
Dynamic Algorithms for Shortest Paths and Matching

Aaron Bernstein

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016

c⃝2016

Aaron Bernstein

All Rights Reserved

ABSTRACT

Dynamic Algorithms for Shortest Paths and Matching

Aaron Bernstein

There is a long history of research in theoretical computer science devoted to designing efficient

algorithms for graph problems. In many modern applications the graph in question is changing over

time, and we would like to avoid rerunning our algorithm on the entire graph every time a small

change occurs. The evolving nature of graphs motivates the dynamic graph model, in which the

goal is to minimize the amount of work needed to reoptimize the solution when the graph changes.

There is a large body of literature on dynamic algorithms for basic problems that arise in graphs.

This thesis presents several improved dynamic algorithms for two fundamental graph problems:

shortest paths, and matching.

Table of Contents

1 Introduction 1

1.1 The Model . 2

1.2 A Brief History of Dynamic Algorithms . 3

1.3 Overview of the Thesis . 6

I Partially Dynamic Shortest-Paths Algorithms 7

2 Dynamic Shortests Paths Introduction 8

2.1 Preliminaries . 9

2.2 The Even and Shiloach Tree . 11

3 Single Source Shortest Paths: Randomized 13

3.1 Related Work . 13

3.2 Our Results . 14

3.3 Techniques . 15

3.4 Framework . 16

3.5 The Emulator . 20

3.5.1 The Techniques of Thorup and Zwick . 20

3.5.2 Defining the Emulator . 21

3.5.3 Proving Theorem 4 . 23

3.6 Conclusions . 25

i

4 Single Source Shortest Paths: Deterministic 27

4.1 Our Results . 29

4.2 High Level Overview . 29

4.3 Preliminaries . 31

4.4 The Threshold Graph . 32

4.5 The Decremental SSSP Algorithm . 38

4.6 From Decremental to Incremental SSSP . 39

4.7 Conclusions . 40

5 All Pairs Shortest Paths in Directed Weighted Graphs 41

5.1 Our Results . 42

5.2 Preliminaries . 45

5.3 Hop Distances and the Even and Shiloach Tree 46

5.4 The Basic Approach . 47

5.5 A Simplified Not Quite O(mn) Algorithm . 51

5.5.1 The Algorithm . 52

5.5.2 Running Time Analysis . 54

5.5.3 Approximation Error Analysis . 56

5.6 The Final O(mn) Algorithm . 58

5.6.1 The Algorithm . 58

5.6.2 Running Time Analysis . 60

5.6.3 Approximation Error Analysis . 61

5.7 The h-SSSP Algorithm . 63

5.7.1 Limiting the dependence on Delta to O(Delta) 66

5.8 Final Touches . 73

5.8.1 Removing the Assumption that We Know R in Advance 73

5.8.2 The Incremental Setting . 74

5.8.3 A Fully Dynamic Algorithm . 75

5.9 Conclusions . 77

ii

II Fully Dynamic Maximum Matching 79

6 Dynamic Matching Introduction 80

6.1 Preliminaries . 81

6.2 Previous Work . 82

7 Fully Dynamic Matching with Small Approximation Ratios 85

7.1 Our Results . 86

7.2 Techniques . 88

7.3 Preliminaries . 90

7.4 The Framework . 91

7.4.1 General Graphs . 92

7.4.2 Small Arboricity Graphs . 93

7.5 A gamma-Restricted Fractional Matching Contains a Large Integral Matching . . . 94

7.6 An Edge Degree Constrained Subgraph Contains a Large Matching 98

7.7 Maintaining an Edge Degree Constrained Subgraph 102

7.8 Appendix of the More Technical Proofs . 106

7.8.1 Full proof of Theorem 20 . 106

7.8.2 Proof of Lemma 31 . 109

7.8.3 A Violation Oracle: Proof of Lemma 34 115

7.8.4 Maintaining an Edge Degree Constrained Subgraph in General Graphs . . 117

7.8.5 Dynamic Orientation: Proving Theorem 17 123

7.9 Conclusions . 129

III Bibliography 131

Bibliography 132

iii

Acknowledgments

I thank my advisor Cliff Stein for his time, his patience, and his generosity. His door was always

open, and I am very grateful for our many hours of discussion over the past six years, and for his

invaluable guidance.

I thank David Karger for first kindling my love of algorithms. His advanced algorithms class was

an inspiration, and I am very grateful for the support and encouragement he provided me throughout

my undergraduate years.

I would also like to thank my other collaborators Liam Roditty, Shiri Chechik, and Tsvi Kopelowitz

for making the act of research such a pleasant one.

Thank you to my dear friend Raju Krishnamoorthy for his indispensable advice both moral and

amoral.

Most importantly, thank you to my mother and sister. Without them I am nothing.

iv

To my mother

v

Chapter 1

Introduction

Graphs are an extremely versatile mathematical object, capable of representing any situation in

which we have objects and pair-wise relationships between those objects. Graphs model many

different settings, such as social networks, the communication infrastructure, the interconnections

of financial markets and the wiring of the human brain. In order to understand these and other

problems modeled by graphs we need algorithms for processing these graphs. There is a long and

rich history of designing algorithms for solving basic problems in graph theory such as graph search,

shortest paths, flows, and matchings.

A critical but somewhat less studied aspect of graphs is their dynamic nature – graphs are often

not given all at once, and they change over time. Given the sheer size of the graphs involved in set-

tings such as the ones mentioned above, we cannot afford to rerun our algorithm on the entire graph

every time a small change occurs. For this reason, starting in the early 80’s [Even and Shiloach,

1981] researchers have devised efficient algorithms for solving basic problems in dynamic graphs,

trying to minimize the amount of work needed to reoptimize the solution when the graph changes

due to an edge/vertex being inserted/deleted, or to the modification to some numeric parameter. This

thesis presents improved dynamic algorithm for two fundamental graph problems: shortest paths,

and maximum matching.

1

1.1 The Model

The dynamic graph model is analogous to the standard data structure model. The algorithm is given

an original graph, and must process an online sequence of updates and queries, where the update

changes the graph in some way, while the query asks for information about the current version of

the graph.

There are many variations on the dynamic model depending on exactly what types of updates are

allowed. The standard model is the fully dynamic one, where an update can insert an edge, delete an

edge, and in the case of a weighted graph it may also change the weight of an edge. The query then

depends on the specific graph problem being considered. For example, in dynamic connectivity,

the query CONNECTED(x, y) asks whether there is a path between vertices x and y in the current

version of the graph; in dynamic single source shortest paths, the query DISTANCE(v) asks for the

shortest distance from the fixed source s to vertex v. There are some problems for which instead of

queries, it is more natural to require that the algorithm maintain some substructure in the graph, such

as a maximum matching or a minimum spanning tree. A common restriction of the fully dynamic

setting is the partially dynamic setting where updates consist of only insertions, or only deletions.

The former case is known as incremental, the latter as decremental.

The efficiency of a dynamic algorithm is judged by two parameters: the update time is the time

required to process an update, while the query time is the time required to process a query. There are

also secondary concerns, such as whether the algorithm is randomized or deterministic, and whether

the update time is amortized or worst-case. For any given dynamic problem there are often many

possible trade-offs between update time and query time, as well as additional trade-offs depending

on whether randomization and/or amortization is permitted. For most applications it is crucial that

the user has easy access to information about the current graph, so typically the goal is to keep

the query time small (constant or polylogarithmic), while minimizing the update time as much as

possible.

The gap between randomized and deterministic algorithms tends to be especially pronounced

in dynamic algorithms. The reason for this is that most (but not all) randomized algorithms must

assume a significantly weaker adversary. In particular, they assume a nonadaptive adversary whose

update sequence is fixed in advance, and does not depend on the algorithm’s answers to queries. For

example, randomized algorithms for dynamic shortest paths assume that the updates are independent
2

of the shortest paths returned by the query procedure of the algorithm; randomized algorithms for

dynamic matching assume that the updates are independent of the matching maintained by the

algorithm. The nonadaptivity assumption often leads to significantly faster algorithms in the context

of shortest paths and matching. The price of this assumption is that it makes the algorithm unsuitable

to certain applications; in particular, a nonadaptive algorithm cannot be used as a black-box data

structure.

We now proceed to give a brief overview of the literature on dynamic graph algorithms as a

whole. This is followed by a more detailed review of the existing work on dynamic shortest paths

and dynamic matching, since these are the two problems addressed in this thesis.

1.2 A Brief History of Dynamic Algorithms

As far as we know, the first dynamic algorithm dates back to a result of Even Shiloach from 1981

which shows how to maintain a shortest path tree under deletions. Dynamic algorithms began

to receive a lot of attention in the 90’s, especially in the context of fully dynamic connectivity.

In this problem, an update can add or delete an edge from an undirected graph, while the query

CONNECTED(x, y) asks whether two vertices are connected in the current version of the graph.

The main open question was whether it is possible to achieve polylog update and query times.

The breakthrough 1995 paper of Henzinger and King [Henzinger and King, 1999] answered this

question in the affirmative for randomized algorithms; Holm, Lichtenberg, and Thorup obtained

such bounds deterministically in 1998 [Holm et al., 1998] (see also the journal version [Holm et al.,

2001]). Since then, essentially every fundamental graph problem has been studied in the dynamic

setting, with many dozens of papers on the topic. Much of this attention has been focused on

basic graph problems such as connectivity and minimum spanning tree (e.g. [Frederickson, 1985;

Eppstein et al., 1997; Henzinger and King, 1999; Henzinger and Thorup, 1997; Holm et al., 1998;

Thorup, 2000; Kapron et al., 2013]), reachability and strongly connected components in directed

graphs (e.g. [King, 1999; Demetrescu and Italiano, 2004; Demetrescu and Italiano, 2005; Roditty

and Zwick, 2008a; Roditty, 2013; Lacki, 2011; Henzinger et al., 2014b; Henzinger et al., 2015a]),

maximum matching (e.g. [Ivkovic and Lloyd, 1994; Sankowski, 2007; Onak and Rubinfeld, 2010a;

Baswana et al., 2011a; Neiman and Solomon, 2013a; Gupta and Peng, 2013; Bernstein and Stein,

3

2015; Bernstein and Stein, 2016; Bhattacharya et al., 2015a] and many others), and shortest paths

(e.g. [King, 1999; Demetrescu and Italiano, 2001; Baswana et al., 2003; Demetrescu and Italiano,

2004; Roditty and Zwick, 2012; Thorup, 2005; Baswana et al., 2007; Bernstein, 2009; Bernstein

and Roditty, 2011; Bernstein, 2013; Henzinger et al., 2013; Henzinger et al., 2014b; Henzinger

et al., 2014a] and many many others). There also exists rich literature on dynamic algorithms for

a wide variety of other problems, such as dynamic minimum cut [Eppstein et al., 1997; Thorup,

2007], dynamic topological sort [Pearce and Kelly, 2006; Katriel and Bodlaender, 2006; Bender

et al., 2009], and dynamic planarity testing [Italiano et al., 1993; Battista and Tamassia, 1996;

Galil et al., 1999].

Shortest Paths: There are dozens of papers on dynamic shortest paths in particular. As before,

the most general model is the fully dynamic one, where an update is allowed to insert or delete edges

into the graph. In dynamic all pairs shortest paths (APSP), the query DISTANCE(x, y) can ask for

the shortest distance between any pair of vertices x and y, while in dynamic single source shortest

paths (SSSP), there is a fixed source s, and query DISTANCE(x) asks for the shortest distance from

s to a vertex x. All existing algorithms can be extended to find the actual shortest path (not just

distance), but outputting the path might by necessity take O(n) time if the path is long, so since we

typically want to keep the query time small, most researchers focus on answering dynamic distance

queries.

For fully dynamic single source shortest paths, no non-trivial algorithm is known for maintain-

ing exact distances. To this day, the fastest algorithm is to simply recompute the shortest path tree

from scratch after each update, yielding an O(m) update time and O(1) query time. If the query

only asks for an approximate shortest distance, then one can achieve a faster update time in dense

graphs by using the dynamic spanner of Baswana et al.[Baswana et al., 2012]; for example, there is

an algorithm with Õ(n1.5) update time and O(1) query time that maintains 3-approximate shortest

distances. 1

For fully dynamic all pairs shortest paths the situation is more optimistic. The trivial algorithm

achieves update time Õ(mn) and query time O(1) by simply recomputing shortest paths from

scratch after every update. There were a couple improvements in the 90’s and early 2000’s (e.g.

1Õ-notation hides log factors, so f(n) = Õ(g(n)) if f(n) = O(g(n)polylog(n)).

4

[King, 1999; Demetrescu and Italiano, 2001]) that were all eclipsed by the breakthrough paper

of Demetrescu and Italiano in 2004 [Demetrescu and Italiano, 2004], which achieves update time

Õ(n2) and query time O(1). The algorithm of Demetrescu and Italiano works for weighted directed

graphs and is still the state of the art; nothing better is known even if the graph is unweighted

and undirected. Since then, several results have achieved o(n2) update time, but at the cost of a

polynomial (but sublinear) query time [Sankowski, 2005; Roditty and Zwick, 2012]. There are

also algorithms that simultaneously achieve o(n2) update time and small (at most polylog) query

time by settling for approximate shortest distances [Bernstein, 2009; Bernstein and Roditty, 2011;

Henzinger et al., 2013; Abraham et al., 2014].

There has also been a lot of research devoted to achieving faster update times by focusing on the

partially dynamic setting, where the update sequence consist of only edge insertions or only edge

deletions. This setting is the focus of Part I of this thesis.

Matching: There is a large amount of research on the problem of maintaining a maximum match-

ing in a dynamic graph. Most of this work has focused on unweighted graphs, where the goal is

simply to maintain a matching with as many edges as possible. The trivial approach is to recompute

a maximum matching from scratch after every update; using the classic Micali-Vazirani algorithm

[Micali and Vazirani, 1980b; Vazirani, 1994] yields update time O(m
√
n) . It is not hard to achieve

update time O(m) by observing that changing a single edge in the graph can only change the max-

imum matching by a single augmenting path. The only other dynamic algorithm for the exact case

is from a 2007 paper of Sankowski [Sankowski, 2007], which achieves update time O(n1.495) using

fast matrix multiplication.

We would ideally like sublinear update times, so researchers turned to the question of main-

taining an approximate maximum matching. In 2010, Onak and Rubinfeld presented a randomized

algorithm that maintains a constant-approximate matching in O(log2(n)) update time. Since then,

there have been a large number of papers improving upon this algorithm and achieving various

update-approximation trade-offs. We present a more detailed discussion in Part II of the thesis.

5

1.3 Overview of the Thesis

This thesis places each result into its own chapter. In particular, the thesis is broken up into two parts:

Part I contains three results for partially dynamic shortest paths, while Part II contains one (large)

result for dynamic matching. But some readers might prefer to start with a high level overview of all

the different results. To this end, I will now point out the overview sections that provide a summary

of our results and the techniques we used to obtain them.

Chapter 2 in Part I serves as a general introduction to the partially dynamic shortest paths prob-

lem. The next three chapters then describe each of the three results in Part I in detail. For a high

level overview, I would recommend the following: Sections 3.1, 3.2, and 3.3 in Chapter 3; Sections

4.1 and 4.2 in Chapter 4; and Sections 5.1, 5.2, 5.3, and 5.4 in Chapter 5.

Chapter 6 in Part II serves as a general introduction to the dynamic matching problem. I would

then recommend Sections 7.1, 7.2, 7.3, 7.4 in Chapter 7 for a high-level overview of our result and

the new technical framework we use to obtain it.

6

Part I

Partially Dynamic Shortest-Paths

Algorithms

7

Chapter 2

Dynamic Shortests Paths Introduction

As far as we know, there are more papers on dynamic shortest paths than on any single other dy-

namic graph problem. This is in part because computing shortest paths efficiently is one of the most

fundamental problems in graph algorithms, but another reason is that shortest paths seems to be an

especially difficult problem in the dynamic setting. For more basic problems such as connectivity

or minimum spanning tree, researchers were eventually able to develop fully dynamic algorithms

with polylog update and query times. For shortest paths, such a goal seems out of reach, and even

sublinear update times are difficult to achieve. For this reason, much of the research on the problem

attempts to relax various requirements of the model in an effort to achieve more efficient algorithms.

In section 1.2 we provided a brief overview of fully dynamic algorithms for shortest paths. For

fully dynamic single source shortest paths nothing non-trivial is known unless we allow a large

approximation ratio (at least 3). For fully dynamic all pairs shortest paths we saw that progress

largely seemed to halt at the O(n2) update time barrier of [Demetrescu and Italiano, 2004]: all

existing algorithms to go beyond this update barrier either require a polynomial (but sublinear)

query time, or require an approximation ratio of at least two.

For this reason, much of the research on dynamic shortest paths has turned to partially dynamic

algorithms, which are the focus of this chapter. In Chapter 2 we define the setting more formally.

Chapters 3 and 4 are devoted to partially dynamic algorithms for single source shortest paths; they

contain a discussion of existing work on the problem, and present the first randomized and deter-

ministic algorithms respectively to go beyond a natural barrier that stood for 3 decades. Chapter

5 contains a discussion of partially dynamic algorithms for all pairs shortest paths, and presents a
8

new result for weighted directed graphs.

2.1 Preliminaries

We start with some basic definitions that are shared by all the results discussed in Part I. Let G =

(V,E) be the main graph that is subject to a series of updates. As we process our updates, G always

refers to the current version of the graph. Let w(x, y) be the weight of edge (x, y) in G; if the

problem specifies that G is unweighted, then w(x, y) = 1 for all edges. Let π(x, y) be the shortest

x− y path in G; if there are multiple shortest paths from x to y we can use any tie breaking strategy

which ensures that any subpath of a shortest path is itself a shortest path (For an example of such

a tie-breaking strategy, see section 3.4 of [Demetrescu and Italiano, 2004]). Define δ(x, y) to be

the length of π(x, y), or ∞ if no x − y path exists. Note that w(x, y), π(x, y), and δ(x, y) can all

change as G itself changes due to edge updates.

Many of our algorithms rely on auxiliary graphs that are different from G. For any graph H ,

let wH(x, y) the weight of edge (x, y) in H , let πH(x, y) be the shortest x − y path in H , and let

δH(x, y) be the length of πH(x, y).

We now formally define the partially dynamic model. A partially dynamic algorithm allows

either only deletions (decremental), or only incremental (incremental). We define these two cases

separately, although all of the algorithms discussed in Part I can handle either setting. Note that in

weighted graphs, the decremental/incremental settings also allow certain edge weight changes; the

basic idea is that in a decremental algorithm shortest distances are monotonically increasing, while

in an incremental one shortest distances are monotonically decreasing.

Definition 1 Given a weighted graph G subject to an online sequence of updates, the update se-

quence is said to be decremental if every update is either an edge deletion or an edge weight in-

crease; if G is unweighted, each update must be an edge deletion. The update sequence is said

to incremental if every update is either an edge insertion or an edge weight decrease; if G is un-

weighted, each update must be an edge insertion. We say that an algorithm is decremental (resp.

incremental) if it can process a decremental (resp. incremental) update sequence.

Definition 2 Given a graph G and a fixed source s, a decremental algorithm for single source

shortest paths (SSSP) must process an online sequence of updates and queries, where the updates
9

are decremental and the query DISTANCE(v) asks for the shortest distance δ(s, v) for any vertex v.

A decremental algorithm for all pairs shortest paths (APSP) must be capable of answering queries

DISTANCE(u, v), which ask for the shortest distance δ(u, v) for any pair of vertices u and v. An

incremental SSSP/APSP algorithm is defined in the same way, except that the updates must be

incremental.

All of the algorithms discussed in Part I only return approximate shortest distances. We now

define this notion formally

Definition 3 A dynamic shortest path algorithm is said to return α-approximate shortest distances

if given any query that asks for the shortest distance δ(u, v), the algorithm returns a distance δ̂(u, v)

such that δ(u, v) ≤ δ̂(u, v) ≤ αδ(u, v).

In a fully dynamic algorithm, the update time refers to the time (amortized or worst-case) re-

quired to process a single update. However, for partially dynamic algorithms it is usually easier to

analyze the total update time over all updates. Note that if the graph is unweighted then the total

number of updates is bounded: in a decremental algorithm edges are deleted one by one until none

are left; in an incremental algorithm edges are inserted one by one until we reach the final graph. In

particular, the update time will often be expressed in terms of m, which in a decremental setting is

the number of edges in the original graph, and in an incremental setting is the number of edges in

the final graph. If the graph is weighted there could be a potentially infinite number of updates, so

the update time will also depend on another variable ∆, which refers to the total number of updates.

Definition 4 Let A be a partially dynamic algorithm. We say that A has query time Tq if it answers

every query in worst-case time at most Tq. We say that A has total update time Tu if it spends a

total of Tu time processing all of the updates in the update sequence.

Definition 5 Given a graph G subject to a sequence of edge deletions, insertions, and weight

changes, define MAX-EDGES(G) to the number of pairs (u, v) such that edge (u, v) is in the

graph at some point during the update sequence. Note that if the sequence is decremental then

MAX-EDGES(G) is simply the number of edges in the original graph, and if the sequence is incre-

mental then MAX-EDGES(G) is the number of edges in the final graph.

10

2.2 The Even and Shiloach Tree

Almost all existing partially dynamic algorithms for maintaining a shortest path tree under deletions

use as a building block an algorithm for Even and Shiloach [Even and Shiloach, 1981] for main-

taining a partially dynamic shortest path tree up to a given distance d. The algorithm of Even and

Shiloach only works for undirected graphs, but was later extended by King [King, 1999] to work

for directed graphs. We will require several similar versions of this result, so we start by stating

the algorithm in its full generality, which actually applies to the fully dynamic setting – that is, the

update sequence can contain both edge insertions and edge deletions. We then state some corollaries

for the partially dynamic setting that easily follow.

Theorem 1 [King, 1999] Let G be a dynamic directed weighted graph and let s be a fixed source.

Say that G is subject to an online sequence of updates and queries, where the updates form a fully

dynamic sequence (edge insertions, deletions, and weight changes), while the query DISTANCE(v)

asks for the shortest distance δ(s, v) for any vertex v. There exists an algorithm with the following

properties:

• The query time of the algorithm is O(1).

• The time to process some update σ is O(1 + E(σ)), where E(σ) is the number of edges

incident to some vertex v for which δ(s, v) changed as a result of the update.

Definition 6 Given a dynamic graph G and a distance bound d, we say that a decremental/incremental

SSSP/APSP algorithm runs up to distance d if for any query that asks for δ(u, v), the algorithm out-

puts a value δ̂(u, v) that satisfies the following properties:

• If δ(u, v) ≤ d then δ̂(u, v) = δ(u, v).

• If δ(u, v) > d then δ̂(u, v) ≥ δ(u, v).

If the algorithm is α-approximate, then the first property only requires that δ(u, v) ≤ δ̂(u, v) ≤

αδ(u, v).

Lemma 1 [King, 1999] Let G = (V,E) be a directed graph with positive integer weights subject to

a decremental or incremental sequence of updates, let s be a fixed source, let d be a distance bound,
11

and assume that all edge weights are upper bounded by d. There is a dynamic SSSP algorithm that

maintains distances from s up to distance d that has query time O(1) and total update time O(md)

over the entire sequence of updates to G, where m = MAX-EDGES(G).

Proof: Because weights are positive and integral, all edge weights are between 1 and d, so since

each weight either only increases (decremental) or only decreases (incremental), the algorithm has

to process at most O(md) edge weight changes.

Now, observe that the algorithm only has to process vertices v for which 1 ≤ δ(s, v): in the

decremental setting, once we have δ(s, v) > d we will always have δ(s, v) > d so we can delete

v from the graph and return δ̂(s, v) = ∞ from that point on; in the incremental setting, it is easy

to modify King’s algorithm [King, 1999] to ignore v until δ(s, v) ≤ d, after which point we will

always have δ(s, v) ≤ d. Thus, given any vertex v, the distance δ(s, v) can change at most d times

over the entire sequence of updates: in a decremental setting every time δ(s, v) changes it increases

by at least 1, which can happen at most d times before δ(s, v) > d; in the incremental setting, we

first process v when δ(s, v) ≤ d, after which point the distance can decrease at most d times before

δ(s, v) = 1, which is the minimum possible distance.

Thus, we explore all the edges incident to a vertex v at most d times, leading to a total update

time of O(md). �

Corollary 1 Given an unweighted graph and a fixed source, there exists a decremental as well as

incremental SSSP algorithm with query time O(1) and total update O(mn) over the entire sequence

of edge deletions, where n is the number of vertices in the graph (which never changes), and m =

MAX-EDGES(G).

Proof: Since the graph is unweighted, we always have δ(s, v) ≤ n or δ(s, v) = ∞, so it suffices to

maintain distances up to d = n. By Lemma 1 this requires O(mn) total update time, as desired. �

Definition 7 Let G be a graph subject to a decremental/incremental sequence of edge updates. let

s be a fixed source, and let d be some depth bound. We define ES(G, s, d) to be the decremen-

tal/incremental algorithm for maintaining distances from s up to distance d with the bounds given

in Lemma 1 (O(1) query time, O(md) total update time). In words, we denote this algorithm as

running an Even and Shiloach tree in G from source s up to depth d.

12

Chapter 3

Single Source Shortest Paths:

Randomized

Publication History: This chapter is based on results originally published by Liam Roditty and

I in SODA 2011 [Bernstein and Roditty, 2011]. As discussed below in Section 3.3, however, both

the algorithm and the analysis have been significantly altered.

3.1 Related Work

As discussed in Section 1.2, Fully Dynamic SSSP has proved to be quite difficult in the dynamic

setting, even in unweighted, undirected graphs. The trivial algorithm recomputes a shortest path

tree from scratch after every update, which takes time O(m) using a simple breadth first search.

This is still the best algorithm known, although using the dynamic spanner of Baswana [Baswana

et al., 2012] it is possible to achieve a better update time in dense graphs at the cost of a large

approximation ratio: for example, update time Õ(n1.5) for a 3-approximation.

For partially dynamic algorithms (decremental or incremental), the trivial algorithm again achieves

update time O(m). Equivalently, the trivial algorithm has total update time O(m2), since a partially

dynamic algorithm on an unweighted graph performs at most m updates, where m = MAX-EDGES(G)

(see Definition 5).

The first improvement to this bound goes back all the way to 1981 [Even and Shiloach, 1981]:

Even and Shiloach showed how to achieve total update time O(mn) in undirected unweighted
13

graphs (see Corollary 1 above). A similar result was independently found by Dinitz [Dinitz, 2006],

and was later generalized to directed graphs by King [King, 1999]. However, even though dynamic

shortest paths as a whole quickly became a very active field, no progress was made over this simple

O(mn) algorithm.

Roditty and Zwick [Roditty and Zwick, 2004b] presented an explanation for this lack of progress,

by showing a reduction from boolean matrix multiplication to both the incremental and the decre-

mental SSSP problem in unweighted undirected graphs. This reduction implies that unless a major

breakthrough in combinatorial boolean matrix multiplication is provided, no combinatorial algo-

rithm for the problem can go beyond the O(mn) total update time of Even and Shiloach (except

perhaps by log factors). Very recently, Henzinger et al [Henzinger et al., 2015b] proved the same

O(mn) lower bound for any type of algorithm (not just a combinatorial one), assuming their online

boolean matrix-vector multiplication conjecture.

These lower bounds motivated the study of the approximate version of this problem. Liam

Roditty and I presented the first algorithm to go beyond this O(mn) total update time bound [Bern-

stein and Roditty, 2011]; the approximation is the best that could be hoped for, as the algorithm

returns (1 + ϵ)-approximate distances. This result is the focus of the current chapter.

3.2 Our Results

We achieve two results. The main result is for partially dynamic SSSP, as described above. Our

technique is rather general, however, and ends up yielding new results for partially dynamic APSP

as well.

Theorem 2 Let G be an unweighted, undirected graph, and let s be a fixed source. There is an algo-

rithm that solves (1 + ϵ)-approximate decremental or incremental SSSP with the following bounds:

the query time is O(1) and the total update time is (with high probability) O(n2+O(1/
√

log(n))) =

O(n2+o(1)).

Theorem 3 Let G be an unweighted, undirected graphs, and let k ≥ 2 be a fixed integer. There

exists an algorithm that solves (2k − 1 + ϵ)-approximate decremental or incremental APSP with

the following bounds: the query time is O(k) (which is constant), and the total update time is (with

high probability) O(n2+1/k+O(1/
√

log(n))) = O(n2+1/k+o(1)).
14

New Work Published After our Results: Our result was the first to go beyond the Õ(mn) to-

tal update time barrier for decremental SSSP, at the cost of a (1 + ϵ)-approximation. Since the

publication of our result in SODA 2011, there has been a series of further improvements, most of

which were done by Henzinger, Krinninger, and Nanongkai. Recall that our result achieves total

update time O(n2+o(1)) in undirected unweighted graphs. For the same case of undirected and

unweighted graphs, Henzinger et al.presented an algorithm with total update time O(m1+o(1) +

n1.8+o(1) [Henzinger et al., 2014c]. They later developed an algorithm with a close to optimal to-

tal update time of O(m1+o(1)), which has the additional advantage of achieving the same update

time for graphs with weights polynomial in n [Henzinger et al., 2014a]. The same authors also

showed how to go beyond total update time Õ(mn) for directed graphs [Henzinger et al., 2014b;

Henzinger et al., 2015a], although the state-of-the-art still only has total update time Õ(mn.9). Fi-

nally, in a very recent paper, Shiri Chechik and I showed how to achieve a total update time of

Õ(n2) with a deterministic algorithm, in contrast to all the other results mentioned here, which are

randomized and non-adaptive. This deterministic algorithm is the subject of the next chapter in this

thesis.

3.3 Techniques

Our approach relies on extending a common tool used in static algorithms to the dynamic setting.

Many approximate shortest paths algorithms in undirected graphs start by constructing a sparse

emulator (or spanner) of the graph – that is, another graph on the same vertex set with a similar

shortest distance structure (see Definition 8 for a formal description). The algorithm then computes

shortest paths in the sparse emulator rather than in the original graph (see e.g. [Awerbuch et al.,

1998; Cohen, 1998; Aingworth et al., 1999; Dor et al., 2000; Cohen and Zwick, 2001; Elkin and

Peleg, 2004; Thorup and Zwick, 2006; Pettie, 2009]). However, this approach has never been used

in a decremental (or incremental) setting. The reason for this is that as edges in G are being deleted,

we also have to change the edges in the emulator H , so that H remains a good emulator. But a

deletion in G can lead to insertions into H . Thus, we cannot run decremental algorithms on our

emulator, because from the perspective of H we are not in a decremental setting.

Our main contribution is an emulator that possesses several novel properties relating to how it

15

changes as edges in G are being deleted. The emulator itself is basically identical to one used by

Bernstein [Bernstein, 2009], which is in turn a modification of a spanner developed by Thorup and

Zwick [Thorup and Zwick, 2006]. However, the properties we prove are entirely new to this result.

In the original SODA 2011 paper in which Liam Roditty and I published these results [Bernstein

and Roditty, 2011], we proved that as edges in G are being deleted, insertions into H can indeed

occur, but they are rather well behaved. We then showed how to extend several existing decremental

algorithms to handle such well behaved insertions.

However, since then, we realized that our algorithm can in fact be greatly simplified. We would

like to thank Shiri Chechik and Sebastian Krinninger for bringing this to our attention. Recall that

given any dynamic problem, there is always the following trivial algorithm: after every update, run

a static (non-dynamic) algorithm for the problem on the current version of the graph. If the setting

is decremental or incremental and the graph is unweighted, then the total number of updates is at

most m = MAX-EDGES(G). Now, for single source shortest paths in unweighted graphs, a single

instance can be solved in O(m) time using a single breadth first search: this yields a trivial dynamic

algorithm with total update time O(m2). But what if we ran this algorithm on a sparse emulator of

the graph, with only approximately n edges? Then in theory we could get total update time O(n2).

There are two main difficulties that arise. The first is how to efficiently maintain the emulator as the

graph changes. The second is that as the adversary performs m updates on the graph G, this could

potentially lead to significantly more than n edge changes in the emulator.

Our main contribution is an emulator that is easy to maintain in a decremental (or incremental)

setting, and that only changes a small number of times as G changes.

3.4 Framework

Our entire framework is grounded on the emulator presented in Theorem 4 below. We leave the

proof of Theorem 4 for Section 3.5, and in this section instead focus on how we use this theorem to

prove our two main results (Theorems 2 and 3).

Definition 8 An emulator H of G is a graph with the same vertex set as G, but with different

(possibly weighted) edges. We say that H is an (α, β)-emulator if for any pair of vertices x, y we

have δ(x, y) ≤ δH(x, y) ≤ αδ(x, y)+β. We say that H is an α-emulator if it is an (α, 0)-emulator.

16

Remark: Many approximate graph algorithms use spanners, which are emulators whose edge

set must be a subset of the original edges E. However, we stick to the more general definition of

emulators.

Definition 9 We say that an algorithm maintains an (α, β) emulator in a dynamic graph G if it

maintains a graph H which is always guaranteed to a be a (α, β) emulator for the current version

of G. (Note that the algorithm can change H as G changes.)

