,j1

j,z = y1, . . . , Y
b,jk−1

j,z = yk−1) ≤
|Kb,jkj,z |
t
≤ 2i · (2ρρsizen)f−i−z2−z3

ρ1/6(0.5ρρsizen)f−r

= 22f−r−z2−z3ρ−1/6(ρρsizen)z0+z1−i

≤ ρ̃2.

Let B2 ∼ Bin(|J b
j,z,2|, ρ̃2) and observe that

7EB2 = 7|J b
j,z,2|ρ̃2

(2.10.4)

≤ 7 · 29rρz2+z3+1ni−z0−z1+1 · ρz0+z1−i−1/5ρsizen
z0+z1−i

= 7 · 29rρr−i+4/5ρsizen ≤ 0.5ρ1/2|Uj|.
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Thus,

P(Xb
j,z,2 ≥ 0.5ρ1/2|Uj|)

Proposition 2.5.11

≤ P(B2 ≥ 0.5ρ1/2|Uj|)
Lemma 2.5.10(iii)

≤ e−0.5ρ1/2|Uj |.

Hence,

P(Xb
j,z ≥ ρ1/2|Uj|) ≤ P(Xb

j,z,1 ≥ 0.5ρ1/2|Uj|) + P(Xb
j,z,2 ≥ 0.5ρ1/2|Uj|) ≤ 2e−0.5ρ1/2|Uj |.

Since p = |S| ≤ ni, a union bound easily implies Claim 3. −

This completes the proof of Lemma 2.10.8. �

2.10.2 Partition pairs

We now develop the appropriate framework to be able to state the Cover down lemma

for setups (Lemma 2.10.24). Recall that we will consider (and cover) r-sets separately

according to their type. The type of an r-set e naturally imposes constraints on the type

of an f -set which covers e. We will need to track and adjust the densities of r-sets with

respect to f -sets for each pair of types separately. This gives rise to the following concepts

of partition pairs and partition regularity (see Section 2.10.3). We will sometimes refer

to r-sets as ‘edges’ and to f -sets as ‘cliques’.

Let X be a set. We say that P = (X1, . . . , Xa) is an ordered partition of X if the Xi

are disjoint subsets of X whose union is X. We let P(i) := Xi and P([i]) := (X1, . . . , Xi).

If P = (X1, . . . , Xa) is an ordered partition of X and X ′ ⊆ X, we let P [X ′] denote

the ordered partition (X1 ∩ X ′, . . . , Xa ∩ X ′) of X ′. If {X ′, X ′′} is a partition of X,

P ′ = (X ′1, . . . , X
′
a) is an ordered partition of X ′ and P ′′ = (X ′′1 , . . . , X

′′
b ) is an ordered

partition of X ′′, we let

P ′ t P ′′ := (X ′1, . . . , X
′
a, X

′′
1 , . . . , X

′′
b ).
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Definition 2.10.10. Let G be a complex and let f > r ≥ 1. An (r, f)-partition pair of G

is a pair (Pr,Pf ), where Pr is an ordered partition of G(r) and Pf is an ordered partition

of G(f), such that for all E ∈ Pr and Q ∈ Pf , every Q ∈ Q contains the same number

C(E ,Q) of elements from E . We call C : Pr×Pf → [
(
f
r

)
]0 the containment function of the

partition pair. We say that (Pr,Pf ) is upper-triangular if C(Pr(`),Pf (k)) = 0 whenever

` > k.

Clearly, for every Q ∈ Pf ,
∑
E∈Pr C(E ,Q) =

(
f
r

)
. If (Pr,Pf ) is an (r, f)-partition pair

of G and G′ ⊆ G is a subcomplex, we define

(Pr,Pf )[G′] := (Pr[G′(r)],Pf [G′(f)]).

Clearly, (Pr,Pf )[G′] is an (r, f)-partition pair of G′.

Example 2.10.11. Suppose that G is a complex and U ⊆ V (G). For ` ∈ [r]0, define

E` := {e ∈ G(r) : |e ∩ U | = `}. For k ∈ [f ]0, define Qk := {Q ∈ G(f) : |Q ∩ U | = k}. Let

Pr := (E0, . . . , Er) and Pf := (Q0, . . . ,Qf ). Then clearly (Pr,Pf ) is an (r, f)-partition

pair of G, where the containment function is given by C(E`,Qk) =
(
k
`

)(
f−k
r−`

)
. In particular,

C(E`,Qk) = 0 whenever ` > k or k > f−r+`. We say that (Pr,Pf ) is the (r, f)-partition

pair of G, U .

The partition pairs we use are generalisations of the above example. More precisely,

suppose that G is a complex, S is an i-system in V (G) and U is a focus for S. Moreover,

assume that G is r-exclusive with respect to S. For r′ ≥ r, let τr′ denote the type

function of G(r′), S, U . As in the above example, if E` := τ−1
r (`) for all ` ∈ [r − i]0 and

Qk := τ−1
f (k) for all k ∈ [f − i]0, then every Q ∈ Qk contains exactly

(
k
`

)(
f−i−k
r−i−`

)
elements

from E`. However, we also have to consider S-unimportant edges and cliques. It turns out

that it is useful to assume that the unimportant edges and cliques are partitioned into i

parts each, in an upper-triangular fashion.

More formally, for r′ ≥ r, let Dr′ denote the set of S-unimportant r′-sets of G and

assume that P∗r is an ordered partition of Dr and P∗f is an ordered partition of Df . We
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say that (P∗r ,P∗f ) is admissible with respect to G, S, U if the following hold:

(P1) |P∗r | = |P∗f | = i;

(P2) for all S ∈ S, h ∈ [r − i]0 and B ⊆ G(S)(h) with 1 ≤ |B| ≤ 2h and all ` ∈ [i], there

exists D(S,B, `) ∈ N0 such that for all Q ∈
⋂
b∈B G(S ∪ b)[US](f−i−h), we have that

|{e ∈ P∗r (`) : ∃b ∈ B : e ⊆ S ∪ b ∪Q}| = D(S,B, `);

(P3) (P∗r t{G(r) \Dr},P∗f t{G(f) \Df}) is an upper-triangular (r, f)-partition pair of G.

Note that for i = 0, S = {∅} and U = {U} for some U ⊆ V (G), the pair (∅, ∅)

trivially satisfies these conditions. Also note that (P2) can be viewed as an analogue

of the containment function (from Definition 2.10.10) which is suitable for dealing with

supercomplexes.

Assume that (P∗r ,P∗f ) is admissible with respect to G, S, U . Define

Pr := P∗r t (τ−1
r (0), . . . , τ−1

r (r − i)),

Pf := P∗f t (τ−1
f (0), . . . , τ−1

f (f − i)).

It is not too hard to see that (Pr,Pf ) is an (r, f)-partition pair of G. Indeed, Pr clearly

is a partition of G(r) and Pf is a partition of G(f). Suppose that C is the containment

function of (P∗rt{G(r)\Dr},P∗ft{G(f)\Df}). Then C ′ as defined below is the containment

function of (Pr,Pf ):

• For all E ∈ P∗r and Q ∈ P∗f , let C ′(E ,Q) := C(E ,Q).

• For all ` ∈ [r − i]0 and Q ∈ P∗f , let C ′(τ−1
r (`),Q) := 0.

• For all E ∈ P∗r and k ∈ [f − i]0, define C ′(E , τ−1
f (k)) := C(E , {G(f) \ Df}).
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P∗f (1) . . . P∗f (i) τ−1f (0) τ−1f (1) . . . . . . τ−1f (f − r) . . . . . . τ−1f (f − i)
P∗r (1) ∗
. . . 0 ∗
P∗r (i) 0 0 ∗
τ−1r (0) 0 0 0 ∗ ∗ 0 0 0
. . . 0 0 0 0 ∗ ∗ 0 0
. . . 0 0 0 0 0 ∗ ∗ 0

τ−1r (r − i) 0 0 0 0 0 0 ∗ ∗

Figure 2.1: The above table sketches the containment function of an (r, f)-partition pair induced by
(P∗r ,P∗f ) and U . The cells marked with ∗ and the shaded subtable will play an important role later on.

• For all ` ∈ [r − i]0, k ∈ [f − i]0, let

C ′(τ−1
r (`), τ−1

f (k)) :=

(
k

`

)(
f − i− k
r − i− `

)
. (2.10.6)

We say that (Pr,Pf ) as defined above is induced by (P∗r ,P∗f ) and U .

Finally, we say that (Pr,Pf ) is an (r, f)-partition pair of G, S, U , if

• (Pr([i]),Pf ([i])) is admissible with respect to G, S, U ;

• (Pr,Pf ) is induced by (Pr([i]),Pf ([i])) and U .

The next proposition summarises basic properties of an (r, f)-partition pair of G, S, U .

Proposition 2.10.12. Let 0 ≤ i < r < f and suppose that G is a complex, S is an i-

system in V (G) and U is a focus for S. Moreover, assume that G is r-exclusive with respect

to S. Let (Pr,Pf ) be an (r, f)-partition pair of G, S, U with containment function C.

Then the following hold:

(P1′) |Pr| = r + 1 and |Pf | = f + 1;

(P2′) for i < ` ≤ r+1, Pr(`) = τ−1
r (`−i−1), and for i < k ≤ f+1, Pf (k) = τ−1

f (k−i−1);

(P3′) (Pr,Pf ) is upper-triangular;

(P4′) C(Pr(`),Pf (k)) = 0 whenever both ` > i and k > f − r + `;

(P5′) (P2) holds for all ` ∈ [r + 1], with Pr playing the role of P∗r .
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(P6′) if i = 0, S = {∅} and U = {U} for some U ⊆ V (G), then the (unique) (r, f)-

partition pair of G, S, U is the (r, f)-partition pair of G, U (cf. Example 2.10.11);

(P7′) for every subcomplex G′ ⊆ G, (Pr,Pf )[G′] is an (r, f)-partition pair of G′, S, U .

Proof. Clearly, (P1′), (P2′) and (P6′) hold, and it is also straightforward to check (P7′).

Moreover, (P3′) holds because of (P3) and (2.10.6). The latter also implies (P4′).

Finally, consider (P5′). For ` ∈ [i], this holds since (Pr([i]),Pf ([i])) is admissible,

so assume that ` > i. We have Pr(`) = τ−1
r (` − i − 1). Let S ∈ S, h ∈ [r − i]0 and

B ⊆ G(S)(h) with 1 ≤ |B| ≤ 2h.

For Q ∈
⋂
b∈B G(S ∪ b)[US](f−i−h), let

DQ := {e ∈ G(r) : S ⊆ e, |e ∩ US| = `− i− 1, ∃b ∈ B : e \ S ⊆ b ∪Q}.

It is easy to see that

{e ∈ Pr(`) : ∃b ∈ B : e ⊆ S ∪ b ∪Q} = DQ.

Note that for every e ∈ DQ, we have e = S ∪ (
⋃
B ∩ e) ∪ (Q ∩ e).

It remains to show that for all Q,Q′ ∈
⋂
b∈B G(S∪b)[US](f−i−h), we have |DQ| = |DQ′|.

Let π : Q→ Q′ be any bijection. For each e ∈ DQ, define π′(e) := S∪(
⋃
B∩e)∪π(Q∩e).

It is straightforward to check that π′ : DQ → DQ′ is a bijection. �

2.10.3 Partition regularity

Definition 2.10.13. Let G be a complex on n vertices and (Pr,Pf ) an (r, f)-partition

pair of G with a := |Pr| and b := |Pf |. Let A = (a`,k) ∈ [0, 1]a×b. We say that G is

(ε, A, f, r)-regular with respect to (Pr,Pf ) if for all ` ∈ [a], k ∈ [b] and e ∈ Pr(`), we have

|(Pf (k))(e)| = (a`,k ± ε)nf−r, (2.10.7)
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where we view Pf (k) as a subgraph of G(f). If E ⊆ Pr(`) and Q ⊆ Pf (k), we will often

write A(E ,Q) instead of a`,k.

For A ∈ [0, 1]a×b with 1 ≤ t ≤ a ≤ b, we define

• min\(A) := min{aj,j : j ∈ [a]} as the minimum value on the diagonal,

• min\t(A) := min{aj,j+b−a : j ∈ {a− t+ 1, . . . , a}} and

• min\\t(A) := min{min\(A),min\t(A)}.

Note that min\\r−i+1(A) is the minimum value of the entries in A that correspond to the

entries marked with ∗ in Figure 2.1.

Example 2.10.14. Suppose that G is a complex and that U ⊆ V (G) is (ε, µ, ξ, f, r)-

random in G (see Definition 2.7.1). Let (Pr,Pf ) be the (r, f)-partition pair of G, U (cf.

Example 2.10.11). Let Y ⊆ G(f) and d ≥ ξ be such that (R2) holds. Define the matrix

A ∈ [0, 1](r+1)×(f+1) as follows: for all ` ∈ [r + 1] and k ∈ [f + 1], let

a`,k := bin(f − r, µ, k − `)d.

For all ` ∈ [r+ 1], k ∈ [f + 1] and e ∈ Pr(`) = {e′ ∈ G(r) : |e′ ∩U | = `− 1}, we have that

|(Pf [Y ](k))(e)| = |{Q ∈ G[Y ](f)(e) : |(e ∪Q) ∩ U | = k − 1}|

= |{Q ∈ G[Y ](f)(e) : |Q ∩ U | = k − `}|
(R2)
= (1± ε)bin(f − r, µ, k − `)dnf−r = (a`,k ± ε)nf−r.

In other words, G[Y ] is (ε, A, f, r)-regular with respect to (Pr,Pf [Y ]). Note also that

min\\r+1(A) = min{bin(f − r, µ, 0), bin(f − r, µ, f − r)}d ≥ (min {µ, 1− µ})f−rξ.

In the proof of the Cover down lemma for setups, we face (amongst others) the fol-

lowing two challenges: (i) given an (ε, A, f, r)-regular complex G for some suitable A,

we need to find an efficient F -packing in G; (ii) if A is not suitable for (i), we need to
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find a ‘representative’ subcomplex G′ of G which is (ε, A′, f, r)-regular for some A′ that

is suitable for (i). The strategy to implement (i) is similar to that of the Boost lemma

(Lemma 2.6.3): We randomly sparsify G(f) according to a suitably chosen (non-uniform)

probability distribution in order to find Y ∗ ⊆ G(f) such that G[Y ∗] is (ε, d, f, r)-regular.

We can then apply the Boosted nibble lemma (Lemma 2.6.4). The desired probability

distribution arises from a non-negative solution to the equation Ax = 1. The following

condition on A allows us to find such a solution (cf. Proposition 2.10.16).

Definition 2.10.15. We say that A ∈ [0, 1]a×b is diagonal-dominant if a`,k ≤ ak,k/2(a−`)

for all 1 ≤ ` < k ≤ min{a, b}.

Definition 2.10.15 also allows us to achieve (ii). Given some A, we can find a ‘repres-

entative’ subcomplex G′ of G which is (ε, A′, f, r)-regular for some A′ that is diagonal-

dominant (cf. Lemma 2.10.20).

Proposition 2.10.16. Let A ∈ [0, 1]a×b be upper-triangular and diagonal-dominant with

a ≤ b. Then there exists x ∈ [0, 1]b such that x ≥ min\(A)/4b and Ax = min\(A)1.

Proof. If min\(A) = 0, we can take x = 0, so assume that min\(A) > 0. For k > a,

let yk := 1/4b. For k from a down to 1, let yk := a−1
k,k(1 −

∑b
j=k+1 ak,jyj). Since A is

upper-triangular, we have Ay = 1. We claim that 1/4b ≤ yk ≤ a−1
k,k for all k ∈ [b]. This

clearly holds for all k > a. Suppose that for some k ∈ [a], we have already checked that

1/4b ≤ yj ≤ a−1
j,j for all j > k. We now check that

1 ≥ 1−
b∑

j=k+1

ak,jyj ≥ 1−
a∑

j=k+1

aj,j
2(a− k)

yj −
b− a

4b
≥ 3

4
− a− k

2(a− k)
=

1

4

and so 1/4b ≤ yk ≤ a−1
k,k. Thus we can take x := min\(A)y. �

Lemma 2.10.17. Let 1/n� ε� ξ, 1/f and r ∈ [f −1]. Suppose that G is a complex on

n vertices and (Pr,Pf ) is an upper-triangular (r, f)-partition pair of G with |Pr| ≤ |Pf | ≤

f + 1. Let A ∈ [0, 1]|Pr|×|Pf | be diagonal-dominant with d := min\(A) ≥ ξ. Suppose that

146



G is (ε, A, f, r)-regular with respect to (Pr,Pf ) and (ξ, f + r, r)-dense. Then there exists

Y ∗ ⊆ G(f) such that G[Y ∗] is (2fε, d, f, r)-regular and (0.9ξ(ξ/4(f + 1))(
f+r
f ), f + r, r)-

dense.

Proof. Since (Pr,Pf ) is upper-triangular, we may assume that A is upper-triangular too.

By Proposition 2.10.16, there exists a vector x ∈ [0, 1]|Pf | with x ≥ min\(A)/4(f + 1) ≥

ξ/4(f + 1) and Ax = d1.

Obtain Y ∗ ⊆ G(f) randomly by including every Q ∈ G(f) that belongs to Pf (k) with

probability xk, all independently. Let e ∈ Pr(`) for any ` ∈ [|Pr|]. We have

E|G[Y ∗](f)(e)| =
|Pf |∑
k=1

xk(a`,k ± ε)nf−r = (d± (f + 1)ε)nf−r.

Then, combining Lemma 2.5.10(ii) with a union bound, we conclude that whp G[Y ∗] is

(2fε, d, f, r)-regular.

Let e ∈ G(r). Since |G(f+r)(e)| ≥ ξnf and every Q ∈ G(f+r)(e) belongs to G[Y ∗](f+r)(e)

with probability at least (ξ/4(f + 1))(
f+r
f ), we conclude with Corollary 2.5.14 that with

probability at least 1− e−n
1/6

, we have

|G[Y ∗](f+r)(e)| ≥ 0.9(ξ/4(f + 1))(
f+r
f )|G(f+r)(e)| ≥ 0.9ξ(ξ/4(f + 1))(

f+r
f )nf .

Applying a union bound shows that whp G[Y ∗] is (0.9ξ(ξ/4(f + 1))(
f+r
f ), f + r, r)-dense.

�

The following concept of a setup turns out to be the appropriate generalisation of

Definition 2.7.1 to i-systems and partition pairs.

Definition 2.10.18 (Setup). Let G be a complex on n vertices and 0 ≤ i < r < f . We

say that S,U , (Pr,Pf ) form an (ε, µ, ξ, f, r, i)-setup for G if there exists an f -graph Y on

V (G) such that the following hold:

(S1) S is an i-system in V (G) such that G is r-exclusive with respect to S; U is a µ-focus

for S and (Pr,Pf ) is an (r, f)-partition pair of G, S, U ;

147



(S2) there exists a matrix A ∈ [0, 1](r+1)×(f+1) with min\\r−i+1(A) ≥ ξ such that G[Y ] is

(ε, A, f, r)-regular with respect to (Pr,Pf )[G[Y ]] = (Pr,Pf [Y ]);

(S3) every S-unimportant e ∈ G(r) is contained in at least ξ(µn)f S-unimportant Q ∈

G[Y ](f+r), and for every S-important e ∈ G(r) with e ⊇ S ∈ S, we have |G[Y ](f+r)(e)[US]| ≥

ξ(µn)f ;

(S4) for all S ∈ S, h ∈ [r − i]0 and all B ⊆ G(S)(h) with 1 ≤ |B| ≤ 2h we have that⋂
b∈B G(S ∪ b)[US] is an (ε, ξ, f − i− h, r − i− h)-complex.

Moreover, if (S1)–(S4) are true andA is diagonal-dominant, then we say that S,U , (Pr,Pf )

form a diagonal-dominant (ε, µ, ξ, f, r, i)-setup for G.