Theorem 4 Let G be an unweighted undirected graph subject to a decremental or incremental

sequence of updates, and let ϵ be a fixed (constant) approximation parameter. Let n be the number of

vertices in G, and let m = MAX-EDGES(G). There exists an algorithm that maintains an emulator

H with the following properties (note that the algorithm inserts, deletes, and changes the weights

of edges in H as G changes):

1. The current version of H is always a ((1 + ϵ), nO(1
√

log(n))) = ((1 + ϵ), no(1)) emulator for

the current version of G (with high probability).

2. At all times H has at most O(n1+O(1
√

log(n))) = O(n1+o(1)) edges (with high probability).

3. The algorithm has a total update time of O(mnO(1
√

log(n))) = O(mno(1)) over the entire

sequence of edge updates to G (with high probability).

4. The total number of changes made to H (insertions, deletions, or weight changes) over the

entire sequence of edge updates to G is O(n1+O(1
√

log(n))) = O(n1+o(1)) (with high proba-

bility).

It may seem problematic at first that we are maintaining an ((1 + ϵ), no(1)) emulator, since we

want our final distances to be (1 + ϵ) approximate without an additive error. Note, however, that

the additive error can be subsumed under the (1+ ϵ) approximation for not-too-small distances, i.e.

distances greater than no(1). Distances smaller than no(1) can then be handled separately because

many dynamic algorithms run much faster for small distances.

Theorem 5 Say that we want to solve decremental (resp. incremental) single source shortest paths

or decremental (resp. incremental) all pairs shortest paths in an unweighted graph G subject to

17

a sequence of edge deletions (resp. insertions). Let ϵ < 1 be some fixed constant approximation

parameter. Let us say that there exists a static (i.e. non-dynamic) algorithm As that can solve a

single instance of the problem in time Ts in a graph that has n vertices and O(n1+O(1
√

log(n))) =

O(n1+o(1)) edges, and in which all distances are at most O(n). Let αs be the approximation ratio

of this static algorithm. Let us say that there exists a decremental (resp. incremental) algorithm

Ad that can solve the problem up to distance d = O(nO(1
√

log(n))) = O(no(1)) (see Definition

6) on the sequence of edge deletions (resp. insertions), and that Ad has total update time Td and

approximation ratio αd. Then, there exists a randomized non-adaptive algorithm A that solves

the decremental problem with expected total update time O(Td + n1+O(1
√

log(n)) · Ts) = O(Td +

n1+o(1) · Ts), and with high probability has approximation ratio max {αd, αs(1 + ϵ)}.

Proof: The proof follows more or less directly from Theorem 4, but gets a bit technical simply

because there are so many time bounds to combine. Our algorithm will maintain the emulator H in

Theorem 4. Recall that by Property 1 of Theorem 4, H is a ((1+ϵ), nO(1
√

log(n))) emulator; we will

use ϵ′ = ϵ/2, resulting in a (1 + ϵ/2, AE) emulator, where AE = nO(1
√

log(n)) is the additive error

of the emulator. Let d = 2AE/ϵ, and note that d = O(nO(1
√

log(n))) = O(no(1)). For distances up

to d we run the algorithm Ad on the original graph G; recall that Ad is dynamic, so it maintains αd

approximate distances (up to distance d) over the entire sequence of changes to G in total update

time Td. We also run the static algorithm As on the emulator H (this time up to arbitrary distances).

Each time an edge in H changes, we have to rerun algorithm As on the new version of H , but by

property 4 of Theorem 4, an edge change to H only occurs O(n1+O(1
√

log(n))) times over the entire

sequence of changes to G, leading to a total update time of O(nO(1
√

log(n)) · Ts), as desired.

We must now analyze the approximation guarantee. Given any query that asks for δ(v, w)

(where v must be the source in the case of dynamic SSSP and can be any vertex in the case of

dynamic APSP), our final algorithm A outputs the minimum returned by algorithms As and Ad.

More formally, let δs(v, w) be the distance returned by As and δd(v, w) be the distance returned

by Ad; our final algorithm A then returns δ∗(v, w) = min {δs(v, w), δd(v, w)}. Now, we know

that Ad is αd-approximate up to distance d, so δ(v, w) ≤ δd(v, w), and δd(v, w) ≤ αdδ(v, w) if

δ(v, w) ≤ d. We also know that the static algorithm As returns αs approximate distances in H , and

that H is a (1 + ϵ/2, AE) = (1 + ϵ/2, ϵd/2) emulator so letting δH(v, w) be the shortest v − w

18

distance in H , we have that

δ(v, w) ≤ δH(v, w) ≤ δs(v, w) ≤ αsδH(v, w) ≤ αs((1 + ϵ/2)δ(v, w) + ϵd/2) (3.1)

But note that when δ(v, w) ≥ d, the above Equation 3.1 implies

δ(v, w) ≤ δs(v, w) ≤ (1 + ϵ)αsδ(v, w) (3.2)

On the other hand, when δ(v, w) ≤ d, we know that

δ(v, w) ≤ δd(v, w) ≤ αdδd(v, w) (3.3)

Recall that our final output is δ∗(v, w) = min {δs(v, w), δd(v, w)}; combining Equations 3.2 and

3.3 implies that

δ(v, w) ≤ δ∗(v, w) ≤ max {αd, αs(1 + ϵ)} δ(v, w)

as desired. �

Proof of Theorem 2 We directly apply Theorem 5 above. For algorithm As we use Dijkstra’s

algorithm; it is well known that Dijkstra’s can easily be made to run in time O(m) as long all

distances are at most O(n). This yields Ts = O(nO(1
√

log(n))) = O(no(1)) and αs = 1. For

algorithm Ad we use the algorithm of Lemma 1. Since the algorithm Ad only runs up to distance

d = O(nO(1
√

log(n))), this yields a total update time of O(mnO(1
√

log(n))) = O(n2+O(1
√

log(n))),

and approximation ratio αd = 1 (the algorithm of Lemma 1 is exact). Theorem 5 then yields an

algorithm with the bounds specified in Theorem 2. �

Proof of Theorem 3 We directly apply Theorem 5 above. Here though, we must be careful about

the precise definition of “computing” all-pairs shortest paths. The standard method is to construct

an n by n table where entry (i, j) contains some suitable approximation to δ(vi, vj). However, the

precise nature of the data structure does not matter, and a table is not necessarily the right choice.

All we need from Ad and As is that they compute a distance oracle, i.e. a data structure that given

any pair of vertices (v, w) can return an approximation to δ(v, w) in O(1) time.

For As, we use a well known distance oracle of Thorup and Zwick [Thorup and Zwick, 2005].

For any fixed integer k > 2, the distance oracle requires O(mn1/k) time to construct (in expecta-

tion), and given any pair of vertices (v, w) can return a 2k − 1 approximation to δ(v, w) in O(1)

time.
19

For Ad, we use an existing algorithm of Roditty and Zwick [Roditty and Zwick, 2012] which

shows how to maintain the above oracle of Thorup and Zwick in a decremental or incremental

setting. For any fixed integer k and any distance bound d, the oracle returns a 2k− 1 approximation

to any δ(v, w) in O(1) time, as long as δ(v, w) ≤ d (otherwise it returns an arbitrary number

≥ δ(v, w)); the oracle requires a total update time O(mdn1/k) over the entire sequence of updates,

where m = MAX-EDGES(G) (recall Definition 5).

Combining these algorithms using Theorem 5 yields an algorithm with the bounds specified in

Theorem 3. �

3.5 The Emulator

3.5.1 The Techniques of Thorup and Zwick

Our emulator relies on a clustering technique introduced by Thorup and Zwick [Thorup and Zwick,

2005], which we now review.

Definition 1 Let V = A0 ⊇ A1 ⊇ ... ⊇ Ak−1 ⊇ Ak = ∅ be sets of vertices (2 ≤ k ≤ log(n) is

a parameter of our choosing). In particular, we start with A0 = V , and for 1 ≤ i ≤ k − 1 every

vertex in Ai is independently sampled and put into Ai+1 with probability 1/n1/k. We refer to the

indices 1, 2, ..., k as vertex priorities, where the priority of v is i if and only if v ∈ Ai \Ai+1.

Definition 2 Define the i-witness of v, or pi(v), to be the vertex in Ai that is nearest to v: pi(v) =

argminw∈Ai
(δ(v, w)). To break ties, we pick the pi(v) that survives to the set Aj of largest index

(equivalently, it is contained in the most sets Aj). Define δ(v,Ai) to be δ(v, pi(v)).

Definition 3 Given a vertex v ∈ Ai − Ai+1, we define the cluster of v to be C(v) = {w ∈

V | δ(w, v) < δ(w,Ai+1)}. We define the bunch of v to be B(v) = {w ∈ V | v ∈ C(w)}.

Lemma 2 [Thorup and Zwick, 2005] With high probability, the size of every bunch is O(kn1/k log(n)).

Thus, the total size of all the bunches is O(kn1+1/k log(n)). Note that v is in the bunch of w if and

only if w is in the cluster of v, so the total size of all the clusters must also be O(kn1+1/k log(n)).

Thorup showed how to efficiently compute all the clusters C(v), as well as all the witnesses

pi(v) (i ≤ k−1). Roditty and Zwick [Roditty and Zwick, 2012] later showed that we can efficiently

maintain this oracle in a decremental or incremental setting up to a distance threshold d.
20

Theorem 6 [Roditty and Zwick, 2012] Let G be an undirected graph with positive edge weights,

subject to a decremental or incremental sequence of updates. Given any distance d, we can maintain

the following information as G changes:

1. For every vertex v, we maintain a set that contains all vertices w such that w ∈ C(v) AND

δ(v, w) ≤ d.

2. For every vertex v and every priority level 1 ≤ i ≤ k, we maintain every pi(v) for which

δ(v, pi(v)) ≤ d; for every i for which δ(v, pi(v)) > d, our algorithm need not maintain

anything.

With high probability, the algorithm can maintain all of the above information in total update time

O(mdn1/k) over the entire sequence of updates.

3.5.2 Defining the Emulator

The emulator we use is basically identical to an emulator used by Bernstein [Bernstein, 2009], which

is in turn a modification of one developed by Thorup and Zwick [Thorup and Zwick, 2006]. Both

are based upon the techniques covered in Section 3.5.1. Note that although the emulator itself is not

new, we prove several new properties relating to how it changes as the original graph G changes.

We start with an emulator of Thorup and Zwick [Thorup and Zwick, 2006] (they actually used

a spanner, but for simplicity, we express it as an emulator).

Theorem 7 [Thorup and Zwick, 2006] Let H be the following undirected emulator: for every

vertex v, and every w ∈ C(v), H contains an edge of weight δ(v, w) from v to w. Also, for every

vertex v and every vertex priority i, H contains an edge of weight δ(v, pi(v)) from v to pi(v). Then,

H contains O(kn1+1/k) edges and is a ((1 + ϵ/2), ζ) emulator, where ζ = O((6/ϵ)k). (Technical

note: Lemma 2.3 of Thorup and Zwick works for any ϵ, so plugging ϵ/2 into their lemma we get our

Theorem. In particular, note that 2 + 2/(ϵ/2) – the term in their lemma – is ≤ 6/ϵ because ϵ < 1).

Corollary 2 If δ(x, y) ≥ (2/ϵ)ζ (recall: ζ = O((6/ϵ)k)) then δH(x, y) ≤ (1 + ϵ)δ(x, y).

Proof: δH(x, y) ≤ (1 + ϵ/2)δ(x, y) + ζ ≤ (1 + ϵ/2)δ(x, y) + (ϵ/2)δ(x, y) = (1 + ϵ)δ(x, y). �

Bernstein [Bernstein, 2009] showed that the properties of H still hold if we remove all heavy edges.

We take advantage of this, although for different reasons.
21

Definition 4 Let γ = (24/ϵ)ζ, where ζ = O((6/ϵ)k) is the additive error of H , and k is the

maximum priority level used in our clustering.

Theorem 8 [Bernstein, 2009] Let H be the same emulator as in Theorem 7, except with all edges

of weight ≥ γ removed. Then, H has O(kn1+1/k) edges and is a ((1 + ϵ), O((6/ϵ)k)) emulator.

Also, if δ(x, y) ≥ γ/2 then δH(x, y) ≤ (1 + ϵ)δ(x, y) (no additive error).

Proof: The proof is almost identical to one in [Bernstein, 2009], and is given here for the sake of

completeness. To bound the approximation error of H , we let H ′ be the original emulator without

heavy edges removed. We now break our proof into two possible cases. If δ(x, y) ≤ γ/3, then we

know that δH′(x, y) ≤ (1+ ϵ)γ/3+ ζ ≤ γ, so the path from x to y in H ′ never uses edges of length

greater than γ, so this path must also exist in H .

If δ(x, y) > γ/3 then we split π(x, y) into paths of length ⌈γ/12⌉. That is, we let y1 = x, we

let y2 be the vertex on π(x, y) that is at distance ⌈γ/12⌉ from x, we let y3 be the vertex at distance

⌈γ/12⌉ from y2 and so on up to some yr. We define yr+1 = y. We then let πi be the subpath of

π(x, y) from yi to yi+1.

(Technical note: we choose yr in such a way that ⌈γ/12⌉ ≤ w(πr) ≤ ⌈γ/6⌉ + 1. This can

always be done because if we break π(x, y) into paths of length ⌈γ/12⌉, then the remainder left

over will have length ≤ ⌈γ/12⌉, so we can just concatenate this remainder to the last path of length

⌈γ/12⌉, thus yielding a path of length ≤ 2 ⌈γ/12⌉ ≤ ⌈γ/6⌉+ 1.)

Note that for any i we have w(πi) ≥ γ/12 ≥ (2/ϵ)ζ, so by the corollary of Theorem 7 there

exists a (1 + ϵ) approximate path pi in H ′ (see Figure 1). But all of the pi have length less than

(1 + ϵ)(⌈γ/6⌉ + 1) < γ/3, so they must also be in H (not just H ′). Thus, we consider the path

p = p1 ◦ p2 ◦ ... ◦ pr; this is an x − y path in H of length ≤ (1 + ϵ)δ(x, y), which completes the

proof. �

Recall that the whole purpose of constructing a sparse emulator H was to run all of our algorithms

on H instead of G. But as we delete edges from G we also need to modify H so that it remains a

((1 + ϵ), O((6/ϵ)k)) emulator. In particular, the clusters and witnesses in G change as we delete

edges, so we need to maintain all of the C(v) and pi(v). The following lemma stems directly from

Theorem 6.

22

Lemma 3 We can decrementally maintain the truncated emulator in Theorem 8 in a total of O(mγn1/k)

time over all deletions in G.

3.5.3 Proving Theorem 4

Although we use an already existing emulator, we use it in an entirely novel way; all of the analysis

in this section was new to the paper under discussion [Bernstein and Roditty, 2011]. In particular,

we will show how the emulator H is affected by changes to the original graph G.

Our end goal is to prove Theorem 4. The first three properties of this theorem will follow

directly from our discussion so far. The fourth property, however, requires some additional analysis.

We need to upper bound the total number of edge changes to H as the original graph G undergoes

either a decremental or incremental sequence of updates. Although the basic idea behind the proof

is the same in the incremental and decremental case, the details are a bit different, so we prove a

separate lemma for each case.

Lemma 4 Let H be the emulator in Theorem 8, and say that the original graph G is subject to a

decremental (only deletions) sequence of updates. Then the number of edges inserted into H over

all deletions in G is O(k2γn1+1/k log(n)) (with high probability).

Proof: By the definition of clusters, the only way a deletion in G can cause an edge (v, w) to be

inserted into H , is if the deletion causes δ(w,Ai) to increase, which in turn causes w to join C(v)

(here, v must have priority i− 1). Also, since all edges in H have weight less than γ, δ(w,Ai) must

have been less than γ before the deletion in G.

But note that since all edges in G have weight 1, δ(w,Ai) can increase at most γ times before it

exceeds γ. Moreover, every time δ(w,Ai) increases, at most O(kn1/k log(n)) edges (v, w) are in-

serted into H; this is because (v, w) can only exist in H if w ∈ C(v), and at any time, w is contained

in O(kn1/k log(n)) clusters (with high probability) – see Lemma 2. Thus, for any vertex w and any

vertex priority i, the total number of edges inserted into H on account of δ(w,Ai) increasing is

O(γkn1/k log(n)). But there are only O(kn) pairs (w, i), which leads to an O(k2γn1+1/k log(n))

upper bound on the total number of edges inserted into H .

�

23

Lemma 5 Let H be the emulator in Theorem 8, and say that the original graph G is subject to an

incremental (only insertions) sequence of updates. Then the number of edges deleted from H over

all deletions in G is O(k2γn1+1/k log(n)) (with high probability).

Proof: By the definition of clusters, the only way an insertion into G can cause an edge (v, w) to

be deleted from H , is if the insertion causes δ(w,Ai) to decrease for some i, which in turn causes

w to leave C(v) (here, v must have a priority (i − 1)). Also, since all edges in H have weight less

than γ, δ(w,Ai) must have been less than γ before the insertion in G.

But note that since all edges in G have weight 1, once δ(w,Ai) is less than γ, it can decrease

at most γ more times. Note also that for any given vertex w, the number of edges (v, w) that are

in H because w ∈ C(v) is at most O(kn1/k log(n)), because with high probability, that is how

many clusters w is contained in (see Lemma 2). Thus, even if all of these edges are deleted due

to δ(w,Ai) decreasing, we still have that the number of edges (v, w) deleted from H as a result of

δ(w,Ai) decreasing is O(kn1/k log(n)). Since δ(w,Ai) can decrease at most γ times we have that

the total number of edges deleted from H on account of δ(w,Ai) decreasing is O(γkn1/k log(n)).

But there are only O(kn) pairs (w, i), which leads to an O(k2γn1+1/k log(n)) upper bound on the

total number of edges deleted in H .

�

We now have all the tools required to prove our main theorem.

Proof of Theorem 4 Note that given a fixed graph G, the only parameter we choose in construct-

ing the emulator is the number of priorities k: once k is set, the sets A1, A2, ..., Ak are chosen

entirely at random, and the rest of the emulator follows from there. Given some constant ap-

proximation parameter ϵ < 1, the emulator we construct is the emulator H in Theorem 8, with

k =
√

log(n)). Turning to Definition 4, this yields γ = nO(1/
√

log(n) = no(1). We also have

n1+1/k = nO(1/
√

log(n)) = no(1).

Let us now focus on properties 1 and 2. Note that if we had a fixed (non-dynamic) graph G,

and constructed the emulator H in Theorem 8, then H would satisfy properties 1 and 2 by Theorem

8. However, we need to show that as G changes (and H with it), properties 1 and 2 will hold for

all versions of G. The key observation is that for any given version of G, H is defined entirely

in terms of the sets A1, A2, ..., Ak (see Definition 1), which are chosen entirely at random. Since

we assume the dynamic adversary is oblivious and non-adaptive, we can treat the update sequence
24

as fixed in advance; that is, the update sequence is completely independent both of our random

choices (oblivious), and by our answers to queries (non-adaptive). This implies that the sets the

sets A1, A2, ..., Ak will be random from the perspective of every version of the graph. This in term

means that Theorem 8 always holds with high probability for the current version of G, and so by the

union bound it holds with high probability for all versions of G, completing the proof of properties

1 and 2. (More formally, Theorem 8 holds with high probability, which means that it can be made to

hold with probability 1− n1/c for any constant c, while only multiplying the running time by O(c).

On the other hand, since each update deletes an edge, there are at most O(m) = O(n2) version over

which we need to union bound.)

Property 3 follows directly from Lemma 3.

Property 4 follows from Lemmas 4 and 5. We need to handle two the cases separately: the first

where G is subject to a decremental sequence of updates, and second an incremental sequence. In

the decremental case, we know by Lemma 4 that the total number of insertions into H over the entire

sequence of deletions to G is O(k2γn1+1/k log(n)) = nO(1/
√

log(n)). But we know by Theorem 8

that H originally only has nO(1/
√

log(n)) edges, so since that is also the total number of insertions,

it is clear that the total number of insertions AND deletions to H is at most nO(1/
√

log(n)). We

must finally consider edge weight changes. Note that the weight of an edge (v, w) in H always

corresponds to δ(v, w) in G; thus, while edges can enter and leave H , edge weights can only

increase. Since we delete all edges of weight greater than γ, we have that the total number of edge

weight changes is γ · nO(1/
√

log(n)) = nO(1/
√

log(n)) = n1+o(1) as desired. The argument for the

case where G is subject to an incremental is exactly symmetrical. �

3.6 Conclusions

We presented the first partially dynamic algorithm for single source shortest paths to go beyond the

O(mn) total update time bound. Our approximation error is only (1 + ϵ): the conditional lower

bounds of [Roditty and Zwick, 2004b] and [Henzinger et al., 2015c] suggest that an exact algorithm

would not be possible. The main open question of course is whether one can achieve total update

time less than O(n2). In particular, can one do better for sparse graphs?

Since our result, there have been several improvements by other authors [Henzinger et al.,

25

2014c; Henzinger et al., 2014a; Henzinger et al., 2014b; Henzinger et al., 2015a]. For undirected

graphs, this progress culminated in a result of Henzinger et al.[Henzinger et al., 2014a], which

maintains (1 + ϵ) approximate shortest paths with total update time O(m1+o(1)). Note that this

is optimal up to a mo(1) factor because O(m) time is clearly necessary. There have also been

several algorithms to go beyond the O(mn) bound for directed graphs [Henzinger et al., 2014b;

Henzinger et al., 2015a], though the state of the art in [Henzinger et al., 2015a] still only achieves

total update time O(mn.9).

There remain a few big open questions in this area. The first is whether we can do better

for directed graphs. The second is whether for undirected graphs we can get rid of the O(mo(1))

factor, and achieve something truly optimal up to log factors. Finally, the last open question is

whether we can break the O(mn) bound deterministically, as all the algorithms discussed here are

randomized and non-adaptive. Going beyond the O(mn) bound deterministically is the topic of the

next chapter.

26

Chapter 4

Single Source Shortest Paths:

Deterministic

Publication History: This chapter presents a result done in collaboration with Shiri Chechik that

has been accepted to STOC 2016.

As discussed in Section 3.1, the state of the art partially dynamic algorithm for maintaining ex-

act single source shortest distances has total update time O(mn), and there are conditional lower

bounds suggesting this is the best possible [Roditty and Zwick, 2004b; Henzinger et al., 2015c]. In

Chapter 3 we presented the first algorithm to go beyond the O(mn) bound by allowing a (1+ ϵ) ap-

proximation [Bernstein and Roditty, 2011]. The algorithm is randomized and non-adaptive, in that it

assumes the update sequence is fixed in advance, and so does not depend on the approximate shortest

distances (or paths) returned by the algorithm. Since then, there have been several other algorithms

to go beyond this O(mn) total update time barrier [Henzinger et al., 2014c; Henzinger et al., 2014a;

Henzinger et al., 2014b; Henzinger et al., 2015a] (see Section 3.6), but all of these algorithms are

also randomized and non-adaptive. As discussed in Section 1.1, the assumption of a non-adaptive

adversary makes these algorithms inadequate for certain settings, and in particular prevents them

from being used as black-box data structures. Thus an important open question remains: is it possi-

ble to beat the O(mn) bound with a deterministic algorithm?

This gap between randomized and deterministic algorithms is extremely common in dynamic

27

shortest paths problems. For partially dynamic shortest paths in particular, the large majority of the

state of the art algorithms are randomized and non-adaptive. To see why such algorithms tend to be

more efficient in the dynamic setting, consider the following simple clustering problem. The goal

is to maintain a set of v √
n vertices called centers in an unweighted undirected graph, such that

all other vertices are at distance at most
√
n from one of the centers. (Assume for simplicity that

the graph is always connected). This basic clustering tool is used in a huge number of approxi-

mate shortest path algorithms, both static and dynamic (e.g. [Peleg and Schäffer, 1989; Peleg and

Ullman, 1989; Thorup and Zwick, 2001; Thorup and Zwick, 2005; Baswana and Kavitha, 2006;

Bernstein and Roditty, 2011; Roditty and Zwick, 2012; Chechik, 2014; Henzinger et al., 2014b;

Henzinger et al., 2014a], and many many others). In the static setting, there is an obvious random-

ized algorithm: sample O(
√
n log(n)) centers uniformly at random. A simple greedy deterministic

algorithm also exists in the static setting, but in the dynamic setting, it is easy to see that an ef-

ficient deterministic algorithm cannot exist: whatever
√
n centers we choose, the adversary can

disconnect them while leaving the rest of graph intact, forcing us to restart from scratch. With ran-

domization and an oblivious adversary, however, the problem becomes easy: once again we sample

O(
√
n log(n)) centers uniformly at random. The adversary then proceeds to change the graph,

but since the updates are oblivious to our random choices we can argue that these centers are uni-

formly random in all versions of the graph, and so with high probability will form a valid clustering

throughout the entire update sequence. The extra assumption of a non-adaptive adversary is often

necessary to prevent the adversary from gaining information about our randomly chosen centers

from the algorithm’s answers to shortest path/distance queries.

Essentially every randomized algorithm for dynamic shortest paths (all pairs or single source)

uses some generalization of the above clustering, and so is difficult to match with a determinis-

tic algorithm. As far as we know the only exception is the decremental (1 + ϵ)-approximate all

pairs shortest path algorithm of Henzinger et al. (for unweighted undirected graphs) [Henzinger

et al., 2013], which succeeds in derandomizing the simple clustering-based algorithm of Roditty

and Zwick [Roditty and Zwick, 2012] that achieves the same bounds. For decremental SSSP in

particular, all the approximation algorithms that break through the O(mn) barrier rely on clustering

using randomization, and all require an oblivious non-adaptive adversary.

Shiri Chechik and I have developed a different approach that does not rely on any clustering

28

scheme, and is the first to break through the O(mn) barrier deterministically. The paper has been

accepted to STOC 2016.

4.1 Our Results

Theorem 9 Given an undirected unweighted graph G and a fixed source s, there is a deterministic

decremental SSSP algorithm with total update time O(m log3(n) + n2 log(n)ϵ−1). The query time

is O(1).

We can easily extend our algorithm to work for graphs with small positive integer weights, at

the cost of multiplying the update time by O(W), where W is the largest weight in the graph. We

can also extend the algorithm to work in the incremental settings (see Section 4.6).

Our algorithm does not match the randomized state of the art of total update time O(m1+o(1)),

but it is optimal up to log factors for dense graphs, and is the first deterministic algorithm to go

beyond the O(mn) barrier. In addition to being deterministic, our algorithm has several secondary

advantages. The first is that it is much simpler than the three randomized algorithms for the problem

[Bernstein and Roditty, 2011; Henzinger et al., 2014b; Henzinger et al., 2014a]. The reason for this

is that those algorithms all relied on variations of the same clustering technique of Thorup and

Zwick [Thorup and Zwick, 2005] which is somewhat involved, especially in the dynamic setting.

We develop an entirely different approach which is much simpler, and could potentially be of use

in other deterministic algorithms for dynamic shortest paths. The simplicity also allows us to avoid

the extra mO(1/
√

log(n)) = mo(1) term incurred by all the randomized algorithms, which again arose

from the Thorup and Zwick clustering. Thus, in addition to being deterministic, our algorithm is

simpler and faster than the O(n2+o(1)) randomized algorithm of Bernstein and Roditty, and is in

fact faster than all existing randomized algorithms for the problem in dense graphs where m =

Ω(n2−1/
√

log(n)).

4.2 High Level Overview

To highlight the simplicity of our approach, and to make the technical details easier to follow, we

start with a high level description of how to solve (1 + ϵ)-approximate decremental SSSP in total

29

update time O(n2.5), ignoring log factors that arise from some of the technical details. We assume

for this section that ϵ is a fixed constant. Note that the Even and Shiloach tree of Lemma 1 already

provides a method for maintaining short distances. In particular, running ES(G, s, 5
√
nϵ−1) only

requires O(m
√
n) = O(n2.5) time and maintains all distances δ(s, v) for which δ(s, v) ≤ 5

√
nϵ−1

(see Definition 7).

To maintain long distances, we will sparsify the graph G. Let us say that a vertex v ∈ V is heavy

if it has degree at least
√
n, and light otherwise. Our main observation is that any shortest path π in

G can contain at most 3
√
n heavy vertices: intuitively, this is because no two heavy vertices on π

can share a common neighbor because then there would be a very short path between them, which

we could use to obtain a path shorter than the shortest path π. (The formal proof is only slightly

complicated by the fact that two heavy vertices on the path can share a common neighbor if the

two heavy vertices are already right next to each other on the shortest path π; however if they are

at distance 3 away from each other in π, they cannot have a common neighbor.) Thus, since the

neighborhood of a single heavy vertex contains
√
n vertices, and there are only n vertices in total,

there can only be
√
n heavy vertices on the shortest path π.

Since we are only concerned with vertices v for which δ(s, v) >>
√
n, we know that the

shortest path from s to v will contain far more light vertices than heavy vertices. Thus, if we

are only seeking an approximate distance, we can effectively ignore the heavy vertices and thus

reduce the number of edges in the graph. More specifically, our sparsification works as follows.

Let HEAVY be the set of heavy vertices in G, and let G[HEAVY] be the subgraph of G induced by

the heavy vertices. Consider the (still unweighted) graph G′ which contains all the edges of G, as

well as an edge between all pairs of vertices v, w such that v and w are both heavy and are in the

same connected component in G[HEAVY]. (Of course these connected components will change as

edges in G are deleted, but they are easy to maintain because dynamic connectivity is easy to do

efficiently in undirected graphs.) As described, G′ in fact contains more edges than G, but it is easy

to exactly mimic G′ with a sparse graph; include only the edges of G incident to at least one light

vertex, and then for every component C in G[HEAVY] create a new vertex c in G′ and add an edge

of weight 1/2 from c to every vertex in the component C. The resulting graph has at most O(n1.5)

edges: O(
√
n) per light vertex, and a single extra edge of weight 1/2 per heavy vertex.

Of course distances in G′ differ from those in G. In fact they are shorter because G′ allows us to

30

skip over whole components of heavy vertices. But intuitively, as long as δ(s, v) is large, δG′(s, v)

will not be too much smaller than δ(s, v), because δ(s, v) is dominated by light vertices anyway, so

skipping over the heavy ones does not change much. In particular, we will prove in that

δG′(s, v) ≤ δ(s, v) < δG′(s, v) + 5
√
n .

Thus, as long as δ(s, v) >>
√
n, δG′(s, v) + 5

√
n will be a good approximation to δ(s, v).

All in all, our algorithm runs two Even and Shiloach trees; ES(G, s, 5
√
nϵ−1) handles short

distances, while ES(G′, s, n) handles long ones. The first part runs in time O(m
√
n) = O(n2.5)

because we have bounded depth, while the second runs in time O(n2.5) because G′ is sparse. To

answer queries for a vertex v, the algorithm simply takes the minimum of the subroutine for short

distances, and the subroutine for long ones. Using these ideas it is not hard to reduce the total update

time to Õ(n2) by using O(log(n)) different heaviness thresholds to handle O(log(n)) ranges of

δ(s, v), and taking the minimum of the O(log(n)) subroutines.

4.3 Preliminaries

Our algorithm will make use of several graphs that are different from G. Given any subset of vertices

V ′ ⊆ V , we define the induced graph G[V ′] to contain all the vertices V ′, and all edges (u, v) ∈ E

such that u and v are both in V ′. Given any two sets S, T we define the set difference S \ T to

contain all elements s such that s ∈ S but s /∈ T .

Throughout our algorithms, we will often compute distances up to a certain threshold d (see

Definition 6). To this end, we define the following auxiliary definition

Definition 10 Given any number d, the function BOUNDd(x) is equal to x if x ≤ d, and to ∞

otherwise.

Our algorithm uses the Even and Shiloach tree from Lemma 1 as its basic building block. Note

that running the Even and Shiloach tree from source s up to distance d (Definition 6) is precisely

equivalent to maintaining BOUNDd(δ(s, v)) for all vertices v. To fit this building block cleanly into

our algorithm, we introduce a few simple variations on Lemma 1.

Lemma 6 [Even and Shiloach, 1981] Let G = (V,E) be a dynamic graph with positive integer

weights, let s be a fixed source, and say that for every vertex v we are guaranteed that the distance
31

δ(s, v) never decreases due to an edge insertion into G. Then, the total update time of ES(G, s, d)

over the entire sequence of edge updates is O(m · d +∆), where m = MAX-EDGES(G), and ∆ is

the total number of edge changes.

Remark 1 The typical guarantee given for the ES-tree is the one in Lemma 1: ES(G, s, d) has

total update time O(md) as long as the graph is subject to only deletions or only insertions. But

recall that in the proof of Lemma 1, the only-deletions assumption was only necessary to guarantee

that distances do not decrease, so the same bound holds as long as this monotonicity is separately

guaranteed for the insertions as well, as it is in the statement of this theorem. The existence of

insertions leads to the extra O(∆) term because the algorithm needs to spend O(1) time per edge

change. (In the case of only deletions, we have ∆ ≤ m, so we can ignore the ∆ term).

Corollary 3 If a dynamic graph G and a source s satisfy all the assumptions of Lemma 6 ex-

cept that weights in G are not necessarily integral, but all the weights are positive and integer

multiples of some number x, then the total running time of ES(G, s, d) is O(md/x + ∆), where

m = MAX-EDGES(G). (We simply divide all weights by x and apply Lemma 6.)