Note that (S4) implies that G(S)[US] is an (ε, ξ, f − i, r − i)-supercomplex for every

S ∈ S, but is stronger in the sense thatB is not restricted to US. The following observation

shows that Definition 2.10.18 does indeed generalise Definition 2.7.1. (Recall that the

partition pair of G,U was defined in Example 2.10.11.) We will use it to derive the Cover

down lemma from the more general Cover down lemma for setups.

Proposition 2.10.19. Let G be a complex on n vertices and suppose that U ⊆ V (G)

is (ε, µ, ξ, f, r)-random in G. Let (Pr,Pf ) be the (r, f)-partition pair of G,U . Then

{∅}, {U}, (Pr,Pf ) form an (ε, µ, µ̃ξ, f, r, 0)-setup for G, where µ̃ := (min {µ, 1− µ})f−r.

Proof. We first check (S1). Clearly, S is a 0-system in V (G). Moreover, G is trivially

r-exclusive with respect to S since |S| < 2. Moreover, by (R1), U is a µ-focus for S, and

(Pr,Pf ) is an (r, f)-partition pair of G,S,U by (P6′) in Proposition 2.10.12. Note that

(S4) follows immediately from (R4). In order to check (S2) and (S3), assume that Y ⊆ G(f)

and d ≥ ξ are such that (R2) and (R3) hold. Clearly, all e ∈ G(r) are S-important, and

by (R3), we have for all e ∈ G(r) that |G[Y ](f+r)(e)[U ]| ≥ ξ(µn)f , so (S3) holds. Finally,

we have seen in Example 2.10.14 that there exists a matrix A ∈ [0, 1](r+1)×(f+1) with

min\\r−i+1(A) ≥ µ̃ξ such that G[Y ] is (ε, A, f, r)-regular with respect to (Pr,Pf [Y ]).

�
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The following lemma shows that we can (probabilistically) sparsify a given setup so

that the resulting setup is diagonal-dominant.

Lemma 2.10.20. Let 1/n � ε � ν � µ, ξ, 1/f and 0 ≤ i < r < f . Let ξ′ := ν8f ·f+1.

Let G be a complex on n vertices and suppose that

S,U , (Pr,Pf ) form an (ε, µ, ξ, f, r, i)-setup for G.

Then there exists a subgraph H ⊆ G(r) with ∆(H) ≤ 1.1νn and the following property:

for all L ⊆ G(r) with ∆(L) ≤ εn and all (r + 1)-graphs O on V (G) with ∆(O) ≤ εn, the

following holds for G′ := G[H 4 L]−O:

S,U , (Pr,Pf )[G′] form a diagonal-dominant (
√
ε, µ, ξ′, f, r, i)-setup for G′.

Proof. Let Y ⊆ G(f) and A ∈ [0, 1](r+1)×(f+1) be such that (S1)–(S4) hold for G. Let

C : Pr × Pf → [
(
f
r

)
]0 be the containment function of (Pr,Pf ). We will write c`,k :=

C(Pr(`),Pf (k)) for all ` ∈ [r+ 1] and k ∈ [f + 1]. We may assume that a`,k = 0 whenever

c`,k = 0 (and min\\r−i+1(A) ≥ ξ still holds).

Define the matrix A′ ∈ [0, 1](r+1)×(f+1) by letting a′`,k := a`,kν
−`∏

`′∈[r+1] ν
`′c`′,k . Note

that we always have a′`,k ≤ a`,k.

Claim 1: A′ is diagonal-dominant and min\\r−i+1(A′) ≥ ξ′.

Proof of claim: For 1 ≤ ` < k ≤ r + 1,

a′`,k
a′k,k

=
a`,kν

−`

ak,kν−k
≤ νk−`

ξ
≤ 1

2(r + 1− `)
.

Moreover, we have min\\r−i+1(A′) ≥ ξν(r+1)(fr)−1 ≥ ξ′. −

We choose H randomly by including independently each e ∈ Pr(`) with probability ν`,

for all ` ∈ [r+1]. A standard application of Lemma 2.5.10 shows that whp ∆(H) ≤ 1.1νn.

We now check (S1)–(S4) for G′,S,U and (Pr,Pf )[G′]. For any L and O, G′ is r-

exclusive with respect to S, and (Pr,Pf )[G′] is an (r, f)-partition pair of G′, S, U by
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(P7′) in Proposition 2.10.12. Thus, (S1) holds.

We now consider (S2). Let ` ∈ [r + 1], k ∈ [f + 1] and e ∈ Pr(`). Define

Qe,k := (Pf [Y ](k))(e).

By (2.10.7) and (S2) for S,U , (Pr,Pf ), we have that |Qe,k| = (a`,k ± ε)nf−r. We view

Qe,k as a (f − r)-graph and consider the random subgraph Q′e,k that contains all Q ∈ Qe,k

with
(
Q∪e
r

)
\ {e} ⊆ H. If a`,k 6= 0, then for all Q ∈ Qe,k, we have

P(Q ∈ Q′e,k) = ν−`
∏

`′∈[r+1]

ν`
′c`′,k =

a′`,k
a`,k

.

Thus, E|Q′e,k| = (a′`,k ± ε)nf−r. This also holds if a`,k = 0 (and thus a′`,k = 0). Using

Corollary 2.5.14 and a union bound, we thus conclude that with probability at least

1− e−n
1/7

, we have |Q′e,k| = (a′`,k ± ε2/3)nf−r for all ` ∈ [r + 1], k ∈ [f + 1] and e ∈ Pr(`).

(Technically, we can only apply Corollary 2.5.14 if |Qe,k| ≥ 2εnf−r, say. Note that the

result holds trivially if |Qe,k| ≤ 2εnf−r.) Assuming that this holds for H, a double

application of Proposition 2.5.7 shows that any L ⊆ G(r) with ∆(L) ≤ εn and any (r+1)-

graph O on V (G) with ∆(O) ≤ εn results in G′[Y ] being (
√
ε, A′, f, r)-regular with respect

to (Pr,Pf )[G′[Y ]].

We now check (S3). Let e ∈ G(r). If e is S-unimportant then let Qe be the set of all

Q ∈ G[Y ](f+r)(e) such that Q∪ e is S-unimportant, otherwise let Qe := G[Y ](f+r)(e)[US].

By (S3) for S,U , (Pr,Pf ), we have that |Qe| ≥ ξ(µn)f . We view Qe as a f -graph and

consider the random subgraph Q′e containing all Q ∈ Qe such that
(
Q∪e
r

)
\ {e} ⊆ H. For

each Q ∈ Qe, we have

P(Q ∈ Q′e) ≥ ν(r+1)(f+rr )−1 ≥ νf(4f ),

thus E|Q′e| ≥ νf(4f )ξ(µn)f . Using Corollary 2.5.14 and a union bound, we conclude that

whp |Q′e| ≥ 2ξ′(µn)f for all e ∈ G(r). Assuming that this holds for H, Proposition 2.5.7
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implies that for any admissible choices of L and O, (S3) still holds.

Finally, we check (S4). Let S ∈ S, h ∈ [r − i]0 and B ⊆ G(S)(h) with 1 ≤ |B| ≤ 2h.

By assumption, GS,B :=
⋂
b∈B G(S ∪ b)[US] is an (ε, ξ, f − i− h, r − i− h)-complex. We

intend to apply Proposition 2.5.18 with i + h, G[US ∪ S ∪
⋃
B], Pr[G(r)[US ∪ S ∪

⋃
B]],

{b ∪ S : b ∈ B}, νr+1, ε2/3 playing the roles of i, G,P , B, p, γ. Note that for every

b ∈ B and all e ∈ G
(r−i−h)
S,B , S ∪ b ∪ e is S-important and τr(S ∪ b ∪ e) = |(S ∪ b ∪

e) ∩ US| = |b ∩ US| + r − i − h. Hence, S ∪ b ∪ e ∈ Pr(|b ∩ US| + r − h + 1). Thus,

condition (I) in Proposition 2.5.18 is satisfied. Moreover, (II) is also satisfied because of

(P5′) in Proposition 2.10.12. Therefore, by Proposition 2.5.18, with probability at least

1 − e−|US |
1/8

, for any L ⊆ G(r) with ∆(L) ≤ εn ≤ 2ε|US|/µ ≤ ε2/3|US| and any (r + 1)-

graph O on V (G) with ∆(O) ≤ εn ≤ f−5rε2/3|US|, we have that
⋂
b∈B G

′(S ∪ b)[US] is a

(
√
ε, ξ′, f − i− h, r− i− h)-complex. A union bound now shows that with probability at

least 1− e−n
1/10

, (S4) holds.

Thus, there exists an H with the desired properties. �

We also need a similar result which ‘sparsifies’ the neighbourhood complexes of an

i-system.

Lemma 2.10.21. Let 1/n � ε � µ, β, ξ, 1/f and 1 ≤ i < r < f . Let ξ′ := 0.9ξβ(8f ).

Let G be a complex on n vertices and let S be an i-system in G such that G is r-exclusive

with respect to S. Let U be a µ-focus for S. Suppose that

G(S)[US] is an (ε, ξ, f − i, r − i)-supercomplex for every S ∈ S.

Then there exists a subgraph H ⊆ G(r) with ∆(H) ≤ 1.1βn and the following property:

for all L ⊆ G(r) with ∆(L) ≤ εn and all (r + 1)-graphs O on V (G) with ∆(O) ≤ εn, the

following holds for G′ := G[H 4 L]−O:

G′(S)[US] is a (
√
ε, ξ′, f − i, r − i)-supercomplex for every S ∈ S.

Proof. Choose H randomly by including each e ∈ G(r) independently with probability β.
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Clearly, whp ∆(H) ≤ 1.1βn. Now, consider S ∈ S. Let h ∈ [r − i]0 and B ⊆ G(S)[US](h)

with 1 ≤ |B| ≤ 2h. By assumption, GS,B :=
⋂
b∈B G(S)[US](b) =

⋂
b∈B G(S ∪ b)[US] is an

(ε, ξ, f − i− h, r − i− h)-complex. Proposition 2.5.18 (applied with G[US ∪ S ∪
⋃
B] =:

G1, {b ∪ S : b ∈ B}, i+ h, {G(r)
1 }, β, ε2/3 playing the roles of G,B, i,P , p, γ) implies that

with probability at least 1 − e−|US |
1/8

, H has the property that for all L ⊆ G(r) with

∆(L) ≤ εn ≤ ε2/3|US| and all (r+ 1)-graphs O on V (G) with ∆(O) ≤ εn ≤ f−5rε2/3|US|,⋂
b∈B G

′(S ∪ b)[US] =
⋂
b∈B G

′(S)[US](b) is a (
√
ε, ξ′, f − i− h, r − i− h)-complex.

Therefore, applying a union bound to all S ∈ S, h ∈ [r − i]0 and B ⊆ G(S)[US](h)

with 1 ≤ |B| ≤ 2h, we conclude that whp H has the property that for all L ⊆ G(r)

with ∆(L) ≤ εn and all (r + 1)-graphs O on V (G) with ∆(O) ≤ εn, G′(S)[US] is a

(
√
ε, ξ′, f − i, r − i)-supercomplex for every S ∈ S. Thus, there exists an H with the

desired properties. �

The final tool that we need is the following lemma. Given a setup in a supercomplex

G and an i′-extension T of the respective i-system S, it allows us to find a new focus

U ′ for T and a suitable partition pair which together form a new setup in the complex

G′ (which is the complex we look at after all edges with type less than r − i′ have been

covered).

Lemma 2.10.22. Let 1/n � ε � ρ � µ, ξ, 1/f and 0 ≤ i < i′ < r < f . Let G be a

complex on n vertices and suppose that S,U , (Pr,Pf ) form an (ε, µ, ξ, f, r, i)-setup for G.

For r′ ≥ r, let τr′ be the type function of G(r′), S, U . Let T be the i′-extension of S in G

around U , and let

G′ := G− {e ∈ G(r) : e is S-important and τr(e) < r − i′}.

Then there exist U ′,P ′r,P ′f with the following properties:

(i) U ′ is a (µ, ρ, r)-focus for T such that UT ⊆ UT �S for all T ∈ T ;

(ii) T ,U ′, (P ′r,P ′f ) form a (1.1ε, ρµ, ρf−rξ, f, r, i′)-setup for G′;
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(iii) G′(T )[UT ] is a (1.1ε, 0.9ξ, f − i′, r − i′)-supercomplex for every T ∈ T .

Proof. Let ` := r− i′. Let Y ⊆ G(f) and A ∈ [0, 1](r+1)×(f+1) be such that (S1)–(S4) hold

for G,S,U , (Pr,Pf ). We choose U ′ randomly as follows: for every T ∈ T we let UT be

a random subset of UT �S , obtained by including every x ∈ UT �S with probability ρ, and

all these choices are made independently. Let U ′ := (UT )T∈T . Clearly, U ′ is a focus for T

and UT ⊆ UT �S for all T ∈ T . We will prove that (i)–(iii) hold whp.

By Proposition 2.10.5, the following hold:

(a) G′ is r-exclusive with respect to T ;

(b) for all e ∈ G with |e| ≥ r, we have

e /∈ G′ ⇔ e is S-important and τ|e|(e) < |e| − i′;

(c) for r′ ≥ r, the T -important elements of G′(r
′) are precisely the elements of τ−1

r′ (r′−i′).

For r′ ≥ r, property (a) allows us to consider the type function τ ′r′ of G′(r
′), T , U ′. As a

consequence of (b), we have for each r′ ≥ r that

G′(r
′) = G(r′) \

r′−i′−1⋃
k=0

τ−1
r′ (k). (2.10.8)

In what follows, we define a suitable (r, f)-partition pair (P ′r,P ′f ) of G′. Recall

that every element of a class from Pr([i]) and Pf ([i]) is S-unimportant, and thus T -

unimportant as well. By (2.10.8) and (c), the T -unimportant r-sets of G′ that are S-

important are precisely the elements of τ−1
r (`+1), . . . , τ−1

r (r−i), and the T -unimportant f -

sets ofG′ that are S-important are precisely the elements of τ−1
f (f−r+`+1), . . . , τ−1

f (f−i).

Thus, we aim to attach these classes to Pr([i]) and Pf ([i]), respectively, in order to obtain

partitions of the T -unimportant r-sets and f -sets of G′. When doing so, we reverse their
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Pf ([i]) τ−1f (f − i) . . . τ−1f (f − i′ + 1) τ−1f (f − i′)
∗

Pr([i]) 0 ∗
0 0 ∗

τ−1r (r − i) 0 ∗
. . . 0 0 ∗

τ−1r (`+ 1) 0 0 0 ∗
τ−1r (`) 0 0 0 0 ∗

Figure 2.2: The above table sketches the containment function of (P ′∗r t{τ−1r (`)},P ′∗f t{τ
−1
f (f −r+ `)}).

Note that the shaded subtable corresponds to the shaded subtable in Figure 2.1, but has been flipped to
make it upper-triangular instead of lower-triangular.

order. This will ensure that the new partition pair is again upper-triangular (cf. Fig-

ure 2.2).

Define

P ′∗r := Pr([i]) t (τ−1
r (r − i), . . . , τ−1

r (`+ 1)), (2.10.9)

P ′∗f := Pf ([i]) t (τ−1
f (f − i), . . . , τ−1

f (f − r + `+ 1)). (2.10.10)

Claim 1: (P ′∗r ,P ′∗f ) is admissible with respect to G′, T , U ′.

Proof of claim: By (2.10.8) and (c), we have that P ′∗r is a partition of the T -unimportant

elements of G′(r) and P ′∗f is a partition of the T -unimportant elements of G′(f). Moreover,

note that |P ′∗r | = i + (r − i − `) = i′ and |P ′∗f | = i + (f − i) − (f − r + `) = i′, so (P1)

holds.

We proceed with checking (P3). By (c), τ−1
r (`) consists of all T -important edges

of G′(r), and τ−1
f (f − r + `) consists of all T -important f -sets of G′(f). Thus, (P ′∗r t

{τ−1
r (`)},P ′∗f t{τ−1

f (f−r+`)}) clearly is an (r, f)-partition pair ofG′. If 0 ≤ k′ < `′ ≤ i′−i,

then no Q ∈ τ−1
f (f − i − k′) contains any element from τ−1

r (r − i − `′) by (2.10.6), so

(P ′∗r t {τ−1
r (`)},P ′∗f t {τ−1

f (f − r + `)}) is upper-triangular (cf. Figure 2.2).

It remains to check (P2). Let T ∈ T , h′ ∈ [r− i′]0 and B′ ⊆ G′(T )(h′) with 1 ≤ |B′| ≤

2h
′
. Let S := T �S , let h := h′+ i′− i ∈ [r− i]0 and B := {(T \S)∪ b′ : b′ ∈ B′}. Clearly,

B ⊆ G(S)(h) with 1 ≤ |B| ≤ 2h. Thus, by (P5′) in Proposition 2.10.12, we have for all
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E ∈ Pr that there exists D(S,B, E) ∈ N0 such that for all Q ∈
⋂
b∈B G(S ∪ b)[US](f−i−h),

we have that

|{e ∈ E : ∃b ∈ B : e ⊆ S ∪ b ∪Q}| = D(S,B, E).

For each E ∈ P ′∗r , define D′(T,B′, E) := D(S,B, E). Thus, since UT ⊆ US, we have for all

Q ∈
⋂
b′∈B′ G

′(T ∪ b′)[UT ](f−i
′−h′) that

|{e ∈ E : ∃b′ ∈ B′ : e ⊆ T ∪ b′ ∪Q}| = D′(T,B′, E).

−

Let (P ′r,P ′f ) be the (r, f)-partition pair of G′ induced by (P ′∗r ,P ′∗f ) and U ′. Recall

that τ ′r′ denotes the type function of G′(r
′), T , U ′ (for any r′ ≥ r). Define the matrix

A′ ∈ [0, 1](r+1)×(f+1) such that the following hold:

• For all E ∈ P ′∗r and Q ∈ P ′∗f , let A′(E ,Q) := A(E ,Q).

• For all `′ ∈ [r − i′]0 and Q ∈ P ′∗f , let A′(τ ′−1
r (`′),Q) := 0.

• For all E ∈ P ′∗r and k′ ∈ [f − i′]0, define

A′(E , τ ′−1
f (k′)) := bin(f − i′, ρ, k′)A(E , τ−1

f (f − r + `)).

• For all `′ ∈ [r − i′]0, k′ ∈ [f − i′]0, let

A′(τ ′−1
r (`′), τ ′−1

f (k′)) := bin(f − r, ρ, k′ − `′)A(τ−1
r (`), τ−1

f (f − r + `)).

Claim 2: min\\r−i
′+1(A′) ≥ ρf−rξ.

Proof of claim: Let

a′1 := min
`′∈[r−i′]0

A′(τ ′−1
r (`′), τ ′−1

f (`′)) and a′2 := min
`′∈[r−i′]0

A′(τ ′−1
r (`′), τ ′−1

f (f − r + `′)).
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Observe that min\\r−i
′+1(A′) ≥ min{min\\r−i+1(A), a′1, a

′
2}. Since min\\r−i+1(A) ≥ ξ,

a′1 ≥ (1− ρ)f−rξ and a′2 ≥ ρf−rξ, the claim follows. −

We now prove in a series of claims that (i)–(iii) hold whp. By Lemma 2.10.7 (applied

with T , {UT �S : T ∈ T } playing the roles of S,U), whp U ′ is a (µ, ρ, r)-focus for T , so

(i) holds. In particular, whp U ′ is a ρµ-focus for T , implying that (S1) holds for G′ with

T , U ′ and (P ′r,P ′f ). We now check (S2)–(S4) and (iii).

Claim 3: Whp G′[Y ] is (1.1ε, A′, f, r)-regular with respect to (P ′r,P ′f [Y ]) (cf. (S2)).