4.4 The Threshold Graph

Definition 11 Given a graph G and a positive integer threshold τ , we say that a vertex v in G is

τ -heavy if v has degree at least τ , and we say that v is τ -light otherwise. Let HEAVY(τ) be the set of

all τ -heavy vertices in G; note that when we say that a vertex v is τ -heavy or τ -light, this is always

with respect to the main graph G, never with respect to any other graph the algorithm relies on.

Definition 12 Given a graph G = (V,E) with |V | = n and |E| = m, and an integer τ ∈ [1, n],

define the threshold graph Gτ = (Vτ , Eτ) as follows (note that although G is unweighted, the edges

in Gτ have weights 1 and 1/2):

• Vτ contains every vertex v ∈ V .

• Vτ also contains an additional vertex c for each connected component C in the induced

subgraph G[HEAVY(τ)].

• Eτ contains all edges incident to τ -light vertices v ∈ V . All such edges are given weight 1.
32

• For every τ -heavy vertex v ∈ V , Eτ contains an edge from v to c of weight 1/2, where c is

the component vertex in Vτ \ V that corresponds to the component C in G[HEAVY(τ)] that

contains v.

For any pair of vertices s, t ∈ V define πτ (s, t) to be the shortest path from s to t in Gτ , and define

δτ (s, t) to be the weight of this path.

Lemma 7 The number of edges in the threshold graph Gτ is always O(nτ).

Proof: This follows directly from the definition of Gτ . Eτ contains the O(nτ) edges incident to

τ -light vertices in V , as well as a single additional edge for every τ -heavy vertex in V . �

Lemma 8 For any graph G = (V,E), any positive integer threshold τ , and any pair of vertices

s, t ∈ V :

δτ (s, t) ≤ δ(s, t) < δτ (s, t) +
5n

τ
.

Proof: We first show the simpler claim that δτ (s, t) ≤ δ(s, t). Consider the shortest s − t path

π(s, t) ∈ G. We will exhibit a (not necessarily simple) path Pτ (s, t) ∈ Gτ with weight exactly

δ(s, t). Pτ (s, t) contains all the edges of π(s, t) that are incident to some τ -light vertex: these edges

have weight 1 in both G and Gτ . The only edges that remain are edges (v, w) ∈ π(s, t) where v

and w are both τ -heavy. Since v and w are neighbors in G, they are part of the same connected

component C in G[HEAVY(τ)], and so Gτ contains a path of length 1 from v to w; namely, the path

(v, c) ◦ (c, w). We thus replace every edge (v, w) ∈ π(s, t) with a path of length 1 in Gτ , which

results in a path Pτ (s, t) ∈ Gτ with weight exactly δ(s, t), as needed.

We now prove that δ(s, t) ≤ δτ (s, t)+
5n
τ . Let πτ (s, t) be the shortest s− t path in Gτ . Let Lπτ

be the set of τ -light vertices v ∈ V
∩

πτ (s, t). Now, let V ∗ ⊆ V be the set of vertices containing

• All the vertices in Lπτ

• All the τ -heavy vertices in G

• All the neighbors of τ -heavy vertices in G.

Let G∗ be the subgraph of G induced by V ∗. We first show that there must exist an s− t path in G∗.

We construct this path by looking at πτ (s, t). πτ (s, t) contains edges incident to τ -light vertices in

33

G∗, as well as subpaths of length 2 of the form (v, c) ◦ (c, w), where v and w are τ -heavy vertices

that are in the same connected component C in G[HEAVY(τ)]. The edges on πτ (s, t) incident to

light vertices exist in G∗ as well, so we can follow those directly. For every subpath (v, c) ◦ (c, w),

since v and w are both in the same connected component in G[HEAVY(τ)], there is a v − w path in

G using only heavy vertices, so that path is in G∗ as well. We have thus shown that there exists an

s− t path in G∗.

Now, let π∗(s, t) be the shortest s − t path in G∗. Let δ∗(s, t) be the length of π∗(s, t). Since

G∗ is a subgraph of G, we know that δ(s, t) ≤ δ∗(s, t). We now show that

δ∗(s, t) < δτ (s, t) +
5n

τ
(4.1)

which completes the proof of Lemma 8. Let X∗ contain all vertices in π∗(s, t) that are NOT in

Lπτ : observe that by definition of V ∗, every vertex v ∈ X∗ is either τ -heavy, or adjacent in G∗ to a

τ -heavy vertex. Note that δ∗(s, t) ≤ |Lπτ | + |X∗|, while δτ (s, t) ≥ |Lπτ | because all the vertices

in Lπτ are on πτ (s, t). We thus have that

δ∗(s, t) ≤ δτ (s, t) + |X∗|,

so to prove Inequality 4.1, it suffices to show that

|X∗| < 5n

τ
. (4.2)

Let Y ∗ be the set containing every 5th vertex in X∗: that is, Y ∗ contains the vertex in X∗ that

is closest to s in G∗, the one that is 6th closest to s, the one that is 11th closest to s, and so on.

Clearly, |Y ∗| ≥ |X∗|/5. We complete the proof of Equation 4.2, and hence of Lemma 8 as a whole,

by arguing that

|Y ∗| < n

τ
. (4.3)

To prove Equation 4.3 above, for any vertex v ∈ Vτ we define BALL(G∗, v, 2) ⊆ V ∗ to be the

set containing v itself, the neighbors of v in G∗, and all vertices at distance 2 from v in G∗. Now,

on the one hand, for every v ∈ Y ∗ we have that |BALL(G∗, v, 2)| > τ because since v ∈ Y ∗ ⊂ X∗

we know that v is either itself τ -heavy or adjacent in G∗ to a τ -heavy vertex, and so BALL(G∗, v, 2)

must contain that τ -heavy vertex as well as its ≥ τ neighbors. On the other hand, if v and w are both

in Y ∗ then BALL(G∗, v, 2) and BALL(G∗, w, 2) must be disjoint because otherwise there would be
34

a path of length at most 4 between v and w in G∗, which contradicts the fact that the subpath of

the shortest path π∗(s, t) between v and w is of length at least 5. Thus, the total number of vertices

among all of the BALL(G∗, v, 2) for v ∈ Y ∗ is strictly greater than τ |Y ∗|, but since there are only n

vertices in the graph, we have |Y ∗| < n/τ , as desired. �

Now that we have shown that distances in Gτ are a close approximation to those in G, we show

that these distances, as well as the graph Gτ itself, can be easily maintained.

Lemma 9 Given a graph G subject to a sequence of edge deletions, and a positive integer threshold

τ , we can maintain the graph Gτ in total time O(m log2(n)).

Moreover, MAX-EDGES(Gτ) = O(nτ + n log(n)).

Proof: Gτ contains two types of edges: those incident to τ -light vertices, and those from a τ -heavy

vertex to its component vertex c. The first types of edges are trivial to maintain, since they are

simply a subset of the edges in G; when a deletion causes a τ -heavy vertex to become τ -light we

must add all of its incident O(τ) edges to Gτ , but this transition can only happen a single time

per vertex over the entire sequence of deletions because vertex degrees are only decreasing. This

first type of edges thus requires O(m) time to maintain, and only leads to O(min {nτ,m}) edge

insertions into Gτ .

We now show how to maintain the edge from each τ -heavy vertex v to its component vertex c,

where c corresponds to the connected component C in G[HEAVY(τ)] that contains v. First off, note

that G[HEAVY(τ)] itself is easy to maintain because it is simply a subgraph of G. We can maintain

connected components in G[HEAVY(τ)] by using a dynamic connectivity data structure (CDS) on

the graph G[HEAVY(τ)]. We use the CDS of Holm et al.[Holm et al., 2001], which is based on top

trees. This CDS can process insertions and deletions into the graph with amortized update time of

O(log2(n)). It is not hard to check that the top trees used by their algorithm can be augmented to

support more than just basic connectivity queries. In particular, their CDS can answer the following

queries:

• connected(u,v): determines whether u and v are in the same connected component in the

current graph. The query time is O(log(n)).

• size(v): returns the size of the connected component of v. The query time is O(log(n)).

35

• component(v): Returns a list of all the vertices in the same connected component as v. The

query time is O(log(n) + number of vertices returned).

To maintain the graph Gτ as G changes, we will run the above CDS on the graph G[HEAVY(τ)].

Note that G[HEAVY(τ)], like G, is only subject to edge deletions. When the adversary deletes an

edge (u, v) in G where both u and v are τ -heavy, this edge must be deleted from G[HEAVY(τ)] as

well, and this deletion is processed by the CDS in time O(log2(n)). Similarly, when a vertex v ∈ V

transitions from τ -heavy to τ -light, all of its incident edges must be deleted from G[HEAVY(τ)], and

processed by the CDS. Each edge is deleted from G[HEAVY(τ)] at most once, so the total update

time of the CDS is O(m log2(n)).

We must now show how to use the connectivity information maintained by the CDS to maintain

the graph Gτ ; in particular, how to maintain the edges from a τ -heavy vertex to its component

vertex c ∈ Vτ \ V . Whenever an edge (u, v) ∈ G[HEAVY(τ)] is deleted, we first query the CDS

in O(log(n)) time to check whether u and v are still part of the same connected component in

G[HEAVY(τ)]; if yes, the edges of Gτ do not change, and we are done. Otherwise, the deletion

of (u, v) has caused the component to split into two. We now query CDS.size(u) and CDS.size(v)

to determine in O(log(n)) time which of the two parts is smaller. Say, wlog, that CDS.size(v) ≤

CDS.size(u). Let C be the original component that contained both u and v before the deletion of

(u, v). Let Cv be the component containing v after the deletion. We can use CDS.component(v) to

find all the vertices in Cv in time O(log(n)+ |Cv|). Before the deletion, Gτ contained an edge from

every vertex in C to the component vertex c ∈ Vτ \ V . After the deletion, we add a new component

vertex cv to Gτ , and for every w ∈ Cv we remove the edge (w, c) and add the edge (w, cv). This

takes time O(|Cv|) and makes O(|Cv|) edge changes to G[HEAVY(τ)]. Amortized over all edge

deletions in G[HEAVY(τ)] we have
∑

|Cv| ≤ n log(n) because edges in G[HEAVY(τ)] are only

being deleted, so components are only splitting apart, and each time a vertex w is part of the smaller

component Cv in a component split, we know that its component has shrunk by a factor of at least

two.

Thus, the total time to process a deletion in G[HEAVY(τ)] is dominated by the O(log2(n))

update time of the CDS, yielding the desired O(m log2(n)) total update time. Moreover, from the

bounds above, we see that at most O(nτ+n log(n)) edges are inserted into the graph; O(nτ) of the

first type (edges incident to a τ -light vertex), and O(n log(n)) of the second (edges from a τ -heavy
36

vertex to its component vertex c). By Lemma 7, the number of edges in the initial Gτ is O(nτ), so

MAX-EDGES(Gτ) = O(nτ + n log(n)).

�

Lemma 10 Given a graph G subject to a sequence of edge deletions, a positive integer threshold

τ , and a pair of vertices u, v in G, the distance δτ (u, v) never decreases as edges in G are deleted.

Proof: Say that the adversary deleted edge (x, y) in G. Note that any path in Gτ consists of a

concatenation of subpaths of length 1 between vertices in V ; each subpath is either an edge of

weight 1 incident to a τ -light vertex, or two edges of weight 1/2 through a component vertex

c ∈ Vτ \ V . Thus, to show that distances in Gτ do not decrease, we show that for any pair of

vertices a, b ∈ V such that δτ (a, b) = 1 after the deletion of (x, y), we also had δτ (a, b) = 1 before

the deletion of (x, y). We know that δτ (a, b) = 1 after the deletion if and only if edge (a, b) is in

E, AND/OR a and b are in the same connected component in G[HEAVY(τ)]. But either of these

cases would clearly hold before the deletion of an edge as well, so we had δτ (a, b) = 1 before the

deletion. �

Lemma 11 Given a graph G = (V,E) subject to a sequence of deletions, a fixed source s, a

positive integer threshold τ , and a depth bound d, we can maintain the distance

BOUNDd(δτ (s, v)) for all vertices v in a total update time of O(m log2(n) + n · d · (τ + log(n)).

Proof: We simply maintain the graph Gτ as edges in G are deleted, and run ES(Gτ , s, d) (See

Definition 7). By Lemma 9, we can maintain the graph Gτ in time O(m log2(n)). Moreover,

by Lemma 9 we have MAX-EDGES(Gτ) = O(nτ + n log(n)). This bound on MAX-EDGES(Gτ)

implies that the total number of changes made to Gτ is ∆ = O(nτ + n log(n)). By Lemma

10 distances in Gτ never decrease, and all weights in Gτ are either 1/2 or 1, so by Lemma 6

and Corollary 3, the total running time of the ES-tree is O(MAX-EDGES(Gτ) · d + ∆), which is

O(n · d · (τ + log(n))). �

37

4.5 The Decremental SSSP Algorithm

Our goal is to maintain approximate distances from a fixed source s. For every integer i ∈ [1, ⌊log(n)⌋],

let τi = n
2i

, let di = 2i · 10
ϵ , and for every vertex v let

δ̂i(v) = BOUNDdi(δτi(s, v)).

Let δ̂(v) = mini{δ̂i(v)+5·2i}. When the adversary queries the distance to a vertex v, our algorithm

returns δ̂(v).

The execution of the algorithm is simple. By Lemma 11, for any i we maintain δ̂i(v) for all ver-

tices v in total update time O(m log2(n)+n·di·(τi+log(n)) = O(m log2(n)+n2ϵ−1+n log(n)di).

Doing this for every i yields total update time O(m log3(n) + n2 log(n)ϵ−1) because
∑

i di =

O(nϵ−1). To maintain all the δ̂(v), for each vertex v we create a min-heap HEAPv containing δ̂i(v)

for every i. The algorithm can access any δ̂(v) in O(1) time by looking at the minimum of the

heap, thus leading to an O(1) query time. Maintaining the heaps is easy: each δ̂i(v) can change

at most di = O(2iϵ−1) times, so there will be at most
∑

i di = nϵ−1 changes to each HEAPv,

and since each heap contain O(log(n)) elements, a change requires O(log log(n)) time to process.

Maintaining HEAPv for all v thus requires total update time only O(n2 log log(n)ϵ−1).

We now turn to proving that for any vertex v, δ(s, v) ≤ δ̂(s, v) ≤ (1 + ϵ)δ(s, v). The fact that

δ(s, v) ≤ δ̂(s, v) follows directly from Lemma 8, because for every i

δ(s, v) ≤ δτi(s, v) +
5n

τi

≤ δ̂i(s, v) +
5n

τi

= δ̂i(s, v) + 5 · 2i .

To prove that δ̂(s, v) ≤ (1 + ϵ)δ(s, v), we need to show that for some i, we have δ̂i(s, v) + 5 · 2i ≤

(1 + ϵ)δ(s, v). Let k be the largest index for which δ(s, v) ≥ 2k · 5
ϵ , so

2k · 10
ϵ

≥ δ(s, v) ≥ 2k · 5
ϵ
. (4.4)

Now, by Lemma 8, δτk(s, v) ≤ δ(s, v) ≤ 2k · 10
ϵ = dk, so we have

δ̂k(s, v) = BOUNDdk(δτk(s, v)) = δτk(s, v) ≤ δ(s, v) .

38

Thus,

δ̂k(s, v) + 5 · 2k ≤ δ(s, v) + 5 · 2k ≤ (1 + ϵ)δ(s, v) .

(The last inequality follows from δ(s, v) ≥ 2k · 5
ϵ in Equation 4.4.)

4.6 From Decremental to Incremental SSSP

In this section we sketch the modifications needed to make our algorithm incremental rather than

decremental.

We first remind the reader that the Even-Shiloach algorithm works with the same bounds in the

incremental setting. In particular, we have the following analogy to Lemma 6:

Lemma 12 [Even and Shiloach, 1981] Let G = (V,E) be a dynamic graph with positive integer

weights, let s be a fixed source, and say that for every vertex v we are guaranteed that the distance

δ(s, v) never increases due to an edge deletion in G. Then, the total update time of ES(G, s, d) over

the entire sequence of edge updates is O(m · d + ∆), where m = MAX-EDGES(G), and ∆ is the

total number of edge changes.

In our incremental algorithm we invoke the incremental version of the Even-Shiloach algorithm

described above. We will therefore need to make sure that distances never increases during edge

deletions.

Similarly to the decremental case, we maintain the threshold graph Gτ described in Section 4.4.

The only difference is that we need to maintain Gτ incrementally. Initially the graph is empty and

all nodes are τ -light. As edges are added to G, some of these nodes may become τ -heavy (note

that once a node becomes τ -heavy it will always remain τ -heavy as edges may only be added to

G). We maintain the connected components of the τ -heavy nodes using again the result of Holm et

al.[Holm et al., 2001] that is fully dynamic and so works in the incremental setting as well (with the

same time bounds).

The graph Gτ is the same as in the decremental algorithm: for every connected component C

in G[HEAVY], Gτ contains a new node c that corresponds to this heavy connected component, with

edges of weight 1/2 from c to every vertex in C. As new nodes in G become τ -heavy, components

in G[HEAVY] can merge; once two connected components in G[HEAVY] merge, their corresponding

39

nodes c and c′ are also merged by picking the smaller connected component, say c′, and replacing

all edges (c′, v) with edges (c, v). Similarly to the analysis in Section 4.4 a node may belong to the

smaller component at most log n times.

Since we maintain exactly the same threshold graph Gτ as in Section 4.4, the rest of the algo-

rithm and correctness analysis are identical to the decremental case. Moreover, using arguments

analogous to those in Lemma 10, it is not hard to see that distances in Gτ never increase. The

asymptotic bound of the total update time of our incremental algorithm is the same as that of the

decremental one.

4.7 Conclusions

We presented the first deterministic partially dynamic algorithm for single source shortest distances

that goes beyond the O(mn) total update time time barrier. There remain many open problems

concerning the gap between randomized and deterministic algorithms for this problem. For starters,

the total update time of our deterministic algorithm is O(n2), while the best randomized algorithm

of Henzinger et al.[Henzinger et al., 2014a] has an almost optimal total update time of Õ(m1+o(1)).

The most salient open question is thus whether we can match this bound with a deterministic al-

gorithm. As a less ambitious starting point, we need a result that improves over O(mn) for sparse

graphs, i.e. an algorithm with total update time O(mn1−c) for some constant c.

Another limitation of our algorithm is that it only works for unweighted undirected graphs.

For weighted graphs, the randomized algorithm of [Henzinger et al., 2014a] achieves the same

total update time of Õ(m1+o(1)) as long as weights are polynomial in n. There are also several

randomized algorithms that manage to go (slightly) beyond the O(mn) bound in directed graphs,

with the state of art achieving O(mn.9). The existence of deterministic algorithm with total update

time o(mn) for either directed or weighted graphs remains open.

Finally, the gap between randomized and deterministic algorithms exists for many other vari-

ations of dynamic shortest paths (both exact and approximate), and closing this gap as much as

possible remains an important goal in the field.

40

Chapter 5

All Pairs Shortest Paths in Directed

Weighted Graphs

Publication History: This chapter presents a result that was originally published in STOC 2013

[Bernstein, 2013], where it received the best student paper award. A full version was then published

in the SICOMP special issue for STOC 2013 [Bernstein, 2016]

As discussed in Section 1.2, fully dynamic all pairs shortest paths (APSP) has proven to be quite a

difficult problem. The trivial algorithm simply recomputes APSP after every update, which yields

update time Õ(mn) and constant query time. The state of the art improves this to update time

Õ(n2). This is the best that is known even for undirected, unweighted graphs; all existing algorithm

to go beyond Õ(n2) update time either have a polynomial query time, or an approximation ratio of

at least 2.

For this reason, just as with dynamic single source shortest paths, researchers turned to devel-

oping more efficient algorithms for the partially dynamic setting (decremental or incremental). In

this setting, Baswana et al. [Baswana et al., 2007] presented an algorithm with amortized update

time Õ(n3/m) and constant query time in directed unweighted graphs. This remains the state of the

art for exact shortest distances. In the same paper, they showed that the amortized update time can

be reduced to Õ(n2/
√
m) if we allow a (1 + ϵ) approximation. In undirected unweighted graphs,

Roditty and Zwick showed how to reduce the amortized update time to Õ(n), again with a (1 + ϵ)

41

approximation. All of the above algorithms are randomized and non-adaptive, but very recently

Henzinger et al. presented a deterministic version of the earlier result of Roditty and Zwick: Õ(n)

update and constant query time in unweighted undirected graphs.

Note that all the above results for this problem are tending towards a natural Õ(n) amortized

update time barrier. The reason for this is that if a decremental (resp. incremental) algorithm spends

Õ(n) time per update, then it is spending Õ(mn) total update time over the entire sequence of dele-

tions (resp. insertions), where m = MAX-EDGES(G) is the number of edges in the original (resp.

final) graph. But barring fast matrix multiplication, there is no o(mn) algorithm for computing even

a single instance of APSP (modulo sub-polynomial improvements), even if the graph is undirected

and unweighted and we allow (1 + ϵ) approximate distances. In other words, a partially dynamic

algorithm with Õ(mn) total update time manages to solve APSP on every instance of the evolving

graph in the same total time (up to log factors) as solving just a single instance. Henzinger et al.

[Henzinger et al., 2015c] formalize this intuition and prove a Ω(mn) conditional lower bound on

the total update time, even for unweighted undirected graphs and a (1 + ϵ) approximation.

Thus, the algorithms of Roditty and Zwick[Roditty and Zwick, 2012] and Henzinger et al.

[Henzinger et al., 2013] achieve the best update time we can hope for with a (1+ ϵ) approximation.

However, both these results only work in undirected unweighted graphs. This raises the question

of whether we can achieve Õ(mn) total update time for a more general case. Directed graphs?

Weighted graphs? Can we remove the (1+ϵ) approximation? I developed an algorithm that answers

the first two questions affirmatively.

5.1 Our Results

Recall that in weighted graphs, a decremental update sequence can delete edges and increase edge

weights, while an incremental update sequence can insert edges or decrease edge weights (See

Definition 1).

Theorem 1 Let G be a directed graph with real positive weights. There is an algorithm for

(1 + ϵ) approximate decremental or incremental APSP with the following bounds: query time

O(1) (a single table look up), and total update time O(mn log4(n) log(nR)/ϵ + ∆), where m =

MAX-EDGES(G), ∆ is the total number of update operations, and R is the ratio of the heaviest

42

edge weight to appear in G at any point in the update sequence to the lightest such edge weight.

For unweighted graphs the running time is slightly smaller: O(mn log4(n) log log(n)). The update

procedure is randomized (Monte Carlo), and assumes an oblivious non-adaptive adversary.

Note that the O(∆) factor in our total update time has nothing to do with the particularities of our

algorithm, but is simply an unavoidable constant time per update (no matter what we do, we cannot

avoid looking at every update). The only reason O(∆) did not come up in the other decremen-

tal (resp. incremental) algorithms mentioned above is because they only worked for unweighted

graphs, in which we always have ∆ ≤ m because every update deletes (resp. inserts) an edge. But

in weighted graphs, we can no longer bound the number of updates. It may thus appear strange that

we continue to analyze our algorithm in terms of total update time, but the basic idea is that our

algorithm in fact spends a total of only Õ(mn logR/ϵ) time processing updates that might actually

be relevant (i.e. might actually change some approximate shortest distance); for example in the

decremental setting, it is not hard to see that since distances only increase, any given x− y distance

can increase by a (1 + ϵ) factor at most log(1+ϵ)(nR) = O(log(nR)/ϵ) times, so there are at most

O(n2 log(nR)/ϵ) relevant updates that require processing. (Of course we do not know ahead of

time which updates are relevant, but this difficulty is not hard to deal with.) The additional O(1)

time per update then corresponds to merely throwing away the irrelevant updates.

Note that log(nR) = O(log(n)) as long as weights are polynomial in n. Thus, our algorithm

achieves the desired Õ(mn/ϵ) total update time for directed graphs with weights polynomial in n,

as compared to the previous state of the art of Roditty and Zwick [Roditty and Zwick, 2004a], which

only achieved this bound for undirected unweighted graphs. In fact, ours is the first non-trivial algo-

rithm for decremental or incremental APSP in weighted graphs (though previous ones could handle

small integer weights). Another advantage of our algorithm over the one of Roditty and Zwick is

that although their query time was constant, it still required an involved process, whereas ours is

simply a table lookup. One obvious benefit of this is that in real world scenarios, one often wants

to keep query time as small as possible. Another benefit is that in many settings, when an update

occurs, we want to quickly find out all pairs that were affected by it. The involved query procedure

of Roditty and Zwick would require them to separately check each pair, so that even if only a few

pairs were affected by the update, the algorithm would still require a prohibitive Õ(n2) time to find

those pairs. Our algorithm, however, could just return all changed entries of our distance matrix;
43

this requires time O(number of changed entries), and so does not increase the asymptotic update

time.

There is a standard reduction from decremental APSP algorithms to fully dynamic APSP al-

gorithms with a query-update trade off. Thus, our improved decremental algorithm leads to a new

fully dynamic one. For any T ≤
√
n, we can maintain (1 + ϵ)-APSP in directed graphs with amor-

tized update time Õ(mn logR
Tϵ) and query time O(T). This trade-off was previously only possible

for undirected unweighted graphs. The decremental to fully dynamic reduction was originally in-

troduced by Henzinger and King [Henzinger and King, 1995], and has since been used in several

dynamic shortest paths papers ([Roditty and Zwick, 2004b; Roditty and Zwick, 2004a]). Our use of

this reduction is more or less identical to previous ones, but a few of the details differ, so we offer a

more detailed discussion at the end of this chapter (Section 5.8.3).

Theorem 1 applies to both a decremental and an incremental update sequence; the algorithms

for these two cases are basically the same, but with all the relevant parameters flipped (insertions

instead of deletions, distance decreases instead of increases, and so on). For simplicity, in the main

body of the paper we only prove Theorem 1 for a decremental update sequence. We then argue that

the same approach works in the incremental setting at the very end of Section 5.8.2.

Section 5.4 outlines the basic approach of our algorithm, but first we present notation and ex-

isting work in Sections 5.2 and 5.3. Section 5.5 introduces a simpler version of our algorithm for

the sake of intuition, and Section 5.6 presents our final algorithm, which proves Theorem 1 above.

Section 5.7 presents in full detail an existing result that we rely heavily upon, as well a new im-

provement on this result that reduces the algorithm’s dependence on ∆. Finally, Section 5.8 touches

upon some final details, including applications of our algorithm to the incremental and full dynamic

setting.

New Work Published After our Results: Our algorithm remains the state of the art for decre-

mental (1 + ϵ)-approximate APSP. For the special case of undirected unweighted graphs, Hen-

zinger et al. published a paper in FOCS 2013 [Henzinger et al., 2013] that achieves similar bounds

with a deterministic algorithm: the total update time is again Õ(mn/ϵ), while the query time is

O(log log(n)).

44

5.2 Preliminaries

Let G = (V,E) be a directed graph with real positive weights subject to a decremental update

sequence. As we process our updates, G always refers to the current version of the graph. Let

m = MAX-EDGES(G) be the number of edges in the initial graph, and let n be the number of

vertices (which does not change); we assume that m = Ω(n). Given any vertices x, y, let (x, y)

be the edge between them (if it exists), and let w(x, y) be the weight of this edge. Let π(x, y) be

the shortest x − y path in G (if one exists); if there are multiple shortest paths from x to y we can

use any tie breaking strategy which ensures that any subpath of a shortest path is itself a shortest

path (For an example, see section 3.4 of [Demetrescu and Italiano, 2004]). Define δ(x, y) to be

the length of π(x, y), or ∞ if no x − y path exists. We assume that all edge weights are positive.

We define the hop-length of a path P , denoted h(P), to be the number of edges on P , and we let

h(x, y) = h(π(x, y)). For any h, we define πh(x, y) to be the shortest path from x to y that uses at

most h edges (if one exists), and we define δh(x, y) to be the length of πh(x, y), or ∞ if this path

does not exist. Given a graph G′ different from G, we define πG′(x, y), δG′(x, y), πh
G′(x, y), and

δhG′(x, y) to be the corresponding paths and distances in G′.

Many of our running times are expressed in terms of the variables ∆ and R. We define ∆ to be

the total number of updates made to the graph over the course of the entire dynamic sequence. We

define R to be the ratio of the largest weight in the graph at any point in the update sequence to the

smallest such weight. More formally, we define C, c, and R as follows:

• C = maxτ max(u,v)∈E{w(u, v) at time τ}

• c = minτ min(u,v)∈E{w(u, v) at time τ}

• R = C/c

Note that as long as weights are polynomial in n, logR = O(log(n)). Finally, we say that output

δ′(x, y) is α-approximate if δ(x, y) ≤ δ′(x, y) ≤ αδ(x, y). We say that a path P (x, y) is α-

approximate if its weight is an α-approximation of δ(x, y).

For the sake of simplicity, we make a few minor assumptions about the graph and the update

sequence.

45

• We assume that R is known in advance; in Section 5.8.1, we show that this assumption can

easily be removed by continually updating an approximate guess for R.

• We model the deletion of an edge by increasing its weight to ∞. This is not quite rigorous,

as then log(R) also becomes infinite. To resolve this, we model the deletion of an edge

by raising its weight to large number U∗. We ensure that at all times U∗ ≥ 2nC∗, where

C∗ is the largest non-infinite weight in the current graph. Thus, if a query ever returns a

shortest x − y distance ≥ U∗, this clearly corresponds to there being no path from x to y

in the graph. As edge weights in the graph increase, U∗ might come to be less than 2nC∗,

in which case we repeatedly double it until it is large enough. It is not hard to see that

modeling deletions in this way does not affect the asymptotic running time. Firstly, repeated

doubling can never cause U∗ to be greater than 4nC, so adding edges of weight U∗ increases

R by only an O(n) factor, so the log(nR) term is not affected. Secondly, U∗ doubles at

most O(log(4nC/c)) = O(log(nR)) times, so the dummy weight on each deleted edge

increases at most O(log(nR)) times, and the total number of additional updates is at most

O(m log(nR)); the change to O(∆) is thus well within the Õ(mn log(nR)) total update

time.

• We assume the graph is connected at all times. Our algorithm doesn’t actually rely on this,

but it obviates the need for an analysis of edge cases. We can ensure this by adding a super

source s∗ with an edge of weight U∗ to and from every vertex; as above, U∗ might increase

as edge weights in the original graph increase. A shortest distance ≥ U∗ once again indicates

that no path exists. The number of edges is still O(m), and the number of new updates is only

O(n log(nR)).

5.3 Hop Distances and the Even and Shiloach Tree

As with our results on dynamic SSSP, the basic building block of our algorithm is the Even and

Shiloach tree, which decrementally maintains SSSP from a fixed source s up to distance d (see

Lemma 1).

In an earlier paper [Bernstein, 2009], we developed a simple but powerful generalization of the

above Even and Shiloach tree, though at the cost of a (1 + ϵ) approximation error. Loosely speak-
46

ing, we showed that instead of maintaining a shortest path tree up to distance d, we can efficiently

maintain it up to a hop length h. We refer to this algorithm for decrementally maintaining approxi-

mate single source shortest distances as the h-SSSP algorithm. We now formally present the result

achieved by h-SSSP, which we use a black box throughout most of the paper, leaving the details of

h-SSSP itself for Section 5.7.

Theorem 2 [Bernstein, 2009] Given a source s and a hop distance h, h-SSSP decrementally main-

tains distances δ′(s, v) to each vertex v, such that we always have δ(s, v) ≤ δ′(s, v) ≤ (1 +

ϵ)δh(s, v). Moreover, after every update h-SSSP can return a list of all vertices v for which δ′(s, v)

changed due to that update, without affecting the asymptotic update time. The total update time

of h-SSSP over all deletions and weight-increases is O(mh log(n) log(nR)/ϵ + ∆) for weighted

graphs and a slightly faster O(mh log(n) log log(n)/ϵ) for unweighted ones.

Remark: Note that in the theorem above δ′(s, v) itself may correspond to a path with more than

h edges; the algorithm is not concerned with the length of the output path. The only guarantee

is merely that δ′(s, v) is a good approximation to δh(s, v), which is equal to δ(s, v) as long as

h(s, v) ≤ h. Thus, we can think of our algorithm as maintaining (1 + ϵ)-distances from s up to

hop-length h.

When we say that we “run” the h-SSSP algorithm from (to) vertex s, this refers not merely

to an initialization step, but rather to the whole dynamic procedure. In other words, it means that

we maintain approximate distances δ′(s, v) to (from) each vertex v over all deletions to come. By

Theorem 2 the total cost of running the h-SSSP algorithm is Õ(mh logR/ϵ).

5.4 The Basic Approach

The basic outline of our approach is similar to one Bernstein used in two earlier papers [Bernstein,

2009; Bernstein, 2012], though except for the h-SSSP algorithm essentially all the details differ.

The advantage of h-SSSP over King’s O(md) algorithm algorithm [King, 1999] (see Lemma 1) is

that the latter maintains a shortest path tree up a to certain distance, whereas h-SSSP maintains it

up to a certain hop-length, and is hence barely dependent on the weights of the edges. (The running

time of h-SSSP does depend on logR, but this is only a logarithmic dependence on the weight, as

compared to King’s linear dependence.) This change of focus from weighted distance to hop length
47

is obviously crucial for weighted graphs, but it is in fact equally important in unweighted graphs.

Both d and h can initially be as large as n − 1, but whereas the distance between a pair vertices is

inherent to the graph, the hop distance can easily be decreased by adding shortcuts to the graph.

Suppose that we already knew the shortest distance δ(v, w). We could then add a new edge

(v, w) of weight δ(v, w); this would not change any of the distances in the graph but it would

reduce h(v, w) to one. It would also reduce the hop-length of any path that used π(v, w) as a

subpath. This observation suggests the following approach: we construct a large number of shortcut

edges to reduce hop-distances all across the graph, which would allow us to efficiently run the h-

SSSP algorithm. The problem is that in order to create shortcut edges we need to have already

computed δ(v, w); moreover, as the graph changes so do the shortest distances in the graph, so

dynamically maintaining correct weights on the shortcut edges requires maintaining the distances

δ(v, w).This leaves us in the position of trying to maintain shortest paths by first maintaining other

shortest paths.

Bernstein previously applied the idea of creating shortcut edges to reduce the hop-distances in

two papers on undirected graphs [Bernstein, 2009; Bernstein, 2012]. (Note that these papers were

not actually on the problem of decremental shortest paths; they just used the same basic approach

of shortcutting edges and then running an algorithm for small hop distances.) The main idea was to

apply results from the rich field of spanners and emulators, which shows that one can approximate

all distances in a graph with a small number of edges. Bernstein modified this result to show

that a small number of shortcut edges can approximate all distances while effectively maintaining

short hop-lengths as well: that is, for any pair (x, y), one can always patch together an approximate

shortest path from x to y using just a small number of these shortcut edges. One still had to maintain

the distances of the shortcut edges directly, but these shortcut distances were only a small subset of

all distances.

Applying shortcuts to directed graphs, however, is significantly harder because in this case it is

essentially impossible to approximate all-pairs shortest distances with a sparse spanner or emulator.

The key feature of undirected graphs is that if u and v are nearby, then shortest paths from u are

approximately the same as those from v, and we can therefore handle a whole cluster of nearby

vertices with a single representative. Such clustering does not work in directed graphs because a

short u− v path does not imply a short v − u path.

48

Shortcuts are thus much more difficult to apply in directed graphs, and as far as we know, this is

the first paper to do so in the dynamic setting. (In the static setting, Thorup’s algorithm for distance

oracles in planar graphs [Thorup, 2004] uses them extensively, and there are several papers that use

them to achieve faster running times in practice – see [Abraham et al., 2010] for an overview.) Be-

cause directed graphs do not allow for clustering, we end up having to maintain shortcut edges for

essentially all pairs, which seems to bring us back to the original predicament of trying to maintain

all pairs shortest paths by first maintaining all pairs shortest paths. The key lies in doing the com-

putation in the proper order. The h-SSSP algorithm already provides an efficient way to maintain

shortest paths of small hop length, so we start by shortcutting those. This reduces the hop-length of

the other paths because shortcutting a subpath of some path π(x, y) reduces h(x, y). The reduced

hop-lengths allow h-SSSP to efficiently maintain a larger set of distances, which in turn leads to

more shortcut edges and a further reduction in hop-lengths. In iterating this process, we continually

shortcut the small-hop subpaths of large-hop paths, to the point where the latter themselves become

small-hop and easy to shortcut.

This paper is substantially less technical than the papers which applied the shortcut edge ap-

proach to undirected graphs, because we do not rely on the heavy machinery of emulators and

clustering. One advantage of this is that it forces us to explore the limits of the core approach itself;

directed graphs do not seem to offer much structure, so all we can really do is iteratively use the

basic h-SSSP algorithm to create more and more shortcut edges. We now present some of the key

lemmas and definitions used throughout our algorithm.

Definition 13 We say that an edge (u, v) with weight w(u, v) is an exact shortcut edge if w(u, v) =

δ(u, v). We say that it is an α-shortcut if δ(u, v) ≤ w(u, v) ≤ (1 + ϵ)αδ(u, v).

Definition 14 Let G∗ be the graph G with some shortcut edges added. Given some x − y path P ,

we define the G∗-α-reduction of P to be the x − y path of smallest hop length whose edges are

either part of P itself, or α-shortcuts of sub-paths of P . We refer to the hop-length of this reduction

as the G∗-α-reduced hop-length of P .

It is easy to see that the G∗-α-reduction of a shortest path π(x, y) is a (1+ ϵ)α-approximate shortest

path. If all the shortcut edges were exact, then the reduced path would have the same length as the

49

original one. As is, all the shortcut edges are off by a factor of at most (1+ϵ)α, so the overall weight

is off by at most (1 + ϵ)α.

Lemma 13 If the G∗-α-reduction of some path π(x, y) has fewer than h edges, then running the

h-SSSP algorithm on G∗ up to hop-length h yields a (1 + ϵ)α+1-approximation to δ(x, y).

Proof: Since the G∗-α-reduction of π(x, y) has fewer than h edges, we know that δhG∗(x, y) ≤

δ(x, y)(1+ϵ)α. But by Theorem 2, the h-SSSP algorithm yields a 1+ϵ approximation to δhG∗(x, y),

which is a (1 + ϵ)α+1 approximation to δ(x, y). �

We now present a well known sampling lemma that is used throughout our algorithm.

Lemma 14 Let S be a set of r vertices chosen uniformly at random from V , and let P be some path

in G with at least cn ln(n)/r vertices (c is a constant of our choosing). Then, with probability at

least 1 - n−c, the path P contains at least one vertex in S.

Proof: For any particular vertex v ∈ P , we have that Pr[v ∈ S] = r/n. Thus,

Pr[S
∩

P = ∅] ≤ (1− r/n)|P | ≤ (1− r/n)cn ln(n)/r < n−c

�

For simplicity of presentation, we will fix c = 9. The following corollary is then a direct

consequence of the union bound:

Corollary 4 Let S be a set of r vertices chosen uniformly at random from V , and let P be a set

of ≤ n4 paths in G, each of which contains at least 9n ln(n)/r vertices. Then, with probability at

least 1− n−5, every path in P contains at least one vertex in S.

Remark: Our algorithm only requires the above sampling lemma to hold for O(n3 log(n)) paths

(n2 shortest paths in n log(n) different graphs used by our algorithm), so we can use the above

corollary. Now, note that since we are assuming an adversary that is oblivious to our random choices,

the set of r sampled vertices will be random from the perspective of each version of the graph

throughout the update sequence. Thus, Corollary 4 holds with probability at least 1− n−5 for each

version of the graph, so by the union bound, it will hold with high probability for all versions within

the first O(n4) updates.

50

Now, as we discuss in the next few sections, since we are looking for a (1 + ϵ) approximation

we only need to register a change to an edge weight when it has increased by at least a (1 + ϵ)

factor. The total number of updates that our algorithm actually registers (instead of simply throwing

away) is thus O(m log(nR)). On the reasonable assumption that logR ≤ n3/m, the number of

updates is O(n4), so by the above discussion setting c = 9 will ensure that the corollary holds with

high probability throughout all versions of the graph. More generally, it is not hard to see that if

logR = O(nx) then setting c = x + 5 is sufficient. In the extremely unlikely case that logR is

not polynomial in n we would need to set c to be O(log log(R)/ log(n)), and the running time of

the whole algorithm would be multiplied by this factor. In this case, however, our running time

is already super-polynomial, and we would likely be better of using an algorithm that works for

general weights. All in all: we assume for the rest of the paper that Corollary 4 holds throughout

all versions of the graph.

5.5 A Simplified Not Quite O(mn) Algorithm

We now present an algorithm for decrementally maintaining (1+ϵ)-approximate shortest paths in di-

rected graphs with a total update time of Õ(mn4/3 logR/ϵ). We later improve this to Õ(mn logR/ϵ),

but even this preliminary approach already yields the first efficient decremental algorithm for poly-

nomial weights, and for sparse m it even beats the previous state of the art of Õ(n2√m/ϵ) for

unweighted directed graphs.

We maintain approximate APSP by separately maintaining distances from different sources us-

ing the h-SSSP algorithm. The h-SSSP algorithms that we use are grouped into three distinct layers.

The first layer of h-SSSP algorithms runs on the main graph G, and maintains approximate distances

from only a small number of sources, up to a limited h. We use these distances to construct shortcut

edges, which reduce hop-lengths in G. Our second layer runs on this new graph with shortcut edges

added, and is thus able to efficiently maintain a larger subset of approximate shortest distances. We

use these distances to create even more shortcut edges, which further reduce hop-lengths. Our third

and final layer computes all-pairs shortest distances by running h-SSSP from every vertex v; this

remains efficient because thanks to the shortcut edges from the second layer, we only have to run

h-SSSP up to a small hop length h.

51

Recall that the h-SSSP algorithm is not a one-time computation, but rather maintains distances

dynamically over all updates, so all our overall algorithm needs to do is set up the necessary h-SSSP

algorithms in the very beginning, and let them run. Each of the three layers is responsible for main-

taining its own distance matrix, which is simply an aggregate of the distances maintained by all of

the h-SSSP algorithms in that layer. As we process our updates, the distances in these matrices will

increase, which will lead to weight-increases in the corresponding shortcut edges.

Dependence on ∆: Our primary concern with respect to running time is to maintain distances in

total time Õ(mn log(R)); the whole apparatus of shortcut edges was developed for this purpose.

But a secondary concern is ensuring that every update incurs an additional overhead of only O(1),

i.e., that the dependence on ∆ is only O(∆). We show in Section 5.7.1 that the h-SSSP building

block incurs this optimal overhead of O(1) time per update. The problem is that our all-pairs short-

est path algorithms runs h-SSSP algorithms from O(n) different sources, which seems to lead to

an overhead of O(n) per update. We resolve this problem by noting that although the total number

of updates can be arbitrarily large, most of them will only increase weights by a small amount.

Any such insignificant update can simply be ignored in O(1) time, i.e. not processed by any of the

h-SSSP algorithms. To this end, we define a function which allows us to only register updates that

increase the weight by a (1 + ϵ) factor.

Definition 15 For any number x, let Round(1+ϵ)(x) be (1 + ϵ)⌈log(1+ϵ)(x)⌉ (the smallest power of

(1 + ϵ) that is ≥ x).

5.5.1 The Algorithm

Main Setup:

1. Use Dijkstra to compute shortest paths from all v ∈ V in the original graph, before any

updates occur.

2. Sample n2/3 vertices uniformly at random, and let A be the resulting set.

3. For all a ∈ A, run the h-SSSP algorithm from a up to hop-length 10n2/3. Recall that this

maintains distances from a over all deletions to come. Store the distances maintained in a
52

matrix DA×A, which is initialized with the distances from Step 1. (DA×A stores approximate

distances between nearby vertices in A)

4. Let G∗ be the graph G plus a shortcut edge added for each pair (a, b) ∈ A× A. Set shortcut

(a, b) to have weight Round(1+ϵ)(DA×A[a, b]).

5. For each a ∈ A, run the h-SSSP algorithm to a in G∗ up to hop-length 10n1/3 ln(n). Store

the results in a matrix DV×A, which is initialized with the distances from Step 1. (DV×A

stores approximate distances to all vertices in A)

6. For each v ∈ V , let Gv be the graph G with a shortcut edge added from v to every vertex in

a ∈ A. Set shortcut (v, a) to have weight Round(1+ϵ)(DV×A[v, a]).

7. For each v ∈ V , run the h-SSSP algorithm from v up to hop-length 10n1/3 ln(n) in Gv. Store

the results in a matrix DV×V , which is initialized with the distances from Step 1. This is our

final distance matrix.

Query(v,w): To approximate δ(v, w), simply return DV×V [v, w].

Update Step: Our whole algorithm is essentially contained in the h-SSSP algorithms of the main

setup. The only catch is that many of these algorithms are not running on the main graph G, but

on a graph that also contains some shortcut edges. It is crucial for correctness that we dynamically

maintain correct distances for these shortcuts (as δ(x, y) changes, the weight of an x − y shortcut

should also change). Here is the order in which we process an update increase-weight(x, y) :

wold(x, y) → wnew(x, y) (an edge deletion can be modeled as increasing the weight to ∞).

• If Round(1+ϵ)(wnew(x, y)) = Round(1+ϵ)(wold(x, y)), the algorithm simply throws away

the update in O(1) time and does not move on to the steps below. Note that because of this,

all edge weights in G are effectively only (1 + ϵ)-approximate.

• Else, if Round(1+ϵ)(wnew(x, y)) > Round(1+ϵ)(wold(x, y)), input the update increase-weight(x, y)

into all of the h-SSSP algorithms from Step 3, which might cause some of the distances main-

tained in DA×A to change.

• For all entries for which Round(1+ϵ)(DA×A[a, b]) has increased, we increase the weight of

corresponding shortcut edge (a, b) in G∗ (Step 4) to the new Round(1+ϵ)(DA×A[a, b]).
53

• Input the original increase-weight(x, y), as well as all the shortcut-edge weight increases in

G∗ from the previous step into the h-SSSP algorithms of Step 5. This might cause changes in

DV×A.

• For all v ∈ V , for all entries for which Round(1+ϵ)(DV×A[v, a]) has increased, we increase

the weight of corresponding shortcut edge (v, a) in Gv (Step 6) to the new Round(1+ϵ)(DV×A[v, a]).

• Input increase-weight(x, y), as well as all the shortcut-edge weight increases from the pre-

vious step into the h-SSSP algorithms of Step 7. This might cause some changes to DV×V ,

which makes sense, since our final distance matrix should be changing over time.

5.5.2 Running Time Analysis

The key observation is that the running time for a single update step is just the time to update the

distance matrices DA×A, DV×A, and DV×V via the h-SSSP algorithms of the main setup. We

also have to increase shortcut edge weights, but every such increase corresponds to a change in

DA×A, DV×A, or DV×V , and so can be charged to the h-SSSP algorithms. Thus, the total update

time of our algorithm is simply the sum of the total update times of all of its constituent h-SSSP

algorithms. We now proceed to analyze this sum.

Note that the rate at which edge-weights are increased may vary greatly depending on whether

we are dealing with G, G∗, or Gv; a single update only increases one edge weight in the main graph

G, but this can lead to a large number of shortcut-edge weight increases in Gv. All that matters,

however, is that since G only sees weight increases (by definition of this being a decremental algo-

rithm), G∗ and Gv will also only see weight increases; shortcut edge weights are based on distances

in G, so since the latter are only getting larger, the same is true of the former. Thus, the algorithm is

decremental from the perspective of each graph involved, which allows us to side step the analysis

of how many updates occurs in each graph; all that matters is that in each graph, the h-SSSP algo-

rithm will always have total update time Õ(m′h logR/ϵ), where m′ is the number of edges on the

graph in question (m′ is larger than m when we add shortcut edges).

(Technical note: the running time of h-SSSP depends on log(nR), but the h-SSSP algorithms

run on graphs with weighted shortcut edges, and R might be slightly larger in these shortcutted

graphs than in the original graph. But since every shortcut edge correspond to a (1+ϵ) approximate

54

distance in the original graph, no shortcut will have weight larger than R′ = (1 + ϵ)nR, so the

running time will not be affected because log(nR′) = O(log(nR)). Thus, we just assume the same

R throughout.)

• Step 3 runs the h-SSSP algorithm from n2/3 vertices up to h = O(n2/3), which by Theorem

2 yields a total update time of Õ(n2/3mn2/3 logR/ϵ) = Õ(mn4/3 logR/ϵ).

• Step 5 runs the h-SSSP algorithm to n2/3 vertices up to h = Õ(n1/3). Note however that the

graph G∗ has (m+ n4/3) edges because of the shortcut edges for A× A. This yields a total

update time of Õ(n2/3(m+ n4/3)n1/3 logR/ϵ) = Õ(mn+ n7/3) = Õ(mn4/3 logR/ϵ).

• Step 7 runs the h-SSSP algorithm from n vertices up to h = Õ(n1/3). Each graph Gv has m+

n2/3 = O(m) edges. Thus, the total update time is Õ(nmn1/3 logR/ϵ) = Õ(mn4/3 logR/ϵ).

Dependence on ∆: Our algorithm is built on many h-SSSP algorithms that process many dif-

ference edge weight increases: increases to weights of edges in G but also to the various short-

cut edges. Let us define any such weight increase: wold(x, y) → wnew(x, y) to be significant if

Round(1+ϵ)(wnew(x, y)) > Round(1+ϵ)(wold(x, y)). It is clear from the description of our update

step that any weight increase which is not significant is thrown away in O(1) time and not processed

by any h-SSSP algorithms; this is where the O(∆) term comes from. We now show that that the

total number of times an h-SSSP algorithm processes a significant update is O(mn log(nR)/ϵ),

which is within our desired update bounds.

Recall the definitions of c, C, and R from Section 5.2. The weight of any edge in G ranges from

c to C. Every shortcut edge weight is a (1 + ϵ) approximation to some shortest distance in G, so it

ranges from c to at most (1 + ϵ)nC ≤ 2nC. Thus, since edge weights only increase, the number

of significant updates on any given edge (shortcut edges included) is at most O(log1+ϵ(2nC/c)) =

O(log(nR)/ϵ).

In particular, since the main algorithm runs O(n) h-SSSP algorithms, and every edge in G (i.e.

every non-shortcut edge) registers O(log(nR)/ϵ) significant updates, the total number of times that

an h-SSSP algorithm processes a significant update on an edge in G is O(mn log(nR)/ϵ). G∗ con-

tains O(n4/3) shortcut edges between vertices in A, and any significant update to one of these is pro-

cessed by the O(n2/3) h-SSSP algorithms running on G∗, leading to an additional O(n2 log(nR)/ϵ)

55

significant updates processed by an h-SSSP algorithm. Finally, for each vertex v the graph Gv con-

tains n2/3 shortcut edges but has only a single h-SSSP algorithm running on it, so the total number

of times an h-SSSP algorithm processed a significant update to a shortcut edge in some graph Gv

is only O(n5/3 log(nR)/ϵ). Thus the total number of times that an h-SSSP algorithm processes a

significant update is only O(mn log(nR)/ϵ); all other updates are insignificant and thrown away in

O(1) time.

5.5.3 Approximation Error Analysis

Before proceeding, we observe a basic mathematical fact

Lemma 15 For any positive real number ϵ < 1, and any non-negative integer a, we have (1 +

ϵ
2a)

a < 1 + ϵ

Proof: (1 + ϵ
2a)

a < (e
ϵ
2a)a = eϵ/2 < 1 + ϵ. �

We now prove that the distances stored in DV×V are (1 + ϵ)6-approximate. Using ϵ′ = ϵ/12, by

Lemma 15 we get a (1 + ϵ/12)6 ≤ (1 + ϵ) approximation. Recall that h(a, b), δ(a, b) and so

on always refer to the current version of G. Recall also that G∗ is the graph from Step 4 of the

initialization phase, and Gv are the graphs from Step 6.

Lemma 16 For any pair (a, b) ∈ A× A, if h(a, b) ≤ 10n2/3 then there is a 3-shortcut from a to b

in G∗ (see Definition 13 for 3-shortcut).

Proof: Recall that the weight of the shortcut edge is Round(1+ϵ)(DA×A[a, b]). By Theorem 2 the

h-SSSP algorithm in Step 3 yields a (1 + ϵ) approximation to δ10n
2/3

(a, b) = δ(a, b); however

since edge weights in G are only a (1 + ϵ)-approximation to their actual weight (because we only

register updates that increase Round(1+ϵ)(w(x, y))), the total approximation factor is (1 + ϵ)2.

Thus, DA×A[a, b] is (1 + ϵ)2 approximate. The Round(1+ϵ) function on the shortcut weights adds

another (1 + ϵ) approximation, leading to (1 + ϵ)3 in total. �

Lemma 17 For any pair of vertices (v, a) ∈ V × A, the G∗-3-reduced hop-length of π(v, a) is

≤ 10n1/3 ln(n) (see Definition 14).
56

Proof: We prove this by exhibiting a path of hop-length ≤ 10n1/3 log(n) that only uses edges of

π(v, a) and 3-shortcuts of its subpaths. Let b be the first vertex in A on π(v, a). By Lemma 14,

there are at most 9n1/3 ln(n) edges between v and b, so we just follow these directly. We now need

to find a path from b to a.

We prove the following by induction: for any vertex a′ ∈ A, there is a path from a′ to a

consisting of at most ⌈h(a′, a)/n2/3⌉ 3-shortcuts of subpaths of π(a′, a).

• Base Case: if h(a, a′) ≤ 10n2/3, then by Lemma 16 there is a 3-shortcut from a′ to a.

• Induction Step: we now assume that the claim is true for all vertices a′ ∈ A for which

h(a′, a) ≤ i, and prove that it then also holds when h(a′, a) = i + 1. If h(a′, a) ≤ 10n2/3

we use the base case; otherwise, by Lemma 14 there is some vertex a′′ ∈ A on π(a′, a) that

is between n2/3 and 10n2/3 vertices away from a′ (because this interval contains 9n2/3 ≥

9n1/3 ln(n) vertices). Since h(a′, a′′) ≤ 10n2/3, there exists a 3-shortcut (a′, a′′); combining

this 3-shortcut with the path of at most ⌈h(a′′, a)/n2/3⌉ ≤ (⌈h(a′, a)/n2/3⌉ − 1) 3-shortcuts

from a′′ to a guaranteed by the induction hypothesis yields the desired path of 3-shortcuts

from a′ to a.

We can now prove the main Lemma: to get from v to a we first use 9n1/3 ln(n) non-shortcut edges

to get from v to the first vertex b on π(v,A) that is in A; since h(b, a) is trivially ≤ n, we now take

a path of at most ⌈n/n2/3⌉ = ⌈n1/3⌉ 3-shortcuts from b to a. �

Corollary 5 All the entries in DV×A are (1+ϵ)4 approximate distances. This follows directly from

Lemma 17 and Lemma 13.

Lemma 18 All the entries in DV×V are (1 + ϵ)6-approximate distances.

Proof: We maintain DV×V by running the h-SSSP algorithm on each Gv. We know that all the

shortcuts in Gv are 5-shortcuts because their weights are obtained from DV×A; we get a (1 + ϵ)4

error from DV×A, and another (1 + ϵ) from the Round(1+ϵ) function.

We can now show that the Gv-5-reduced hop-length of any π(v, w) is ≤ 10n1/3 log(n). If

h(v, w) ≤ 10n1/3 log(n) then this is trivially true. Otherwise, by Lemma 14 there must be a ver-

tex in A on π(v, w). Let a be the last such vertex, and note that again by Lemma 14, h(a,w) ≤

57

9n1/3 log(n). Thus, our 5-reduced path is just the 5-shortcut from v to a (created in Step 6), fol-

lowed by the path π(a,w). By Lemma 13, running h-SSSP up to h = 10n1/3 log(n) yields a

(1 + ϵ)(1 + ϵ)5 = (1 + ϵ)6 approximation. �

5.6 The Final O(mn) Algorithm

Our Õ(mn logR/ϵ) algorithm is a direct extension of the Õ(mn4/3 logR/ϵ) algorithm above. The

basic idea remains the same; we maintain some subset of the shortest distances, and use these to

construct shortcut edges which lower hop-lengths and hence allow us to efficiently maintain more

shortest distances, and so on. Once again the h-SSSP algorithms dynamically maintain distances

from a source over all updates, so we just set them up in the beginning and let them run. In this

version, however, instead of using three layers of h-SSSP algorithms, we use log(n) layers. We

assume for simplicity that n is a power of 4.

Definition 16 For the rest of this paper, we define q to be log(n)/2.

Definition 17 Define A0 to be V . Construct A1 by picking exactly half of the vertices from A0 = V

uniformly at random (we round up if |A0| is odd). Construct A2 by picking half the vertices from

A1 uniformly at random. Keep doing this until we reach Aq = A(log(n)/2). Note that Ak contains

n/2k random vertices from V , and that |Aq| =
√
n

5.6.1 The Algorithm

Main Setup:

1. Use Dijkstra to compute, for all vertices v, shortest paths from v in the original graph G

before any updates.

2. Construct the sets A0, A1, ..., Aq as in Definition 17.

3. For each v ∈ Aq, run the h-SSSP algorithm to and from v up to h = 10
√
n log(n) on the

main graph G. Store the results in DAq×Aq . We initialize this matrix with the distances from

Step 1. (DAq×Aq contains approximate distances between nearby vertices in Aq).
58

4. Let Gq be the graph G with a shortcut edge (v, w) added for each pair (v, w) ∈ Aq ×Aq. Set

the weight of shortcut (v, w) to be Round(1+ϵ)(DAq×Aq [v, w]).

5. For each v ∈ Aq, run the h-SSSP algorithm to and from v on the graph Gq up to h =

10
√
n log(n). Store the results in matrix Dq. As before, initialize Dq with the distances from

Step 1 (Dq contains approximate distances to and from vertices in Aq).

6. For k = q − 1 down to 0

• For each v ∈ Ak, we create a graph Gv,k, which is the graph G with shortcut edges

(v, w) and (w, v) added for every w ∈ Ak+1. Set the weight of shortcut (v, w) to be

Round(1+ϵ)(Dk+1[v, w]), and do the same for (w, v).

• For each v ∈ Ak, run the h-SSSP algorithm to and from v in Gv,k up to h = 10 log(n)2k+1.

Store the combined results for all v ∈ Ak in matrix Dk (Dk contains approximate dis-

tances to and from vertices in Ak).

Query(v,w): To find an approximation to any δ(v, w), simply look up D0[v, w].

Update step: As in Section 5.5, all the work of our algorithm is done by the various h-SSSP algo-

rithms of the main setup. All we need to describe here is the order in which we process some update

increase-weight(x, y) : wold(x, y) → wnew(x, y) (an edge deletion can be modeled as increasing

the weight to ∞).

• If Round(1+ϵ)(wnew(x, y)) = Round(1+ϵ)(wold(x, y)), the algorithm deems the update in-

significant and throws it away in O(1) time; i.e., it skips the steps below and does not process

the update in any h-SSSP algorithm.

• Else, if Round(1+ϵ)(wnew(x, y)) > Round(1+ϵ)(wold(x, y)), input the update increase-weight(x, y)

into all of the h-SSSP algorithms from Step 3. This might cause some of the distances main-

tained in DAq×Aq to change.

• For all (v, w) ∈ Aq × Aq for which we have that Round(1+ϵ)(DAq×Aq [v, w]) has increased,

we increase the weight of shortcut edge (v, w) in Gq (Step 4) to the new Round(1+ϵ)(DAq×Aq [v, w]).

59

• Input the original increase-weight(x, y), as well as all the shortcut-edge weight increases in

Gq from the previous step into the h-SSSP algorithms of Step 5. This might cause changes to

Dq.

• For k = q − 1 down to 0

– For all pairs (v, w) ∈ Ak × Ak+1 for which we have that Round(1+ϵ)(Dk+1[v, w])

or Round(1+ϵ)(Dk+1[w, v]) has increased, we increase the weight of corresponding

shortcut edge (v, w) or (w, v) in Gv,k to the new value of Round(1+ϵ)(Dk+1[v, w]) or

Round(1+ϵ)(Dk+1[w, v]).

– For each v ∈ Ak, input the original increase-weight(x, y), as well all the shortcut-edge

weight increases from the previous step into the h-SSSP algorithm to and from v in

Gv,k. Record the changed distances for each v into the matrix Dk.

5.6.2 Running Time Analysis

As in Section 5.5.2, we have various graphs Gv,k whose edges are changing at different rates, but

the algorithm is nonetheless decremental from the point of view of each of these graphs. Thus, we

simply need to analyze the total update times of all the h-SSSP algorithms, and the time to maintain

Gq and all the Gv,k. Recall the definitions of c, C, and R from Section 5.2. (Technical note: The

value of R might vary slightly among the h-SSSP algorithms because of the shortcut weights, but

as discussed in section 5.5.2, it never gets so big as to asymptotically affect the running time.)

• To maintain DAq×Aq in Step 3, we run the h-SSSP algorithm from
√
n vertices up to h =

O(
√
n log(n)), which results in total update time O((

√
n log(n))(m

√
n log(n) log(nR)/ϵ)) =

O(mn log2(n) log(nR)/ϵ).

• For all k, we maintain Dk by running the h-SSSP algorithm from |Ak| = n/2k vertices

up to h = O(2k log(n)). Each graph Gv,k has O(m + |Ak+1|) = O(m) edges, so the total

update time corresponding to any given k is O((n/2k)·(2k log(n))·(m log(n) log(nR)/ϵ)) =

O(mn log2(n) log(nR)/ϵ). There are O(log(n)) values of k, which yields another log factor.

Finally, as we discuss at the beginning of the next section, in order for the algorithm to yield

the desired (1 + ϵ) approximation it must internally use ϵ′ = ϵ/ log(n), which incurs an
60

additional log(n) factor. The final running time is thus O(mn log4(n) log(nR)/ϵ). The same

analysis yields a slightly faster running time of O(mn log4(n) log log(n)/ϵ) in unweighted

graphs because the h-SSSP algorithm is slightly faster in that case (see Theorem 2).

Dependence on ∆: The analysis of the overhead per update is almost identical to that of Section

5.5.2. As before, the number of significant updates on any given edge (shortcut edges included) is at

most O(log1+ϵ(2nC/c)) = O(log(nR)/ϵ). The total number of h-SSSP algorithms is: |Aq| =
√
n

running on the original graph G, |Aq| =
√
n running on Gq, and one more for each graph Gv,k, for

a total of 2
√
n+

∑q
k=0(n/2

k) = O(n). Thus, the total number of times that an h-SSSP algorithm

processed a significant update on an edge in G (i.e. a non-shortcut edge) is O(mn log(nR)/ϵ).

We now bound the number of times an h-SSSP algorithm processed a significant update on a

shortcut edge. The graph Gq has O(n) shortcut edges and there are O(
√
n) h-SSSP algorithms

running on it, for a total of O(n1.5 log(nR)/ϵ) significant updates processed. Each graph Gv,k

has |Ak+1| = n/2k+1 = O(n) shortcut edges (see Section 5.6.2 for details), each of which is

processed by one single h-SSSP algorithm; the one running to and from v in Gv,k. For any fixed

k, there are |Ak| = O(n/2k) graphs Gv,k so the total number of shortcut edges over all the Gv,k

graphs is O(n
∑q

k=1 n/2
k) = O(n2). Since each edge registers only O(log(nR)/ϵ) significant

updates, the total number of significant shortcut weight increases processed by our algorithm –

i.e. the number of times that a h-SSSP algorithm must handle a shortcut weight increase – is only

O(n2 log(nR)/ϵ). All in all, combining shortcut and non-shortcut edges, the total number of times

that an h-SSSP algorithm processes a significant update is only O(mn log(nR)/ϵ); all other updates

are insignificant and thrown away in O(1) time.

5.6.3 Approximation Error Analysis

We will prove that our final distance matrix D0[v, w] contains a (1+ϵ)(4+log(n)) approximation to all

shortest distances. Using ϵ′ = ϵ/(4 log(n)), we get a (1+ ϵ
4 log(n))

(4+log(n)) ≤ (1+ ϵ
4 log(n))

2 log(n) ≤

(1 + ϵ) approximation (see Lemma 15) while only multiplying the running time by O(log(n)).

Generally speaking, each layer of the algorithm incurs an (1+ ϵ)2 approximation: one (1+ϵ) factor

comes from the h-SSSPalgorithm, while the other comes from applying the Round(1+ϵ) function to

the shortcut weights of the graphs in that layer.

61

The graphs Gq and Gv,k refer to the graphs created during the main setup (see Section 5.6.1).

Recall that δ(x, y), h(x, y), and π(x, y) are changing over time, and refer to the current graph.

Lemma 19 For any pair (x, y) ∈ V × Aq, the entries Dq[x, y] and Dq[y, x] are (1 + ϵ)4 approxi-

mations to δ(x, y), δ(y, x) respectively.

Proof: First note that DAq×Aq is maintained by running the h-SSSP algorithm on the main graph

G, so it is (1 + ϵ) approximate up to h = 10
√
n log(n). However, since edge weights in G are

themselves only (1 + ϵ)-approximate (because we only register an update to w(x, y) if it increases

Round(1+ϵ)(w(x, y))), h-SSSP returns (1 + ϵ)2-approximate distances. Thus, for any pair (a, b) ∈

Aq × Aq with h(a, b) ≤ 10
√
n log(n), there is a 3-shortcut edge (a, b) in Gq; it is 3-shortcut

rather than a 2-shortcut because of the extra (1+ ϵ) error that comes from applying the Round(1+ϵ)

function to the shortcut weight.

We now prove that the Gq-3-reduction of π(x, y) has at most 10
√
n log(n) edges. Since we

run each h-SSSP algorithm to and from its source, the proof for π(y, x) is exactly the same. More

generally the proof is completely analogous to that of Lemma 17. The goal is to exhibit an x − y

path P of hop-length ≤ 10
√
n log(n) that uses only edges of π(x, y) and 3-shortcuts of its subpaths.

Recall that y ∈ Aq, and let x2 be the first vertex in Aq on π(x, y). By Lemma 14, x2 is at most

9
√
n log(n) vertices away from x, so our path P will just directly take the subpath π(x, x2).

To get from x2 to y, we prove the following by induction: given any y′ ∈ Aq, there is a path

from y′ to y consisting of at most ⌈h(x, y)/
√
n⌉ 3-shortcuts of subpaths of π(y′, y).

• Base Case: If h(y′, y) ≤ 10
√
n log(n) then Gq contains a 3-shortcut between them, so we

just use that.