Proof of claim: By definition of (P ′∗r ,P ′∗f ), we have for all E ∈ P ′∗r t {τ−1
r (`)} and Q ∈

(P ′∗f t {τ−1
f (f − r + `)})[Y ] that E ∈ Pr and Q ∈ Pf [Y ]. Since G[Y ] is (ε, A, f, r)-regular

with respect to (Pr,Pf [Y ]), we have thus for all e ∈ E that

|Q(e)| = (A(E ,Q)± ε)nf−r. (2.10.11)

We have to show that for all E ∈ P`r , Q ∈ P`f [Y ] and e ∈ E , we have |Q(e)| =

(A′(E ,Q)± 1.1ε)nf−r. We distinguish four cases as in the definition of A′.

Firstly, for all E ∈ P ′∗r , Q ∈ P ′∗f [Y ] and e ∈ E , we have by (2.10.11) that |Q(e)| =

(A(E ,Q)± ε)nf−r = (A′(E ,Q)± ε)nf−r with probability 1.

Also, for all `′ ∈ [r − i′]0, Q ∈ P ′∗f [Y ] and e ∈ τ ′−1
r (`′), we have |Q(e)| = 0 =

A′(τ ′−1
r (`′),Q)nf−r with probability 1.

Let E ∈ P ′∗r t {τ−1
r (`)} and consider e ∈ E . Let Qe := (Y ∩ τ−1

f (f − r + `))(e).

By (2.10.11), we have that |Qe| = (A(E , τ−1
f (f − r + `))± ε)nf−r.

First, assume that e ∈ E ∈ P ′∗r . For each k′ ∈ [f − i′]0, we consider the random

subgraph Qk′e of Qe that contains all Q ∈ Qe with Q ∪ e ∈ τ ′−1
f (k′). Hence, Qk′e = (Y ∩

τ ′−1
f (k′))(e). For each Q ∈ Qe, there are unique TQ ∈ T and SQ ∈ S with SQ ⊆ TQ ⊆ Q∪e

and (Q ∪ e) \ TQ ⊆ USQ .

For each Q ∈ Qe, we then have

P(Q ∈ Qk′e ) = P(τ ′f (Q ∪ e) = k′) = P(|(Q ∪ e) ∩ UTQ | = k′) = bin(f − i′, ρ, k′).

156



Thus, E|Qk′e | = bin(f−i′, ρ, k′)|Qe|. For each T ∈ T , let QT be the set of all those Q ∈ Qe

for which TQ = T . Since e is T -unimportant, we have |T \ e| > 0 and thus |QT | ≤ nf−r−1

for all T ∈ T . Thus we can partition Qe into nf−r−1 subgraphs such that each of them

intersects each QT in at most one element. For all Q lying in the same subgraph, the

events Q ∈ Qk′e are now independent. Hence, by Lemma 2.5.12, we conclude that with

probability at least 1− e−n
1/6

we have that

|Qk′e | = (1± ε2)E|Qk′e | = (1± ε2)bin(f − i′, ρ, k′)|Qe|

= (1± ε2)bin(f − i′, ρ, k′)(A(E , τ−1
f (f − r + `))± ε)nf−r (2.10.12)

= (A′(E , τ ′−1
f (k′))± 1.1ε)nf−r.

(Technically, we can only apply Lemma 2.5.12 if |Qe| ≥ 0.1εnf−r, say. Note that (2.10.12)

holds trivially if |Qe| ≤ 0.1εnf−r.)

Finally, consider the case e ∈ E = τ−1
r (`). By (c), e is T -important, so let T ∈ T be

such that T ⊆ e. Note that for every Q ∈ Qe, we have (e \T )∪Q ⊆ US, where S := T �S .

For every x ∈ [f − r]0, let Qxe be the random subgraph of Qe that contains all Q ∈ Qe

with |Q ∩ UT | = x. By the random choice of UT , for each Q ∈ Q and x ∈ [f − r]0, we

have

P(Q ∈ Qxe) = bin(f − r, ρ, x).

Using Corollary 2.5.14 we conclude that for x ∈ [f−r]0, with probability at least 1−e−n
1/6

we have that

|Qxe | = (1± ε2)E|Qxe | = (1± ε2)bin(f − r, ρ, x)|Qe|

= (1± ε2)bin(f − r, ρ, x)(A(τ−1
r (`), τ−1

f (f − r + `))± ε)nf−r

= (bin(f − r, ρ, x)A(τ−1
r (`), τ−1

f (f − r + `))± 1.1ε)nf−r.

Thus for all `′ ∈ [r − i′]0, k′ ∈ [f − i′]0 and e ∈ τ ′−1
r (`′) with k′ ≥ `′, with probability at
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least 1− e−n
1/6

we have

|(Y ∩ τ ′−1
f (k′))(e)| = |Qk′−`′e | = (A′(τ ′−1

r (`′), τ ′−1
f (k′))± 1.1ε)nf−r,

and if `′ > k′ then trivially |(Y ∩ τ ′−1
f (k′))(e)| = 0 = A′(τ ′−1

r (`′), τ ′−1
f (k′))nf−r. Thus, a

union bound implies the claim. −

Claim 4: Whp every T -unimportant e ∈ G′(r) is contained in at least 0.9ξ(ρµn)f T -

unimportant Q ∈ G′[Y ](f+r), and for every T -important e ∈ G′(r) with e ⊇ T ∈ T , we

have |G′[Y ](f+r)(e)[UT ]| ≥ 0.9ξ(ρµn)f (cf. (S3)).

Proof of claim: Let e ∈ G′(r) be T -unimportant. By (b) and (c), we thus have that e

is S-unimportant or τr(e) > `. In the first case, we have that e is contained in at least

ξ(µn)f S-unimportant Q ∈ G[Y ](f+r) by (S3) for U , G,S. But each such Q is clearly

T -unimportant as well and contained in G′[Y ]. If the second case applies, assume that e

contains S ∈ S. By (S3) for G,S,U , we have that |G[Y ](f+r)(e)[US]| ≥ ξ(µn)f . For every

Q ∈ G[Y ](f+r)(e)[US], we have that τf+r(Q∪e) = |(Q∪e)∩US| = f+τr(e) > f+`. Thus,

(b) implies that Q∪e ∈ G′[Y ], and by (c) we have that Q∪e is T -unimportant. Altogether,

every T -unimportant edge e ∈ G′(r) is contained in at least ξ(µn)f ≥ 0.9ξ(ρµn)f T -

unimportant Q ∈ G′[Y ](f+r).

Let e ∈ G′(r) be T -important. Assume that e contains T ∈ T and let S := T �S .

By (S3) for G,S,U , we have that |G[Y ](f+r)(e)[US]| ≥ ξ(µn)f . As before, for every

Q ∈ G[Y ](f+r)(e)[US], we have Q ∪ e ∈ G′[Y ]. Moreover, P(Q ⊆ UT ) = ρf . Thus, by

Corollary 2.5.14, with probability at least 1 − e−n
1/6

we have that |G′[Y ](f+r)(e)[UT ]| ≥

0.9ξ(ρµn)f . A union bound hence implies the claim. −

Claim 5: Whp for all T ∈ T , h′ ∈ [r − i′]0 and B′ ⊆ G′(T )(h′) with 1 ≤ |B′| ≤ 2h
′

we

have that
⋂
b′∈B′ G

′(T ∪ b′)[UT ] is an (1.1ε, 0.9ξ, f − i′ − h′, r − i′ − h′)-complex (cf. (S4)

and (iii)).

Proof of claim: Let T ∈ T , h′ ∈ [r − i′]0 and B′ ⊆ G′(T )(h′) with 1 ≤ |B′| ≤ 2h
′
. Let

158



S := T �S . We claim that

⋂
b′∈B′

G′(T ∪ b′)[US] is an (ε, ξ, f − i′ − h′, r − i′ − h′)-complex. (2.10.13)

If
⋂
b′∈B′ G

′(T ∪ b′)[US](r−i
′−h′) is empty, then there is nothing to prove, thus assume the

contrary. We claim that we must have b′ ⊆ US for all b′ ∈ B′. Indeed, let b′ ∈ B′

and g0 ∈ G′(T ∪ b′)[US](r−i
′−h′). Hence, g0 ∪ T ∪ b′ ∈ G′(r). By (b), we must have

|(g0 ∪ T ∪ b′) ∩ US| ≥ |g0 ∪ T ∪ b′| − i′. But since T ∩ US = ∅, we must have b′ ⊆ US.

Let h := h′ + i′ − i ∈ [r − i]0 and B := {(T \ S) ∪ b′ : b′ ∈ B′} ⊆ G(S)(h). (S4)

for U , G,S implies that
⋂
b∈B G(S ∪ b)[US] is an (ε, ξ, f − i − h, r − i − h)-complex. To

prove (2.10.13), it thus suffices to show that G(T ∪ b′)[US](r
′) = G′(T ∪ b′)[US](r

′) for all

r′ ≥ r − i − h and b′ ∈ B′. To this end, let b′ ∈ B′, r′ ≥ r − i − h and suppose that

g ∈ G(T ∪ b′)[US](r
′). Observe that |(g ∪ T ∪ b′) ∩ US| = |g ∪ T ∪ b′| − i′, so (b) implies

that g ∪ T ∪ b′ ∈ G′ and thus g ∈ G′(T ∪ b′)[US](r
′). This proves (2.10.13).

By Proposition 2.5.16, with probability at least 1 − e−|US |/8,
⋂
b′∈B′ G

′(T ∪ b′)[UT ] is

an (1.1ε, 0.9ξ, f − i′ − h′, r − i′ − h′)-complex.

Applying a union bound to all T ∈ T , h′ ∈ [r− i′]0 and B′ ⊆ G′(T )(h′) with 1 ≤ |B′| ≤

2h
′

then establishes the claim. −

By the above claims, U ′ satisfies (S2)–(S4) whp and thus (ii). Moreover, Claim 5

implies that whp (iii) holds. Thus, the random choice U ′ satisfies (i)–(iii) whp. �

2.10.4 Proof of the Cover down lemma

In this subsection, we state and prove the Cover down lemma for setups and deduce the

Cover down lemma (Lemma 2.7.7).

Definition 2.10.23. Let F and G be r-graphs, let S be an i-system in V (G), and let U

be a focus for S. We say that G is F -divisible with respect to S,U , if for all S ∈ S and

all T ⊆ V (G) \S with |T | ≤ r− i− 1 and |T \US| ≥ 1, we have Deg(F )i+|T | | |G(S ∪T )|.
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Note that if G is F -divisible, then it is F -divisible with respect to any i-system and

any associated focus.

Recall that a setup for G was defined in Definition 2.10.18, and G being (ξ, f, r)-dense

with respect to H ⊆ G(r) in Definition 2.7.6. We will prove the Cover down lemma for

setups by induction on r − i. We will deduce the Cover down lemma by applying this

lemma with i = 0.

Lemma 2.10.24 (Cover down lemma for setups). Let 1/n � 1/κ � γ � ε � ν �

µ, ξ, 1/f and 0 ≤ i < r < f . Let F be a weakly regular r-graph on f vertices. Assume

that (∗)` is true for all ` ∈ [r − i − 1]. Let G be a complex on n vertices and suppose

that S,U , (Pr,Pf ) form an (ε, µ, ξ, f, r, i)-setup for G. For r′ ≥ r, let τr′ denote the type

function of G(r′), S, U . Then the following hold.

(i) Let G̃ be a complex on V (G) with G ⊆ G̃ such that G̃ is (ε, f, r)-dense with respect

to G(r)− τ−1
r (0). Then there exists a subgraph H∗ ⊆ G(r)− τ−1

r (0) with ∆(H∗) ≤ νn

such that for any L∗ ⊆ G̃(r) with ∆(L∗) ≤ γn and H∗ ∪ L∗ being F -divisible with

respect to S,U and any (r + 1)-graph O∗ on V (G) with ∆(O∗) ≤ γn, there exists a

κ-well separated F -packing in G̃[H∗ ∪L∗]−O∗ which covers all edges of L∗, and all

S-important edges of H∗ except possibly some from τ−1
r (r − i).

(ii) If G(r) is F -divisible with respect to S,U and the setup is diagonal-dominant, then

there exists a 2κ-well separated F -packing in G which covers all S-important r-edges

except possibly some from τ−1
r (r − i).

Before proving Lemma 2.10.24, we show how it implies the Cover down lemma (Lemma 2.7.7).

Note that we only need part (i) of Lemma 2.10.24 to prove Lemma 2.7.7. (ii) is used in

the inductive proof of Lemma 2.10.24 itself.

Proof of Lemma 2.7.7. Let S := {∅}, U := {U} and let (Pr,Pf ) be the (r, f)-partition

pair of G,U . By Proposition 2.10.19, S,U , (Pr,Pf ) form a (ε, µ, µf−rξ, f, r, 0)-setup for

G. We can thus apply Lemma 2.10.24(i) with µf−rξ playing the role of ξ. Recall that all
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r-edges of G are S-important. Moreover, let τr denote the type function of G(r), S, U .

We then have τ−1
r (0) = G(r)[Ū ] and τ−1

r (r) = G(r)[U ], where Ū := V (G) \ U . �

Proof of Lemma 2.10.24. The proof is by induction on r − i. For i = r − 1, we will

prove the statement directly. For i < r − 1, we assume that the statement is true for all

i′ ∈ {i + 1, . . . , r − 1}. We will first prove (i) using (ii) inductively, and then derive (ii)

from (i) (for the same value of r − i).

Proof of (i).

If i < r − 1, choose new constants ν1, ρ1, β1, . . . , νr−i−1, ρr−i−1, βr−i−1 such that

1/n� 1/κ� γ � ε� ν1 � ρ1 � β1 � · · · � νr−i−1 � ρr−i−1 � βr−i−1 � ν � µ, ξ, 1/f.

For every ` ∈ [r − i− 1], let

G` := G− {e ∈ G(r) : e is S-important and τr(e) < `}. (2.10.14)

For every i′ ∈ {i + 1, . . . , r − 1}, let T i′ be the i′-extension of S in G around U . By

Proposition 2.10.5, the following hold for all i′ ∈ {i+ 1, . . . , r − 1}:

(I) Gr−i′ is r-exclusive with respect to T i′ ;

(II) the elements of τ−1
r (r − i′) are precisely the T i′-important elements of G

(r)
r−i′ .

By Lemma 2.10.22, for every i′ ∈ {i+ 1, . . . , r− 1}, there exist U i′ , P i′r , P i′f such that

the following hold:

(a) U i′ is a (µ, ρr−i′ , r)-focus for T i′ such that UT ⊆ UT �S for all T ∈ T i′ ;

(b) T i′ ,U i′ , (P i′r ,P i
′

f ) form a (1.1ε, ρr−i′µ, ρ
f−r
r−i′ξ, f, r, i

′)-setup for Gr−i′ ;

(c) Gr−i′(T )[UT ] is a (1.1ε, 0.9ξ, f − i′, r − i′)-supercomplex for every T ∈ T i′ .

(I) allows us to consider the type function τr−i′,r of G
(r)
r−i′ , T i

′
,U i′ .
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Step 1: Reserving subgraphs

In this step, we will find a number of subgraphs of G(r) − τ−1
r (0) whose union will be

the r-graph H∗ we seek in (i). Let G̃ be a complex as specified in (i). Let β0 := ε. Let H0

be a subgraph of G(r) − τ−1
r (0) with ∆(H0) ≤ 1.1β0n such that for all e ∈ G̃(r), we have

|G̃[H0 ∪ {e}](f)(e)| ≥ 0.9β
(fr)
0 nf−r. (2.10.15)

(H0 will be used to greedily cover L∗.) That such a subgraph exists can be seen by a

probabilistic argument: let H0 be obtained by including every edge of G(r) − τ−1
r (0) with

probability β0. Clearly, whp ∆(H0) ≤ 1.1β0n. Also, since G̃ is (ε, f, r)-dense with respect

to G(r) − τ−1
r (0) by assumption, we have for all e ∈ G̃(r) that

E|G̃[H0 ∪ {e}](f)(e)| = β
(fr)−1

0 |G̃[(G(r) − τ−1
r (0)) ∪ {e}](f)(e)| ≥ β

(fr)−1

0 εnf−r.

Using Corollary 2.5.14 and a union bound, it is then easy to see that whp H0 satis-

fies (2.10.15) for all e ∈ G̃(r).

Step 1.1: Defining ‘sparse’ induction graphs H`.

Consider ` ∈ [r−i−1] and let i′ := r−`. Let ξ` := ν8f ·f+1
` . By (b) and Lemma 2.10.20

(with G`, 3β`−1, ν`, ρ`µ, ρ
f−r
` ξ, i′ playing the roles of G, ε, ν, µ, ξ, i), there exists a subgraph

H` ⊆ G
(r)
` with ∆(H`) ≤ 1.1ν`n and the following property: for all L ⊆ G

(r)
` with

∆(L) ≤ 3β`−1n and every (r + 1)-graph O on V (G`) with ∆(O) ≤ 3β`−1n, the following

holds for G′ := G`[H`4 L]−O:

T i′ ,U i′ , (P i′r ,P i
′

f )[G′] form a diagonal-dominant (2.10.16)

(
√

3β`−1, ρ`µ, ξ`, f, r, i
′)-setup for G′.

Step 1.2: Defining ‘localised’ cleaning graphs J`.
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Again, consider ` ∈ [r − i− 1] and let i′ := r − `. Let

G∗` := G` − {e ∈ G(r)
` : e is T i′-important and τ`,r(e) < `}. (2.10.17)

We claim that G∗`(T )[UT ] = G`(T )[UT ] for every T ∈ T i′ . Indeed, consider any T ∈ T i′

and e ∈ G`(T )[UT ]. Hence, e ⊆ UT and e ∪ T ∈ G`. We need to show that e ∪ T ∈ G∗` ,

i.e. that there is no T i′-important r-subset e′ of e ∪ T with τ`,r(e
′) < `. However, if

e′ ∈
(
e∪T
r

)
is T i′-important, then |e ∪ T | ≥ |e′| = r and since G` is r-exclusive with

respect to T i′ by (I), we must have T ⊆ e′. As e′ \ T ⊆ e ⊆ UT , we deduce that

τ`,r(e
′) = |e′ ∩ UT | = |e′ \ T | = r − i′ = `.

Hence, by (c), for every T ∈ T i′ , G∗`(T )[UT ] is a (1.1ε, 0.9ξ, f− i′, r− i′)-supercomplex.

Thus, by Lemma 2.10.21 (with G∗` , 3ν`, ρ`µ, β`, 0.9ξ playing the roles of G, ε, µ, β, ξ), there

exists a subgraph J` ⊆ G
∗(r)
` with ∆(J`) ≤ 1.1β`n and the following property: for all

L ⊆ G
∗(r)
` with ∆(L) ≤ 3ν`n and every (r+ 1)-graph O on V (G∗`) with ∆(O) ≤ 3ν`n, the

following holds for G∗ := G∗` [J`4 L]−O:

G∗(T )[UT ] is a (
√

3ν`, 0.81ξβ
(8f )
` , f − i′, r − i′)-supercomplex for every T ∈ T i′ .

(2.10.18)

We have defined subgraphs H0, H1, . . . , Hr−i−1, J1, . . . , Jr−i−1 of G(r) − τ−1
r (0). Note

that they are not necessarily edge-disjoint. Let H∗0 := H0 and for all ` ∈ [r− i− 1] define

inductively

H ′` := H∗`−1 ∪H`,

H∗` := H∗`−1 ∪H` ∪ J` = H ′` ∪ J`,

H∗ := H∗r−i−1.

Clearly, ∆(H∗` ) ≤ 2β`n for all ` ∈ [r − i− 1]0 and ∆(H ′`) ≤ 2ν`n for all ` ∈ [r − i− 1]. In

particular, ∆(H∗) ≤ 2βr−i−1n ≤ νn, as desired.
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Step 2: Covering down

Let L∗ be any subgraph of G̃(r) with ∆(L∗) ≤ γn such that H∗∪L∗ is F -divisible with

respect to S,U , and let O∗ ⊆ G̃(r+1) with ∆(O∗) ≤ γn. We need to find a κ-well separated

F -packing F in G̃[H∗ ∪L∗]−O∗ which covers all edges of L∗, and covers all S-important

edges of H∗ except possibly some from τ−1
r (r − i). We will do so by inductively showing

that the following holds for all ` ∈ [r − i].