• Induction Step: We now assume that the claim holds for all vertices y′ ∈ Aq for which

h(y′, y) ≤ i, and prove it for the case that h(y′, y) = i + 1. If h(y′, y) ≤ 10
√
n log(n)

we simply use the base case; otherwise, again by Lemma 14, π(y′, y) contains some vertex

y′′ ∈ Aq that is between
√
n and 10

√
n log(n) vertices away from y′ (this interval of vertices

is a shortest path with more than 9
√
n log(n) vertices, so it must contain a vertex in Aq).

Since h(y′, y′′) ≤ 10
√
n log(n), Gq contains a 3-shortcut (y′, y′′); combining this 3-shortcut

with the path of ⌈h(y′′, y)/
√
n⌉ ≤ (⌈h(y′, y)/

√
n⌉ − 1) 3-shortcuts from y′′ to y guaranteed

by the induction hypothesis yields the desired path of 3-shortcuts from y′ to y.
62

Our final path from x to y consists of the at most 9
√
n log(n) non-shortcut edges from x to x2,

followed by the ⌈h(x2, y)/
√
n⌉ ≤ ⌈n/

√
n⌉ = ⌈

√
n⌉ 3-shortcuts from x2 to y, yielding less than

10
√
n log(n) edges in total. By Lemma 13 this implies that the h-SSSP algorithm of Step 5, which

runs up to hop length h = 10
√
n log(n), returns a (1 + ϵ)(1 + ϵ)3 = (1 + ϵ)4 approximation, as

desired. �

Lemma 20 Given any non-negative integer k ≤ q = log(n)/2, and any pair (u, v) ∈ Ak × V , we

have that Dk[u, v] and Dk[v, u] are (1+ϵ)4+2(q−k) approximations to δ(u, v), δ(v, u). In particular,

for any pair of vertices u, v ∈ V , D0[u, v] is a (1 + ϵ)log(n)+4 approximation, as desired.

Proof: (by induction) We proved the base case of k = q in Lemma 19, so only the induction step is

left. We assume the lemma is true for some k and prove that it also holds for k − 1.

For any v ∈ Ak−1, all the shortcut edges in Gv,k−1 come from Dk, so since the lemma holds

for Dk, these must all be (5 + 2(q − k))-shortcuts; the extra (1 + ϵ) factor (from 4 to 5) comes

from the application of the Round(1+ϵ) function to the shortcut weights in Gv,k−1. We now show

that for any pair (u, v) ∈ V × Ak−1, the Gv,k−1-(5 + 2(q − k))-reduction of π(u, v) has hop-

length ≤ 10 log(n)2k. Let u2 be the first vertex in Ak on π(u, v) (if u2 does not exist then by

Lemma 14 h(u, v) ≤ 9 log(n)2k, so we are done). We know from Lemma 14 that the subpath

π(u, u2) of π(u, v) contains at most 9 log(n)2k edges. Moreover, because of how we constructed

Gv,k−1, there must be a (5 + 2(q − k))-shortcut (u2, v). We have thus exhibited a u− v path with

≤ 9 log(n)2k + 1 ≤ 10 log(n)2k edges, as desired. It is not hard to see that by symmetry, the same

holds for the reverse direction: for any (u, v) ∈ V ×Ak−1 the Gv,k−1-(5 + 2(q − k))-reduction of

π(v, u) has hop-length ≤ 10 log(n)2k.

Thus, by Corollary 13, the h-SSSP algorithm to and from v on Gv,k−1 up to h = 10 log(n)2k

incurs an additional (1 + ϵ) approximation and returns a (1 + ϵ)6+2(q−k) = (1 + ϵ)4+2(q−(k−1))

approximation to both δ(u, v) and δ(v, u). Our argument holds for all pairs (u, v) ∈ V × Ak−1, so

we are done. �

5.7 The h-SSSP Algorithm

We now present the h-SSSP algorithm for decrementally maintaining an approximate shortest path

tree up to hop-length h. This algorithm was not new to the paper under discussion [Bernstein, 2013],
63

and was used as a subroutine in Bernstein’s FOCS 2009 paper [Bernstein, 2009]. Recall the main

theorem we are trying to prove.

Theorem 3 [Bernstein, 2009] Given a source s and a hop distance h, we can decrementally main-

tain distances δ′(s, v) to every vertex v such that we always have δ(s, v) ≤ δ′(s, v) ≤ (1 +

ϵ)δh(s, v). The total update time over all deletions and weight-increases is O(mh log(n) log(nR)/ϵ+

∆) in weighted graphs, and O(mh log(n) log log(n)) in unweighted ones.

Recall from Theorem 1 that the main idea behind King’s O(md) algorithm was to only explore

the edges of a vertex v when the distance to v from s changed. The basic idea of our (1 + ϵ)

approximation is to only explore the edges of v when δ(s, v) changes by a significant amount.

The h-SSSP algorithm is actually broken up into many smaller algorithms, each of which handles

different ranges of δh(s, v).

Definition 18 Given a source vertex s, a hop-length h, and an integer k, we say that algorithm Ak

maintains h-SSSPk if it decrementally maintains distances δ′k(s, v) with the following properties:

• If 2k ≤ δh(s, v) ≤ 2k+1 then δ(s, v) ≤ δ′k(s, v) ≤ (1 + ϵ)δh(s, v).

• Otherwise, our only guarantee is that that δ(s, v) ≤ δ′k(s, v).

Lemma 21 Assuming 0 < ϵ < 1, we can maintain any h-SSSPk in total update time O(mh/ϵ+∆).

Proof: (of Lemma 21) Recall that we are here only concerned with approximating distances δh(s, v)

for which 2k ≤ δh(s, v) ≤ 2k+1. For the rest of this proof, let α = ϵ2k

h . We start by scaling the

edge-weights of graph G to obtain a new graph Gk in the following way.

• Delete all edges of weight > 2k+1 from G

• Round all remaining edge weights up to the nearest integer multiple of α

• Divide all edge weights by α

Note that the scaled weights in Gk are positive and integral. Our algorithm maintains a shortest

path tree from s in Gk by simply running King’s O(md) decremental SSSP algorithm (see Section

5.3) up to distance d = ⌈4h/ϵ⌉. More precisely, if an update deletes (u, v) in the original graph we
64

simply delete (u, v) in the scaled graph; if the update is increase-weight (u, v), we first scale the

new weight according to the three steps above, and then change the weight of w(u, v) to this new

scaled weight. We then output δ′k(s, v) = α·δGk
(s, v). By Lemma 1, the total update time of King’s

algorithm is just O(md) = O(mh/ϵ), as desired. The final O(∆) term arises from weight increases

in G that do not change the scaled weights in Gk (i.e., the old weight and the new weight scale up

to the same nearest multiple of α), and so are discarded in O(1) time. We now do an approximation

analysis.

Let G∗
k be the graph Gk before dividing the edge weights by α (but after scaling up to a multiple

of α), and note that since Gk and G∗
k are the same up to a scaling factor, our output is precisely

δ′k(s, v) = α · δGk
(s, v) = δG∗

k
(s, v). All edge weights in G∗

k are greater than those in G, so it

is clear that δ′k(s, v) = δG∗
k
(s, v) ≥ δ(s, v). We now need to show that if 2k ≤ δh(s, v) ≤ 2k+1,

then δG∗
k
(s, v) ≤ (1 + ϵ)δh(s, v). To see this, let us examine how the weight changes G → G∗

k

affect πh(s, v). Since δh(s, v) ≤ 2k+1, πh(s, v) does not contain any edges of weight > 2k+1, so

the first set of changes does not affect it at all. The second set of changes adds up to α weight to

every edge on πh(s, v), so the weight of the path in G∗
k is at most δh(s, v)+hα = δh(s, v)+ ϵ2k ≤

(1 + ϵ)δh(s, v) (the last inequality follows from 2k ≤ δh(s, v)). Thus, we have exhibited an s − v

path in G∗
k of weight ≤ (1 + ϵ)δh(s, v), so certainly the shortest s − v path in G∗

k will have

weight ≤ (1 + ϵ)δh(s, v), as desired. Finally, note that the weight of this path in Gk is at most

(1 + ϵ)δh(s, v)/α ≤ 2·2k+1

ϵ2k/h
= 4h/ϵ, so running King’s algorithm up to d = ⌈4h/ϵ⌉ in Gk will in

fact find this path. �

We now show how to obtain an algorithm for h-SSSP by simply combining h-SSSPk algorithms

for different values of k. The most natural way to do this, however, achieves a slightly worse

dependence on O(∆) than the one promised in Theorem 3: O(∆ log(nR) log log(nR)). For the

sake of intuition, we show in this section a simple method for achieving this worse update time, and

then show in the next section how to reduce the dependence on ∆ to O(∆). Recall the definitions

of c, C, and R from Section 5.2.

Lemma 22 If for any k we could maintain h-SSSPk in total update time T , then we would have an

algorithm for h-SSSP with total update time O(T log(nR) log log(nR)).

Proof: All we do is maintain h-SSSPk for ⌊log(c)⌋ ≤ k ≤ ⌈log(nC)⌉. The crux is that if we then

set δ′(s, v) = min{δ′k(s, v)} we have the desired property δ(s, v) ≤ δ′(s, v) ≤ (1 + ϵ)δh(s, v).
65

To see this, note that δ(s, v) can never be smaller than c or larger than nC, so in particular, there

is some k between ⌊log(c)⌋ and ⌈log(nC)⌉ for which 2k ≤ δh(s, v) ≤ 2k+1. For this value of

k, we know that h-SSSPk outputs δ′k(s, v) ≤ (1 + ϵ)δh(s, v), so it is certainly true that δ′(s, v) =

mink{δ′k(s, v)} ≤ (1 + ϵ)δh(s, v). That δ′(s, v) ≥ δ(s, v) follows from the fact that every δ′k(s, v)

is ≥ δ(s, v).

Thus, for each vertex v, our algorithm maintains a min-heap of all δ′k(s, v) for ⌊log(c)⌋ ≤ k ≤

⌈log(nC)⌉. A query operation for δ′(s, v) simply returns the minimum of this heap in O(1) time.

An update operation on edge (x, y) is inputted into every h-SSSPk, and whenever some δ′k(s, v)

changes we update the min-heap for δ′(s, v) in O(log log(nR)) time. We maintain O(log(nR))

different h-SSSPk, so the total time spent processing updates in the h-SSSPk is O(T log(nR)). This

is also the bound on how often some δ′k(s, v) can change, so the total time updating the min-heap is

O(T log(nR) log log(nR)). Together the two add to O(T log(nR) log log(nR)), as desired. �

Corollary 6 We can maintain h-SSSP in total time O(mh log(nR) log log(nR)/ϵ+∆ log(nR) log log(nR)).

This follows directly from the two preceding lemmas. Note that in unweighted graphs R = 1 and

∆ ≤ m, so the running time is O(mh log(n) log log(n)/ϵ), as promised in Theorems 2 and 3.

5.7.1 Limiting the dependence on Delta to O(Delta)

In this section, we improve the dependence on ∆ in Corollary 6 to O(∆), thus achieving the total

update time for unweighted graphs promised in Theorem 3. Note that although the h-SSSP algo-

rithm itself was used in Bernstein’s FOCS 2009 paper [Bernstein, 2009], in that paper the implicit

dependence on ∆ was O(∆ log(nR) log log(nR)). Thus, the reduction to an O(∆) dependence on

∆ is in fact new to the paper under discussion [Bernstein, 2013].

That being said, the improvement in this subsection is extremely technical and not partic-

ularly interesting from a conceptual perspective. Moreover, it is not all that important: using

the simple h-SSSP algorithm presented in Lemma 22 and Corollary 6 would yield a decremen-

tal APSP algorithm with total update time Õ(mn logR/ϵ) + O(∆ log(nR) log log(nR)). The

O(∆ log(nR) log log(nR)) term is very unlikely to affect the asymptotic running time, especially

as if it ever came to dominate that would imply that we were achieving an amortized update time

of O(log(nR) log log(nR)), which is already very good. The reader would thus not lose much in

simply skipping the current section.
66

We now continue with the improvement to h-SSSP. Say that we are running the h-SSSP algorithm

up to hop-length h. Let us focus on processing a particular update increase-weight(u, v), and let

wold(u, v) and wnew(u, v) respectively correspond to the weights of (u, v) before and after update

(a deletion can be modeled by setting wnew(u, v) = ∞). Since we are in a decremental setting, we

know that wold(u, v) < wnew(u, v). The naive way for h-SSSP to process increase-weight(u, v) is

to process this update in each of the h-SSSPk algorithms: there are O(log(nR)) different values for

k, so this would require a minimum of O(log(nR)) time. But note that there is no reason to process

this update in some particular h-SSSPk if we know that increase-weight(u, v) has no chance of af-

fecting δ′k(s, x) for any vertex x. Thus, our basic approach is to only update increase-weight(u, v)

in those h-SSSPk for which it might be relevant.

Before proceeding, let us carefully pinpoint the different steps taken by the h-SSSP algorithm, so

that we can analyze the parts separately. The algorithm for handling an update increase-weight(u,v)

can be thought of as consisting of the three operations below:

Running Time Breakdown:

1. Figure out for which h-SSSPk the update might be relevant, and register the update in those

h-SSSPk only.

2. Process the update in the chosen h-SSSPk, thus potentially changing various δ′k(s, v). This is

where the “real work” occurs.

3. Now that some of the δ′k(s, v) have changed, we must update δ′(s, v) = mink{δ′k(s, v)}.

We have already analyzed the total time spent in Step 2 over all updates: each h-SSSPk spends

a total of O(mh/ϵ) time processing its updates, so since there are O(log(nR)) possible values of k,

among all h-SSSPk we have total update time O(mh log(nR)/ϵ), as desired. For Steps 1 and 3 to

be efficient however, we must modify the h-SSSP algorithm.

We start with Step 3. First let us bound how often the δ′k(s, v) might change. Recall that h-

SSSPk runs on a scaled graph Gk, where it only stores distances up to distance ⌈4h/ϵ⌉. Thus,

since distances only increase, it is clear that for any particular v, δ′k(s, v) can change at most

⌈4h/ϵ⌉ times. Summing over all vertices v, and all the h-SSSPk, we see that in total over all
67

updates there are O(nh log(R)/ϵ) changes to the δ′k(s, v). The total time spent in Step 3 is thus

O([nh log(nR)/ϵ] · [the time to update δ′(s, v) = mink{δ′k(s, v)} when some δ′k(s, v) changes)].

The second term of course depends on our data structure for updating δ′(s, v) = mink{δ′k(s, v)}.

The most natural option would be, for any particular v, to store all the δ′k(s, v) in a min-heap. This

heap would have O(log(nR)) elements, and so update time O(log log(nR)). This is not quite good

enough, as it would imply a total time of O(nh log(nR) log log(nR)/ϵ) spent in Step 3, which is

not strictly contained in our desired bound of O(mh log(n) log(nR)/ϵ). We now present a different

data structure.

Lemma 23 Given any vertex v, and assuming that (1/ϵ) is at most polynomial in n, we can build

a data structure on the δ′k(s, v) that returns δ′(s, v) = mink{δ′k(s, v)} in O(1) time and processes

an increase to some δ′k(s, v) in O(log(n)) time.

Proof: The data structure is based on the following observation:

Observation: Let k′ be some index for which δ′k′(s, v) ̸= ∞. Then, for any index k∗ > k′ +

2 + log(h/ϵ) we always have that δ′(s, v) ̸= δ′k∗(s, v).

This observation relies on the details of the h-SSSPk algorithm presented in the proof of Lemma 21.

For our index k′, h-SSSPk′ only runs up to distance ⌈4h/ϵ⌉ on the scaled graph Gk′ , so any path

it finds will have length at most ⌈4h/ϵ⌉ in Gk′ . It is clear from how h-SSSPk performs the scaling

that any edge weight in G′
k is no larger than the corresponding edge weight in G divided by ϵ2k

′
/h;

thus, the unscaled length in G of any path found by h-SSSPk is at most (⌈4h/ϵ⌉) · (ϵ2k′/h) ≤

2k
′+2 + 2k

′
< 2k

′+3 , so δ′k′(s, v) ̸= ∞ implies that δ′(s, v) ≤ δ′k′(s, v) < 2k
′+3. But now, looking

at k∗, we see that we always have δ′k∗(s, v) ≥ ϵ2k
∗
/h because we scale each edge weight up to the

nearest multiple of ϵ2k
∗
/h. Thus, if k∗ > k′ + 2 + log(h/ϵ), then since k∗ is an integral index we

have k∗ ≥ k′ + 3+ log(h/ϵ), so δ′k∗(s, v) ≥ ϵ2k
∗
/h ≥ 2k

′+3 > δ′(s, v), so δ′(s, v) ̸= δ′k∗(s, v), as

desired.

Data Structure: The data structure is very simple: we keep the δ′k(s, v) in a linked list, sorted

in increasing order of k (not in increasing order of δ′k(s, v)). We also maintain a pointer to the

minimum δ′k(s, v) in the list. We can return δ′(s, v) in O(1) time by following the min-value

pointer, so we now focus on updates to the δ′k(s, v). We will always throw away any δ′k(s, v)
68

for which δ′k(s, v) = ∞ so the head of the list will be the first entry for which δ′k(s, v) ̸= ∞.

Thus, by the observation above we know that δ′(s, v) = mink{δ′k(s, v)} will always be within

k′ + 2 + log(h/ϵ) = O(log(n)) entries from the head (we are assuming that (1/ϵ) is at most

polynomial in n). After some increase-weight(x,y), some of the δ′k(s, v) values may be increased.

To process these increases, we first update the δ′k(s, v) in our list (we can trivially maintain point-

ers that will allow us to do this). We then go through the list, starting from the head, and delete

any δ′k(s, v) that has come to equal ∞; since distances only increase, once δ′k(s, v) = ∞ for

some index k, it will continue to be ∞ in the future, so we can safely throw it away. We stop

when we reach the first δ′k(s, v) ̸= ∞. By the observation above we can now find the minimum

by comparing this first entry and the k′ + 2 + log(h/ϵ) = O(log(n)) entries that come after it,

and then update our min-value pointer. It is clear that the update time per δ′k(s, v)-increase is

just O(log(n) + [number of δ′k(s, v) deleted]). For a fixed v, the second term amounts to a to-

tal of O(log(nR)) over all updates, since that the number of possibilities for k. Summed over

all vertices v, this yields an extra O(n log(nR)) total time for h-SSSP, which is well within our

O(mh log(n) log(nR)/ϵ) time bound. We can thus maintain δ′(s, v) in time O(log(n)) time per

change to δ′k(s, v) �

The total time spent in Step 3 (see running time breakdown above) is thus O([nh log(nR)/ϵ] ·

[the time to update δ′(s, v)]) = O([nh log(nR)/ϵ] · [log(n)]) = O(nh log(n) log(nR)/ϵ), which is

within our desired O(mh log(n) log(nR)/ϵ) time bound.

All we have left is to analyze the total time spent in Step 1 of the running time breakdown above.

This will take some work. Let us focus on h-SSSPk for some particular value of k. Recall that given

update increase-weight(u, v), h-SSSPk starts by scaling the weight of (u, v) in Gk. The first two

steps are as follows:

• If wnew(u, v) > 2k+1, h-SSSPk deletes it from Gk.

• Scale wnew(u, v) up to the nearest multiple of ϵ2k/h.

Thus, it is easy to see that if wold(u, v) > 2k+1 or if wold(u, v) and wnew(u, v) both scale up to the

same multiple of ϵ2k/h, then there is no need to process increase-weight(u, v) in h-SSSPk as it will

not affect Gk in any way. This motivates the following definitions. Recall that h is the hop-length

69

to which we are running the h-SSSP algorithm in question.

Definition 19 Let α = ϵ/h. Given an integer k ∈ [⌊log(c)⌋ , ⌈log(nC)⌉], we say that a positive

real number ζ is k-marked if both of the following properties hold:

1. ζ is an integer multiple of 2kα = ϵ2k/h

2. ζ < 2k+1

We say that a number is marked if it is k-marked for at least one value of k.

Lemma 24 Say that we are given an update increase-weight(u, v): wold(u, v) → wnew(u, v) (an

edge deletion just increases the weight to ∞). This update affects an h-SSSPk algorithm only if

there is a k-marked number in the half-open interval [wold(u, v), wnew(u, v)). We will refer to such

an update as crossing the k-marked number.

Proof: This lemma stems directly from our previous discussion. The only way for increase-

weight(u, v) to change a weight in Gk is if wold(u, v) ≤ 2k+1 and if wold(u, v) and wnew(u, v)

scale up to different multiples of ϵ2k/h = α2k. This is equivalent to the requirement that there is a

k-marked number in the half-open interval [wold(u, v), wnew(u, v)) �

Lemma 25 For any integer k ∈ [⌊log(c)⌋ , ⌈log(nC)⌉] there are 2h/ϵ = 2/α k-marked numbers,

for a total of 2h log(nR)/ϵ marked numbers. (Recall that we are focusing on a particular h-SSSP

algorithm running up to hop-length h, so h if fixed.)

Proof: For any integer k ∈ [⌊log(c)⌋ , ⌈log(nC)⌉], the k-marked numbers are all the positive mul-

tiples of α2k that are ≤ 2k+1. It is easy to see that there are exactly 2k+1/(α2k) = 2/α = 2h/ϵ

of these. There are log(nC)− log(c) = log(nR) different possible values for k, yielding a total of

2h log(nR)/ϵ marked numbers. �

Lemma 26 Given a marked number ζ, there are O(log(n)) values of k for which ζ is k-marked,

and we can find all of them in O(log(n)) time.

Proof: If ζ is marked, it must be k-marked for at least one k, so there must be some k such that ζ

is an integer multiple of 2kα that is less than 2k+1. In particular, for that value of k we must have

70

2kα ≤ ζ ≤ 2k+1. Taking logs yields: k + log(α) ≤ log(ζ) and log(ζ) ≤ k + 1; the first inequality

then yields k ≤ log(ζ)− log(α), while the second yields log(ζ)− 1 ≤ k. All in all we thus have:

log(ζ)− 1 ≤ k ≤ log(ζ)− log(α)

so we only have to consider integers k in interval [log(ζ)− 1, log(ζ)− log(α)] (note that log(α) =

log(ϵ/h) is negative). This interval contains at most 1 − log(α) ≤ 1 + log(h/ϵ) = O(log(n))

integers k, and for each such k we can check in O(1) time if ζ is an integer multiple of 2kα. �

We can now give an intuition for our algorithm. Recall from Lemma 24 that an update increase-

weight(u, v) only needs to be processed by some h-SSSPk if it crosses a k-marked number. By

Lemma 26 each marked number is k-marked for only O(log(n)) values of k. Thus, an update

increase-weight(u, v) must be processed by O(log(n)) h-SSSPk algorithms for every marked num-

ber that it crosses. But since weights only increase, they go through each marked number exactly

once, so by Lemma 25, all the updates on a single edge (u, v) go through a total of O(h log(nR)/ϵ)

marked numbers. Thus, over all weight increases on a single edge (u, v), the total number of updates

to the h-SSSPk algorithms is O(log(n))·O(h log(nR)/ϵ) = O(h log(n) log(nR)/ϵ). Thus, over all

edges, the total number of times that an update affects some h-SSSPk and must be further processed

is O(mh log(n) log(nR)/ϵ); since each h-SSSPk algorithm only needs an additional O(1) time per

update (the O(∆) term in Lemma 21), this does not exceed our overall O(mh log(n) log(nR)/ϵ)

time bound for h-SSSP. We now have to show that it only takes us O(1) per update to determine

which h-SSSPk an update should be processed in.

Lemma 27 Given an update increase-weight(u, v): wold(u, v) → wnew(u, v) we can find the small-

est marked number of [wold(u, v), wnew(u, v)) (if it exists) in O(1) time.

Proof: By the definition of k-marked (Definition 19) it is clear that if there is to be a k-marked

number in [wold(u, v), wnew(u, v)) (for some k), then we must have that wold(u, v) ≤ 2k+1. Thus,

k0 = ⌈log(wold(u, v))⌉ is the very smallest value of k for which [wold(u, v), wnew(u, v)) might

contain a k-marked number. Moreover, for any k′ > k0, an integer multiple of 2k
′
α is obviously

an integer multiple of 2kα. Thus, the smallest marked number of [wold(u, v), wnew(u, v)) is sim-

ply wold(u, v) rounded up to the nearest multiple of 2k0α, which we can find in O(1) time (if

this nearest multiple of wold(u, v) is ≥ wnew(u, v) then there is no k-marked number in interval

[wold(u, v), wnew(u, v))). �
71

The Improved h-SSSP Algorithm:

We now present our algorithm for processing an update increase-weight(u, v): wold(u, v) → wnew(u, v)

in such a way as to only update the relevant h-SSSPk. Note that the actual processing of an update

in a particular h-SSSPk is no different than before, so we simply follow the algorithm presented in

Lemma 21. The set S will end up containing all indices k for which increase-weight(u, v) affects

h-SSSPk.

1. While(True)

(a) Use Lemma 27 to find the smallest marked number ζ in [wold(u, v), wnew(u, v)). If no

marked number exists in this interval, terminate loop, go to Step 2.

(b) Use Lemma 26 to find all k for which ζ is k-marked, and add them to S.

(c) Start over from Step 1, but this time process increase-weight(u,v): ζ → wnew(u, v).

2. For all k ∈ S, process the update increase-weight(u,v): wold(u, v) → wnew(u, v) in h-SSSPk.

3. Update the δ′(s, x) = min{δ′k(s, x)} for all affected vertices x.

Analysis: Correctness follows directly from Lemma 24. Let us examine the time to process a partic-

ular update increase-weight(u, v). Recall that everything written in this section is about determining

which h-SSSPk are affected by the update – once we decide to process the update in a particular

h-SSSPk, it is processed in exactly the same way as in Section 5.7. Thus, as in the running time

breakdown above, the overall running time of our algorithm consists of three components:

1. The time spent determining which updates increase-weight(u, v) should be processed by

which h-SSSPk– i.e. the loop of Step 1 above.

2. The time spent actually processing the updates – i.e. Step 2 above.

3. The time spent updating δ′(s, v) = min{δ′k(s, v)}.

72

We showed at the beginning of this section that Steps 2 and 3 are both within our Õ(mh logR/ϵ)

time bound (see “running time breakdown” above). We now bound the time spent on the while

loop of Step 1. Running the algorithm of Lemma 27 in (1a) to find a marked number only takes

O(1) time, but then running the algorithm of Lemma 26 in (1b) takes O(log(n)) time, even though

in the end we may discover that the marked number ζ is in fact only k-marked for a single value

of k. Thus, the running time of the loop for a single update increase-weight(u, v) is O(1), plus

an additional log(n) for every marked number crossed by increase-weight(u,v). Because we are in

a decremental setting, all the weight increases of any particular edge (u, v) only go through each

marked number once, so by Lemma 25, all of the different edge updates combined cross a total of

only O(mh log(nR)/ϵ) marked numbers, so the total spent in the while loop over all updates to the

h-SSSP algorithm is O(mh log(n) log(nR)/ϵ+∆), as desired. We have thus proved Theorem 2.

5.8 Final Touches

5.8.1 Removing the Assumption that We Know R in Advance

Recall from Section 5.2 that we define c to be the lightest edge weight to appear in the graph at

any point in the update sequence, and C to be the heaviest such edge weight. We define R = C/c.

Since edge weights only increase, c is just the lightest edge weight in the original graph, before any

updates occur, so we know it from the start. C, however, can keep increasing, and as presented, our

algorithm requires an a-priori upper bound on C in order to run the right h-SSSPk algorithms: each

h-SSSP algorithm consists of running an h-SSSPk algorithm for ⌊log(c)⌋ ≤ k ≤ ⌈log(nC)⌉ (see

Definition 18 and Lemma 22 in Section 5.7 for a description of h-SSSPk). We show in this section

that we do not actually need to know C ahead of time, and can instead just continually update our

current bound on C.

At any point in the update sequence, define C∗ to be the largest edge weight seen so far, and

note that C∗ ≤ C. Recall from Section 5.7 that we create algorithm h-SSSPk to handle distances

between 2k and 2k+1, and that h-SSSP returns δ′(s, v) = min{δ′k(s, v)}, where δ′k(s, v) is the

(s, v)-distance returned by h-SSSPk. But all distances in the current graph are less than nC∗, so

we have no need for h-SSSPk as long as 2k > nC∗ – that is, for k > ⌈log(nC∗)⌉, we can think of

δ′k(s, v) = ∞. Thus, instead of immediately creating h-SSSPk for all ⌊log(c)⌋ ≤ k ≤ ⌈log(nC)⌉,

73

we just create them for ⌊log(c)⌋ ≤ k ≤ ⌈log(nC∗)⌉. Then, as C∗ increases with updates, we start

running h-SSSPk as soon as k becomes ≤ ⌈log(nC∗)⌉, and we add δ′k(s, v) to the heap for δ′(s, v).

It is easy to see that the running time of this new method is no worse than if we knew C in

advance and set up all the h-SSSPk from the beginning (for ⌊log(c)⌋ ≤ k ≤ ⌈log(nC)⌉). It is in

fact slightly faster, as we avoid processing updates that occur while k > ⌈log(nC∗)⌉.

5.8.2 The Incremental Setting

As presented, our algorithm works in the decremental setting, where we have only deletions and

weight increases. However, like many other decremental algorithms, our algorithm can be made to

run in the incremental setting with only the smallest of modifications. That is, it can process either

a sequence of deletions/weight-increases or a sequence of insertions/weight-decreases, though cer-

tainly not a sequence of both.

Most of the description of our algorithm deals with the various graphs and shortcut edges that

we construct. Yet when it comes to dynamically processing the updates, all the work is done by the

various h-SSSP algorithms running on these different graphs. The h-SSSP algorithm is in turn com-

posed of h-SSSPk algorithms. So in the end, our algorithm is merely a large collection of different

h-SSSPk algorithms. But the h-SSSPk algorithm simply runs King’s algorithm for maintaining a

shortest path tree, which by Lemma 1 runs equally well in the incremental setting.

Thus, our algorithm can be made to run in the incremental setting by simply switching all of

the constituent h-SSSPk algorithms to run in the incremental setting. Everything else remains un-

changed: the various graphs Gv,k, the shortcut edges, the approximation analysis, etc.. There are

only two minor points worth noting:

• Recall that our algorithm constructs many different graphs, and so an update in G can pro-

liferate into multiple updates on multiple graphs. We argued that we could nonetheless run

h-SSSP on these different graphs because although the update sequence differs from the per-

spective of each graph, it is always decremental: shortcut weights correspond to distances

in the original graph, so since distances only increase, shortcut weights only increase. A

symmetric claim is true of the incremental setting: since distances in the original graph only

decrease, shortcut weights also only decrease, so the update sequence is incremental from the

perspective of all the different graphs.
74

• In Section 5.8.1 we argued that while c remains fixed, C increases over time, so our decremen-

tal algorithm kept an upper bound on C in order to have an estimate on R. In the incremental

setting, it is C that is fixed and c that changes, so we instead keep a lower bound on c.

5.8.3 A Fully Dynamic Algorithm

There is a standard technique for transforming any decremental algorithm for all pairs shortest paths

or directed transitive closure into a fully dynamic algorithm with query-update trade offs. The fastest

update times we know how to achieve in the fully dynamic setting often stem from this technique,

though at the often unacceptable cost of a polynomial query time. The technique was first introduced

in a paper by Henzinger and King [Henzinger and King, 1995] on dynamic transitive closure, and

has since been used in several papers on dynamic shortest paths and dynamic transitive closure (see

e.g [Roditty and Zwick, 2008b; Roditty and Zwick, 2004a; King, 1999]). Our application of the

technique is completely identical to the one used in the cited papers, but as far as we know, none of

those papers presented the result in quite sufficient enough generality for it to apply directly to our

case. We thus reconstruct the technique from scratch, stating it in the most general terms possible

(note that transitive closure is a special case of α-approximate all-pairs shortest paths). Recall that

π(x, y) is the shortest path from x to y in the current version of the graph and that δ(x, y) is the

length of this path.

Theorem 10 ([Henzinger and King, 1995]) Given a decremental algorithm D for α-approximate

all pairs shortest paths with total update time Λ over all updates and query time O(q), for any pos-

itive integer t we can construct a fully dynamic algorithm for α-approximate APSP with amortized

update time O(Λ/t+(m+n log(n))t) and query time O(t+q). The fully dynamic algorithm admits

the following batch updates in the same O(Λ/t+ (m+ n log(n))t) amortized time per update:

• Batch Delete: Delete or increase the weight of an arbitrary set of edges E′

• Centered Batch Insert: Insert or decrease the weight of a group of edges Ev that are all

incident to some vertex v

Corollary 7 Given our (randomized) Õ(mn logR/ϵ) decremental algorithm for (1+ϵ)-approximate

APSP in directed weighted graphs, we can build a fully dynamic (randomized) algorithm with amor-

75

tized update time Õ(mn logR
ϵt) and query time O(t) for any 1 ≤ t ≤

√
n. Previously such a result

was known only for undirected unweighted graphs.

Proof: (of theorem) We use the decremental algorithm D as a black box to build the desired fully

dynamic algorithm. Let D(u, v) be the α-approximate shortest distance from u to v returned by

algorithm D.

Initialization:

• Initialize the decremental algorithm D on the starting graph G. This computes α-approximate

APSP in G, and maintains this information over all deletions to come.

• Create an empty list I which will contain the vertices affected by insertions.

• Create a counter C for the number of updates so far. Start with C = 0.

Batch-Insertion(Ev):

• If C > t, restart the entire algorithm. That is, set C = 0, delete all elements from I ,

and reinitialize the decremental algorithm D on the current version of the graph. Else, set

C = C + 1 and continue.

• Add v to I .

• For every vertex x ∈ I use Dijkstra’s algorithm to compute single source shortest distances

to and from x.

Batch-Delete(E’):

• If C > t, restart the entire algorithm. That is, set C = 0, delete all elements from I ,

and reinitialize the decremental algorithm D on the current version of the graph. Else, set

C = C + 1 and continue.

• Process all the deletions in the decremental algorithm D. This of course changes the various

D(u, v).

• For every vertex x ∈ I use Dijkstra’s algorithm to compute single source shortest distances

to and from x.
76

Query(u,v):

• Let I(u, v) = minx∈I(δ(u, x) + δ(x, v))

• Return δ′(u, v) = min{I(u, v), D(u, v)}

Correctness Proof: Note that when we compute I(u, v) = minx∈I(δ(u, x) + δ(x, v)) we know

both δ(u, x) and δ(x, v) because after each update we compute shortest paths to and from each

vertex in I . Thus, I(u, v) contains the length of the shortest path from u to v that goes through

one of the vertices in I . If π(u, v) contains a vertex from I , our query algorithm outputs δ′(u, v) =

I(u, v) = δ(u, v). If π(u, v) does not use any vertex in I , then the entire path π(u, v) exists in the

graph GD, which is the graph G subjected to all the deletions in our update sequence and none of the

insertions. Since the decremental algorithm D is running precisely on GD, D(u, v) is guaranteed to

return an α-approximation to δ(u, v). In either case, we have that δ′(u, v) = min{I(u, v), D(u, v)}

is a α-approximation to δ(u, v), as desired.

Running Time Analysis: The fully dynamic algorithm runs for exactly t updates before restarting.

Since the total update time of the decremental algorithm D is Λ, the amortized time for a single

update is thus O(Λ/t). Each update inserts exactly one vertex into I so we always have |I| ≤ t.

Each update also requires us to run Dijkstra’s algorithm to and from each vertex in I , which takes

time O((m + n log(n))|I|) = O((m + n log(n))t). The amortized update time is thus O(Λ/t +

(m+ n log(n))t), as desired.

Each query requires us to compute δ(u, x) + δ(x, v) for every x ∈ I . Each such value can be

compute in O(1) since we already know δ(u, x) and δ(x, v). The query algorithm also spends O(q)

time querying D(u, v). The query time is thus O(|I|+ q) = O(t+ q), as desired.

�

5.9 Conclusions

For the problem of partially dynamic all-pairs shortest paths (APSP), a natural goal is total update

time Õ(mn). This matches the time it takes to compute even a single instance of APSP, and a

conditional lower bound of [Henzinger et al., 2015c] shows that total update time O(mn) is optimal

even for unweighted undirected graphs and a (1+ ϵ) approximation. Previously, this Õ(mn) bound

77

was only achieved for unweighted, undirected graphs [Roditty and Zwick, 2012; Henzinger et al.,

2013]. In this chapter, we showed how to achieve the same bound for directed graphs with weights

polynomial in n.

There remain a great deal of open questions for dynamic all pairs shortest paths. The question

that most directly concerns our result is whether it would be possible to achieve the same bounds

with a deterministic algorithm. Perhaps the two most important related open questions are: 1)

Is it possible to achieve the same bounds for exact distances. Anything better than total update

time O(n3) constitute a breakthrough, even for undirected unweighted graphs. 2) For the fully

dynamic case, can one beat the O(n2) amortized update time in directed graphs, even with a constant

approximation?

78

Part II

Fully Dynamic Maximum Matching

79

Chapter 6

Dynamic Matching Introduction

Computing a maximum matching is one of the fundamental problems in graph algorithms, and has

a variety of applications (see e.g. [Mehta et al., 2005; Feldman et al., 2010]). In the fully dynamic

version of the problem, the graph is subject to an online sequence of edge insertions and deletions,

and the goal is to design an algorithm that always maintains a maximum (or approximately maxi-

mum) matching for the current graph. We could handle each insertion or deletion by recomputing

a matching from scratch in O(
√
nm) time [Micali and Vazirani, 1980a; Vazirani, 2012], but it is

more efficient to take advantage of the fact that only one edge has changed. For example, in an

unweighted graph, it would suffice to compute at most one augmenting path to update the matching,

which yields a simple algorithm with O(m) update time.

There is a great deal of existing work on the maximum matching problem. We describe previous

work on dynamic matching in detail below (Section 6.2), but first we briefly mention the related

problems of finding approximate and online matchings. Duan and Pettie showed how to find a

(1 + ϵ)-approximate weighted matching in nearly linear time [Duan and Pettie, 2014]; their paper

also contains an excellent summary of the history of matching algorithms. There are many papers

on “online matching” (e.g. [Mehta et al., 2005; Feldman et al., 2010]), both exact and approximate.

This model also involves edges being added to the graph, but is in other ways very different from the

dynamic model: in online matching there are no deletions, the matching cannot be altered, and the

quality of the algorithm is judged by its competitiveness to the optimal offline algorithm. A related

model measures the number of changes needed to maintain a matching [Chaudhuri et al., 2009;

Gupta et al., 2014; Bosek et al., 2014].
80

6.1 Preliminaries

Unlike with dynamic shortest paths, almost all existing dynamic matching algorithms focus on the

fully dynamic case, where the adversary can insert an edge, delete an edge, or change an edge weight

(if the graph is weighted). It is most natural to think of dynamic matching algorithms as not having

a query: the goal is to simply at all times maintain a matching that is a maximum (or approximately

maximum) matching for the current graph. Most of the work on dynamic matching, including all of

the new results presented in this thesis, are for the specific case of unweighted matching. Thus, for

the sake of simplicity, all of our definitions will be for an unweighted graph.

Let G = (V,E) be an undirected, unweighted graph. Let n = |V | refer to the number of

vertices in G (which never changes), and let m = |E| refer to the number of edges in the current

graph. A matching in G is a set of vertex-disjoint edges. A matching is sometimes referred to as

an integral matching to distinguish it from fractional matchings. A vertex is called matched if it is

incident to one of the edges in the matching, and free or unmatched otherwise. We let |M | denote

the size (number of edges) of a matching M , and µ(G) denote the size of the maximum matching

in G. We say that a matching M is maximum if |M | = µ(G), and α-approximate (α ≥ 1) if

|M | ≥ µ(G)/α.

A fractional matching is an assignment of values to edges such that the total value of edges

incident to any vertex is at most 1. We let VAL(u, v) denote the value of edge (u, v) in a fractional

matching. Given a vertex v, VAL(v) will denote the sum of the values of all edges incident to

v. We say a fractional matching is feasible if VAL(v) ≤ 1 ∀v ∈ V . Given some fractional

matching Mf , VAL(Mf) will denote the sum of all edge values in Mf . We let µf (G) denote the

size of the maximum-valued fractional matching in G. Given a fractional matching Mf (G), we let

SUPPORT(Mf (G)) be the set of edges (u, v) for which VAL(u, v) > 0 in Mf (G).

A graph G = (V,E) is said to be bipartite if V can be partitioned into two sets L,R such that

every edge e ∈ E goes from L to R. We now state a well known theorem about the relationship

between maximum integral matchings and maximum fractional matchings.

Theorem 11 Let G = (V,E) be an unweighted graph. Then µ(G) ≥ 2
3µf (G), and given any

maximum fractional matching Mf (G), we have that µ(SUPPORT(Mf (G))) ≥ 2
3µ(G). If G is

bipartite, then µ(G) = µf (G), and given any maximum fractional matching Mf (G), we have that

81

µ(SUPPORT(Mf (G))) = µ(G).

Another important property of matching is maximality. A matching M of G is said to be max-

imal if there is no way to add an edge from E to M and still have a matching. In other words, a

matching M is maximal for every edge (u, v) ∈ E, either u or v are matched in M . We now state

a well known lemma about maximal matchings.

Lemma 28 If a matching M in G is maximal, then it is 2-approximate. That is, |M | ≥ µ(G)/2.

This inequality is tight.

Several papers on dynamic matching focus on small arboricity graphs, which we now define.

Definition 20 The arboricity of a graph G = (V,E), denoted by α(G), is maxJ
|E(J)|

|V (J)|−1 where

J = (V (J), E(J)) is any subgraph of G induced by at least two vertices. Many classes of graphs in

practice have constant arboricity, including planar graphs, graphs with bounded genus and graphs

with bounded tree width. Every graph has arboricity O(
√
m).

6.2 Previous Work

Fully dynamic matching algorithms can be classified by update time, approximation ratio, whether

they are randomized or deterministic and whether they have a worst-case or amortized update time.

As with dynamic shortest paths and most other dynamic problems, the distinction between deter-

ministic and randomized is particularly important as all of the existing randomized algorithms for

dynamic matching assume a substantially weaker adversary. The key idea behind the randomized

matching algorithms is that if the algorithm chooses a random matching in a dense graph then the

probability of an update deleting an edge in the matching is very small. This only works if the ad-

versary is non-adaptive, that is if the update sequence must be fixed in advance. Put otherwise, the

updates made by the adversary must be completely independent of the matching maintained by the

algorithm. This is quite a big assumption, and in particular means that randomized (non-adaptive)

dynamic matching algorithms cannot be used as black-box subroutines inside a larger data structure.

For maintaining an exact maximum matching in the fully dynamic setting, there is a simple

algorithm that achieves O(m) update time by taking advantage of the fact that inserting or deleting

82

a single edge can only change the matching by one augmenting path. The only other result for exact

dynamic matching achieves update time O(n1.495) (Sankowski [Sankowski, 2007]) , which is faster

in dense graphs.

Most work on dynamic matching shows how to obtain faster update times than O(m) and

O(n1.495) if we allow approximation. One relevant line of work focuses on approximation ratios

2 or worse. A straightforward greedy algorithm maintains a maximal matching in O(n) time per

update, which by Lemma 28 gives a 2-approximation to the maximum matching. Ivkovic and Lloyd

[Ivkovic and Lloyd, 1994] showed how to improve the update time to O((m+ n)
√
2/2). Onak and

Rubinfeld [Onak and Rubinfeld, 2010b] were the first to achieve to achieve truly fast update times,

with a randomized algorithm that maintains a O(1)-approximate matching in amortized update time

O(log2 n) time (with high probability). Baswana et al. [Baswana et al., 2011b] presented an im-

proved randomized algorithm that maintains a maximal matching (2-approximation) in O(log(n))

amortized time per update. Both of these algorithms are extremely fast, but the techniques they

contain are unlikely to break through the barrier of a 2-approximation, because these algorithms

both compare themselves to a maximal (2-approximate) matching, not a maximum one.

Both of the algorithms with poly-log update time are also inherently randomized and non-

adaptive, and developing a fast deterministic algorithm seems much harder. The fastest deterministic

algorithm comes from a very recent paper of Bhattacharya, Henzinger, and Italiano [Bhattacharya

et al., 2015b], and achieves a (3 + ϵ) approximation with update time O(m1/3). In the same paper,

the authors also present a deterministic algorithm for maintaining a (2 + ϵ) approximate fractional

matching that has update time only O(ϵ−2 log n); this fractional matching does not give us the

edges of an integral matching (even in bipartite graphs), although by Theorem 11 it does yield a

decent approximation to the size of the maximum integral matching. Finally, Neiman and Solomon

[Neiman and Solomon, 2013b] showed that in graphs of constant arboricity, there is a determin-

istic algorithm that maintains a maximal (so 2-approximate) matching in amortized update time

O(log(n)/ log log(n)). (Or worst-case update time O(log(n)) using a recent dynamic orientation

algorithm of Kopelowitz et al. [Kopelowitz et al., 2014a].)

Another line of work gives approximation ratios better than 2, but since a maximal matching no

longer suffices for this case, the update times are much slower. Neiman and Solomon [Neiman and

Solomon, 2013b] gave a deterministic algorithm for maintaining a 3/2-approximate matching, with

83

a worst-case update time of O(
√
m). Gupta and Peng [Gupta and Peng, 2013] later improved upon

the approximation ratio, presenting a deterministic algorithm that maintains a (1 + ϵ)-approximate

matching in worst-case update time O(
√
mϵ−2). Before the result presented in Chapter 7, these

were the only two algorithms for a better-than-2 approximation, and neither seems to contain any

techniques for breaking past the
√
m bound.

(There have been a few very recent results in dynamic matching that appeared after or simul-

taneously with the papers covered in this Thesis. We discuss this recent work after presenting our

own results in 7.1.)

Very recently there have been some conditional lower bounds for dynamic approximate match-

ing. Kopelowitz et al. [Kopelowitz et al., 2014b] show that assuming 3-sum hardness any algorithm

that maintains a matching in which all augmenting paths have length at least 6 requires an update

time of Ω(m1/3 − ζ) for any fixed ζ > 0. Henzinger et al. show that such an algorithm requires

Ω(m1/2 − ζ) time if one assumes the Online Matrix-Vector conjecture. The lower bound of Hen-

zinger et al. conditionally proves that o(
√
m) update time it not possible for maintaining an exact

matching, as such a matching contains no augmenting paths. (The existing upper bounds for exact

matching are still far from this Ω(
√
m) lower bound.) The lower bound also suggests that if we

are to achieve a o(
√
m) update time for a (1 + ϵ)-approximate or even 6/5-approximate matching,

we cannot rely on an algorithm that tries to achieve a good approximation by finding and removing

short augmenting paths.

84

Chapter 7

Fully Dynamic Matching with Small

Approximation Ratios

Publication History: This chapter provides provides a full version of results that span two pa-

pers, both published in collaboration with my advisor Cliff Stein: the first paper was published in

ICALP 2015 and was limited to bipartite graphs [Bernstein and Stein, 2015], while the second was

published in SODA 2016 and extended our results to general graphs [Bernstein and Stein, 2016].

The former paper [Bernstein and Stein, 2015] received the best paper award for ICALP 2015 track

A.

We can see from the discussion of previous work in Section 6.2 that existing algorithms for ap-

proximate matching fall into two main categories: fast algorithms that achieve a 2-or-worse ap-

proximation, and slow algorithms with Ω(
√
m) update time that achieve a better-than-2 approxi-

mation. There is also a big gap between the fastest randomized algorithm [Baswana et al., 2011a]

(O(log(n)) update time, 2-approximation), and the fastest deterministic one [Bhattacharya et al.,

2015a] (O(m1/3) update time, (3 + ϵ)-approximation). We developed algorithms that make some

progress towards bridging these gaps.

85

7.1 Our Results

Theorem 12 Let G be a graph subject to a series of edge insertions and deletions, and let ϵ be < 1.

We can maintain a (3/2 + ϵ)-approximate matching in G in deterministic amortized update time

O(m1/4ϵ−2.5).

Even allowing randomization, this is the first result to achieve o(
√
m) update time and a better-

than-2 approximation. The algorithm is also faster than all previous deterministic for any constant

approximation, and the constant we achieve is quite small. Also, since m1/4 = O(
√
n), our algo-

rithm is the first to achieve a better-than-2 approximation in time strictly sublinear in the number of

nodes.

For the special case of small arboricity graphs, we present an even more efficient algorithm

that breaks through the maximal matching (2-approximation) barrier. Before our results, the best

algorithms for constant arboricity graphs also had a fast update time (around log(n)), but only

maintained a 2-approximation.

Theorem 13 Let G be a graph subject to a series of edge insertions and deletions, and let ϵ be

< 1. Say that at all times G has arboricity at most α. Then, we can maintain a (3/2 + ϵ)-

approximate matching in G in deterministic amortized update time O(α(α+ log(n)+ ϵ−2)+ ϵ−6).

For constant α and ϵ the update time is O(log(n)), and for α and ϵ polylogarithmic the update time

is polylogarithmic.

Theorem 14 Let G be a graph subject to a series of edge insertions and deletions, and let ϵ < 1.

Say that at all times G has arboricity at most α. Then, we can maintain a (1 + ϵ)-approximate

fractional matching in G in deterministic amortized update time O(α(α+ log n+ ϵ−4) + ϵ−6).

Our algorithms introduce the (as far as we can tell) new notion of a γ-restricted fractional match-

ing, and prove an accompanying theorem which we believe might be of independent interest.

Definition 21 A γ-restricted fractional matching is a fractional matching assigning values to the

edges such that for all edges e, value(e) is either 1 or in the interval [0, γ].

It is well known that there always exists a maximum fractional matching with values 0, 1/2 or 1

[Scheinerman and Ullman, 2011] (i.e. a 1/2-restricted fractional matching). Moreover, the support
86

of this matching contains an integral matching of at least 2/3 the value of the fractional matching.

We prove a generalization of this second fact for smaller γ.

Theorem 15 Given a graph G, let Mf be a γ-restricted fractional matching, and let M be a

maximum integral matching in the graph formed by edges in the support of Mf . Then |M | ≥

value(Mf)
1

γ+1 .

Observe that this bound is tight when γ = 1/c for some even c. Consider a clique on c + 1

vertices. The fractional solution places value 1/c on each edge and has total weight
(
c+1
2

)
/c =

(c+ 1)/2. But the best integral matching has c/2 edges.

New Work Published After our Results: There have been several papers on dynamic matching

published simultaneously with or after the results presented in this chapter [Bernstein and Stein,

2016].

For the special case of small arboricity graphs, Peleg and Solomon [Peleg and Solomon, 2016]

developed an approach that is simpler and faster than ours; whereas our paper [Bernstein and Stein,

2016] focused on general graphs and then showed that our framework yields improved results when

the graph has small arboricity, their paper is specific to small arboricity graphs, and is able to take

advantage of their unique properties. As a result, they show that given a dynamic graph that always

has arboricity at most α, one can maintain a (1 + ϵ)-approximate matching with worst-case update

time O(α). In particular, for constant arboricity and fixed ϵ, they achieve constant worst-case update

time, compared to our log(n) amortized update time.

Very recently, Bhattacharya, Henzinger, and Nanongkai [Bhattacharya et al., 2016] settled the

open question of deterministically maintaining an O(1)-approximate matching with polylog update

time – their approximation ratio is (2+ ϵ), which almost matches the randomized 2-approximation.

Turning to better-than-2 approximations, the same paper shows that in bipartite graphs, one can

maintain a better-than-2 approximation to the size of the matching (but not the matching itself), with

an arbitrary small polynomial update time. That is, for any positive constant ζ < 1, there is some

constant kζ < 2 such that the algorithm maintains a kζ−approximation with update time O(nζ).

This algorithm is extremely important as a proof of possibility, as it gives good evidence that it

might be possible to maintain a better-than-2 approximation with only polylog update time, which

is perhaps the main open problem in the field. However, the result is at its current stage quite limited:
87

it only works for bipartite graphs, it only approximates the size of the matching (not the matching

itself), the update time is a small polynomial (as opposed to polylog), and the approximation ratio is

only barely better than 2 (no matter what the settings, the approximation ratio is always worse than

1.99).

Outline: Section 7.2 discusses the key techniques developed towards our new result. Section 7.3

then discusses notation and preliminaries, while Section 7.4 outlines the high-level framework of

our algorithm. A more detailed outline of the chapter is given in Section 7.4, after the framework

has been defined. Note that our result is rather technical, so for the sake of clarity, many of the

formal proofs have been relegated to the end of the chapter (Section 7.8).

7.2 Techniques

As we pointed out above, there is a huge gap in update time between algorithms that settle for a 2-

or-worse approximation, and those that achieve a better-than-2 approximation. The reason for this is

that if one only requires a 2-approximation (or worse), it is enough to maintain a maximal matching

(or an approximation to a maximal matching). Intuitively, maintaining a maximal matching is much

easier than maintaining a maximum one because the former problem is completely local in the sense

that if an edge can be legally added to the matching, then the algorithm can always safely do so and

still end up with a maximal matching.. The moment one seeks even a 1.99 matching, however,

the algorithm must be capable of rejecting an available edge because of how it interacts with other

edges. Local problems tend to be much easier in the dynamic setting, because they allow us to

handle an edge change without having to look at large portions of the graph.

This difference in locality can be clearly seen in our characterization of approximate matchings.

The maximality condition (2-approximation) is expressed through a local constraint on each edge

that depends only on the endpoints of that edge: namely, for every edge (u, v), either u or v must

be matched. On the other hand, the majority of existing matching algorithms characterize better-

than-2 approximations through the non-existence of short augmenting paths: a matching M is 3/2-

approximate if it contains no augmenting paths of length 3 or less; a matching M is (1 + ϵ)-

approximate if it contains no augmenting paths of length 2ϵ−1 + 2 or less. The problem is that the

latter characterization cannot be cleanly expressed in terms of local constraints on each edge, even
88

if one is only dealing with augmenting paths of length 7. And while determining whether an edge

(u, v) belongs in a maximal matching is very easy (if u and v are free, add the edge), determining

whether an edge (u, v) belongs an augmenting path of length 7 could require use to search a large

portion of the graph. Augmenting paths of length 3 are a border case, but still don’t yield clean local

constraints like those of a maximal matching.

Since augmenting paths seem not very suitable to the dynamic setting, we would like to find

a characterization of better-than-2 approximate matchings in terms of local constraints. We were

unable to do this directly, but we were able to do something almost as good: we show that we can

define a small subgraph H of G such that H is defined only in terms of local constraints, and yet

H is guaranteed to contain a large matching: one of our subgraphs has µ(H) ≥ (2/3 − ϵ)µ(G),

and the other has µ(H) ≥ (1 − ϵ)µ(G). We refer to H as an Edge Degree Constrained Subgraph

(EDCS). The idea is that it is easy to maintain a matching in the EDCS H because H is small and

in particular has bounded degree; on the other hand, it is easy to maintain H in G because H is

defined in terms of local constraints.

The idea of using a transition subgraph graph H was first introduced in an earlier paper of

Bhattacharya et al. [Bhattacharya et al., 2015a], which presented the previous fastest deterministic

algorithm: O(m1/3) update time and a (3 + ϵ) approximation. Their transition subgraph, however,

continued to rely on maximality constraints, and was in particular akin to a maximal B-matching.

Their approach thus contained no potential for breaking through the 2-approximation barrier (in fact

due to other difficulties they only achieve (3 + ϵ)). This is not surprising, as they never set out to

go beyond a 2-approximation: their goal was to achieve a o(
√
m) update time with a deterministic

algorithm, and in this they succeeded.

Our main contribution is the EDCS, which is a subgraph H defined in terms of a different

(non-maximality) set of local constraints that yields a better-than-2 approximation. Maintaining an

EDCS is somewhat harder than maintaining the subgraph with maximality constraints used by Bhat-

tacharya et al. [Bhattacharya et al., 2015a]. We overcome this with a careful analysis of the structure

of an EDCS, as well as with a new algorithmic approach that relies on dynamic orientations. This

approach works especially well in small arboricity graphs, but also leads to an improvement in the

general case because the arboricity of a graph is always O(
√
m).

89

7.3 Preliminaries

Recall the general matching notation from Section 6.1. Our main graph G = (V,E) is an undi-

rected, unweighted graph where |V | = n and |E| = m. Since the graph is dynamically changing

over time, G will always refer to the current version of the graph. Our algorithm will often deal with

auxiliary graphs that differ from G, so all of our notation will be explicit about the graph in question.

We define dG(v) to be the degree of a vertex v in G; if the graph in question is weighted, then dG(v)

is the sum of the weights of all incident edges. We define edge degree as δ(u, v) = d(u) + d(v). If

H is a subgraph of G, we say that an edge in G is used if it is also in H , and unused if it is not in

H . Throughout this paper we will only be dealing with subgraphs H that contain the full vertex set

of G, so we will use the notion of a subgraph and of a subset of edges of G interchangeably. Recall

the set difference operator Z1 \ Z2 = {x ∈ Z1|x ̸∈ Z2}.

We will often compute the value of a fractional matching by summing over the edge values

incident to each vertex. To avoid double counting edges, we let each endpoint of an edge account

for a fraction of that edge. More formally, given a graph G, we define an accounting of the edges to

be a function that assigns to each edge (x, y) two values ax(x, y) and ay(x, y) such that ax(x, y) +

ay(x, y) ≤ 1. Given a fractional matching Mf and some accounting of the edges, we define the

profit of x, ρ(x), to be ρ(x) =
∑

(x,y)∈E ax(x, y)VAL(x, y).

Observation 1 Given some fractional matching Mf in G, and some accounting of the edges of G,

we always have VAL(Mf) ≥
∑

x∈V ρ(x). This inequality holds with equality when, for each edge

(x, y), we have ax(x, y) + ay(x, y) = 1.

We now state a simple corollary of an existing result of [Gupta and Peng, 2013].

Lemma 29 ([Gupta and Peng, 2013]) If a dynamic graph G has maximum degree B at all times,

then we can maintain a (1 + ϵ)-approximate matching under insertions and deletions in worst-case

update time O(Bϵ−2) per update.

Proof: This lemma immediately follows from a simple algorithm presented in Section 3.2 of [Gupta

and Peng, 2013] which shows how to achieve update time |E(G)|ϵ−2/µ(G) (for the transition from

worst-case to amortized see appendix A.3 of the same paper), as well as the fact that we always

have |E(G)|/µ(G) ≤ 2B because all edges must be incident to one of the 2µ(G) matched vertices

in the maximum matching, and each of those vertices have degree at most B. �
90

Orientations An orientation G′ of an undirected graph G is an assignment of a direction to each

edge in E. Given an orientation of edge (u, v) from u to v, we will say that u owns edge (u, v) and

will define the load of a vertex u to be the number of edges owned by u. Orientations of small max

load are closely linked to arboricity: every graph with arboricity α has an orientation with max load

O(α) [Nash-Williams, 1961]. Our algorithms will maintain an orientation of the dynamic graph

G using the algorithms referred to in the theorems below. The first result (Theorem 16) is due to

Kopelowitz et al. [Kopelowitz et al., 2014a], while the second (Theorem 17) is a simple result that

is new to this paper. We leave the proof of Theorem 17 for Section 7.8.5

Theorem 16 ([Kopelowitz et al., 2014a]) Let G be a graph that always has arboricity at most α.

One can maintain an orientation, under edge insertions and deletions, with the following properties:

the maximum load at all times is O(α + log n), the worst-case number of edge reorientations per

insertion/deletion is also O((α + log n)), and the worst-case time to process an insertion/deletion

in G is O(α(α+ log n)).

Theorem 17 In a graph G, we can maintain an orientation, under insertions and deletions, with

the following properties: the max load at all times is at most 3
√
m, the worst-case number of edge

reorientations per insert/deletion in G is O(1), and the worst-case time spent per insertion/deletion

in G is O(1).

7.4 The Framework

Definition 22 An unweighted edge degree constrained subgraph, denoted EDCS(G, β, β−) is a

subset of the edges H ⊆ E (we will also refer to it as a subgraph) with the following properties:

(P1) if (u, v) is used (i.e. (u, v) ∈ H) then dH(u) + dH(v) ≤ β ,

(P2) if (u, v) is unused (i.e. (u, v) ∈ G \H) then dH(u) + dH(v) ≥ β−.

We also define a similar subgraph where edges in H have positive integer weights, effectively

allowing them to be used more than once. Note that dH(v) now refers to the sum of the weights of

v’s incident edges.

91

Definition 23 A weighted edge degree constrained subgraph(EDCS) (G, β, β−) is a subset of the

edges H ⊆ E with positive integer weights that has the following properties:

(P1) if (u, v) is used then dH(u) + dH(v) ≤ β,

(P2) for all edges (u, v), we have dH(u) + dH(v) ≥ β−.

Below is an outline of how our algorithm processes an edge insertion/deletion in G:

1. Update the small-max-load edge orientation using either Theorem 17 or Theorem 16 .

2. Update the subgraph H so it remains a valid edge degree constrained subgraph of the changed

graph G. This step uses the orientation from step 1 for efficiency. (See Section 7.7.)

3. Update the (1 + ϵ)-approx. matching in H with respect to the changes in H from step 2.

(Lemma 29.)

The maintained (1 + ϵ)-approximate matching of H (step 3) is also our final matching in G;

much of this chapter devoted to showing that because H is an EDCS, µ(H) is not too far from

µ(G).

Because much of our algorithm runs on a dynamic subgraph of G we need the following defini-

tion: Let H be a subgraph of a dynamic graph G, and let A be an algorithm that modifies the edges

of H as G changes; then, we say that A has an amortized update ratio of r if for any large enough

sequence S of edge changes (insertions or deletions) to G, the algorithm makes at most r|S| edge

changes to H .

We can now state the main theorems of the paper. We present general and small arboricity

graphs separately, but the basic framework described above remains the same in both cases. In all

the theorems below, the parameter ϵ > 0 is chosen to obtain a desired approximation ratio (either

(1 + ϵ) or (3/2 + ϵ)).

7.4.1 General Graphs

For the sake of intuition, in the two theorems below, think of β as quite large (roughly m1/4). Also

recall that µ(H) denotes the size of the maximum matching in H .

92

Theorem 18 Let G be a graph and let λ = ϵ/6. Let H be an unweighted EDCS of G with β− =

β(1− λ), where β ≥ 32λ−3 is a parameter we will choose later. Then µ(H) ≥ (2/3− 2ϵ)µ(G).

Theorem 19 Let G be a graph. Let H be an unweighted EDCS of G with β− = β(1 − λ), with

β ≥ 36λ−1. There is an algorithm that maintains H over updates in G (i.e. maintains H as a valid

EDCS) with the following properties:

• The algorithm has amortized update time O
(√

m
λ2β

)
.

• The amortized update ratio of the algorithm is O(1/λ).

Proof of Theorem 12 We use the algorithm outline presented at the beginning of Section 7.4.

We set H to be an unweighted EDCS(G, β, β(1 − λ)) with λ = ϵ/6 and β = m1/4ϵ1/2. By

Theorem 19 we can maintain H in amortized update time O(
√
m

λ2β
) = O(m1/4ϵ−2.5). The update-

ratio is O(λ−1) = O(ϵ−1). Since degrees in H are clearly bounded by β, by Lemma 29 we

can maintain a (1 + ϵ)-approx. matching in H in time O(βϵ−2); multiplying by the update ratio

of maintaining H in G, we need O(βϵ−3) = O(m1/4ϵ−2.5) time to maintain the matching per

change in G. By Theorem 18, µ(H) is a (3/2 + 2ϵ)-approximation to µ(G), so our matching is a

(3/2 + 2ϵ)(1 + ϵ) = (3/2 +O(ϵ))-approx. matching in G. �

7.4.2 Small Arboricity Graphs

For the sake of intuition, in the two theorems below think of β as quite small, roughly O(ϵ−2).

Theorem 20 Let G be a graph, and let β ≥ 25ϵ−2. Let H be a weighted EDCS with β− =

β(1 − λ), where λ = ϵ2/25. Consider the fractional matching MH
f in H , with VAL(u, v) =

1/max{dH(u), dH(v)}. Then MH
f is a feasible fractional matching, and VAL(MH

f) ≥ µf (G)(1−

ϵ).

Theorem 21 Let G be a dynamic graph that at all times has arboricity ≤ α. Let H be a weighted

EDCS(G, β, β(1− λ)) with β ≥ 4λ−1. There is an algorithm that maintains H over updates in G

with the following properties:

• The algorithm has amortized update time O(α(α+ log n+ βλ−1)).

93

• The amortized update ratio of the algorithm is O(βλ−1).

If H is instead an unweighted EDCS(G, β, β(1 − λ)), the algorithm has amortized update time

O(α(α+ log n+ λ−1)) and amortized update ratio O(λ−1).

Proof of Theorem 13 The proof is essentially identical to that Theorem 12; for the transition sub-

graph H , we use an (unweighted) EDCS(G, β, β(1 − λ)) with β = 100ϵ−2 and λ = ϵ2/25 (so

β(1− λ) = β − 4). �

Proof of Theorem 14 Let H be a weighted EDCS(G, β, β(1−λ)) with β = 100ϵ−2 and λ = ϵ2/25.

By Theorem 21 we can maintain H in amortized update time O(α(α+log n+ ϵ−4)) and amortized

update ratio O(ϵ−4).

We now need to maintain a fractional matching in H . We cannot rely on Lemma 29 as in the

previous proofs, because this lemma only applies to maintaining an integer matching. Instead, we

explicitly maintain the fractional matching MH
f defined in Theorem 20. By definition of update

ratio, every update in G only changes an average of O(ϵ−4) edges in H , so only O(ϵ−4) vertices v

have their degree dH(v) changed. For each such vertex v, we spend O(β) = O(ϵ−2) time going

through its incident edges in H and updating their value to the new 1/max{dH(u), dH(v)}. This

yields a total update time of O(ϵ−6) for maintaining MH
f in H . By Theorem 20, MH

f is the desired

(1 + ϵ) approximation to µf (G). �

Overview of the paper Section 7.5 proves Theorem 15 relating to the new notion of a γ-restricted

fraction matching defined in the introduction. The first half of Section 7.6 proves Theorem 20, while

the second is devoted to proving Theorem 18. Theorems 19 and 21 are discussed in Section 7.7.

For ease of reading, some of the more technical proofs are left for the proofs section at the end of

the paper (Section 7.8).