(#)` There exists a (3`
√
κ)-well separated F -packing F∗`−1 in G̃[H∗`−1 ∪L∗]−O∗ covering

all edges of L∗, and all S-important e ∈ H∗`−1 with τr(e) < `.

Clearly, (#)r−i establishes (i).

Claim 1: (#)1 is true.

Proof of claim: Let H ′0 := H0 ∪L∗ = H∗0 ∪L∗. By (2.10.15) and Proposition 2.5.7, for all

e ∈ L∗ we have that

|(G̃[H ′0]−O∗)(f)(e)| ≥ |G̃[H0 ∪ e](f)(e)| − 2rγnf−r ≥ 0.8β
(fr)
0 nf−r.

By Corollary 2.6.9, there is a 1-well separated F -packing F∗0 in G̃[H ′0] − O∗ covering all

edges of L∗. Since H∗0 does not contain any edges from τ−1
r (0), F∗0 satisfies (#)1. −

If i = r − 1, we can take F∗0 and complete the proof of (i). So assume that i < r − 1

and that Lemma 2.10.24 holds for larger values of i.

Suppose that for some ` ∈ [r − i− 1], F∗`−1 satisfies (#)`. Let i′ := r − ` > i. We will

now find a 3
√
κ-well separated F -packing F` in G[H∗` ]−F∗(r)`−1 −F

∗≤(r+1)
`−1 −O∗ such that

F` covers all edges of H∗` −F
∗(r)
`−1 that belong to τ−1

r (`).

Then F∗` := F∗`−1 ∪F` covers all edges of L∗ and all S-important e ∈ H∗` with τr(e) <

`+ 1. By Fact 2.5.4(ii), F∗` is (3`
√
κ+ 3

√
κ)-well separated, implying that (#)`+1 is true.

Crucially, by (II), all the edges of τ−1
r (`) that we seek to cover in this step are T i′-

important. We will obtain F` as the union of F◦` and F †` , where
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(COV1) F◦` is 2
√
κ-well separated F -packing in G[H∗` ]−F∗(r)`−1 −F

∗≤(r+1)
`−1 −O∗ which covers

all T i′-important edges of H∗` −F
∗(r)
`−1 except possibly some from τ−1

`,r (`);

(COV2) F †` is a
√
κ-well separated F -packing inG[H∗` ]−F∗(r)`−1−F

◦(r)
` −F∗≤(r+1)

`−1 −F◦≤(r+1)
` −O∗

which covers all T i′-important edges of H∗` −F
∗(r)
`−1 −F

◦(r)
` .

Since F †` and F◦` are (r+1)-disjoint, F` := F◦` ∪F
†
` is 3

√
κ-well separated by Fact 2.5.4(ii).

Clearly, F` covers all T i′-important edges of H∗` − F
∗(r)
`−1 , as required. We will obtain F◦`

by using (ii) of this lemma inductively, and F †` by an application of the Localised cover

down lemma (Lemma 2.10.8).

Recall that F -divisibility with respect to T i′ ,U i′ was defined in Definition 2.10.23. Let

H ′′` := H ′` −F
∗(r)
`−1 .

Claim 2: H ′′` is F -divisible with respect to T i′ ,U i′.

Proof of claim: Let T ∈ T i′ and b′ ⊆ V (G) \ T with |b′| ≤ r− i′− 1 and |b′ \UT | ≥ 1. We

have to show that Deg(F )i′+|b′| | |H ′′` (T ∪ b′)|. Let S := T �S and b := b′ ∪ (T \ S). Hence,

|b| = |b′|+ i′ − i. Clearly, b ⊆ V (G) \ S, |b| ≤ r− i− 1 and |b \US| ≥ |T \ S| ≥ 1. Hence,

since H∗ ∪ L∗ is F -divisible with respect to S,U by assumption, we have Deg(F )i+|b| |

|(H∗ ∪ L∗)(S ∪ b)|, and this implies that Deg(F )i+|b| | |((H∗ ∪ L∗) − F∗(r)`−1 )(S ∪ b)|. It is

thus sufficient to show that

H ′′` (T ∪ b′) = ((H∗ ∪ L∗)−F∗(r)`−1 )(S ∪ b).

Clearly, we have T ∪ b′ = S ∪ b and H ′′` ⊆ H∗ − F∗(r)`−1 . Conversely, observe that every

e ∈ H∗ ∪ L∗ that contains T ∪ b′ and is not covered by F∗`−1 must belong to H ′′` . Indeed,

since e contains T , we have that τr(e) ≤ r− i′ = `, so e ∈ H∗` . Moreover, by (#)` we must

have τr(e) ≥ `. Hence, τr(e) = `. But since |b′\UT | ≥ 1, we have τ`,r(e) < `. By (2.10.17),

e /∈ J`. Thus, e ∈ H ′`−F
∗(r)
`−1 = H ′′` . Hence, H ′′` (T ∪ b′) = ((H∗ ∪L∗)−F∗(r)`−1 )(S ∪ b). This

implies the claim. −

Let L′` := H ′′` 4H`. So H ′′` = H`4 L′`.
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Claim 3: L′` ⊆ G
(r)
` and ∆(L′`) ≤ 3β`−1n.

Proof of claim: Suppose, for a contradiction, that there is e ∈ H ′′` 4 H` with e /∈ G(r)
` .

Since H` ⊆ G
(r)
` , we must have e ∈ H ′′` = H ′` − F

∗(r)
`−1 . Thus, since e is not covered by

F∗`−1, (#)` implies that e is S-unimportant or τr(e) ≥ `, both contradicting e /∈ G(r)
` .

In order to see the second part, observe that L′` = ((H∗`−1∪H`)−F∗(r)`−1 )4H` ⊆ H∗`−1∪L∗

since F∗(r)`−1 ⊆ L∗ ∪H∗`−1. Thus, ∆(L′`) ≤ ∆(H∗`−1) + ∆(L∗) ≤ 3β`−1n. −

Note that Claim 3 implies that H ′′` ⊆ G
(r)
` . Let G`,ind := G`[H

′′
` ] − F∗≤(r+1)

`−1 − O∗.

By Fact 2.5.4(i) and (#)`, we have that ∆(F∗≤(r+1)
`−1 ∪ O∗) ≤ (3`

√
κ)(f − r) + γn ≤

2γn. Thus, by (2.10.16) and Claim 3, T i′ ,U i′ , (P i′r ,P i
′

f )[G`,ind] form a diagonal-dominant

(
√

3β`−1, ρ`µ, ξ`, f, r, i
′)-setup for G`,ind. We can thus apply Lemma 2.10.24(ii) inductively

with the following objects/parameters.

object/parameter G`,ind n
√

3β`−1 ρ`µ ξ` i′ T i′ Ui′ (Pi′r ,Pi
′
f )[G`,ind]

√
κ f r F

playing the role of G n ε µ ξ i S U (Pr,Pf ) κ f r F

Since G
(r)
`,ind = H ′′` is F -divisible with respect to T i′ ,U i′ by Claim 2, there exists a

2
√
κ-well separated F -packing F◦` in G`,ind covering all T i′-important edges of H ′′` except

possibly some from τ−1
`,r (r − i′) = τ−1

`,r (`). Note that H∗` − H ′` ⊆ J` and that every T i′-

important edge of J` lies in τ−1
`,r (`). Thus F◦` does indeed cover all T i′-important edges of

H∗` −F
∗(r)
`−1 except possibly some from τ−1

`,r (`), as required for (COV1).

We will now use J` to cover the remaining T i′-important edges of H∗` . Let J ′` :=

H∗` −F
∗(r)
`−1 −F

◦(r)
` . Let S∗i′ ∈

(
V (F )
i′

)
be such that F (S∗i′) is non-empty.

Claim 4: J ′`(T )[UT ] is F (S∗i′)-divisible for every T ∈ T i′.

Proof of claim: Let T ∈ T i′ and b′ ⊆ UT with |b′| ≤ r − i′ − 1. We have to show that

Deg(F (S∗i′))|b′| | |J ′`(T )[UT ](b′)|. Note that for every e ∈ J ′` ⊆ G
∗(r)
` containing T , we have

τ`,r(e) = r − i′. Thus, J ′`(T )[UT ] is identical with J ′`(T ) except for the different vertex

sets. It is thus sufficient to show that Deg(F (S∗i′))|b′| | |J ′`(T ∪ b′)|. By Proposition 2.5.3,

we have that Deg(F (S∗i′))|b′| = Deg(F )i′+|b′|. Let S := T �S and b := b′ ∪ (T \ S). By

assumption, H∗∪L∗ is F -divisible with respect to S,U . Thus, since S ∈ S, |b| ≤ r− i−1
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and |b \ US| ≥ |T \ S| ≥ 1, we have that Deg(F )i+|b| | |(H∗ ∪ L∗)(S ∪ b)|. This implies

that Deg(F )i+|b| | |((H∗ ∪ L∗) − F∗(r)`−1 − F
◦(r)
` )(S ∪ b)|. It is thus sufficient to prove that

J ′`(T ∪ b′) = ((H∗ ∪ L∗) − F∗(r)`−1 − F
◦(r)
` )(S ∪ b). Clearly, J ′` ⊆ H∗ − F∗(r)`−1 − F

◦(r)
` by

definition. Conversely, observe that every e ∈ (H∗ ∪ L∗) − F∗(r)`−1 − F
◦(r)
` that contains

T ∪ b′ must belong to J ′`. Indeed, since L∗ ⊆ F∗(r)`−1 , we have e ∈ H∗, and since e contains

T , we have τr(e) ≤ `. Hence, e ∈ H∗` and thus e ∈ J ′`. This implies the claim. −

Let L′′` := J ′`4 J`. So J ′` = J`4 L′′` .

Claim 5: L′′` ⊆ G
∗(r)
` and ∆(L′′` ) ≤ 3ν`n.

Proof of claim: Suppose, for a contradiction, that there is e ∈ J ′` 4 J` with e /∈ G
∗(r)
` .

By (2.10.14) and (2.10.17), the latter implies that e is S-important with τr(e) < ` or

T i′-important with τ`,r(e) < `. However, since J` ⊆ G
∗(r)
` , we must have e ∈ J ′` − J` and

thus e ∈ H ′` and e /∈ F∗(r)`−1 ∪ F
◦(r)
` . In particular, e ∈ H ′′` . Now, if e was S-important

with τr(e) < `, then e ∈ H ′` − H` ⊆ H∗`−1. But then e would be covered by F∗`−1, a

contradiction. So e must be T i′-important with τ`,r(e) < `. But since e ∈ H ′′` , e would be

covered by F◦` unless τ`,r(e) = `, a contradiction.

In order to see the second part, observe that

L′′` = ((H ′` ∪ J`)−F
∗(r)
`−1 −F

◦(r)
` )4 J` ⊆ H ′` ∪ L∗

since F∗(r)`−1 ∪ F
◦(r)
` ⊆ H ′` ∪ L∗. Thus, ∆(L′′` ) ≤ ∆(H ′`) + ∆(L∗) ≤ 3ν`n. −

Note that Claim 5 implies that J ′` ⊆ G
∗(r)
` . Let

G`,clean := G∗` [J
′
`]−F

∗≤(r+1)
`−1 −F◦≤(r+1)

` −O∗.

By (#)`, (COV1) and Fact 2.5.4(i), we have that

∆(F∗≤(r+1)
`−1 ∪ F◦≤(r+1)

` ∪O∗) ≤ (3`
√
κ)(f − r) + (2

√
κ)(f − r) + γn ≤ 2γn.
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Thus, by (2.10.18), Claim 4 and Claim 5, G`,clean(T )[UT ] is an F (S∗i′)-divisible (ρ`, β
(8f )+1
` , f−

i′, r − i′)-supercomplex for every T ∈ T i′ . Moreover, whenever there are T ∈ T (i′) and

e ∈ G
(r)
`,clean ⊆ G

∗(r)
` with T ⊆ e, then |(e \ T ) ∩ UT | = τ`,r(e) = ` = |e \ T | and thus

e \ T ⊆ UT . By (I), G`,clean ⊆ G` is r-exclusive with respect to T i′ , and by (a), U i′

is a (µ, ρ`, r)-focus for T i′ . We can therefore apply the Localised cover down lemma

(Lemma 2.10.8) with the following objects/parameters.

object/parameter n ρ` µ β
(8f )+1
` i′ G`,clean T i′ U i′ r f F S∗i′

playing the role of n ρ ρsize ξ i G S U r f F S∗

This yields a ρ
−1/12
` -well separated F -packing F †` in G`,clean covering all T i′-important

edges of G
(r)
`,clean = J ′` = H∗` − F

∗(r)
`−1 − F

◦(r)
` . Thus F †` is as required in (COV2). As

observed before, this completes the proof of (#)`+1 and thus the proof of (i). �

Proof of (ii).

Let Y ⊆ G(f) and A ∈ [0, 1](r+1)×(f+1) be such that (S1)–(S4) hold. We assume that

G(r) is F -divisible with respect to S,U and that A is diagonal-dominant.

Claim 6: G is (ξ − ε, f, r)-dense with respect to G(r) − τ−1
r (0).

Proof of claim: Let e ∈ G(r) and let `′ ∈ [r + 1] be such that e ∈ Pr(`′). Suppose first

that `′ ≤ i. Then no f -set from Pf (`′) contains any edge from τ−1
r (0) (as such an f -set is

S-unimportant). Recall from (S2) for S,U , (Pr,Pf ) that G[Y ] is (ε, A, f, r)-regular with

respect to (Pr,Pf [Y ]) and min\\r−i+1(A) ≥ ξ. Thus,

|G[(G(r) − τ−1
r (0)) ∪ e](f)(e)| ≥ |(Y ∩ Pf (`′))(e)| ≥ (a`′,`′ − ε)nf−r ≥ (ξ − ε)nf−r.

If `′ > i+1, then by (P2′) in Proposition 2.10.12, no f -set from Pf (f−r+`′) contains

any edge from τ−1
r (0). Thus, we have

|G[(G(r) − τ−1
r (0)) ∪ e](f)(e)| ≥ (a`′,f−r+`′ − ε)nf−r ≥ (ξ − ε)nf−r.
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If `′ = i + 1, then Pr(`′) = τ−1
r (0) by (P2′). However, every f -set from τ−1

f (f − r) =

Pf (f − r + `′) that contains e contains no other edge from τ−1
r (0). Thus,

|G[(G(r) − τ−1
r (0)) ∪ e](f)(e)| ≥ (a`′,f−r+`′ − ε)nf−r ≥ (ξ − ε)nf−r.

−

By Claim 6, we can choose H∗ ⊆ G(r)− τ−1
r (0) such that (i) holds with G playing the

role of G̃. Let

Hnibble := G(r) −H∗.

Recall that by (S2), G[Y ] is (ε, A, f, r)-regular with respect to (Pr,Pf [Y ]), and (S3)

implies that G[Y ] is (µfξ, f + r, r)-dense. Let

Gnibble := (G[Y ])[Hnibble].

Using Proposition 2.5.7, it is easy to see that Gnibble is (2r+1ν,A, f, r)-regular with respect

to (Pr,Pf )[Gnibble]. Moreover, by Proposition 2.5.9(ii), Gnibble is (µfξ/2, f + r, r)-dense.

Thus, by Lemma 2.10.17, there exists Y ∗ ⊆ G
(f)
nibble such that Gnibble[Y

∗] is (
√
ν, d, f, r)-

regular for d := min\(A) ≥ ξ and (0.45µfξ(µfξ/8(f + 1))(
f+r
f ), f + r, r)-dense. Thus,

by Lemma 2.6.5 there is a κ-well separated F -packing Fnibble in Gnibble[Y
∗] such that

∆(Lnibble) ≤ γn, where Lnibble := Gnibble[Y
∗](r) − F (r)

nibble = Hnibble − F (r)
nibble. Since G(r) is

F -divisible with respect to S,U , we clearly have that H∗ ∪ Lnibble = G(r) − F (r)
nibble is F -

divisible with respect to S,U . By Fact 2.5.4(i), we have that ∆(F≤(r+1)
nibble ) ≤ κ(f−r) ≤ γn.

Thus, by (i), there exists a κ-well separated F -packing F∗ in G[H∗ ∪ Lnibble] − F≤(r+1)
nibble

which covers all edges of Lnibble, and all S-important edges of H∗ except possibly some

from τ−1
r (r−i). But then, by Fact 2.5.4(ii), Fnibble∪F∗ is a 2κ-well separated F -packing in

G which covers all S-important r-edges except possibly some from τ−1
r (r− i), completing

the proof. �

This completes the proof of Lemma 2.10.24. �
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2.11 Achieving divisibility

It remains to show that we can turn every F -divisible r-graph G into an F ∗-divisible

r-graph G′ by removing a sparse F -decomposable subgraph of G, that is, to prove

Lemma 2.9.4. Note that in Lemma 2.9.4, we do not need to assume that F ∗ is weakly

regular. On the other hand, our argument heavily relies on the assumption that F ∗ is

F -decomposable.

We first sketch the argument. Let F ∗ be F -decomposable, let bk := Deg(F ∗)k and

hk := Deg(F )k. Clearly, we have hk | bk. First, consider the case k = 0. Then b0 = |F ∗|

and h0 = |F |. We know that |G| is divisible by h0. Let 0 ≤ x < b0 be such that |G| ≡ x

mod b0. Since h0 divides |G| and b0, it follows that x = ah0 for some 0 ≤ a < b0/h0.

Thus, removing a edge-disjoint copies of F from G yields an r-graph G′ such that |G′| =

|G| − ah0 ≡ 0 mod b0, as desired. This will in fact be the first step of our argument.

We then proceed by achieving Deg(G′)1 ≡ 0 mod b1. Suppose that the vertices of G′

are ordered v1, . . . , vn. We will construct a degree shifter which will fix the degree of v1

by allowing the degree of v2 to change, whereas all other degrees are unaffected (modulo

b1). Step by step, we will fix all the degrees from v1, . . . , vn−1. Fortunately, the degree of

vn will then automatically be divisible by b1. For k > 1, we will proceed similarly, but the

procedure becomes more intricate. It is in general impossible to shift degree from one k-

set to another one without affecting the degrees of any other k-set. Roughly speaking, the

degree shifter will contain a set of 2k special ‘root vertices’, and the degrees of precisely

2k k-subsets of this root set change, whereas all other k-degrees are unaffected (modulo

bk). This will allow us to fix all the degrees of k-sets in G′ except the ones inside some

final (2k− 1)-set, where we use induction on k as well. Fortunately, the remaining k-sets

will again automatically satisfy the desired divisibility condition (cf. Lemma 2.11.5).

The proof of Lemma 2.9.4 divides into three parts. In the first subsection, we will

construct the degree shifters. In the second subsection, we show on a very abstract level

(without considering a particular host graph) how the shifting has to proceed in order

to achieve overall divisibility. Finally, we will prove Lemma 2.9.4 by embedding our
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constructed shifters (using Lemma 2.5.20) according to the given shifting procedure.

2.11.1 Degree shifters

The aim of this subsection is to show the existence of certain r-graphs which we call degree

shifters. They allow us to locally ‘shift’ degree among the k-sets of some host graph G.

Definition 2.11.1 (x-shifter). Let 1 ≤ k < r and let F, F ∗ be r-graphs. Given an r-graph

Tk and distinct vertices x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k of Tk, we say that Tk is an (x0

1, . . . , x
0
k, x

1
1, . . . , x

1
k)-

shifter with respect to F, F ∗ if the following hold:

(SH1) Tk has a 1-well separated F -decomposition F such that for all F ′ ∈ F and all i ∈ [k],

|V (F ′) ∩ {x0
i , x

1
i }| ≤ 1;

(SH2) |Tk(S)| ≡ 0 mod Deg(F ∗)|S| for all S ⊆ V (Tk) with |S| < k;

(SH3) for all S ∈
(
V (Tk)
k

)
,

|Tk(S)| ≡


(−1)

∑
i∈[k] ziDeg(F )k mod Deg(F ∗)k if S = {xzii : i ∈ [k]},

0 mod Deg(F ∗)k otherwise.