7.5 A gamma-Restricted Fractional Matching Contains a Large Inte-

gral Matching

To prove Theorem 15, we first prove a structural theorem about matchings in non-bipartite graphs.

In bipartite graphs, because of the relationship between matching and flows, a maximum matching

94

induces a cut in the graph. The following is an attempt to exhibit an analogous property for non-

bipartite graphs.

Lemma 30 Let M be a maximum matching in a graph G. We can partition the vertices of G into

three sets, C (connected) , L (lonely) and B (both) such that the following properties hold:

1. All free vertices are in L.

2. Each vertex in C is matched to a vertex in L.

3. There are no edges in L× L.

4. Each vertex in B has at most one neighboring vertex in L.

Proof: Given a graph G with maximum matching M , we define a free-free path to be a (non-empty)

simple alternating path that starts and ends with edges not in M . We define a free-matched path to

be a (non-empty) simple alternating path that starts with an edge not in M and ends with an edge in

M . Note that a free-free path need not start or end with a free vertex. We now define two vertex sets

FER (free-edge-reachable) and MER (matched-edge-reachable). We say that a vertex v is in MER

if there is a free-matched path from some free vertex w to v. Similarly, we say that a vertex v is

in FER if there is a free-free path from some free vertex w to v. Note that FER and MER are not

necessarily disjoint, and there may be vertices that are in neither set. We also let F denote the set of

free vertices. F is disjoint from MER by definition. Observe that F is also disjoint from FER because

M is a maximum matching and so contains no augmenting paths; suppose, for contradiction, that

v ∈ F ∩ FER: then the free vertex v is reachable by some free-free path from a free vertex w, which

is precisely an augmenting path from w to v.

It is not hard to check that in bipartite graphs FER and MER are disjoint, because if a vertex v

was in both sets then there would be an augmenting path in the matching. Thus, in a bipartite graph

we would achieve the desired partition by setting C = FER, L = MER ∪ F,B = V − C − L. It

is not hard to check that this partition satisfies all four properties of Lemma 30, and that in fact it

achieves a stronger version of property 4, where there are no edges from B to L. In a non-bipartite

graph however, there could be vertices which are in both FER and MER, which roughly correspond

to vertices in blossoms. For this reason we need a more involved definition of the set B which ends

up indirectly capturing all the blossom vertices.
95

For nonbipartite graphs, we define the connected set C = FER \ MER and lonely set L =

(MER \ FER) ∪ F . We then define B = V \ (C ∪ L). Informally, B contains non-free vertices that

either are in both MER and FER or are not reachable by any alternating path from a free vertex.

We now proceed to verify the conditions of the theorem. The first condition is immediate from

the definition of L. The second condition says that each vertex in C is matched to a vertex in L. To

prove this, we note that each vertex v in C is also in FER, so it is reachable by a free-free path Pv

from a free vertex w. We also know that v is matched since FER is disjoint from F , so let x be the

vertex to which v is matched. We want to show that x ∈ MER \ FER. Note that the free-free path Pv

cannot contain x as then it would end on the matched edge (x, v). The path Pv followed by edge

(v, x) is thus a simple free-matched alternating path from w to x and so x ∈ MER. Now assume,

fpoc, that also x ∈ FER. Then there is a free-free path Px from a free vertex w′ (which could be

the same as w). But then Px followed by (x, v) is a free-matched path from w′ to v and therefore

v ∈ MER, which contradicts the assumption that v ∈ C. (Note that Px cannot already contain v

earlier in the path, for if it did it would also contain x as an interior vertex, which contradicts Px

being simple).

To prove the third condition, assume fpoc that there is an edge (x, y) ∈ L× L. There are three

cases to consider, depending on whether x and y are free. If both x and y are free, then there is an

augmenting path from (x, y), contradicting M being a maximum matching. Now consider the case

where one vertex, say x, is free, and y ∈ MER \ FER. Then the edge (x, y) is a free-free path, so

y ∈ FER, a contradiction. The last case to consider is where both x and y are in MER \ FER, yet

the edge (x, y) exists. By definition, there is some free-matched path Px from a free vertex w to x.

Now, if y /∈ Px then the path Px followed by edge (x, y) is a simple free-free path from w to y, so

y ∈ FER – contradiction. If y ∈ Px then let Py be the subpath of Px from w to y. Since y /∈ FER,

Py ends on a matched edge; thus the path Py followed by edge (y, x) is a free-free path from w to

x, so x ∈ FER, a contradiction.

The fourth condition states that each vertex in B is incident to at most one vertex in L. Consider

a vertex v ∈ B. There are two cases to consider: v ∈ FER ∩ MER and v ∈ V − FER − MER.

In the latter case, there clearly cannot be an edge (v, x) to some x ∈ L, since if x is free then

the existence of edge (x, v) would imply that v ∈ FER, contradicting our assumption; similarly, if

x ∈ MER, then there is some free-matched path Px from a free vertex to x, and so considering the

96

path Px followed by edge (x, v), we would have that v ∈ FER. We now consider the case where

v ∈ FER ∩ MER. Since v ∈ MER, it is the end of some free-matched path Pv starting at a free

vertex w, and is possibly the end of many such paths. Fix one such path Pv, let w be the free vertex

at the start of the path, and define the apex APEX(P) to be, among all vertices in Pv ∩ L, the one

closest to v on P . We now show that the only possible edge from v to a vertex x ∈ L is the edge

(v, APEX(P)). We will establish this fact by ruling out all other possible edges. To this end, there

are three cases to consider: x ̸∈ P , x ∈ P and is between between APEX(P) and v, and x ∈ P and

between w and APEX(P). In the first case, the path P followed by edge (v, x) is simple and hence

free-free, and so x ∈ FER and not in L. The second case cannot occur by the definition of APEX, for

x would be the APEX(P) in this case. In the third case, we claim that if there is such an edge, then

APEX(P) ∈ FER, contradicting the fact that APEX(P) ∈ L. We show this by observing that there

is a free-free path consisting of the portion of P from w to x, followed by the edge (x, v), and then

followed by the portion of P from v to APEX(P). So we have ruled out all possible edges from v to

L except the edge (v, APEX(P)).

It might seem strange that we picked one specific free-matched path Pv and proved that the only

possible edge from v to L is to the apex of that path, since in fact, there can be many free-matched

paths to v. But the proof actually shows that for any free-matched path P from a free vertex to v,

the only possible edge from v to L is (v, APEX(P)); thus, if there are two different free-matched

paths to v with different apexes then we have shown that there are in fact no edges from v to L. �

Proof of Theorem 15 Let Mf be our γ-restricted fractional matching in G, let G∗ be the support

of Mf and let M∗ be the maximum integer matching in G∗. We want to show that VAL(Mf) ≤

|M∗|(1 + γ).

We can assume by induction on the size of Mf that all edges in Mf have value ≤ γ; if some edge

(x, y) had value 1, then G∗ contains no other edges incident to x or y, so by the induction hypothesis

we could find an integral matching of size at least (VAL(Mf) − 1)/(1 + γ) in G∗ − {x} − {y}.

We could then add edge (x, y) to this integral matching, yielding the desired matching of size

≥ (VAL(Mf)− 1)/(1 + γ) + 1 > VAL(Mf)/(1 + γ).

We can partition the vertices into sets C, L, and B, that satisfy Lemma 30 with respect to

the graph G∗ and the matching M∗. To bound VAL(Mf), we consider the following accounting

of the edges in G∗. For an edge (x, y) ∈ C × C, let ax(x, y) = ay(x, y) = 1/2. For an edge

97

(x, y) ∈ C × V \ C, let ax(x, y) = 1 and ay(x, y) = 0. For an edge (x, y) ∈ B × B, let

ax(x, y) = ay(x, y) = 1/2, For an edge (x, y) ∈ B × L, let ax(x, y) = 1 and ay(x, y) = 0. Note

that by property 3 of Lemma 30, G∗ contains no edges in L× L.

Note that for all edges (x, y) we have ax(x, y) + ay(x, y) = 1. Thus, combining Observation 1

with the fact that vertices in L receive no profit under this accounting:

VAL(Mf) =
∑
x∈V

ρ(x) =
∑
x∈C

ρ(x) +
∑
x∈B

ρ(x) .

To upper bound the total profit of C, we simply observe that since Mf is a fractional matching, for

any vertex x, VAL(x) ≤ 1 and ρ(x) ≤ 1, so
∑

x∈C ρ(x) ≤ |C|. To upper bound the total profit

from B, consider an x ∈ B, and let VALL(x) be the total value of all edges from x to L. Then the

total value of all edges from x to V \L is at most 1−VALL(x), and since our accounting only lets x

account for at most half of each edge to V \L, we have that ρ(x) ≤ VALL(x)+(1−VALL(x))/2 =

(VALL(x) + 1)/2. But by property 4 of Lemma 30 there is at most one edge from x to L, and

since Mf is by assumption a γ-restricted fractional matching, we have that VALL(x) ≤ γ, so

ρ(x) ≤ (1 + γ)/2. We thus have

VAL(Mf) =
∑
x∈C

ρ(x) +
∑
x∈B

ρ(x)

≤ |C|+ |B|(1 + γ)/2

≤ (1 + γ)(|C|+ |B|/2) .

(7.1)

There are 2|M∗| matched vertices in total; by property 1 of Lemma 30 all vertices in C and B are

matched, and by property 2 there are at least |C| matched vertices in L, so 2|C|+ |B| ≤ 2|M∗|, so

|C|+ |B|/2 ≤ |M∗|. By Equation 7.1 above this implies that VAL(Mf) ≤ (1+γ)|M∗|, as desired.

�

7.6 An Edge Degree Constrained Subgraph Contains a Large

Matching

A Weighted EDCS Contains a Large Fractional Matching We now sketch the proof of Theo-

rem 20. The proof is conceptually quite simple, but somewhat technical because of the λ slackness

in property P2 of a weighted EDCS. Thus, we start by giving a proof that assumes a tighter version

of property P2, which we call P2′: that for any edge (u, v) in G, dH(u) + dH(v) ≥ β. We leave

the full proof without this assumption for Section 7.8.1.
98

Proof Sketch of Theorem 20 We will start by defining a simple accounting on the edges of H . If

dH(v) > β/2 we set av(v, w) = 1 for all edges (v, w). If dH(v) < β/2 we set av(v, w) = 0 for all

edges (v, w). If dH(v) = β/2 we set av(v, w) = 1/2 for all edges (v, w). Property P1 of an EDCS

clearly ensures that this is a valid accounting in that av(v, w) + aw(v, w) ≤ 1 for any edge (v, w)

in H .

Recall that for every edge (u, v) ∈ H , MH
f assigns VAL(u, v) = 1/max{dH(u), dH(v)}.

Given the accounting above, there is a simple formula for the profit of vertex v. If dH(v) > β/2

then, by property P1 of an EDCS, for every edge (v, w) we have dH(w) < dH(v), so VAL(v, w) =

1/max{dH(u), dH(v)} = 1/dH(v). Since v has dH(v) incident edges and full accounting of all

of them, we have ρ(v) = 1. Similarly if dH(v) = β/2 then ρ(v) = 1/2, since v now only accounts

for half of each incident edge. Finally, if dH(v) < β/2, then v does not account for its edges, so

clearly ρ(v) = 0.

Now, it is well-known [Scheinerman and Ullman, 2011] that there must exist a maximum frac-

tional matching in which all edge values are 0, 1/2 or 1. From this fact, we can easily show G

must contain some maximum fractional matching that consists of disjoint odd cycles and disjoint

isolated edges; the isolated edges all have value 1, the edges on cycles have value 1/2, and all other

edges have value 0. To verify this statement, observe first that all the 1 edges must be isolated in

any matching. If we remove the 1 edges from the matching, the remaining edges with value 1/2

must form a set of disjoint cycles (that are also disjoint from the set of removed 1 edges). Any even

cycle can be replaced with a cycle that alternates between edges of value 0 and edges of value 1,

leaving only odd cycles for the 1/2-edges. Let MG
f be such a maximum fractional matching in G.

MG
f gets a value of 1 from each isolated edge, and a value of d/2 for each odd cycle of length d;

we will show that MH
f receives exactly the same amount from each edge / odd cycle.

For each isolated edge (v, w) in MG
f we have by property P2′ (the stronger version of P2

assumed for this proof sketch) that dH(v) + dH(w) ≥ β, so either one of dH(v) or dH(w) is larger

than β/2, or both are equal to β/2; either way, ρ(v) + ρ(w) ≥ 1, so MH
f gets a value of 1 from

the edge, as desired. For a cycle of odd length d, let v be the vertex on the cycle with maximum

dH(v). It is not hard to see that dH(v) ≥ β/2, since otherwise, by property P2′, the neighbors of v

on the cycle would have degree higher than dH(v). Thus, we have that ρ(v) ≥ 1/2. The remainder

of the cycle clearly contains (d− 1)/2 disjoint edges in G, and by the argument above, for each of

99

these edges MH
f gains a profit of at least 1. Thus, the total profit of MH

f from the cycle is at least

1/2 + (d− 1)/2 = d/2. �

An unweighted EDCS Contains a Large Fractional Matching We now turn to general graphs,

and sketch the proof of the key lemma used to prove Theorem 18.

Lemma 31 Let H be a edge degree constrained subgraph(G, β, β(1 − λ)) with λ = ϵ/6 and

β ≥ 32λ−3. Then H contains an ϵ-restricted fractional matching MH
f with total value at least

µ(G)(2/3− ϵ).

Proof: (sketch) As in the proof of Theorem 20 earlier in this section,we explicitly construct a

fractional matching; in this case, a ϵ-restricted one. Unfortunately, this is by far the most complex

proof in our paper, and it relies on the probabilistic method; if we can construct a ϵ-restricted

matching that has size k in in expectation, then a ϵ-restricted matching of size k is guaranteed to

exist. Note that our overall algorithm is still deterministic because we only use randomization in the

analysis. We suspect that there exists a more natural construction of a large ϵ-restricted matching,

but have so far been unable to find it. For this reason, we leave the full proof of Lemma 31 for

Section 7.8.2. Here we give a sketch of the proof, which makes several simplifying assumptions

that among other things allow us to avoid recourse to the probabilistic method.

Let MG be some maximum matching in G. Let MG
H be the edges of MG in H , and let MG

G\H

be the edges of MG in G \H , so |MG
H | + |MG

G\H | = |MG| = µ(G). Let the vertex sets SG, SG
H ,

and SG
G\H contain the endpoints of the edges of MG, MG

H , and MG
G\H respectively.

Let us consider the properties of SG
H and SG

G\H . Firstly, SG
H contains a perfect matching using

edges in H; namely, the edges of MG
H . Secondly, |SG

H |+ |SG
G\H | = 2(|MG

H |+ |MG
G\H |) = 2µ(G).

Thirdly, for every edge (u, v) ∈ SG
G\H we have by property P2 of an EDCS that dH(u) + dH(v) ≥

β(1− ϵ). Thus, the average degree dH(v) of vertices in SG
G\H is at least β(1− ϵ)/2. For this proof

sketch, let us make a big simplifying assumption: all vertices in SG
G\H have degree exactly β/2.

Note that dropping the (1− ϵ) factor is a minor assumption we could easily do without, but setting

all degrees to be the same makes the proof qualitatively simpler, and allows us to avoid recourse to

the probabilistic method. Finally, as we show in the full proof, if we pick our maximum matching

MG carefully we can preserve the properties above while also ensuring the fourth property below.

(This is a simplified version of Lemma 37 in the full proof of Lemma 31.)
100

1. SG
H contains a perfect matching using edges in H

2. |SG
H |+ |SG

G\H | = 2µ(G)

3. Every vertex v ∈ SG
G\H has dH(v) = β/2 (big simplifying assumption)

4. All edges incident to SG
G\H go to SG

H

Now consider the ϵ-restricted fractional matching MH
f in H in which all edges in H from SG

G\H

to SG
H are given value 2/β; (this is ϵ-restricted because β is large, so 2/β << ϵ). Let us first verify

that no vertex has total value more than 1. Every vertex v ∈ SG
G\H has degree exactly β/2 in H

(property 3 above), so it has total value (β/2)(2/β) = 1. Now consider a vertex v ∈ SG
H . If there

exists no edge (v, w) ∈ H with w ∈ SG
G\H then v has total value 0 and we done. Otherwise, by

property 3 above we have dH(w) = β/2, so by property P1 of an EDCS we have dH(v) ≤ β/2, so

v has total value at most (β/2)(2/β) = 1.

Let us now consider the total value of MH
f . Since each vertex in SG

G\H has degree β/2 (property

3) and all edges from SG
G\H go to SG

H (property 4), we have a total of β
2 |S

G
G\H | edges in SG

G\H×SG
H ,

and each has value 2/β, so VAL(MH
f) = |SG

G\H |.

There are now two cases to consider. The first is that |SG
G\H | ≥ |SG

H |/2. By property 2 above

we then have

VAL(MH
f) = |SG

G\H | = 1

3
|SG

G\H |+ 2

3
|SG

G\H |

≥ 1

3
(SG

G\H + SG
H) =

2

3
µ(G)

so we have successfully constructed the large ϵ-restricted matching needed by Lemma 31.

The second case is that |SG
G\H | < |SG

H |/2. In this we choose a different ϵ-restricted matching

which is simply the integral matching that assigns weight 1 to all the edges in the perfect matching

of SG
H (property 1 above). This matching has size |SG

H |/2 and by property 2 above we have:

1

2
|SG

H | = 1

6
|SG

H |+ 1

3
|SG

H | > 1

3
(SG

G\H + SG
H) =

2

3
µ(G) .

Note that in the full proof of Lemma 31 we end up mixing the two cases; that is, we end up taking

some edges directly from the perfect matching in SG
H (with weight 1), and some from SG

G\H × SG
H

(with small weight < ϵ). �

101

Proof of Theorem 18 By Lemma 31, H contains an ϵ-restricted fractional matching MH
f with total

value at least µ(G)(2/3− ϵ). By Theorem 15, MH
f must contain an (integral) matching M of size

at least µ(G)(2/3− ϵ)
(

1
1+ϵ

)
> µ(G)(2/3− 2ϵ), as desired.

�

7.7 Maintaining an Edge Degree Constrained Subgraph

In this section we present our algorithm for maintaining the EDCS H in small arboricity graphs

(Theorem 21). The algorithm for maintaining H in general graphs (Theorem 19) uses similar ideas

but is very technical, so we leave it for Section 7.8.4 at the end of the paper. The first half of the two

proofs (of Theorems 21 and 19) are very similar, but the parameters are somewhat different, so for

the sake of clarity we completely separate the two proofs and prove each one from scratch. We turn

to proving Theorem 21. Let H be a weighted EDCS(G, β, β(1 − λ)), and say that at all times the

graph G has arboricity ≤ α. Recall that by the statement of Theorem 21 we have β ≥ 4λ−1.

As the graph G changes, we need an algorithm that changes the graph H in a way that preserves

the EDCS properties. An adversary will make external insertions and deletions in G, but these differ

in a crucial way. If the adversary deletes an edge (u, v) ∈ G, and (u, v) was also in H , then we

must necessarily delete (u, v) from H . However, if the adversary inserts an edge (u, v) ∈ G, we

do not immediately change H . In either case, after the external operation, conditions P1 or P2 may

be violated for (u, v) or for other edges (in particular those incident to vertex u or v). The basic

idea of our algorithm is very simple: whenever the algorithm detects an edge that violates one of

the EDCS properties, it fixes the violating edge through an insertion/deletion. We call these fixing

operations internal updates: if the edge violates property P1 it removes the edge from H , and if

the edge violates property P2 it adds the edge to H . If multiple edges violate the EDCS properties

they can be fixed in any order. However, fixing one violation may cause violations to other edges,

and the process of performing internal operations cascades. We will analyze our algorithm with a

potential function which shows that on average, each external (i.e. adversarial) update to G only

leads to a small number of internal updates to H .

Definition 24 We say that algorithm A for maintaining H is locally repairing if:

1. Algorithm A only internally deletes edge (u, v) from H if before the deletion dH(u)+dH(v) >
102

β (i.e., the edge violated property P1).

2. Algorithm A only inserts edge (u, v) into H if before the insertion dH(u)+dH(v) < β(1−λ)

(i.e., the edge violated property P2).

If the algorithm is locally repairing, then after an internal insertion/deletion of edge (u, v),

(u, v) does not violate the EDCS properties. If edge (u, v) originally violated property P1, then

before the update dH(u) + dH(v) > β; removing (u, v) only decreases the edge degree by 2, so

after the update dH(u) + dH(v) > β − 2 > β(1 − λ) (because β ≥ 4λ−1), and so (u, v) satisfies

property P2. Similarly, if edge (u, v) violated property P2 then after the update dH(u) + dH(v) <

β(1− λ) + 2 < β, so (u, v) satisfies property P1.

Lemma 32 If an algorithm A for maintaining H is locally repairing, then A performs an amortized

O(1/λ) internal updates to H for each update to G.

Proof: Consider the potential function

Φ =
∑

(u,v)∈H

(dH(u) + dH(v))− β(1− λ/2)
∑
v∈V

dH(v) .

We will show that an internal insertion or deletion to H decreases Φ by at least βλ/2, while an exter-

nal deletion to G increases Φ by at most 2β, and an external insertion leaves Φ unchanged; together

these facts clearly imply the lemma. Given any update to edge (x, y), we let dO(x), dO(y), dN(x), dN(y)

(O for old, N for new) denote the degrees of x and y before and after the edge update. Let ∆Φ

denote the change to Φ due to the update.

Consider first an internal insertion of edge (x, y). dH(x) and dH(y) each increase by 1, and

thus
∑

v∈V dH(v) increases by 2. To bound the total change to
∑

(u,v)∈H(dH(u)+dH(v)), observe

that the degree of each of the edges incident to x and y increases by 1 so the total increase in edge

degree of all these edges is precisely dO(x) + dO(y). We also added a new edge of edge degree

dN(x)+dN(y) = dO(x)+dO(y)+2; thus ∆Φ = 2(dO(x)+dO(y))+2−2β(1−λ/2). But because

our algorithm is locally repairing we know that for an internal insertion dO(x)+dO(y) < β(1−λ),

so ∆Φ < 2β(1 − λ) + 2 − 2β(1 − λ/2) = −βλ + 2 ≤ −βλ/2, as desired. (The last inequality

follows from β ≥ 4λ−1).

Consider next an internal deletion of edge (x, y). The total change to
∑

v∈V dH(v) is now

−2. The deletion causes the degree of each edge incident to x and y to go down by one, so the
103

total change to all these edge degrees is dO(x) + dO(y). We also deleted an edge of edge degree

dO(x) + dO(y). Thus, ∆Φ = −2(dO(x) + dO(y)) + 2β(1− λ/2). Since our algorithm is locally

repairing we know that for an internal deletion dO(x) + dO(y) > β, so ∆Φ ≤ −βλ, as desired.

Consider next an external deletion of edge (x, y). The same argument as for internal deletions

yields ∆Φ = −2(dO(x) + dO(y)) + 2β(1 − λ/2). Now however, we have no lower bound on

dO(x) + dO(y) except that it is clearly positive. This yields ∆Φ ≤ 2β(1− λ/2) < 2β, as desired.

Finally, external insertions do not change H and hence do not alter Φ. �

We now present a locally-repairing algorithm for maintaining H . Note that we maintain a

dynamic orientation in G using Theorem 16, so in addition to being able to process updates to G,

the algorithm also has to be able to process edge reorientations in G.

Lemma 33 There exists a locally repairing algorithm A for maintaining H such that the update

time of A per update to G is O(α(1+ number of internal updates performed by A)), and the update

time of A per edge reorientation in G is O(1).

We say that an edge is violating if it violates one of constraints P1 or P2 of an EDCS. Before proving

this lemma, we design and analyze a data structure for detecting a violating edge incident to a given

vertex.

Lemma 34 Let G be a graph on which we maintain a dynamic orientation in which each vertex

owns O(α) edges. There exists a data structure VO (violation oracle) that supports the following

operations:

• VO.find(v) returns, in O(α) time, some violating edge (v, w) incident to v, or NIL if none

exists.

• VO.change-status(v,w) updates the data structure in O(α) time when edge (v, w) is added/removed

from H , or inserted/deleted from G.

• VO.reorient(v,w) updates the data structure in O(1) time when edge (x, y) is reoriented.

Proof: Here we give a proof that incurs an extra O(log n) factor on each operation. We show in

Section 7.8.3 how to remove this factor. For each vertex v we keep track of dH(v) and we maintain

two balanced binary search trees. NH
v contains the degrees dH(w) of all vertices w for which

104

Update (x, y) in G

STACK.push(x); STACK.push(y)

While !STACK.Empty()

• v = STACK.pop()

• FIXUP(v)

Fixup (v)

(v, w) = VO.find(v)

if (v, w) ̸= NIL

• if (v, w) ∈ H , remove (v, w) from H \\ P1 vio-

lated

• if (v, w) ̸∈ H , add (v, w) to H \\ P2 violated

• VO.change-status(v, w)

• STACK.push(v); STACK.push(w)

Figure 7.1: How the algorithm of Lemma 33 handles an update to G

(v, w) ∈ H and (v, w) is not owned by v. NG\H
v contains the degrees dH(w) of all vertices w for

which (v, w) ∈ G \H and is not owned by v.

To implement VO.find(v), we first spend O(α) time scanning the owned edges of dH(v) for a

violating edge. If none is found, we need to look for a violating edge (v, w) that is not owned by v.

Note that if (v, w) violates constraint P1 of an EDCS then (v, w) ∈ H and dH(v) + dH(w) > β;

thus, we can find such an edge in O(log n) time by checking if NH
v contains any vertices w with

dH(w) > β − dH(v). Similarly, we can find an edge (v, w) ∈ G \H that violates property P2 of

an EDCS by searching in N
G\H
v for elements dH(w) < β(1− λ)− dH(v).

To implement VO.change-status(v, w) when the edge (v, w) changes we might have to insert or

remove edge (v, w) from the various data structures NH
v , N

G\H
v , NH

w , N
G\H
w ; this can clearly be

done in O(log n) time. Also, dH(v) and dH(w) might have changed by 1. If dH(v) changes, for

every edge (v, x) that is owned by v we have to update NH
x or NG\H

x depending on whether (v, x)

is in G or G \H . But v only owns O(α) edges, so this requires O(α log n) time. We can similarly

handle the change to dH(w) in O(α log n) time.

Finally, to implement VO.reorient(v, w), if (v, w) was previously owned by v we have to move

dH(v) out of NH
w or NG\H

w and move dH(w) into NH
v or NG\H

v . This requires O(log n) time.

We can save an O(log n) factor in this proof by replacing the binary search tree with a simple

array-based structure (Section 7.8.3). �

Proof of Lemma 33 Note that all we are looking for is a procedure for quickly detecting and fixing

a violating edge; Lemma 32 already guarantees that any such procedure will terminate quickly.

The algorithm at all times maintains the violation oracle VO of Lemma 34. To handle a reori-

105

entation of edge (x, y) the algorithm simply calls VO.reorient(x,y), which takes O(1) time. The

procedure for handling an update to G is defined in Figure 7.1. We maintain a stack (STACK) which

will contain vertices that might possibly have an incident violating edge. The key observation is

that an edge (x, y) can only become violating if one of dH(x) or dH(y) changes, so we will catch

all violating edges if every time we add/remove some edge (x, y) to/from H we put x and y onto

STACK. The while loops guarantees that when we terminate no violating edges are left.

We now need to show that the algorithm spends O(α) time per internal update. Each iteration of

the while loop requires O(α) time to run VO.find and VO.change-status. Other than the two initial

vertices v,w put on STACK by the update of edge (v, w) in G, a vertex x is only put on STACK

when the algorithm performs an internal update to edge (x, y), so the time to process x and y can

be charged to the internal update of (x, y). The algorithm thus requires O(α) time for the initial

update to G, and O(α) time for each subsequent internal update. �

Proof of Theorem 21 First we show how to maintain an unweighted EDCS. By Theorem 16 each

update to G leads to O(α + log n) edge reorientations, and requires O(α(α + log n)) time to

compute the correct reorientations. By Lemma 32 each update to G leads to amortized O(λ−1)

internal updates, yielding the O(λ−1) bound for amortized update ratio. Thus, by Lemma 33, an

update to G can be processed in time O(α(α+ log n+ λ−1)).

To maintain a weighted EDCS, let Gβ be the graph G where every edge has multiplicity β;

maintaining a weighted EDCS on G is equivalent to maintaining an unweighted one on Gβ . Each

update to G can cause up to β updates to Gβ , multiplying the amortized update ratio and update time

by β. However, it is not hard to show that the terms corresponding to maintaining an orientation are

not multiplied by β, since an orientation of the original graph G suffices. Thus the total update time

is O(α(α+ log n+ βλ−1)). �

7.8 Appendix of the More Technical Proofs

7.8.1 Full proof of Theorem 20

We start by defining the following accounting for the edges of H . For any vertex v, if dH(v) ≤
β
2 (1 −

√
λ) we set av(v, w) = 0 for all edges (v, w). If dH(v) ≥ β

2 (1 +
√
λ), we set av(v, w) =

1 for all edges (v, w). Else, if dH(v) ∈ (β2 (1 −
√
λ), β2 (1 +

√
λ)) for all edges (v, w) we set

106

av(v, w) = 1/2+ dH(v)−β/2

β
√
λ

. (It is easy to check that this is always between 0 and 1). To check that

for any edge in H we always have av(v, w) + aw(v, w) ≤ 1, let (v, w) be some edge in H , WLOG

let dH(v) ≥ dH(w), and recall that by property P1 of an EDCS we have dH(v) + dH(w) ≤ β. If

dH(w) ≤ (β/2)(1 −
√
λ) then aw(v, w) = 0, so since av(v, w) ≤ 1, we are done. If dH(v) ≥

(β/2)(1 +
√
λ) then dH(w) ≤ (β/2)(1 −

√
λ), so again we are done. Finally, if both dH(v) and

dH(w) are in the interval [(β/2)(1−
√
λ), (β/2)(1 +

√
λ)], then

av(v, w) + aw(v, w)

= (1/2 +
dH(v)− β/2

β
√
λ

) + (1/2 +
dH(w)− β/2

β
√
λ

)

= 1 +
dH(v) + dH(w)− β

β
√
λ

≤ 1

where the last inequality follows from dH(v) + dH(w) ≤ β.

Recall that for every edge (u, v) ∈ H , MH
f assigns VAL(u, v) = 1/max {dH(u), dH(v)}. Note

that given a vertex v, for every edge (v, w) we have dH(w) ≤ β−dH(v) (property P1 of an EDCS),

so VAL(v, w) ≥ 1/max{dH(v), β − dH(v)}. Thus, we have

ρ(v) =
∑
(v,w)

VAL(v, w)av(v, w)

≥ dH(v)

max{dH(v), β − dH(v)}
·min{1, 1/2 + dH(v)− β/2

β
√
λ

}
(7.2)

Lemma 35 The function ρ(v) satisfies the following properties:

1. If dH(v) ≥ (β/2)(1− λ) then ρ(v) ≥ (1/2)(1− 3
√
λ).

2. If dH(v) + dH(w) ≥ β(1− λ) then ρ(v) + ρ(w) ≥ 1− 5
√
λ.

Proof: To verify the first property, we simply plug in dH(v) = (β/2)(1 − λ) into Equation 7.2,

obtaining

ρ(v) ≥ (1/2)((1− λ)/(1 + λ))(1−
√
λ)

> (1/2)(1− 2λ)(1−
√
λ)

> (1/2)(1− 3
√
λ) .

107

To verify the second property, let us say that dH(v) ≥ dH(w). If we had dH(v) ≥ (β/2)(1 +
√
λ)

then it is easy to see that ρ(v) = 1 because dH(v)/max {dH(v), β − dH(v)} = dH(v)/dH(v) = 1,

and the min term in Equation 7.2 also comes out to 1. Thus the only case left to consider is when

dH(v) ≤ (β/2)(1 +
√
λ), and so by property P2 of an EDCS, dH(w) ≥ β(1 − λ) − dH(v) >

(β/2)(1− 2
√
λ). Note that in this case

dH(w)

max{dH(w), β − dH(w)}
≥ (β/2)(1− 2

√
λ)

(β/2)(1 + 2
√
λ)

=
1− 2

√
λ

1 + 2
√
λ

≥ 1− 4
√
λ .

Similarly, since dH(v) ≥ dH(w), we have

dh(v)

max {dH(v), β − dH(v)}
≥ 1− 4

√
λ .

Thus, recalling that dH(v) + dH(w) ≥ β(1− λ), we have:

pr(v) + pr(w)

≥
(
1− 4

√
λ
)(

1

2
+

dH (v)− β/2

β
√
λ

+
1

2
+

dH (w)− β/2

β
√
λ

)
=

(
1− 4

√
λ
)(

1 +
dH (v) + dH (w)− β

β
√
λ

)
≥

(
1− 4

√
λ
)(

1 +
β (1− λ)− β

β
√
λ

)
=

(
1− 4

√
λ
)(

1−
√
λ
)

≥
(
1− 5

√
λ
)

.

(7.3)

�

The proof of Theorem 20 is almost complete. As argued in the proof sketch in Section 7.6, it

is easy to see from [Scheinerman and Ullman, 2011] that any graph G has a maximum fractional

matching whose support consists of disjoint odd cycles and disjoint individual edges: the individual

edges have value 1, the edges on the odd cycles all have value 1/2, and all other edges have value 0.