We will now show that such shifters exist. Ultimately, we seek to find them as rooted

subgraphs in some host graph G. Therefore, we impose additional conditions which will

allow us to apply Lemma 2.5.20.

Lemma 2.11.2. Let 1 ≤ k < r, let F, F ∗ be r-graphs and suppose that F ∗ has a 1-well

separated F -decomposition F . Let f ∗ := |V (F ∗)|. There exists an (x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k)-

shifter Tk with respect to F, F ∗ such that Tk[X] is empty and Tk has degeneracy at most(
f∗−1
r−1

)
rooted at X, where X := {x0

1, . . . , x
0
k, x

1
1, . . . , x

1
k}.

In order to prove Lemma 2.11.2, we will first prove a multigraph version (Lemma 2.11.4),

which is more convenient for our construction. We will then recover the desired (simple)
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r-graph by applying an operation similar to the extension operator ∇(F,e0) defined in Sec-

tion 2.8.2. The difference is that instead of extending every edge to a copy of F , we will

consider an F -decomposition of the multigraph shifter and then extend every copy of F

in this decomposition to a copy of F ∗ (and then delete the original multigraph).

For a word w = w1 . . . wk ∈ {0, 1}k, let |w|0 denote the number of 0’s in w and let |w|1

denote the number of 1’s in w. Let We(k) be the set of words w ∈ {0, 1}k with |w|1 being

even, and let Wo(k) be the set of words w ∈ {0, 1}k with |w|1 being odd.

Fact 2.11.3. For every k ≥ 1, |We(k)| = |Wo(k)| = 2k−1.

Lemma 2.11.4. Let 1 ≤ k < r and let F, F ∗ be r-graphs such that F ∗ is F -decomposable.

Let x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k be distinct vertices. There exists a multi-r-graph T ∗k which sat-

isfies (SH1)–(SH3), except that F does not need to be 1-well separated.

Proof. Let Sk :=
(
V (F )
k

)
. For every S∗ ∈ Sk, we will construct a multi-r-graph Tk,S∗ such

that x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k ∈ V (Tk,S∗) and

(sh1) Tk,S∗ has an F -decomposition F such that for all F ′ ∈ F and all i ∈ [k], |V (F ′) ∩

{x0
i , x

1
i }| ≤ 1;

(sh2) |Tk,S∗(S)| ≡ 0 mod Deg(F ∗)|S| for all S ⊆ V (Tk,S∗) with |S| < k;

(sh3) for all S ∈
(
V (Tk,S∗ )

k

)
,

|Tk,S∗(S)| ≡


(−1)

∑
i∈[k] zi |F (S∗)| mod Deg(F ∗)k if S = {xzii : i ∈ [k]},

0 mod Deg(F ∗)k otherwise.

Following from this, it easy to construct T ∗k by overlaying the above multi-r-graphs Tk,S∗ .

Indeed, there are integers (a′S∗)S∗∈Sk such that
∑

S∗∈Sk a
′
S∗|F (S∗)| = Deg(F )k. Hence,

there are positive integers (aS∗)S∗∈Sk such that

∑
S∗∈Sk

aS∗ |F (S∗)| ≡ Deg(F )k mod Deg(F ∗)k. (2.11.1)
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Therefore, we take T ∗k to be the union of aS∗ copies of Tk,S∗ for each S∗ ∈ Sk. Then T ∗k

has the desired properties.

Let S∗ ∈ Sk. It remains to construct Tk,S∗ . Let X0 := {x0
1, . . . , x

0
k} and X1 :=

{x1
1, . . . , x

1
k}. We may assume that V (F ∗)∩(X0∪X1) = ∅. Let F∗ be an F -decomposition

of F ∗ and F ′ ∈ F∗. Let X = {x1, . . . , xk} ⊆ V (F ′) be the k-set which plays the role of

S∗ in F ′, in particular |F ′(X)| = |F (S∗)|. We first define an auxiliary r-graph T1,xk as

follows: Let F ′′ be obtained from F ′ by replacing xk with a new vertex x̂k. Then let

T1,xk := (F ∗ − F ′) ·∪ F ′′.

Clearly, (F∗ \ {F ′}) ∪ {F ′′} is an F -decomposition of T1,xk . Moreover, observe that for

every set S ⊆ V (T1,xk) with |S| < r, we have

|T1,xk(S)| =



0 if {xk, x̂k} ⊆ S;

|F ∗(S)| if {xk, x̂k} ∩ S = ∅;

|F ∗(S)| − |F ′(S)| if xk ∈ S, x̂k /∈ S;

|F ′′(S)| = |F ′((S \ {x̂k}) ∪ {xk})| if xk /∈ S, x̂k ∈ S.

(2.11.2)

We now overlay copies of T1,xk in a suitable way in order to obtain the multi-r-graph Tk,S∗ .

The vertex set of Tk,S∗ will be

V (Tk,S∗) = (V (F ∗) \X) ·∪X0 ·∪X1.

For every word w = w1 . . . wk−1 ∈ {0, 1}k−1, let Tw be a copy of T1,xk , where

(a) for each i ∈ [k − 1], xwii plays the role of xi (and x1−wi
i /∈ V (Tw));

(b) if |w|1 is odd, then x0
k plays the role of xk and x1

k plays the role of x̂k, whereas if

|w|1 is even, then x0
k plays the role of x̂k and x1

k plays the role of xk;

(c) the vertices in V (T1,xk) \ {x1, . . . , xk−1, xk, x̂k} keep their role.
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Let

Tk,S∗ :=
⋃

w∈{0,1}k−1

Tw.

(Note that if k = 1, then Tk,S∗ is just a copy of T1,xk , where x0
1 plays the role of x̂1 and x1

1

plays the role of x1.) We claim that Tk,S∗ satisfies (sh1)–(sh3). Clearly, (sh1) is satisfied

because each Tw is a copy of T1,xk which is F -decomposable, and for all w ∈ {0, 1}k−1 and

all i ∈ [k − 1], |V (Tw) ∩ {x0
i , x

1
i }| = 1, and since xk /∈ V (F ′′).

We will now use (2.11.2) in order to determine an expression for |Tk,S∗(S)| (see (2.11.3))

which will imply (sh2) and (sh3). Call S ⊆ V (Tk,S∗) degenerate if {x0
i , x

1
i } ⊆ S for some

i ∈ [k]. Clearly, if S is degenerate, then |Tw(S)| = 0 for all w ∈ {0, 1}k−1. If S ⊆ V (Tk,S∗)

is non-degenerate, define I(S) as the set of all indices i ∈ [k] such that |S ∩ {x0
i , x

1
i }| = 1,

and define the ‘projection’

π(S) := (S \ (X0 ∪X1)) ∪ {xi : i ∈ I(S)}.

Clearly, π(S) ⊆ V (F ∗) and |π(S)| = |S|. Note that if S ⊆ V (Tw) and k /∈ I(S), then S

plays the role of π(S) ⊆ V (T1,xk) in Tw by (a). For i ∈ I(S), let zi(S) ∈ {0, 1} be such

that S ∩ {x0
i , x

1
i } = {xzi(S)

i }, and let z(S) :=
∑

i∈I(S) zi(S). We claim that the following

holds:

|Tk,S∗(S)| ≡


(−1)z(S)|F ′(π(S))| mod Deg(F ∗)|S| if S is non-degenerate

and |I(S)| = k;

0 mod Deg(F ∗)|S| otherwise.

(2.11.3)

As seen above, if S is degenerate, then we have |Tk,S∗(S)| = 0. From now on, we assume

that S is non-degenerate. Let W (S) be the set of words w = w1 . . . wk−1 ∈ {0, 1}k−1 such

that wi = zi(S) for all i ∈ I(S)\{k}. Clearly, if w ∈ {0, 1}k−1\W (S), then |Tw(S)| = 0 by

(a). Suppose that w ∈ W (S). If k /∈ I(S), then S plays the role of π(S) in Tw and hence

we have |Tw(S)| = |T1,xk(π(S))| = |F ∗(π(S))| by (2.11.2). It follows that |Tk,S∗(S)| ≡ 0

174



mod Deg(F ∗)|S|, as required.

From now on, suppose that k ∈ I(S). Let

We(S) := {w ∈ W (S) : |w|1 + zk(S) is even};

Wo(S) := {w ∈ W (S) : |w|1 + zk(S) is odd}.

By (b), we know that x
zk(S)
k plays the role of xk in Tw if w ∈ Wo(S) and the role of x̂k if

w ∈ We(S). Hence, if w ∈ Wo(S) then S plays the role of π(S) in Tw, and if w ∈ We(S),

then S plays the role of (π(S) \ {xk}) ∪ {x̂k} in Tw. Thus, we have

|Tw(S)| =


|T1,xk(π(S))| (2.11.2)

= |F ∗(π(S))| − |F ′(π(S))| if w ∈ Wo(S);

|T1,xk((π(S) \ {xk}) ∪ {x̂k})|
(2.11.2)

= |F ′(π(S))| if w ∈ We(S);

0 if w /∈ W (S).

It follows that

|Tk,S∗(S)| =
∑

w∈{0,1}k−1

|Tw(S)| ≡ (|We(S)| − |Wo(S)|)|F ′(π(S))| mod Deg(F ∗)|S|.

Observe that

|We(S)| = |{w′ ∈ {0, 1}k−|I(S)| : |w′|1 + z(S) is even}|;

|Wo(S)| = |{w′ ∈ {0, 1}k−|I(S)| : |w′|1 + z(S) is odd}|.

Hence, if |I(S)| < k, then by Fact 2.11.3 we have |We(S)| = |Wo(S)| = 2k−|I(S)|−1. If

|I(S)| = k, then |We(S)| = 1 if z(S) is even and |We(S)| = 0 if z(S) is odd, and for

Wo(S), the reverse holds. Altogether, this implies (2.11.3).

It remains to show that (2.11.3) implies (sh2) and (sh3). Clearly, (sh2) holds. Indeed, if

|S| < k, then S is degenerate or we have |I(S)| < k, and (2.11.3) implies that |Tk,S∗(S)| ≡

0 mod Deg(F ∗)|S|.
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Finally, consider S ∈
(
V (Tk,S∗ )

k

)
. If S does not have the form {xzii : i ∈ [k]} for

suitable z1, . . . , zk ∈ {0, 1}, then S is degenerate or |I(S)| < k and (2.11.3) implies that

|Tk,S∗(S)| ≡ 0 mod Deg(F ∗)k, as required. Assume now that S = {xzii : i ∈ [k]} for

suitable z1, . . . , zk ∈ {0, 1}. Then S is not degenerate, I(S) = [k], z(S) =
∑

i∈[k] zi and

π(S) = {x1, . . . , xk} = X, in which case (2.11.3) implies that

|Tk,S∗(S)| ≡ (−1)z(S)|F ′(X)| = (−1)z(S)|F (S∗)| mod Deg(F ∗)k,

as required for (sh3). �

Proof of Lemma 2.11.2. By applying Lemma 2.11.4 (with x0
k and x1

k swapping their

roles), we can see that there exists a multi-r-graph T ∗k with x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k ∈ V (T ∗k )

such that the following properties hold:

• T ∗k has an F -decomposition {F1, . . . , Fm} such that for all j ∈ [m] and all i ∈ [k],

we have |V (Fj) ∩ {x0
i , x

1
i }| ≤ 1;

• |T ∗k (S)| ≡ 0 mod Deg(F ∗)|S| for all S ⊆ V (T ∗k ) with |S| < k;

• for all S ∈
(
V (T ∗k )
k

)
,

|T ∗k (S)| ≡


(−1)

∑
i∈[k−1] zi+(1−zk)Deg(F )k mod Deg(F ∗)k if S = {xzii : i ∈ [k]},

0 mod Deg(F ∗)k otherwise.

Let f := |V (F )|. For every j ∈ [m], let Zj be a set of f ∗ − f new vertices, such that

Zj ∩Zj′ = ∅ for all distinct j, j′ ∈ [m] and Zj ∩ V (T ∗k ) = ∅ for all j ∈ [m]. Now, for every

j ∈ [m], let F ∗j be a copy of F ∗ on vertex set V (Fj) ∪ Zj such that Fj ∪ {Fj} is a 1-well

separated F -decomposition of F ∗j . In particular, we have that

(a) (F ∗j − Fj)[V (Fj)] is empty;
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(b) Fj is a 1-well separated F -decomposition of F ∗j − Fj such that for all F ′ ∈ Fj,

|V (F ′) ∩ V (Fj)| ≤ r − 1.

Let

Tk :=
⋃̇
j∈[m]

(F ∗j − Fj).

We claim that Tk is the desired shifter. First, observe that Tk is a (simple) r-graph

since (F ∗j − Fj)[V (Fj)] is empty for every j ∈ [m] by (a). Moreover, since F1, . . . ,Fm

are r-disjoint by (b), Fact 2.5.4(iii) implies that F := F1 ∪ · · · ∪ Fm is a 1-well separated

F -decomposition of Tk, and for each j ∈ [m], all F ′ ∈ Fj and all i ∈ [k], we have

|V (F ′) ∩ {x0
i , x

1
i }| ≤ |V (Fj) ∩ {x0

i , x
1
i }| ≤ 1. Thus, (SH1) holds.

Moreover, note that for every j ∈ [m], we have |(F ∗j −Fj)(S)| ≡ −|Fj(S)| mod Deg(F ∗)|S|

for all S ⊆ V (Tk) with |S| ≤ r − 1. Thus,

|Tk(S)| ≡
∑
j∈[m]

−|Fj(S)| = −|T ∗k (S)| mod Deg(F ∗)|S|

for all S ⊆ V (Tk) with |S| ≤ r− 1. Hence, (SH2) clearly holds. If S = {xzii : i ∈ [k]} for

suitable z1, . . . , zk ∈ {0, 1}, then

|Tk(S)| ≡ −|T ∗k (S)| ≡ (−1)
∑
i∈[k] ziDeg(F )k mod Deg(F ∗)k

and (SH3) holds. Thus, Tk is indeed an (x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k)-shifter with respect to F, F ∗.

Finally, to see that Tk has degeneracy at most
(
f∗−1
r−1

)
rooted at X, consider the vertices

of V (Tk) \ X in an ordering where the vertices of V (T ∗k ) \ X precede all the vertices in

sets Zj, for j ∈ [m]. Note that Tk[V (T ∗k )] is empty by (a), i.e. a vertex in V (T ∗k ) \X has

no ‘backward’ edges. Moreover, if z ∈ Zj for some j ∈ [m], then |Tk({z})| = |F ∗j ({z})| ≤(
f∗−1
r−1

)
. �
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2.11.2 Shifting procedure

In the previous section, we constructed degree shifters which allow us to locally change

the degrees of k-sets in some host graph. We will now show how to combine these local

shifts in order to transform any given F -divisible r-graph G into an F ∗-divisible r-graph.

It turns out to be more convenient to consider the shifting for ‘r-set functions’ rather than

r-graphs. We will then recover the graph theoretical statement by considering a graph as

an indicator set function (see below).

Let φ :
(
V
r

)
→ Z. (Think of φ as the multiplicity function of a multi-r-graph.) We

extend φ to φ :
⋃
k∈[r]0

(
V
k

)
→ Z by defining for all S ⊆ V with |S| = k ≤ r,

φ(S) :=
∑

S′∈(Vr):S⊆S′

φ(S ′). (2.11.4)

Thus for all 0 ≤ i ≤ k ≤ r and all S ∈
(
V
i

)
,

(
r − i
k − i

)
φ(S) =

∑
S′∈(Vk):S⊆S′

φ(S ′). (2.11.5)

For k ∈ [r − 1]0 and b0, . . . , bk ∈ N, we say that φ is (b0, . . . , bk)-divisible if b|S| | φ(S)

for all S ⊆ V with |S| ≤ k.

If G is an r-graph with V (G) ⊆ V , we define 1G :
(
V
r

)
→ Z as

1G(S) :=


1 if S ∈ G;

0 if S /∈ G.

and extend 1G as in (2.11.4). Hence, for a set S ⊆ V with |S| < r, we have 1G(S) =

|G(S)|. Thus, (2.11.5) corresponds to the handshaking lemma for r-graphs (cf. (2.5.1)).

Clearly, if G and G′ are edge-disjoint, then we have 1G + 1G′ = 1G∪G′ . Moreover, for an

r-graph F , G is F -divisible if and only if 1G is (Deg(F )0, . . . , Deg(F )r−1)-divisible.

As mentioned before, our strategy is to successively fix the degrees of k-sets until we
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have fixed the degrees of all k-sets except possibly the degrees of those k-sets contained

in some final vertex set K which is too small as to continue with the shifting. However,

as the following lemma shows, divisibility is then automatically satisfied for all the k-sets

lying inside K. For this to work it is essential that the degrees of all i-sets for i < k are

already fixed.

Lemma 2.11.5. Let 1 ≤ k < r and b0, . . . , bk ∈ N be such that
(
r−i
k−i

)
bi ≡ 0 mod bk for

all i ∈ [k]0. Let φ :
(
V
r

)
→ Z be a (b0, . . . , bk−1)-divisible function. Suppose that there

exists a subset K ⊆ V of size 2k − 1 such that if S ∈
(
V
k

)
with φ(S) 6≡ 0 mod bk, then

S ⊆ K. Then φ is (b0, . . . , bk)-divisible.

Proof. Let K be the set of all subsets T ′′ of K of size less than k. We first claim that

for all T ′′ ∈ K, we have

∑
T ′∈(Kk) : T ′′⊆T ′

φ(T ′) ≡ 0 mod bk. (2.11.6)

Indeed, suppose that |T ′′| = i < k, then we have

∑
T ′∈(Kk) : T ′′⊆T ′

φ(T ′) ≡
∑

T ′∈(Vk) : T ′′⊆T ′

φ(T ′)
(2.11.5)

=

(
r − i
k − i

)
φ(T ′′) mod bk.

Since φ is (b0, . . . , bk−1)-divisible, we have φ(T ′′) ≡ 0 mod bi, and since
(
r−i
k−i

)
bi ≡ 0

mod bk, the claim follows.

Let T ∈
(
K
k

)
. We need to show that φ(T ) ≡ 0 mod bk. To this end, define the

function f : K → Z as

f(T ′′) :=


(−1)|T

′′| if T ′′ ⊆ K \ T ;

0 otherwise.

179



We claim that for all T ′ ∈
(
K
k

)
, we have

∑
T ′′(T ′

f(T ′′) =


1 if T ′ = T ;

0 otherwise.

(2.11.7)

Indeed, let T ′ ∈
(
K
k

)
, and set t := |T ′ \ T |. We then check that (using |K| < 2k in the

first equality)

∑
T ′′(T ′

f(T ′′) =
∑

T ′′⊆(K\T )∩T ′
(−1)|T

′′| =
t∑

j=0

(−1)j
(
t

j

)
=


1 if t = 0;

0 if t > 0.

We can now conclude that

φ(T )
(2.11.7)

=
∑

T ′∈(Kk)

φ(T ′)
∑
T ′′(T ′

f(T ′′) =
∑
T ′′∈K

f(T ′′)

 ∑
T ′∈(Kk) : T ′′⊆T ′

φ(T ′)

 (2.11.6)
≡ 0 mod bk,

as desired. �

We now define a more abstract version of degree shifters, which we call adapters. They

represent the effect of shifters and will finally be replaced by shifters again.

Definition 2.11.6 (x-adapter). Let V be a vertex set and k, r, b0, . . . , bk, hk ∈ N be such

that k < r and hk | bk. For distinct vertices x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k in V , we say that

τ :
(
V
r

)
→ Z is an (x0

1, . . . , x
0
k, x

1
1, . . . , x

1
k)-adapter with respect to (b0, . . . , bk;hk) if τ is

(b0, . . . , bk−1)-divisible and for all S ∈
(
V
k

)
,

τ(S) ≡


(−1)

∑
i∈[k] zihk mod bk if S = {xzii : i ∈ [k]},

0 mod bk otherwise.

Note that such an adapter τ is (b0, . . . , bk−1, hk)-divisible.
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Fact 2.11.7. If T is an x-shifter with respect to F, F ∗, then 1T is an x-adapter with

respect to (Deg(F ∗)0, . . . , Deg(F ∗)k;Deg(F )k).

The following definition is crucial for the shifting procedure. Given some function

φ, we intend to add adapters in order to obtain a divisible function. Every adapter is

characterised by a tuple x consisting of 2k distinct vertices, which tells us where to apply

the adapter. All these tuples are contained within a multiset Ω, which we call a balancer.

Ω is capable of dealing with any input function φ in the sense that there is a multisubset

of Ω which tells us where to apply the adapters in order to make φ divisible. Moreover,

as we finally want to replace the adapters by shifters (and thus embed them into some

host graph), there must not be too many of them.

Definition 2.11.8 (balancer). Let r, k, b0, . . . , bk ∈ N with k < r and let U, V be sets

with U ⊆ V . Let Ωk be a multiset containing ordered tuples x = (x1, . . . , x2k), where

x1, . . . , x2k ∈ U are distinct. We say that Ωk is a (b0, . . . , bk)-balancer for V with uniformity

r acting on U if for any hk ∈ N with hk | bk, the following holds: let φ :
(
V
r

)
→ Z be any

(b0, . . . , bk−1, hk)-divisible function such that S ⊆ U whenever S ∈
(
V
k

)
and φ(S) 6≡ 0

mod bk. There exists a multisubset Ω′ of Ωk such that φ + τΩ′ is (b0, . . . , bk)-divisible,

where τΩ′ :=
∑

x∈Ω′ τx and τx is any x-adapter with respect to (b0, . . . , bk;hk).

For a set S ∈
(
V
k

)
, let degΩk

(S) be the number of x = (x1, . . . , x2k) ∈ Ωk such that

|S ∩ {xi, xi+k}| = 1 for all i ∈ [k]. Furthermore, we denote ∆(Ωk) to be the maximum

value of degΩk
(S) over all S ∈

(
V
k

)
.

The following lemma shows that these balancers exist, i.e. that the local shifts per-

formed by the degree shifters guaranteed by Lemma 2.11.2 are sufficient to obtain global

divisibility (for which we apply Lemma 2.11.5).

Lemma 2.11.9. Let 1 ≤ k < r. Let b0, . . . , bk ∈ N be such that
(
r−s
k−s

)
bs ≡ 0 mod bk

for all s ∈ [k]0. Let U be a set of n ≥ 2k vertices and U ⊆ V . Then there exists a

(b0, . . . , bk)-balancer Ωk for V with uniformity r acting on U such that ∆(Ωk) ≤ 2k(k!)2bk.
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Proof. We will proceed by induction on k. First, consider the case when k = 1.

Write U = {v1, . . . , vn}. Define Ω1 to be the multiset containing precisely b1− 1 copies of

(vj, vj+1) for all j ∈ [n− 1]. Note that ∆(Ω1) ≤ 2b1.

We now show that Ω1 is a (b0, b1)-balancer for V with uniformity r acting on U . Let

φ :
(
V
r

)
→ Z be (b0, h1)-divisible for some h1 ∈ N with h1 | b1, such that v ∈ U whenever

v ∈ V and φ({v}) 6≡ 0 mod b1. Let m0 := 0. For each j ∈ [n − 1], let 0 ≤ mj < b1 be

such that (mj−1−mj)h1 ≡ φ({vj}) mod b1. Let Ω′ ⊆ Ω1 consist of precisely mj copies of

(vj, vj+1) for all j ∈ [n− 1]. Let τ :=
∑

x∈Ω′ τx, where τx is an x-adapter with respect to

(b0, b1;h1), and let φ′ := φ+ τ . Clearly, φ′ is (b0)-divisible. Note that, for all j ∈ [n− 1],

τ({vj}) ≡ mj−1τ(vj−1,vj)({vj}) +mjτ(vj ,vj+1)({vj}) mod b1

≡ (−mj−1 +mj)h1 ≡ −φ({vj}) mod b1, (2.11.8)

implying that φ′({vj}) ≡ 0 mod b1 for all j ∈ [n − 1]. Moreover, for all v ∈ V \ U ,

we have φ({v}) ≡ 0 mod b1 by assumption and τ({v}) ≡ 0 mod b1 since no element of

Ω1 contains v. Thus, by Lemma 2.11.5 (with {vn} playing the role of K), φ′ is (b0, b1)-

divisible, as required.

We now assume that k > 1 and that the statement holds for smaller k. Again,

write U = {v1, . . . , vn}. For every ` ∈ [n], let U` := {vj : j ∈ [`]}. We construct Ωk

inductively. For each ` ∈ {2k, . . . , n}, we define a multiset Ωk,` as follows. Let Ωk−1,`−1

be a (b1, . . . , bk)-balancer for V \ {v`} with uniformity r − 1 acting on U`−1 and

∆(Ωk−1,`−1) ≤ 2k−1(k − 1)!2bk.

(Indeed, Ωk−1,`−1 exists by our induction hypothesis with r− 1, k− 1, b1, . . . , bk, U`−1, V \

{v`} playing the roles of r, k, b0, . . . , bk, U, V .) For each v = (vj1 , . . . , vj2k−2
) ∈ Ωk−1,`−1,

let

v′ := (v`, vj1 , . . . , vjk−1
, vjv , vjk , . . . , vj2k−2

) ∈ U` × U2k−1
`−1 , (2.11.9)
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such that jv ∈ {` − 2k + 1, . . . , `} \ {`, j1, . . . , j2k−2} (which exists since ` ≥ 2k). We let

Ωk,` := {v′ : v ∈ Ωk−1,`−1}. Now, define

Ωk :=
n⋃

`=2k

Ωk,`.

Claim 1: ∆(Ωk) ≤ 2k(k!)2bk

Proof of claim: Consider any S ∈
(
V
k

)
. Clearly, if S 6⊆ U , then degΩk

(S) = 0, so assume

that S ⊆ U . Let i0 be the largest i ∈ [n] such that vi ∈ S.

First note that for all ` ∈ {2k, . . . , n}, we have

degΩk,`
(S) ≤

∑
v∈S

degΩk−1,`−1
(S \ {v}) ≤ k∆(Ωk−1,`−1).

On the other hand, we claim that if ` < i0 or ` ≥ i0 + 2k, then degΩk,`
(S) = 0. Indeed,

in the first case, we have S 6⊆ U` which clearly implies that degΩk,`
(S) = 0. In the latter

case, for any v ∈ Ωk−1,`−1, we have jv ≥ `−2k+1 > i0 and thus |S∩{v`, vjv}| = 0, which

also implies degΩk,`
(S) = 0. Therefore,

degΩk
(S) =

n∑
`=2k

degΩk,`
(S) ≤ 2k2∆(Ωk−1,`−1) ≤ 2k(k!)2bk,

as required. −

We now show that Ωk is indeed a (b0, . . . , bk)-balancer on V with uniformity r acting

on U . The key to this is the following claim, which we will apply repeatedly.

Claim 2: Let 2k ≤ ` ≤ n. Let φ` :
(
V
r

)
→ Z be any (b0, . . . , bk−1, hk)-divisible function

for some hk ∈ N with hk | bk. Suppose that if φ`(S) 6≡ 0 mod bk for some S ∈
(
V
k

)
, then

S ⊆ U`. Then there exists Ω′k,` ⊆ Ωk,` such that φ`−1 := φ` + τΩ′k,`
is (b0, . . . , bk−1, hk)-

divisible and if φ`−1(S) 6≡ 0 mod bk for some S ∈
(
V
k

)
, then S ⊆ U`−1.

(Here, τΩ′k,`
is as in Definition 2.11.8, i.e. τΩ′k,`

:=
∑

v′∈Ω′k,`
τv′ and τv′ is an arbitrary

v′-adapter with respect to (b0, . . . , bk;hk).)
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Proof of claim: Define ρ :
(
V \{v`}
r−1

)
→ Z such that for all S ∈

(
V \{v`}
r−1

)
,

ρ(S) := φ`(S ∪ {v`}).

It is easy to check that this identity transfers to smaller sets S, that is, for all S ⊆ V \{v`},

with |S| ≤ r−1, we have ρ(S) = φ`(S ∪{v`}), where ρ(S) and φ`(S ∪{v`}) are as defined

in (2.11.4).

Hence, since φ` is (b0, . . . , bk−1, hk)-divisible, ρ is (b1, . . . , bk−1, hk)-divisible. Moreover,

for all S ∈
(
V \{v`}
k−1

)
with ρ(S) 6≡ 0 mod bk, we have S ⊆ U`−1.

Recall that Ωk−1,`−1 is a (b1, . . . , bk)-balancer for V \ {v`} with uniformity r− 1 acting

on U`−1. Thus, there exists a multiset Ω′ ⊆ Ωk−1,`−1 such that

ρ+ τΩ′ is (b1, . . . , bk)-divisible. (2.11.10)

Let Ω′k,` ⊆ Ωk,` be induced by Ω′, that is, Ω′k,` := {v′ : v ∈ Ω′} (see (2.11.9)).

Let v′ ∈ Ω′k,` and let τv′ be any v′-adapter with respect to (b0, . . . , bk;hk). As noted

after Definition 2.11.6, τv′ is (b0, . . . , bk−1, hk)-divisible. Crucially, if S ∈
(
V
k

)
and v` ∈ S,

then τv′(S) ≡ τv(S \ {v`}) mod bk. Indeed, let x0
1, . . . , x

0
k−1, x

1
1, . . . , x

1
k−1 be such that

v = (x0
1, . . . , x

0
k−1, x

1
1, . . . , x

1
k−1) and thus v′ = (v`, x

0
1, . . . , x

0
k−1, vjv , x

1
1, . . . , x

1
k−1). Then

by Definition 2.11.6, as v` ∈ S, we have

τv′(S) ≡


(−1)0+

∑
i∈[k−1] zihk mod bk if S \ {v`} = {xzii : i ∈ [k − 1]},

0 mod bk otherwise,

≡ τv(S \ {v`}) mod bk.

Let τΩ′k,`
:=
∑

v′∈Ω′k,`
τv′ and φ`−1 := φ` + τΩ′k,`

. Note that for all S 6⊆ U`, we have

τΩ′k,`
(S) = 0 by (2.11.9). Moreover, if S ∈

(
V
k

)
and v` ∈ S, then τΩ′k,`

(S) ≡ τΩ′(S \ {v`})

mod bk by the above.

Clearly, φ`−1 is (b0, . . . , bk−1, hk)-divisible. Now, consider any S ∈
(
V
k

)
with S 6⊆ U`−1.
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If S 6⊆ U`, then

φ`−1(S) = φ`(S) + τΩ′k,`
(S) ≡ 0 + 0 ≡ 0 mod bk.

If S ⊆ U`, then since S 6⊆ U`−1 we must have v` ∈ S, and so

φ`−1(S) = φ`(S) + τΩ′k,`
(S) ≡ ρ(S \ {v`}) + τΩ′(S \ {v`})

(2.11.10)
≡ 0 mod bk.

This completes the proof of the claim. −

Now, let hk ∈ N with hk | bk and let φ :
(
V
r

)
→ Z be any (b0, . . . , bk−1, hk)-divisible

function such that S ⊆ U whenever S ∈
(
V
k

)
and φ(S) 6≡ 0 mod bk. Let φn := φ

and note that U = Un. Thus, by Claim 2, there exists Ω′k,n ⊆ Ωk,n such that φn−1 :=

φn + τΩ′k,n
is (b0, . . . , bk−1, hk)-divisible and if φn−1(S) 6≡ 0 mod bk for some S ∈

(
V
k

)
,

then S ⊆ Un−1. Repeating this step finally yields some Ω′k ⊆ Ωk such that φ∗ := φ+ τΩ′k

is (b0, . . . , bk−1, hk)-divisible and such that S ⊆ U2k−1 whenever S ∈
(
V
k

)
and φ(S) 6≡ 0

mod bk. By Lemma 2.11.5 (with U2k−1 playing the role of K), φ∗ is then (b0, . . . , bk)-

divisible. Thus Ωk is indeed a (b0, . . . , bk)-balancer. �

2.11.3 Proof of Lemma 2.9.4

We now prove Lemma 2.9.4. For this, we consider the balancers Ωk guaranteed by

Lemma 2.11.9. Recall that these consist of suitable adapters, and that Lemma 2.11.2

guarantees the existence of shifters corresponding to these adapters. It remains to embed

these shifters in a suitable way, which is achieved via Lemma 2.5.20. The following fact

will help us to verify the conditions of Lemma 2.11.9.

Fact 2.11.10. Let F be an r-graph. Then for all 0 ≤ i ≤ k < r, we have
(
r−i
k−i

)
Deg(F )i ≡ 0

mod Deg(F )k.
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Proof. Let S be any i-set in V (F ). By (2.5.1), we have that

(
r − i
k − i

)
|F (S)| =

∑
T∈(V (F )

k ) : S⊆T

|F (T )| ≡ 0 mod Deg(F )k,

and this implies the claim. �

Proof of Lemma 2.9.4. Let x0
1, . . . , x

0
r−1, x

1
1, . . . , x

1
r−1 be distinct vertices (not in

V (G)). For k ∈ [r − 1], let Xk := {x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k}. By Lemma 2.11.2, for every

k ∈ [r − 1], there exists an (x0
1, . . . , x

0
k, x

1
1, . . . , x

1
k)-shifter Tk with respect to F, F ∗ such

that Tk[Xk] is empty and Tk has degeneracy at most
(
f∗−1
r−1

)
rooted at Xk. Note that (SH1)

implies that

|Tk({x0
i , x

1
i })| = 0 for all i ∈ [k]. (2.11.11)

We may assume that there exists t ≥ maxk∈[r−1] |V (Tk)| such that 1/n� γ � 1/t�

ξ, 1/f ∗. Let Deg(F ) = (h0, h1, . . . , hr−1) and let Deg(F ∗) = (b0, b1, . . . , br−1). Since F ∗ is

F -decomposable and thus F -divisible, we have hk | bk for all k ∈ [r − 1]0.

By Fact 2.11.10, we have
(
r−i
k−i

)
bi ≡ 0 mod bk for all 0 ≤ i ≤ k < r. For each k ∈ [r−1]

with hk < bk, we apply Lemma 2.11.9 to obtain a (b0, . . . , bk)-balancer Ωk for V (G) with

uniformity r acting on V (G) such that ∆(Ωk) ≤ 2k(k!)2bk. For values of k for which we

have hk = bk, we let Ωk := ∅. For every k ∈ [r − 1] and every v = (v1, . . . , v2k) ∈ Ωk,

define the labelling Λv : Xk → V (G) by setting Λv(x0
i ) := vi and Λv(x1

i ) := vi+k for all

i ∈ [k].

For technical reasons, let T0 be a copy of F and let X0 := ∅. Let Ω0 be the multiset

containing b0/h0 copies of ∅, and for every v ∈ Ω0, let Λv : X0 → V (G) be the trivial

G-labelling of (T0, X0). Note that T0 has degeneracy at most
(
f∗−1
r−1

)
rooted at X0. Note

also that Λv does not root any set S ⊆ V (G) with |S| ∈ [r − 1].

We will apply Lemma 2.5.20 in order to find faithful embeddings of the Tk into G. Let

Ω :=
⋃r−1
k=0 Ωk. Let α := γ−2/n.
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Claim 1: For every k ∈ [r − 1] and every S ⊆ V (G) with |S| ∈ [r − 1], we have

|{v ∈ Ωk : Λv roots S}| ≤ r−1αγnr−|S|. Moreover, |Ωk| ≤ r−1αγnr.

Proof of claim: Let k ∈ [r − 1] and S ⊆ V (G) with |S| ∈ [r − 1]. Consider any v =

(v1, . . . , v2k) ∈ Ωk and suppose that Λv roots S, i.e. S ⊆ {v1, . . . , v2k} and |Tk(Λ−1
v (S))| >

0. Note that if we had {x0
i , x

1
i } ⊆ Λ−1

v (S) for some i ∈ [k] then |Tk(Λ−1
v (S))| = 0 by

(2.11.11), a contradiction. We deduce that |S ∩{vi, vi+k}| ≤ 1 for all i ∈ [k], in particular

|S| ≤ k. Thus there exists S ′ ⊇ S with |S ′| = k and such that |S ′ ∩ {vi, vi+k}| = 1 for

all i ∈ [k]. However, there are at most nk−|S| sets S ′ with |S ′| = k and S ′ ⊇ S, and for

each such S ′, the number of v = (v1, . . . , v2k) ∈ Ωk with |S ′ ∩ {vi, vi+k}| = 1 for all i ∈ [k]

is at most ∆(Ωk). Thus, |{v ∈ Ωk : Λv roots S}| ≤ nk−|S|∆(Ωk) ≤ nr−1−|S|2k(k!)2bk ≤

r−1αγnr−|S|. Similarly, we have |Ωk| ≤ nk∆(Ωk) ≤ r−1αγnr. −

Claim 1 implies that for every S ⊆ V (G) with |S| ∈ [r − 1], we have

|{v ∈ Ω : Λv roots S}| ≤ αγnr−|S| − 1,

and we have |Ω| ≤ b0/h0 +
∑r−1

k=1 |Ωk| ≤ αγnr. Therefore, by Lemma 2.5.20, for every

k ∈ [r− 1]0 and every v ∈ Ωk, there exists a Λv-faithful embedding φv of (Tk, Xk) into G,

such that, letting Tv := φv(Tk), the following hold:

(a) for all distinct v1,v2 ∈ Ω, the hulls of (Tv1 , Im(Λv1)) and (Tv2 , Im(Λv2)) are edge-

disjoint;

(b) for all v ∈ Ω and e ∈ O with e ⊆ V (Tv), we have e ⊆ Im(Λv);

(c) ∆(
⋃

v∈Ω Tv) ≤ αγ(2−r)n.

Note that by (a), all the graphs Tv are edge-disjoint. Let

D :=
⋃
v∈Ω

Tv.

By (c), we have ∆(D) ≤ γ−2. We will now show that D is as desired.
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For every k ∈ [r− 1] and v ∈ Ωk, we have that Tv is a v-shifter with respect to F, F ∗

by definition of Λv and since φv is Λv-faithful. Thus, by Fact 2.11.7,

1Tv is a v-adapter with respect to (b0, . . . , bk;hk). (2.11.12)

Claim 2: For every Ω′ ⊆ Ω,
⋃

v∈Ω′ Tv has a 1-well separated F -decomposition F such

that F≤(r+1) and O are edge-disjoint.

Proof of claim: Clearly, for every v ∈ Ω0, Tv is a copy of F and thus has a 1-well separated

F -decomposition Fv = {Tv}. Moreover, for each k ∈ [r−1] and all v = (v1, . . . , v2k) ∈ Ωk,

Tv has a 1-well separated F -decomposition Fv by (SH1) such that for all F ′ ∈ Fv and all

i ∈ [k], |V (F ′) ∩ {vi, vi+k}| ≤ 1.

In order to prove the claim, it is thus sufficient to show that for all distinct v1,v2 ∈

Ω, Fv1 and Fv2 are r-disjoint (implying that F :=
⋃

v∈Ω′ Fv is 1-well separated by

Fact 2.5.4(iii)) and that for every v ∈ Ω, F≤(r+1)
v and O are edge-disjoint.

To this end, we first show that for every v ∈ Ω and F ′ ∈ Fv, we have that |V (F ′) ∩

Im(Λv)| < r and every e ∈
(
V (F ′)
r

)
belongs to the hull of (Tv, Im(Λv)). If v ∈ Ω0, this

is clear since Im(Λv) = ∅ and F ′ = Tv, so suppose that v = (v1, . . . , v2k) ∈ Ωk for some

k ∈ [r − 1]. (In particular, hk < bk.) By the above, we have |V (F ′) ∩ {vi, vi+k}| ≤ 1 for

all i ∈ [k]. In particular, |V (F ′) ∩ Im(Λv)| ≤ k < r, as desired. Moreover, suppose that

e ∈
(
V (F ′)
r

)
. If e∩Im(Λv) = ∅, then e belongs to the hull of (Tv, Im(Λv)), so suppose further

that S := e ∩ Im(Λv) is not empty. Clearly, |S ∩ {vi, vi+k}| ≤ |V (F ′) ∩ {vi, vi+k}| ≤ 1

for all i ∈ [k]. Thus, there exists S ′ ⊇ S with |S ′| = k and |S ′ ∩ {vi, vi+k}| = 1 for all

i ∈ [k]. By (SH3) (and since hk < bk), we have that |Tv(S ′)| > 0, which clearly implies

that |Tv(S)| > 0. Thus, e ∩ Im(Λv) = S is a root of (Tv, Im(Λv)) and therefore e belongs

to the hull of (Tv, Im(Λv)).

Now, consider distinct v1,v2 ∈ Ω and suppose, for a contradiction, that there is

e ∈
(
V (G)
r

)
such that e ⊆ V (F ′) ∩ V (F ′′) for some F ′ ∈ Fv1 and F ′′ ∈ Fv2 . But by the

above, e belongs to the hulls of both (Tv1 , Im(Λv1)) and (Tv2 , Im(Λv2)), a contradiction
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to (a).

Finally, consider v ∈ Ω and e ∈ O. We claim that e /∈ F≤(r+1)
v . Let F ′ ∈ Fv and

suppose, for a contradiction, that e ⊆ V (F ′). By (b), we have e ⊆ Im(Λv). On the other

hand, by the above, we have |V (F ′) ∩ Im(Λv)| < r, a contradiction. −

Clearly, D is F -divisible by Claim 2. We will now show that for every F -divisible

r-graph H on V (G) which is edge-disjoint from D, there exists a subgraph D∗ ⊆ D such

that H ∪D∗ is F ∗-divisible and D −D∗ has a 1-well separated F -decomposition F such

that F≤(r+1) and O are edge-disjoint.

Let H be any F -divisible r-graph on V (G) which is edge-disjoint from D. We will

inductively prove that the following holds for all k ∈ [r − 1]0:

SHIFTk there exists Ω∗k ⊆ Ω0 ∪ · · · ∪ Ωk such that 1H∪D∗k is (b0, . . . , bk)-divisible, where

D∗k :=
⋃

v∈Ω∗k
Tv.

We first establish SHIFT0. Since H is F -divisible, we have |H| ≡ 0 mod h0. Since h0 | b0,

there exists some 0 ≤ a < b0/h0 such that |H| ≡ ah0 mod b0. Let Ω∗0 be the multisubset

of Ω0 consisting of b0/h0 − a copies of ∅. Let D∗0 :=
⋃

v∈Ω∗0
Tv. Hence, D∗0 is the edge-

disjoint union of b0/h0 − a copies of F . We thus have |H ∪D∗0| ≡ ah0 + |F |(b0/h0 − a) ≡

ah0 + b0 − ah0 ≡ 0 mod b0. Therefore, 1H∪D∗0 is (b0)-divisible, as required.

Suppose now that SHIFTk−1 holds for some k ∈ [r − 1], that is, there is Ω∗k−1 ⊆

Ω0 ∪ · · · ∪ Ωk−1 such that 1H∪D∗k−1
is (b0, . . . , bk−1)-divisible, where D∗k−1 :=

⋃
v∈Ω∗k−1

Tv.

Note that D∗k−1 is F -divisible by Claim 2. Thus, since both H and D∗k−1 are F -divisible,

we have 1H∪D∗k−1
(S) = |(H∪D∗k−1)(S)| ≡ 0 mod hk for all S ∈

(
V (G)
k

)
. Hence, 1H∪D∗k−1

is

in fact (b0, . . . , bk−1, hk)-divisible. Thus, if hk = bk, then 1H∪D∗k−1
is (b0, . . . , bk)-divisible

and we let Ω′k := ∅. Now, assume that hk < bk. Recall that Ωk is a (b0, . . . , bk)-balancer

and that hk | bk. Thus, there exists a multisubset Ω′k of Ωk such that the function

1H∪D∗k−1
+
∑

v∈Ω′k
τv is (b0, . . . , bk)-divisible, where τv is any v-adapter with respect to
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(b0, . . . , bk;hk). Recall that by (2.11.12) we can take τv = 1Tv . In both cases, let

Ω∗k := Ω∗k−1 ∪ Ω′k ⊆ Ω0 ∪ · · · ∪ Ωk;

D′k :=
⋃

v∈Ω′k

Tv;

D∗k :=
⋃

v∈Ω∗k

Tv = D∗k−1 ∪D′k.

Thus,
∑

v∈Ω′k
τv = 1D′k

and hence 1H∪D∗k = 1H∪D∗k−1
+ 1D′k

is (b0, . . . , bk)-divisible, as

required.

Finally, SHIFTr−1 implies that there exists Ω∗r−1 ⊆ Ω such that 1H∪D∗ is (b0, . . . , br−1)-

divisible, where D∗ :=
⋃

v∈Ω∗r−1
Tv. Clearly, D∗ ⊆ D, and we have that H ∪ D∗ is F ∗-

divisible. Finally, by Claim 2,

D −D∗ =
⋃

v∈Ω\Ω∗r−1

Tv

has a 1-well separated F -decomposition F such that F≤(r+1) and O are edge-disjoint,

completing the proof. �
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CHAPTER 3

THE DECOMPOSITION THRESHOLD OF A
GIVEN GRAPH

This chapter contains an overview of the results proved in [35]. The proofs
themselves are omitted in the thesis because of space constraints.

In this chapter, we investigate the F -decomposition threshold δF in the graph setting.

In particular, we determine δF for all bipartite graphs, improve existing bounds for general

F and present a ‘discretisation’ result for the possible values of δF . We write gcd(F ) :=

Deg(F )1 for the greatest common divisor of the vertex degrees of F . Also, we use standard

graph theory notation and write e(G) for the number of edges of G, and dG(x) for the

degree of x in G. Thus, a graph G is F -divisible if e(F ) | e(G) and gcd(F ) | dG(x) for all

x ∈ V (G).

Recall that the main achievement of an absorption approach is to turn an approximate

decomposition into a full decomposition. In the quasirandom setting (and more generally

that of supercomplexes as in Chapter 2), approximate decompositions can be obtained

‘on the spot’ by using a nibble approach. In the minimum degree setting, we pursue

a different approach. We assume the ability to get approximate decompositions above

a certain minimum degree threshold (via blackbox results) and investigate under which

conditions such approximate decompositions can be completed to real decompositions.

More precisely, given a graph F , we define an approximate decomposition threshold δ0+
F

and then aim to determine δF up to the unknown δ0+
F . In order to determine δF , it would
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then suffice to investigate δ0+
F , which is a much simpler task.

3.1 A discretisation result

Our first main result (Theorem 3.1.1) bounds the decomposition threshold δF in terms of

the approximate decomposition threshold δ0+
F , the fractional decomposition threshold δ∗F ,

and the threshold δeF for covering a given edge. We now introduce these formally.

Let F be a fixed graph. For η ≥ 0, an η-approximate F -decomposition of an n-vertex

graph G is a collection of edge-disjoint copies of F contained in G which together cover

all but at most ηn2 edges of G. Let δηF be the infimum of all δ ≥ 0 with the following

property: there exists an n0 ∈ N such that whenever G is a graph on n ≥ n0 vertices with

δ(G) ≥ δn, then G has an η-approximate F -decomposition. Clearly, δη
′

F ≥ δηF whenever

η′ ≤ η. We let δ0+
F := supη>0 δ

η
F .

Let GF be the set of copies of F in G. A fractional F -decomposition of G is a function

ω : GF → [0, 1] such that, for each e ∈ E(G),

∑
F ′∈GF : e∈E(F ′)

ω(F ′) = 1. (3.1.1)

Note that every F -decomposition is a fractional F -decomposition where ω(F ) ∈ {0, 1}.

Let δ∗F be the infimum of all δ ≥ 0 with the following property: there exists an

n0 ∈ N such that whenever G is an F -divisible graph on n ≥ n0 vertices with δ(G) ≥ δn,

then G has a fractional F -decomposition. Usually the definition considers all graphs

G (and not only those which are F -divisible) but it is convenient for us to make this

additional restriction here as δ∗F is exactly the relevant parameter when investigating δF

(in particular, we trivially have δ∗F ≤ δF ). Haxell and Rödl [44] used Szemerédi’s regularity

lemma to show that a fractional F -decomposition of a graph G can be turned into an

approximate F -decomposition of G. This can be used to show that δ0+
F ≤ δ∗F .

Let δeF be the infimum of all δ ≥ 0 with the following property: there exists an n0 ∈ N
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such that whenever G is a graph on n ≥ n0 vertices with δ(G) ≥ δn, and e′ is an edge in

G, then G contains a copy of F which contains e′.

Our first result bounds δF in terms of the approximate decomposition threshold δ0+
F

and the chromatic number of F . Parts (ii) and (iii) give much more precise information

if χ ≥ 5. We obtain a ‘discretisation result’ in terms of the parameters introduced above.

We do not believe that this result extends to χ = 3, 4. On the other hand, we do have

δF ∈ {0, 1/2, 2/3} if χ(F ) = 2 (see Section 3.3). We also believe that none of the terms

in the discretisation statement can be omitted.

Theorem 3.1.1. Let F be a graph with χ := χ(F ).

(i) Then δF ≤ max{δ0+
F , 1− 1/(χ+ 1)}.

(ii) If χ ≥ 5, then δF ∈ {max{δ0+
F , δeF}, 1− 1/χ, 1− 1/(χ+ 1)}.

(iii) If χ ≥ 5, then δF ∈ {δ∗F , 1− 1/χ, 1− 1/(χ+ 1)}.

Theorem 3.1.1(i) improves a bound of δF ≤ max{δ0+
F , 1 − 1/3r} proved in [9] for

r-regular graphs F . Also, the cases where F = K3 or C4 of (i) were already proved in [9].

Since it is known that δ0+
Kr
≥ 1− 1/(r + 1) (see e.g. [91]), Theorem 3.1.1 implies that

the decomposition threshold for cliques equals its fractional relaxation.

Corollary 3.1.2. For all r ≥ 3, δKr = δ∗Kr = δ0+
Kr

.

3.2 Explicit bounds

Theorem 3.1.1 involves several ‘auxiliary thresholds’ and parameters that play a role in

the construction of an F -decomposition. Bounds on these of course lead to better ‘explicit’

bounds on δF which we now discuss.

The central conjecture in the area is due to Nash-Williams [69] (for the triangle case)

and Gustavsson [40] (for the general case).

193



Conjecture 3.2.1 (Gustavsson [40], Nash-Williams [69]). For every r ≥ 3, there exists

an n0 = n0(r) such that every Kr-divisible graph G on n ≥ n0 vertices with δ(G) ≥

(1− 1/(r + 1))n has a Kr-decomposition.

For general F , the following conjecture provides a natural upper bound for δF which

would be best possible for the case of cliques. It is not clear to us what a formula for

general F might look like.

Conjecture 3.2.2. For all graphs F , δF ≤ 1− 1/(χ(F ) + 1).

Note that by Theorem 3.1.1 in order to prove Conjecture 3.2.2 it suffices to show

δ0+
F ≤ 1 − 1/(χ(F ) + 1). This in turn implies that Conjecture 3.2.2 is actually a special

case of Conjecture 3.2.1. Indeed, it follows from a result of Yuster [93] that for every

graph F , δ0+
F ≤ δ0+

Kχ(F )
, and thus δ0+

F ≤ δ∗Kχ(F )
≤ δKχ(F )

.

In view of this, bounds on δ∗Kr are of considerable interest. The following result gives

the best bound for general r (see [8]) and triangles (see [25]).

Theorem 3.2.3 ([8], [25]).

(i) For every r ≥ 3, we have δ∗Kr ≤ 1− 10−4r−3/2.

(ii) δ∗K3
≤ 9/10.

This improved earlier bounds by Yuster [91] and Dukes [26, 27]. Together with the

results in [9], part (ii) implies δK3 ≤ 9/10. More generally, combining Theorem 3.2.3

and Theorem 3.1.1(i) with the fact that δ0+
F ≤ δ0+

Kχ(F )
≤ δ∗Kχ(F )

, one obtains the following

explicit upper bound on the decomposition threshold.

Corollary 3.2.4.

(i) For every graph F , δF ≤ 1− 10−4χ(F )−3/2.

(ii) If χ(F ) = 3, then δF ≤ 9/10.
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Here, (i) improves a bound of 1− 1/max{104χ(F )3/2, 6e(F )} obtained by combining

the results of [8] and [9] (see [8]). It also improves earlier bounds by Gustavsson [40] and

Yuster [91, 94]. A bound of 1− ε also follows from the results of Keevash [49].

In the r-partite setting an analogue of Corollary 3.1.2 was proved in [10], an analogue

of Theorem 3.2.3(i) (with weaker bounds) in [68] and an analogue of Theorem 3.2.3(ii)

(again with weaker bounds) in [14]. These bounds can be combined to give results on the

completion of (mutually orthogonal) partially filled in Latin squares. Moreover, it turns

out that if δF > δ∗F (in the non-partite setting), then there exist extremal graphs that are

extremely close to large complete partite graphs, which adds further relevance to results

on the r-partite setting.

3.3 Decompositions into bipartite graphs

Let F be a bipartite graph. Yuster [90] showed that δF = 1/2 if F is connected and

contains a vertex of degree one. Moreover, Barber, Kühn, Lo and Osthus [9] showed that

δC4 = 2/3 and δC` = 1/2 for all even ` ≥ 6 (which improved a bound of δC4 ≤ 31/32 by

Bryant and Cavenagh [16]). Here we generalise these results to arbitrary bipartite graphs.

Note that if F is bipartite, then δ0+
F = 0. This is a consequence of the fact that

bipartite graphs have vanishing Turán density. This allows us to determine δF for any

bipartite graph F . It would be interesting to see if this can be generalised to r-partite

r-graphs.

To state our result, we need the following definitions. A set X ⊆ V (F ) is called C4-

supporting in F if there exist distinct a, b ∈ X and c, d ∈ V (F ) \X such that ac, bd, cd ∈

E(F ). We define

τ(F ) := gcd{e(F [X]) : X ⊆ V (F ) is not C4-supporting in F},

τ̃(F ) := gcd{e(C) : C is a component of F}.
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So for example τ(F ) = 1 if there exists an edge in F that is not contained in any cycle

of length 4, and τ̃(F ) > 1 if F is connected (and e(F ) ≥ 2). The definition of τ can

be motivated by considering the following graph G: Let A,B,C be sets of size n/3 with

G[A], G[C] complete, B independent and G[A,B] and G[B,C] complete bipartite. Note

that δ(G) ∼ 2n/3. It turns out that the extremal examples which we construct showing

δF ≥ 2/3 for certain bipartite graphs F are all similar to G. Moreover, τ(F ) = 1 if for

any large c there is a set of copies of F in G whose number of edges in G[A] add up to c.

We note that τ(F ) | gcd(F ) and gcd(F ) | τ̃(F ). The following theorem determines δF

for every bipartite graph F .

Theorem 3.3.1. Let F be a bipartite graph. Then

δF =


2/3 if τ(F ) > 1;

0 if τ̃(F ) = 1 and F has a bridge;

1/2 otherwise.

The next corollary translates Theorem 3.3.1 into explicit results for important classes

of bipartite graphs.

Corollary 3.3.2. The following hold.

(i) Let s, t ∈ N with s+ t > 2. Then δKs,t = 1/2 if s and t are coprime and δKs,t = 2/3

otherwise.

(ii) If gcd(F ) = 1 and F is connected, then δF = 1/2.

(iii) If F is connected and has an edge that is not contained in any cycle of length 4,

then δF = 1/2.

(For (ii) and (iii) recall that we always assume e(F ) ≥ 2.) Note that τ(Ks,t) = gcd(s, t).

Then (i)–(iii) follow from the definitions of τ and τ̃ .
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3.4 Near-optimal decompositions

Along the way to proving Theorem 3.1.1 we obtain the following bound guaranteeing

a ‘near-optimal’ decomposition. For this, let δvxF be the infimum of all δ ≥ 0 with the

following property: there exists an n0 ∈ N such that whenever G is a graph on n ≥ n0

vertices with δ(G) ≥ δn, and x is a vertex of G with gcd(F ) | dG(x), then G contains a

collection F of edge-disjoint copies of F such that {xy : y ∈ NG(x)} ⊆
⋃
F . Loosely

speaking, δvxF is the threshold that allows us to cover all edges at one vertex. For example,

if F is a triangle, then δvxF is essentially the threshold that NG(x) contains a perfect

matching whenever dG(x) is even. Note that δvxF ≥ δeF .

The following theorem roughly says that if we do not require to cover all edges of G

with edge-disjoint copies of F , but accept a bounded number of uncovered edges, then

the minimum degree required can be less than if we need to cover all edges.

Theorem 3.4.1. For any graph F and µ > 0 there exists a constant C = C(F, µ) such

that whenever G is an F -divisible graph on n vertices satisfying

δ(G) ≥ (max{δ0+
F , δvxF }+ µ)n

then G contains a collection of edge-disjoint copies of F covering all but at most C edges.

It can be shown that δvxF ≤ 1 − 1/χ(F ). For many bipartite graphs F , e.g. trees

and complete balanced bipartite graphs, our results imply that max{δ0+
F , δvxF } < δF .

It seems plausible to believe that there also exist graphs F with χ(F ) ≥ 3 such that

max{δ0+
F , δvxF } < δF . However, the current bounds on δ0+

F do not suffice to verify this.

3.5 Overview of the proofs

One key ingredient in the proofs of Theorems 3.1.1, 3.3.1 and 3.4.1 is the iterative absorp-

tion method. As in Chapter 2, we carry out this iteration inside a vortex until we have a
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‘near-optimal decomposition’ which covers all but a bounded number of edges. The cor-

responding ‘Cover down lemma’ is much easier than in the hypergraph setting. Roughly

speaking, we show that if G is a graph with δ(G) ≥ (max{δ0+
F , δvxF } + o(1))|V (G)|, then

we can cover down into a ‘random-like’ subset U ⊆ V (G). Here, δ0+
F is needed to obtain

an approximate decomposition, and the definition of δvxF is used to ‘clean’ the remaining

edges at vertices which lie outside U . Intuitively, it is also clear that δ0+
F and δvxF should

be lower bounds for δF and thus that the Cover down lemma performs optimally for our

purposes (see Corollary 11.4 in [35]). The iterative application of the Cover down lemma

yields a ‘near-optimal decomposition’. Theorem 3.4.1 is a byproduct of this.

As in Chapter 2, the idea to deal with the final leftover is to use ‘exclusive absorbers’,

and each absorber is constructed as a concatenation of transformers and certain canonical

structures between them. This approach was first introduced in [9]. For more details on

this part of the argument, we refer to Section 2.3.3.

The difficulty here is to construct transformers with ‘low degeneracy’ which can be

embedded once the minimum degree of the host graph is large enough. The crucial

feature in proving our results here, which allows us to go significantly beyond the results

in [9], is to break down the construction of transformers into even smaller pieces. We

construct them from building blocks called ‘switchers’. These switchers are transformers

with more limited capabilities. The most important switchers are C6-switchers and K2,r-

switchers. A C6-switcher S transforms the perfect matching E+ := {u1u2, u3u4, u5u6}

into its ‘complement’ E− := {u2u3, u4u5, u6u1} along a 6-cycle. (The formal requirement

is that both S ∪E+ and S ∪E− have an F -decomposition.) A K2,r-switcher transforms a

star with r leaves centred at x into a star with the same leaves centred at x′. Surprisingly,

it turns out that these building blocks suffice to build the desired transformers.

Apart from proving the existence of switchers, we also need to be able to find them

in G. This is where we may need the condition that δ(G) ≥ (1− 1/(χ+ 1) + o(1))|V (G)|.

To achieve this, we will apply Szemerédi’s regularity lemma to G to obtain its reduced

graph R. We will then find a ‘compressed’ version (i.e. a suitable homomorphism) of
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the switcher in R. This then translates to the existence of the desired switcher in G via

standard regularity techniques.

The switchers are also key to our discretisation results in Theorem 3.1.1(ii) and (iii).

We show that if δF < 1 − 1/(χ + 1), then to find the relevant switchers (and hence, as

described above, the relevant absorbers) we need the graph G only to have minimum

degree (1− 1/χ+ o(1))|V (G)|. Roughly speaking, the idea is that if δF < 1− 1/(χ+ 1),

then the minimum degree of an F -divisible graph which is close to a sufficiently large

complete (χ + 1)-partite graph is large enough to guarantee an F -decomposition. In

particular, we can find S such that S ∪ {u1u2, u3u4} is such a graph. Moreover, the

divisibility of S ∪ {u2u3, u1u4} follows automatically. Thus, by the definition of δF , both

have an F -decomposition, i.e. S is a C4-switcher (see Lemma 10.1 in [35]). The switcher

S may be quite large indeed, but the fact that it is (χ+ 1)-partite will allow us to embed

it in a graph G with (1−1/χ+o(1))|V (G)| using regularity methods. Recall that to build

transformers, we need C6-switchers and K2,r-switchers, whilst our implicit construction

above yields C4-switchers. An important part of the proof of the discretisation results

in Theorem 3.1.1(ii) and (iii) are several ‘reductions’. For example, we can build a C6-

switcher by combining C4-switchers in a suitable way. These reductions are also the reason

why we need the assumption χ ≥ 5.

Similarly, if δF < 1 − 1/χ, the minimum degree we require is only (1 − 1/(χ −

1) + o(1))|V (G)|. As discussed earlier we require the minimum degree to be at least

(max{δ0+
F , δvxF } + o(1))|V (G)| in order to iteratively cover all but a constant number of

edges in G (see Theorem 3.4.1). This may not be sufficiently high to construct our

absorbers, but this discretisation argument allows us to conclude that if δF exceeds

max{δ0+
F , δvxF } then it can take at most two other values, 1− 1/(χ+ 1) or 1− 1/χ.

Note that the parameter δvxF does not appear in Theorem 3.1.1. We investigate δvxF

separately. Note that if F = Kr, then the problem of covering all edges at a vertex x

reduces to finding a Kr−1-factor on the neighbours of x. As discussed in Section 1.2, factor

problems are much easier than decomposition problems. The Hajnal-Szemerédi theorem
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implies here that δvxKr ≤ 1− 1/r. For general F , the determination of δvxF does not reduce

to a ‘pure’ factor problem. We use a theorem of Komlós [53] on approximate F -factors

to reduce δvxF to δeF .

Most of the above steps are common to the proof of Theorems 3.1.1 and 3.3.1, i.e. we

can prove them in a unified way. The key additional difficulty in the bipartite case is

proving the existence of a C6-switcher for those F with δF = 1/2.
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CHAPTER 4

OPTIMAL PATH AND CYCLE
DECOMPOSITIONS

This chapter contains an overview of the results proved in [39]. The proofs
themselves are omitted in the thesis because of space constraints. Section 4.3
is based on [38].

There are several longstanding and beautiful conjectures on decompositions of graphs

into cycles and/or paths. In this chapter, we consider four of the most well-known in the

setting of dense quasirandom and random graphs: the Erdős-Gallai conjecture, Gallai’s

conjecture on path decompositions, the linear arboricity conjecture as well as the overfull

subgraph conjecture.

4.1 Decompositions of random graphs

A classical result of Lovász [65] on decompositions of graphs states that the edges of any

graph on n vertices can be decomposed into at most bn/2c cycles and paths. Erdős and

Gallai [29, 30] made the related conjecture that the edges of every graph G on n vertices

can be decomposed into O(n) cycles and edges. Conlon, Fox and Sudakov [21] recently

showed that O(n log log n) cycles and edges suffice and that the conjecture holds for

graphs with linear minimum degree. They also proved that the conjecture holds whp for

the binomial random graph G ∼ G(n, p). Korándi, Krivelevich and Sudakov [55] carried

out a more systematic study of the problem for G(n, p): for a large range of p, whp G(n, p)
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can be decomposed into n/4 +np/2 + o(n) cycles and edges, which is asymptotically best

possible. They also asked for improved error terms. For constant p, we give an exact

formula.

A further related conjecture of Gallai (see [65]) states that every connected graph on

n vertices can be decomposed into dn/2e paths. The result of Lovász mentioned above

implies that for every (not necessarily connected) graph, n − 1 paths suffice. This has

been improved to b2n/3c paths [23, 88]. Here we determine the number of paths in an

optimal path decomposition of G(n, p) for constant p. In particular this implies that

Gallai’s conjecture holds (with room to spare) for almost all graphs.

Next, recall that an edge colouring of a graph is a partition of its edge set into match-

ings. A matching can be viewed as a forest whose connected components are edges. As

a relaxation of this, a linear forest is a forest whose components are paths, and the least

possible number of linear forests needed to partition the edge set of a graph G is called the

linear arboricity of G, denoted by la(G). Clearly, in order to cover all edges at any vertex

of maximum degree, we need at least d∆(G)/2e linear forests. However, for some graphs

(e.g. complete graphs on an odd number of vertices) we need at least d(∆(G) + 1)/2e

linear forests. The following conjecture is known as the linear arboricity conjecture and

can be viewed as an analogue to Vizing’s theorem.

Conjecture 4.1.1 (Akiyama, Exoo, Harary [1]). For every graph G, la(G) ≤ d(∆(G) +

1)/2e.

This is equivalent to the statement that for all d-regular graphs G, la(G) = d(d+1)/2e.

Alon [2] proved an approximate version of the conjecture for sufficiently large values of

∆(G). Using his approach, McDiarmid and Reed [67] confirmed the conjecture for random

regular graphs with fixed degree. We show that, for a large range of p, whp the random

graph G ∼ G(n, p) can be decomposed into d∆(G)/2e linear forests. Moreover, we use the

recent confirmation [22] of the so-called ‘Hamilton decomposition conjecture’ to deduce

that the linear arboricity conjecture holds for large and sufficiently dense regular graphs

(see Corollary 6.4 in [39]).
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The following theorem summarises our optimal decomposition results for dense random

graphs. We denote by odd(G) the number of odd degree vertices in a graph G.

Theorem 4.1.2. Let 0 < p < 1 be constant and let G ∼ G(n, p). Then whp the following

hold:

(i) G can be decomposed into b∆(G)/2c cycles and a matching of size odd(G)/2.

(ii) G can be decomposed into max{odd(G)/2, d∆(G)/2e} paths.

(iii) G can be decomposed into d∆(G)/2e linear forests, i.e. la(G) = d∆(G)/2e.

Clearly, each of the given bounds is best possible. Moreover, as observed e.g. in [55],

for a large range of p, whp odd(G(n, p)) = (1+o(1))n/2. This means that for fixed p < 1/2,

the size of an optimal path decomposition of G(n, p) is determined by the number of odd

degree vertices, whereas for p > 1/2, the maximum degree is the crucial parameter.

A related result of Gao, Pérez-Giménez and Sato [34] determines the arboricity and

spanning tree packing number of G(n, p). Optimal results on packing Hamilton cycles in

G(n, p) which together cover essentially the whole range of p were proven in [52, 58].

One can extend Theorem 4.1.2(iii) to the range log117 n
n
≤ p = o(1) by applying a recent

result in [45] on covering G(n, p) by Hamilton cycles (see Corollary 6.2 in [39]). It would

be interesting to obtain corresponding exact results also for (i) and (ii). In particular we

believe that the following should hold.

Conjecture 4.1.3. Suppose p = o(1) and pn
logn
→ ∞. Then whp G ∼ G(n, p) can be

decomposed into odd(G)/2 paths.

By tracking the number of cycles in the decomposition constructed in [55] and by

splitting every such cycle into two paths, one immediately obtains an approximate version

of Conjecture 4.1.3. Note that this argument does not yield an approximate version of

Theorem 4.1.2(ii) in the case when p is constant.
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4.2 Dense quasirandom graphs

We actually deduce Theorem 4.1.2 from quasirandom versions of the corresponding results.

As our notion of quasirandomness, we will consider the following one-sided version of ε-

regularity. Let 0 < ε, p < 1. A graph G on n vertices is called lower-(p, ε)-regular if we

have eG(S, T ) ≥ (p − ε)|S||T | for all disjoint S, T ⊆ V (G) with |S|, |T | ≥ εn. In order

to deduce Theorem 4.1.2 from its quasirandom version, we use the following well-known

facts about random graphs.

Lemma 4.2.1. Let 0 < ε, p < 1 be constant. The following holds whp for the random

graph G ∼ G(n, p):

(i) ∆(G)− δ(G) ≤ 4
√
n log n,

(ii) G is lower-(p, ε)-regular,

(iii) G has a unique vertex of maximum degree.

Indeed, using Lemma 2.5.10, it is easy to establish (i) and (ii). For (iii), we refer to

Theorem 3.15 in [12]. We also need to prove another important property of G, which is

that whp there is a perfect matching on the vertices of odd degree (see Lemma 3.7 in [39]).

The next theorem is a quasirandom version of Theorem 4.1.2(i). Indeed, Theorem 4.1.2(i)

can be deduced from Theorem 4.2.2 as follows: Let G ∼ G(n, p). In a first step, find a per-

fect matching M on the vertices of G which have odd degree. Then G−M is Eulerian and,

using Lemma 4.2.1, we can apply Theorem 4.2.2 to G−M . Since ∆(G−M) = 2b∆(G)/2c,

G−M can be decomposed into b∆(G)/2c cycles, as desired.

Theorem 4.2.2. For all 0 < p < 1 there exist ε, η > 0 such that for sufficiently large

n, the following holds: Suppose G is a lower-(p, ε)-regular graph on n vertices. Moreover,

assume that ∆(G)− δ(G) ≤ ηn and that G is Eulerian. Then G can be decomposed into

∆(G)/2 cycles.
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This confirms the following conjecture of Hajós (see [65]) for quasirandom graphs (with

room to spare): Every Eulerian graph on n vertices has a decomposition into bn/2c cycles.

(It is easy to see that this conjecture implies the Erdős-Gallai conjecture.)

Similarly, the following theorem immediately implies parts (ii) and (iii) of Theorem 4.1.2

via Lemma 4.2.1.

Theorem 4.2.3. Let 1/n � η, ε � p < 1. Suppose G is a lower-(p, ε)-regular graph on

n vertices such that ∆(G)− δ(G) ≤ ηn. Then the following hold.

(i) G can be decomposed into max{odd(G)/2, d(∆(G)+1)/2e} paths. If G has a unique

vertex of maximum degree, then G can be decomposed into max{odd(G)/2, d∆(G)/2e}

paths.

(ii) G can be decomposed into d(∆(G) + 1)/2e linear forests. If G has a unique vertex

of maximum degree, then G can be decomposed into d∆(G)/2e linear forests.

We also apply our approach to edge colourings of dense quasirandom graphs. Recall

that in general it is NP-complete to decide whether a graph G has chromatic index ∆(G)

or ∆(G) + 1 (see for example [46]). We will show that for dense quasirandom graphs of

even order this decision problem can be solved in quadratic time without being trivial. For

this, call a subgraph H of G overfull if e(H) > ∆(G)b|V (H)|/2c. Clearly, if G contains

any overfull subgraph, then χ′(G) = ∆(G) + 1. The following conjecture is known as the

overfull subgraph conjecture and dates back to 1986.

Conjecture 4.2.4 (Chetwynd, Hilton [19]). A graph G on n vertices with ∆(G) > n/3

satisfies χ′(G) = ∆(G) if and only if G contains no overfull subgraph.

This conjecture implies the 1-factorization conjecture, that every regular graph of

sufficiently high degree and even order can be decomposed into perfect matchings, which

was recently proved for large graphs in [22]. Minimum degree conditions under which the

overfull subgraph conjecture is true were first investigated in [13, 72]. (We refer to [80]

for a more thorough discussion of the area.) We prove the overfull subgraph conjecture

205



for quasirandom graphs of even order, even if the maximum degree is smaller than stated

in the conjecture, as long as it is linear.

Theorem 4.2.5. For all 0 < p < 1 there exist ε, η > 0 such that for sufficiently large

n, the following holds: Suppose G is a lower-(p, ε)-regular graph on n vertices and n is

even. Moreover, assume that ∆(G) − δ(G) ≤ ηn. Then χ′(G) = ∆(G) if and only if G

contains no overfull subgraph. Further, there is a polynomial time algorithm which finds

an optimal colouring.

At first glance, the overfull subgraph criterion seems not very helpful in terms of time

complexity, as it involves all subgraphs of G. (On the other hand, Niessen [70] proved

that in the case when ∆(G) ≥ |V (G)|/2 there is a polynomial time algorithm which finds

all overfull subgraphs.) Our proof of Theorem 4.2.5 will actually yield a simple criterion

whether G is class 1 or class 2. Moreover, the proof is constructive, thus using appropriate

running time statements for our tools, this yields a polynomial time algorithm which finds

an optimal colouring.

The condition of n being even is essential for our proof as we colour Hamilton cycles

with two colours each. It would be interesting to obtain a similar result for graphs of odd

order.

Conjecture 4.2.6. For every 0 < p < 1 there exist ε, η > 0 and n0 ∈ N such that the

following holds. Whenever G is a lower-(p, ε)-regular graph on n ≥ n0 vertices, where n is

odd, and ∆(G)− δ(G) ≤ ηn, then χ′(G) = ∆(G) if and only if
∑

x∈V (G)(∆(G)−dG(x)) ≥

∆(G).

Note that the condition
∑

x∈V (G)(∆(G)− dG(x)) ≥ ∆(G) in Conjecture 4.2.6 is equi-

valent to the requirement that G itself is not overfull. Also note that the corresponding

question for G(n, p) is easily solved if p does not tend to 0 or 1 too quickly: It is well-

known that in this case whp G ∼ G(n, p) satisfies χ′(G) = ∆(G), which follows from the

fact that whp G has a unique vertex of maximum degree.
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4.3 Proof overviews

Our main tool is a result on Hamilton decompositions of regular robust expanders by Kühn

and Osthus [60, 61]. Robust expansion is another variant of quasirandomness, which we

do not introduce formally here. It is enough to note that it is implied by lower-ε-regularity

(see Proposition 3.10 in [39]).

Note that our main results concern almost regular graphs. So the key step is to

partially decompose a given graph (into paths, cycles or appropriate linear forests) op-

timally such that the remaining graph is regular. We sketch the proofs of Theorems 4.2.2

and 4.2.5. Theorem 4.2.3 is proved using a few tricks which obtain the desired path or

linear forest decomposition from a cycle decomposition of a suitably defined auxiliary

graph.

4.3.1 Proof sketch of Theorem 4.2.2

If an Eulerian graph G has a decomposition into ∆(G)/2 cycles, then any vertex of

maximum degree must be contained in any cycle of the decomposition. Let Z contain the

vertices of maximum degree in G. We want to find a cycle C that contains Z. A cycle

on Z would be desirable, yet too much to hope for. However, suppose we are given a set

of vertices S (not necessarily disjoint from Z) such that G[S ∪ Z] is lower-ε-regular and

has linear minimum degree. Then we can find a Hamilton cycle C in G[S ∪ Z]. Let G′

be obtained from G by removing the edges of C. Hence, when going from G to G′, the

maximum degree decreases by two. Let Z ′ contain the vertices of maximum degree in

G′. Again, we aim at finding a cycle C ′ that contains Z ′. In addition, if δ(G′) < δ(G),

then we want to make sure that C ′ does not contain any vertex of degree δ(G′). We

achieve this as follows. We find another set S ′ such that G[S ′ ∪Z ′] is lower-ε-regular and

has linear minimum degree, and critically, S ′ is disjoint from S. Then we can take C ′

to be a Hamilton cycle in G[S ′ ∪ Z ′]. In this way we have reduced the maximum degree

by 4 and the minimum degree by at most 2 by removing the edges of two cycles. By
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repeating this 2-step procedure, we will eventually obtain a dense regular graph which

can be decomposed into Hamilton cycles.

4.3.2 Proof sketch of Theorem 4.2.5

Roughly speaking, instead of inductively removing cycles, we aim to remove paths in

order to make our graph regular and then decompose the regular remainder into Hamilton

cycles. We can then simply colour each path with two colours and, since our graph has

even order, each Hamilton cycle with two colours. We can translate the condition that

G does not contain any overfull subgraph into a simple condition on the degree sequence

of G. Together with a classic result on multigraphic degree sequences by Hakimi [41],

we find an auxiliary multigraph A on V (G) such that dA(x) = ∆(G) − dG(x) for all

x ∈ V (G). If we removed the edges of a Hamilton path from G joining a and b for

every edge ab ∈ E(A), then the leftover would be a regular graph. However, too many

iterations would be needed and we could not ensure that the regular remainder is still

dense enough to apply the Hamilton decomposition result in [61]. Therefore, we split

E(A) into matchings, and for every such matching M we remove a linear forest from G

whose leaves are the vertices covered by M . In order to actually find these linear forests,

we observe that lower-(p, ε)-regular graphs contain ‘spanning linkages’ for arbitrary pairs

of vertices.
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CHAPTER 5

CONCLUSION

We gave a new proof of the existence conjecture based on the iterative absorption method,

which we developed in the hypergraph setting. This opens the door for further applications

of this method beyond the graph setting. Of particular interest would be to explore the

possibility of an existence theory for q-analogs of Steiner systems. There, instead of

finding f -sets in an n-set which cover every r-set exactly once, the aim is to find a set of

f -dimensional subspaces of an n-dimensional vector space (over GF (q)) such that every

r-dimensional subspace is covered exactly once. The current state of knowledge for this

problem is sobering: for r ≥ 2, the only set of parameters for which the existence of such

a structure is known is (n, f, r, q) = (13, 3, 2, 2) [15]. Yet Keevash’s proof of the existence

conjecture and our alternative proof using iterative absorption give some hope that this

problem is not totally out of reach.

We also generalised Wilson’s fundamental theorem on F -decompositions to hyper-

graphs (Theorem A), and our methods made it possible to study the decomposition prob-

lem even beyond the quasirandom setting. In particular, we initiated the systematic study

of the decomposition threshold for hypergraphs. As demonstrated in the graph case, the

iterative absorption method is capable of delivering exact results for this problem, but

significant new ideas will be needed in order to extend this to hypergraphs.

For graphs, we determined the decomposition threshold of every bipartite graph, and

showed that the threshold of a clique equals its fractional counterpart. It would be
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interesting to study the problem for general F further, i.e. to determine δF up to δ∗F .

Yet perhaps the more important problem is to improve the bounds for the fractional

decomposition threshold of cliques.
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eds.), Academic Press, 1968, pp. 231–236.

[66] S. Lovett, S. Rao, and A. Vardy, Probabilistic existence of large sets of designs,
arXiv:1704.07964, 2017.

[67] C. McDiarmid and B. Reed, Linear arboricity of random regular graphs, Random
Structures Algorithms 1 (1990), 443–445.

[68] R. Montgomery, Fractional clique decompositions of dense partite graphs, Combin.
Probab. Comput., to appear.

[69] C.St.J.A. Nash-Williams, An unsolved problem concerning decomposition of graphs
into triangles, In: Combinatorial Theory and its Applications III (P. Erdős, A. Rényi,
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