Let MG
f be such a maximum matching in G. We will prove that VAL(MH

f) ≥ (1−5
√
λ)VAL(MG

f).

Note that MG
f gets a value of 1 from each individual edge not on a cycle, and a value of d/2

for each odd cycle of length d. We will now show that MH
f always gains at least a (1 − 5

√
λ)

108

fraction of what MG
f gains from these edges/cycles. Since we set λ = ϵ2/25, this proves that

VAL(MH
f) ≥ VAL(MG

f)(1− ϵ).

For each isolated edge (v, w) in MG
f we have by property P2 of an EDCS that dH(v)+dH(w) ≥

β(1−λ), so by property 2 of Lemma 35 we get that ρ(v)+ρ(w) ≥ (1−5
√
λ); in other words, MH

f

gains at least a (1−5
√
λ) fraction of what MG

f gains on that edge. For a cycle of odd length d, let v

be the vertex on the cycle with maximum dH(v). It is not hard to see that dH(v) ≥ β
2 (1− λ), since

otherwise by property P2 of an EDCS the neighbors of v on the cycle would have degree higher than

dH(v). Thus, by Property 1 of Lemma 35 we have that ρ(v) ≥ (1/2)(1−3
√
λ) > (1/2)(1−5

√
λ).

The remainder of the cycle clearly contains (d − 1)/2 disjoint edges in G, and by the argument

above, for each of these edges MH
f gains a profit of at least (1− 5

√
λ). Thus, the total profit gained

by MH
f from the cycle is at least (1/2)(1 − 5

√
λ) + ((d − 1)/2)(1 − 5

√
λ) = (d/2)(1 − 5

√
λ);

again at least a (1− 5
√
λ) fraction of what MG

f gains.

7.8.2 Proof of Lemma 31

Recall that we are dealing with an (unweighted) EDCS(G, β, β(1−λ)). We will explicitly construct

a ϵ-restricted fractional matching MH
f of large size. We start by defining a function ϕ(x) for x ∈

[0, β]; loosely speaking, ϕ(dH(u)) will end up corresponding to the profit gained by vertex u in the

fractional matching MH
f .

ϕ(x) = min

{
1,

x

2(β − x)

}
. (7.4)

Lemma 36 If a, b ∈ [0, 1] and a+ b ≥ β(1− ζ) for some ζ ≥ 0, then ϕ(a) + ϕ(a) ≥ 1− 5ζ.

Proof: We first show that if a+ b ≥ β then ϕ(a)+ϕ(b) ≥ 1. The claim is trivially true if ϕ(a) ≥ 1

or ϕ(b) ≥ 1, so we can assume that ϕ(a) < 1 and ϕ(b) < 1. In this case, we have

ϕ(a) + ϕ(b) =
a

2(β − a)
+

b

2(β − b)

≥ a

2b
+

b

2a
=

a2 + b2

2ab
=

(a− b)2

2ab
+ 1 ≥ 1

Now, let ϕ′(x) = d
dxϕ(x). To complete the lemma, it is sufficient to show that we always have

ϕ′(x) ≤ 5/β. To prove this inequality, first note that if x ≥ 2β/3 then ϕ(x) = 1. Thus, if

x > 2β/3 then ϕ′(x) = 0. Now, if x ≤ 2β/3 then ϕ′(x) = d
dx

x
2(β−x) = β

2(β−x)2
. This function

109

clearly increases with x, and is maximized precisely at x = 2β/3, in which case ϕ′(x) = 9
2β < 5

β ,

as desired. �

Lemma 37 Given any EDCS(G, β, β(1 − λ)), H , we can find two disjoint sets of vertices X and

Y that satisfy the following properties. (Recall the function ϕ defined in Equation 7.4.)

1. |X|+ |Y | = 2µ(G).

2. There is a perfect matching in Y using edges in H .

3. Letting σ = |Y |/2 +
∑

x∈X ϕ(x), we have σ ≥ µ(G)(1− 5λ).

4. All edges in H have at least one endpoint in Y .

Proof: Let MG be some maximum integral matching in G. Some of the edges in MG are in H ,

while others are in G \ H . Let X0 contain all vertices incident to edges in MG ∩ (G \ H), and

let Y0 contain all vertices incident to edges in MG ∩ H . We now show that X0 and Y0 satisfy the

first three properties of the lemma. Property 1 is satisfied because X0 ∪ Y0 consists of all matched

vertices in MG. Property 2 is satisfied by definition of Y0. To see that property 3 is satisfied, we

show that the vertices in X0 ∪ Y0 contribute an average of at least (1 − 5λ)/2 to σ. The vertices

in Y0 each contribute exactly 1/2. Now, X0 consists of |X0|/2 disjoint edges in G \ H , and by

property P2 of an EDCS, for each such edge (x, x′) we have dH(x) + dH(x′) ≥ β(1 − λ), so by

Lemma 36 we have ϕ(x) + ϕ(x′) ≥ 1− 5λ, and between them x and x′ contribute an average of at

least (1− 5λ)/2 to σ, as desired.

However, the sets X0 and Y0 might not satisfy property 4 of Lemma 37. We first show how to

transform X0, Y0 to sets X1, Y1 such that the first three properties are still satisfied, and there are no

edges in H between X1 and V \ (X1 ∪ Y1); at this stage, however, there will possibly be edges in

H between vertices in X1. To construct X1, Y1, we start with X = X0 and Y = Y0, and present a

transformation that terminates with X = X1 and Y = Y1. Recall that X0 has a perfect matching

using edges G \H . The set X will maintain this property throughout the transformation, and each

vertex x ∈ X always has a unique mate x′. The construction does the following: as long as there

exists an edge (x, z) in H where x ∈ X and z ∈ V \ (X ∪ Y), let x′ be the mate of x; we then

remove x and x′ from X and add x and z to Y . Property 1 is maintained because we removed two

vertices from |X| and added two to |Y |. Property 2 is maintained because the vertices we added to
110

Y were connected by an edge in H . Property 3 is maintained because X clearly still has a perfect

matching in G\H , and for every pair (x, x′) the average contribution to σ among x and x′ is still at

least (1−5λ)/2, as above. We continue this process while an edge (x, y) in H from X to V −X−Y

exists; the process terminates because each time we are removing two vertices from X and adding

two to Y . We thus end with two sets X1, Y1 such that the first three properties of the lemma are

satisfied, and there are no edges between X1 and V −X1 − Y1.

We now set X = X1 and Y = Y1 and show how to transform X and Y into two sets that

satisfy all four properties of the lemma. Recall that X1 still contains a perfect matching using

edges in G \H: denote this matching by MG
X . Our final set X , however, will not guarantee such a

perfect matching. Let MH
X be a maximal matching in X using edges in H . Consider the edge set

E∗
X = MG

X ∪MH
X . Now, E∗

X is a degree 2 graph so it can be decomposed into vertex-disjoint paths

and cycles. Since both MG
X and MH

X are matchings, the paths and cycles alternate between edges

in MG
X and edges in MH

X ; in particular, they alternate between edges in G \ H and edges in H .

Each cycle contains an even number of vertices because otherwise it could not alternate. Because

MG
X is a perfect matching, every vertex in X1 is in a path or cycle, and each path starts and ends

with edges in MG
X . In particular, each path contains an even number of vertices and is of the form

x1, x
′
1, x2, x

′
2, ..., xk, x

′
k, where for every i ≤ k there is an edge (xi, x′i) in MG

X , and for every i < k

there is an edge (x′i, xi+1) in MH
X .

We now perform the following transformation. For each cycle C in E∗
X , we simply remove

all the vertices in C from X and add them to Y . Property 1 is preserved because we are moving

vertices from one set to the other. Property 2 is preserved because C contains a perfect matching in

H since every second edge in C is in MH
X . We will argue that property 3 is preserved momentarily.

We now continue describing the transformation. For each path P in E∗
X , if P consists of a single

edge in MG
X , we do nothing. Else, if P is longer, then P is of the form x1, x

′
1, x2, x

′
2, ..., xk, x

′
k

indicated above. The transformation moves all vertices except x1 and x′k (the ends of the path) from

X to Y . Property 1 is clearly preserved. Property 2 is preserved because the vertices moved had a

perfect matching among them in MH
X and so in H (the perfect matching that matches x′i to xi+1 for

i < k).

We must now check that property 3 is preserved by this transformation. As before, this involves

showing that after the transformation, the average contribution of a vertex in X ∪ Y to σ is at least

111

(1− 5λ)/2. (Because every vertex in X is incident to an edge in E∗
X , each vertex is accounted for

in the transformation.) Now, all vertices that were in Y1 remain in Y , so their average contribution

remains at 1/2. We thus need to show that the average contribution to σ among vertices in X1

remains at least (1−5λ)/2 after the transformation. We will in particular show that given any cycle

C or path P in E∗
X , the average contribution of vertices in that path/cycle is at least (1 − 5λ)/2

after the transformation. For any cycle C, all the vertices are moved to Y and thus each contribute

exactly 1/2 to σ. For any path P = (x, x′) that consists of a single edge in MG
X , we still have that by

property P2 of an EDCS, dH(xi) + dH(x′i) ≥ β(1− λ), so by Lemma 36, ϕ(x) + ϕ(x′) ≥ 1− 5λ.

Finally, consider a path P = (x1, x
′
1, ..., xk, x

′
k). We have that for all i, (xi, x′i) ∈ G \ H , so

dH(xi)+dH(x′i) ≥ β(1−λ), so
∑

x∈P dH(x) ≥ kβ(1−λ). On the other hand, since for all i < k

there is an edge (x′i, xi+1) in MH
X and so in H , we have by property P1 of an EDCS that for all

i < k, dH(x′i) + dH(xi+1) ≤ β. Thus

dH(x1) + dH(x′k) =
∑
x∈P

dH(x)−
∑
i<k

(dH(x′i) + dH(xi+1))

≥ kβ(1− λ)− (k − 1)β

= β − kβλ .

(7.5)

Thus, by Lemma 36, we have ϕ(x1) + ϕ(x′k) ≥ 1 − 5kλ. We are now ready to bound the

average contribution to σ among vertices in P after the transformation. Since we have the endpoints

contributing a total of at least 1 − 5kλ and 2k − 2 vertices that move to Y each contributing 1/2,

the average contribution of vertices on the path to σ is at least ((1− 5kλ)+ (1/2)(2k− 2))/(2k) =

(1− 5λ)/2.

Our transformation thus preserves properties 1, 2, and 3. It now remains to verify that the

resulting sets X and Y satisfy property 4. To see this, note that we took a maximal matching MH
X

of the set X1 among edges in H , and moved all the matched vertices in MH
X to Y . Thus all the

vertices that remain in X are free in MH
X , and so by definition of a maximal matching, there are no

edges in H between vertices in X after the transformation. There are also no edges in H between X

and V \ (X ∪Y) because there are no such edges originally when X = X1, and our transformation

only moved edges from X to Y , which cannot create new edges between X and V \ (X ∪ Y). �

112

We now want to construct (for the proof) a ϵ-restricted fractional matching MH
f using the edges

in H such that VAL(MH
f) ≥ (2/3−ϵ)µ(G). We start by finding two sets |X| and |Y | that satisfy the

properties of Lemma 37. Now, by property 2 of Lemma 37, |Y | contains a perfect matching MH
Y

using edges in H . Let Y − be a subset of Y obtained by randomly sampling exactly half the edges of

MH
Y and adding their endpoints to Y −. Let Y ∗ = Y \ Y −, and observe that |Y −| = |Y ∗| = |Y |/2.

Let H∗ be the subgraph of H (not of G) induced by X ∪ Y ∗. We define a fractional matching

MH∗
f on the edges of H∗ in which all edges have value at most ϵ. We will then let our final fractional

matching MH
f be the fractional matching MH∗

f joined with the perfect matching in H of Y − (so

MH
f assigns value 1 to the edges in this perfect matching). MH

f is, by definition, a ϵ-restricted

fractional matching.

We now give the details for the construction of MH∗
f . Let V ∗ = X ∪ Y ∗ be the vertices of H∗,

and let E∗ be its edges. For any vertex v ∈ V ∗, define d∗H(v) to be the degree of v in H∗. Recall

that by property 4 of Lemma 37, if x ∈ X then all the edges of H incident to x go to Y (but some

might go to Y −); thus, for x ∈ X , we clearly have E[d∗H(x)] = dH(x)/2.

We now define MH∗
f as follows. For every x ∈ X , we arbitrarily order the edges of H incident

to x, and then we assign a value of min
{
ϵ, 1

β−dH(x)

}
to the edges one by one, stopping when either

VAL(x) reaches 1 or there are no more edges in H incident to x, whichever comes first (in the case

that VAL(x) reaches 1 the last edge might have value less than min
{
ϵ, 1

β−dH(x)

}
). We now verify

that MH∗
f is a valid fractional matching in that all vertices have value at most 1. This is clearly true

of vertices x ∈ X by construction. For a vertex y ∈ Y ∗, it suffices to show that each edge incident

to y receives a value of at most 1/dH(y) ≤ 1/d∗H(y). To see this, first note that the only edges to

which MH∗
f assigns non-zero values are in X × Y ∗. Any such edge (x, y) receives value at most

1/(β − dH(x)), but since (x, y) is in MH∗
f and so in H , we have by property P1 of an EDCS that

dH(y) ≤ β − dH(x), and so 1/(β − dH(x)) ≤ 1/dH(y), as desired.

By construction, for any x ∈ X , we have that in MH∗
f

VAL(x) = min

{
1, d∗H(x) ·min

{
ϵ,

1

β − dH(x)

}}
. (7.6)

Consider the simple accounting on edges in E∗ where for every edge (x, y) ∈ X × Y ∗ we set

ax(x, y) = 1 and ay(x, y) = 0, while for other edges (y, y′) we effectively ignore the edge by

setting ay(y, y
′) = ay′(y, y

′) = 0 In this accounting, we clearly have ρ(x) = VAL(x) for x ∈ X

113

and ρ(y) = 0 for y ∈ Y ∗. By Observation 1 we can lower bound MH∗
f by summing over all

ρ(x) for x ∈ X . To this end, we prove the lemma below; recall that E[d∗H(x)] = dH(x)/2, that

β ≥ 32λ−3 >> ϵ−1, and the definition of ϕ(x) from Equation 7.4.

Lemma 38 For any x ∈ X , E[ρ(x)] ≥ (1− λ)ϕ(dH(x)).

Proof: The proof is simply algebraic manipulation combined with the Chernoff bound. First con-

sider the case in which dH(x) ≤ β/2. In this case 1
β−dH(x) ≤ 2/β < ϵ, and d∗H(x) ≤ dH(x) ≤

β− dH(x), so ρ(x) =
d∗H(x)

β−dH(x) . Thus since E[d∗H(x)] = dH(x)/2, we have by definition of Φ that:

E[ρ(x)] =
E[d∗H(x)]

β − dH(x)
=

dH(x)/2

β − dH(x)
= Φ(dH(x))

Now consider the case in which dH(x) > β/2. Then,

E[d∗H(x)] =
dH(x)

2
>

β

4
≥ 8λ−3 .

Thus by the Chernoff bound

Pr[d∗H(x) < (1− λ

2
)(
dH(x)

2
)]

< e−E[d∗H(x)](λ
2
)2/2

≤ e−λ−1
<

λ

2
,

(7.7)

where the last inequality follows from simple calculus and the fact that 0 ≤ λ ≤ 1. Now, we

start by considering the fringe case where dH(x) ≥ β − ϵ−1, and so min
{
ϵ, 1

β−dH(x)

}
= ϵ. By

Equation 7.7 with probability at least (1− λ
2), we have that d∗H(x) ≥ (β− 1

ϵ
)(1−λ

2
)

2 >> ϵ−1. So with

probability at least (1− λ
2) we have d∗H(x)ϵ > 1, so E[ρ(x)] ≥ (1− λ

2) ≥ (1− λ
2)ϕ(x).

We are thus left with the case where dH(x) > β/2, and ρ(x) = min
{
1,

d∗H(x)

β−dH(x)

}
. Again by

Equation 7.7 we have that with probability at least (1− λ/2),

d∗H(x)

β − dH(x)
≥ dH(x)(1− λ/2)

2(β − dH(x))
≥

(
1− λ

2

)
ϕ(dH(x)) .

In other words, with probability at least (1−λ/2) we have ρ(x) ≥ (1− λ
2)ϕ(dH(x)), so E[ρ(x)] ≥

(1− λ
2)

2ϕ(dH(x)) > (1− λ)ϕ(dH(x)), as desired. �

We have almost completed the proof of Lemma 31. By Lemma 38 and Observation 1, we are able

to lower bound VAL(MH∗
f). In particular,

VAL(MH∗
f) ≥

∑
x∈X

ρ(x) ≥ (1− λ)
∑
x∈X

ϕ(dH(x)) .

114

Recall that we constructed MH
f by taking the fractional value MH∗

f and adding in the half of the

edges from Y that we had removed (i.e. the edges in Y −). There are in total |Y −|/2 = |Y |/4 such

edges so

VAL(MH
f) ≥ (1− λ)

∑
x∈X

ϕ(dH(x)) +
|Y |
4

.

We now lower bound this quantity using property 3 of Lemma 37.

VAL(MH
f) ≥ (1− λ)

∑
x∈X

ϕ(dH(x)) +
|Y |
4

= (1− λ)
∑
x∈X

ϕ(dH(x)) +
|Y |
2

− |Y |
4

≥ (1− λ)µ(G)(1− 5λ)− |Y |
4

≥ (1− 6λ)µ(G)− |Y |
4

.

(7.8)

To complete the proof, recall that Y contains a perfect matching in H of |Y |/2 edges, so if |Y | ≥

4µ(G)/3 then there already exists a matching in H of size 2µ(G)/3, so the main lemma we are

trying to prove (Lemma 31) is trivially true. We can thus assume that |Y | < 4µ(G)/3, in which

case Equation 7.8 yields that

VAL(MH
f) ≥ (1− 6λ)µ(G)− |Y |

4

> (1− 6λ)µ(G)− µ(G)

3

=

(
2

3
− 6λ

)
µ(G) .

This completes the proof because in Lemma 31 we set λ = ϵ/6.

7.8.3 A Violation Oracle: Proof of Lemma 34

In our earlier proof of Lemma 34 we achieved all the desired bounds to within a logn factor. This

log n factor came from the fact that we used balanced binary search trees for NG\H
v and NH

v . To

remove the log n factor, we maintain exactly the same oracle as in the earlier proof, except that

we change the data structures NG\H
v and NH

v to allow constant time per operation. The new data

structures are extremely simple. Recall that a data structure for vertex v will include all its neighbors

w. To avoid recourse to hash tables (and the resulting randomized algorithm), all the different data

structures for all vertices v will use pointers to the global list of vertices V .
115

Lemma 39 There exists a data structure which we call a High Threshold Table (HTT), which con-

tains some subset of V of elements w each with an associated KEY(w). The HTT also has a threshold

parameter HIGH, and supports the following operations in constant time.

1. Insert or delete some element w (a key change can be implemented as a deletion followed by

an insertion).

2. Return some element w with KEY(w) > HIGH (or NIL if none exists).

3. Increase or Decrease HIGH by 1.

There also exists an analogous data structure Low Threshold Table (LTT) that is identical except it

stores a threshold LOW, and operation 2 requires finding an element w with KEY(w) < LOW.

Proof: We group all elements w into buckets according to KEY(w), so bucket Bk contains all w for

which KEY(w) = k. We can store the buckets as doubly linked lists, with pointers from element

w in the list to the vertex w in V , and vice versa. We then keep an unordered list L of all indices

k such that k > HIGH and Bk is non-empty. We maintain a pointer from each bucket Bk to its

position in L (if k ∈ L).

Operation 1 above can be implemented as follows: to insert some vertex w into NH
v , the algo-

rithm simply puts w in bucket BKEY(w). If w is the only vertex in BKEY(w) and KEY(w) > HIGH

then it also adds index KEY(w) to L. To delete some vertex w from the HTT, the algorithm deletes

w from BKEY(w), and if BKEY(w) is now empty it deletes index KEY(w) from L. For operation

2, the algorithm finds the first element k of L, and then picks an arbitrary element w from Bk; by

definition of L this will guarantee that KEY(w) > HIGH. Finally, for operation 3, if HIGH moves by

1, let k be the original HIGH. If HIGH decreased by 1, the algorithm simply adds k to L if bucket

Bk is non-empty. If HIGH increased by 1, the algorithm removes (k + 1) from L if (k + 1) was in

L. All three operations can thus be done in constant time. �

Going back to the proof of Lemma 34, for NH
v we can use an HTT that includes the same el-

ements w as in the earlier proof in Section 7.7 (where we used a balanced binary search tree for

NH
v). We set KEY(w) = dH(w) and HIGH = β − dH(v). The implementation of the opera-

tions VO.find(v) and VO.reorient(v) are then exactly the same as in the earlier proof. To implement

VO.change-status(v,w), we might have to increase/decrease HIGH by 1 if the update to edge (v, w)

increased/decreased dH(v). Similarly, for NG\H
v we use an LTT with LOW = β(1− λ)− dH(v).

116

7.8.4 Maintaining an Edge Degree Constrained Subgraph in General Graphs

In this section we prove Theorem 19. The first half of the proof is nearly identical to that in Section

7.7 modulo some parameter changes, but for the sake of clarity we repeat the whole proof with the

new parameters. Recall that updates to H (the EDCS) can be external or internal. An external update

is an update made by the dynamic adversary which inserts or deletes an edge in G. This external

update can lead certain edges to violate the EDCS properties, so the algorithm that maintains H can

also make internal updates which add or remove edges from H to maintains these properties. Recall

that an external deletion of edge (u, v) also removes the edge from H , while an external insertion

of (u, v) only affects G, not H (though the external insertion may be followed up by an internal

insertion which adds the edge to H).

Intuitively, the algorithm only needs to perform an internal update on an edge if that edge vio-

lates one of the EDCS properties. In Section 7.7 we argued that such an algorithm only performs

a small number of internal updates (Lemma 32). The problem is that in general graphs there could

be many edges and finding a violating edge is difficult. If the algorithm examines a large number of

edges that are not violating, we need to somehow guarantee that progress is still being made. To this

end we observe that if an algorithm comes across an edge that is close to violating one of the prop-

erties, it makes sense to fix it on the spot. This motivates a generalization of the definition of locally

repairing (Definition 24) in Section 7.7. Recall that H is an (unweighted) EDCS(G, β, β(1 − λ)),

and that by the statement of Theorem 19, β ≥ 36λ−1.

Definition 25 We say that algorithm A for maintaining H is locally balancing if:

1. Algorithm A only internally deletes edge (u, v) from H if before the deletion dH(u)+dH(v) >

β(1− 4λ/9) (i.e. the edge was close to violating property P1).

2. Algorithm A only internally inserts edge (u, v) into H if before the insertion dH(u)+dH(v) <

β(1− 5λ/9) (i.e., the edge was close to violating property P2).

Let us say that an edge is unbalanced if it satisfies one of the inequalities above, i.e. if it is a

candidate for being added or removed from H by a locally balancing algorithm. Note that after the

locally balancing algorithm updates the edge, it is no longer unbalanced. If before the update edge

(u, v) was in H and dH(u) + dH(v) > β(1− 4λ/9), then since removing the edge only decreases
117

its edge degree by 2, after the update (u, v) ∈ G \H and dH(u) + dH(v) > β(1 − 4λ/9) − 2 ≥

β(1 − 5λ/9), so the edge is no longer unbalanced (The last inequality follows from β ≥ 36λ−1).

Similarly, if before the update (u, v) was in G \H and dH(u) + dH(v) < β(1 − 5λ/9) then after

the update (u, v) ∈ H and dH(u) + dH(v) ≤ β(1− 5λ/9) + 2 ≤ β(1− 4λ/9).

Lemma 40 If an algorithm A for maintaining H is locally balancing, then A performs an amortized

O(1/λ) internal updates to H for each update to G.

Proof: The proof is very similar to that of Lemma 32. We use the same potential function

Φ =
∑

(u,v)∈H

(dH(u) + dH(v))− β(1− λ/2)
∑
v∈V

dH(v).

We will show that an internal insertion or deletion to H decreases Φ by at least βλ/18, while

an external deletion to G increases Φ by at most 2β, and an external insertion has no effect

on ϕ; together these facts clearly imply the lemma. Given any update to edge (x, y), we let

dO(x), dO(y), dN(x), dN(y) (O for old, N for new) denote the degrees of x and y before and after

the edge update. Let ∆Φ denote the change to Φ due to the update.

Consider first an internal insertion of edge (x, y). Clearly
∑

v∈V dH(v) increases by 2. To

bound the total change to
∑

(u,v)∈H(dH(u) + dH(v)), observe that all the edge degrees of edges

incident to x and y go up by one, so the total increase in edge degree of all these edges is precisely

dO(x) + dO(y). We also added a new edge of edge degree dN(x) + dN(y) = dO(x) + dO(y) + 2;

thus ∆Φ = 2(dO(x) + dO(y)) + 2− 2β(1− λ/2). But because our algorithm is locally balancing

we know that for an internal insertion dO(x)+dO(y) < β(1−5λ/9), so ∆Φ < 2β(1−5λ/9)+2−

2β(1− λ/2) = −βλ/9 + 2 ≤ −βλ/18, as desired. (The last inequality follows from β ≥ 36λ−1.)

Consider an internal deletion of edge (x, y). The total change to
∑

v∈V dH(v) is now −2. The

deletion causes all edge degrees of edges incident to x and y to go down by one, so the total change

to all these edge degrees is dO(x)+dO(y). We also deleted an edge of edge degree dO(x)+dO(y).

Thus, ∆Φ = −2(dO(x)+dO(y))+2β(1−λ/2). Since our algorithm is locally balancing we know

that for an internal deletion dO(x) + dO(y) > β(1− 4λ/9), so ∆Φ ≤ −βλ/9, as desired.

Consider finally an external deletion of edge (x, y). The same argument as for internal deletions

yields ∆Φ = −2(dO(x) + dO(y)) + 2β(1 − λ/2). Now however, we have no lower bound on

dO(x) + dO(y) except that it is clearly positive. This yields ∆Φ ≤ 2β(1− λ/2) < 2β, as desired.
118

An external insertion only changes G and not H , so it has no effect on ϕ. �

The main difference between maintaining an EDCS in general graphs compared to small ar-

boricity graphs is that because we can have many edges, we cannot afford to alert all the owned

neighbors of some vertex v every time dH(v) changes. The basic idea is that instead of directly

working with dH(v), each vertex v will store a public value PUB(v), and when the algorithm deter-

mines what to do with an edge (v, w), it will only look at its public edge degree, PUB(v)+ PUB(w).

The algorithm will avoid excessive computation by only occasionally changing PUB(v), while guar-

anteeing that the algorithm nonetheless functions property by ensuring that PUB(v) is always not

too far off from dH(v).

Definition 26 We say that an edge (v, w) is violating if (v, w) violates one of the EDCS properties:

i.e. if (v, w) ∈ H and dH(v)+dH(w) > β, or (v, w) ∈ G\H and dH(v)+dH(w) < β(1−λ). We

say that an edge (v, w) is publicly unbalanced if (v, w) ∈ H and PUB(v)+ PUB(w) > β(1−2λ/9)

or if (v, w) ∈ G \ H and PUB(v) + PUB(w) < β(1 − 7λ/9). We say that an edge is publicly

balanced if it is not publicly unbalanced.

Our algorithm will always maintain the following three invariants:

Publicity Invariant: |PUB(v)− dH(v)| ≤ βλ/9.

Correctness Invariant: After the algorithm finishes processing any update to G, all edge are pub-

licly balanced.

Balancing Invariant: The algorithm only performs internal insertions/deletions on edges in H that

are publicly unbalanced.

It is is not hard to see that invariants 1 and 2 together guarantee that after the algorithm finishes

processing an update to G, there are no violating edges in the EDCS. Invariants 1 and 3 together

guarantee that the algorithm is locally balancing (Definition 25).

To find locally unbalanced edges, we present an analogue of the violation oracle of Lemma 34.

One of the main reasons it is easier to work with PUB(v) instead of the real dH(v) is that although

updating an edge (u, v) can change dH(u) and dH(v), it cannot in and of itself create new publicly

unbalanced edges; a publicly unbalanced edge can only be created by changing PUB(v) or PUB(w).

That being said, by the publicity invariant updating an edge (u, v) can indirectly force a change to

PUB(v) or PUB(w).
119

Note that in general graphs, we use Theorem 17 to maintain an orientation of the edges of G

such that each vertex owns O(
√
m) edges. But unlike in the small arboricity case, our algorithm

does not need a separate procedure for handling edge reorientations because by Theorem 17 every

update to G only causes O(1) reorientations, so we can bluntly model a reorientation as a deletion

of the edge followed by an insertion of the same edge pointing in the other direction.

Lemma 41 Suppose that we have a graph G for which we maintain a dynamic orientation in which

each vertex owns O(
√
m) edges. There exists a data structure PBO (public balancing oracle) on the

graph G that supports the following operations:

• PBO.find(v) returns all publicly unbalanced edges incident to v in time O(
√
m+ (number of

publicly unbalanced edges returned)).

• PBO.change-status(v, w) adds/removes edge (v, w) from H , or inserts/deletes (v, w) from G

in O(1) time.

• PBO.change-public(v, p) changes the value of PUB(v) to p in time O(
√
m+|p−(original PUB(v))|).

Proof: The proof is similar to that of Lemma 34. We use the data structures High Threshold

Table (HTT) and Low Threshold Table (LTT) from Lemma 39. For every vertex v, we build a HTT

NH
v which contains all vertices w for which (v, w) ∈ H and (v, w) is not owned by v; we set

KEY(w) = PUB(w) and HIGH = β(1 − 2λ/9) − PUB(v). We also build an LTT called N
G\H
v

which contains all vertices w for which (v, w) ∈ G \ H and (v, w) is not owned by v; we set

KEY(w) = PUB(w) and LOW = β(1− 7λ/9)− PUB(v).

To implement PBO.find(v), we first find all the publicly unbalanced edges that are owned by v in

O(
√
m) time by simply scanning the O(

√
m) owned edges of v. We now need to find all publicly

unbalanced edges (v, w) that are not owned by v. Let us first find all edges (v, w) ∈ H that are not

owned by v and for which PUB(v)+ PUB(w) > β(1−2λ/9), which is precisely the set of elements

w ∈ NH
v for which KEY(w) > HIGH. Since NH

v is an HTT we can find one such element w in O(1)

time. To find all of them, we repeatedly find such an element w and then temporarily remove it from

the HTT until we can no find no more such elements w: we then insert all the temporarily removed

elements back into the HTT. Finding the publicly unbalanced edges not owned by v thus requires a

total time of O(1+(number of elements w found)). We can similarly find all edges (v, w) ∈ G\H
120

that are not owned by v and for which PUB(v) + PUB(w) < β(1 − 7λ/9) by looking for elements

w ∈ N
G\H
v for which KEY(w) < LOW.

Implementing PBO.change− status(v, w) is easy, because the values PUB(v) and PUB(w) do

not change. Thus, the most we would have to do is add or remove (v, w) from one of NH
v , N

G\H
v , NH

w ,

or NG\H
w , which can be done in O(1) time.

To implement PBO.change− public(v, p), let p0(v) be the value of PUB(v) before the change.

First, for all edges (v, w) that are owned by v, the change to PUB(v) will change KEY(v) from p0

to p in NH
w or NG\H

w . A key change in an HTT or LTT can be implemented in O(1) time, and our

orientation guarantees that v owns O(
√
m) edges, so this operation takes O(

√
m) time. Secondly,

we need to change HIGH and LOW in NH
v and N

G\H
v since they are defined in terms of PUB(v). In

particular, we have to add (p0 − p) to HIGH and LOW (note that this expression might be negative).

We know that in an HTT or LTT we can change HIGH or LOW by 1 in O(1) time, so we can change

it by (p0 − p) in time O(|p0 − p|), as desired. �

Lemma 42 There exists a locally balancing algorithm A for maintaining H such that the amortized

update time of A per update to G is O((mλ−1/β)(1+ number of internal updates performed by A)).

Proof: Just as in Lemma 33, we do not need to bound the number of internal updates: as long as

the algorithm is locally balancing, Lemma 40 does the bounding for us. As discussed above, the

algorithm A will satisfy the conditions of the lemma as long as it maintains the three invariants

above (publicity, correctness, balancing). The algorithm maintains a stack (STACK) of all vertices

that might potentially violate the publicity invariant; this invariant can only become violated when

dH(v) changes, which in turn only occurs when we add/remove edge (v, w) from H , so whenever

we add/remove an edge (v, w) we put v and w on STACK. If a vertex v on the stack violates the

publicity invariant, we change PUB(v) to dH(v); changing PUB(v) can create publicly unbalanced

edges, so we use PBO.find(v) to detect and fix all of these.

The full algorithm is defined in Figure 7.2. We first verify that the invariants are maintained. As

discussed above, the publicity invariant is maintained because whenever dH(v) changes due to an

edge change in H the algorithm algorithm adds v to STACK, and explicitly maintains the publicity

invariant for all vertices on STACK.

To see that the correctness invariant is maintained, note that an edge (v, w) can only become

unbalanced for two reasons: it can be a new edge added to G, or one of PUB(v) or PUB(w) must
121

Update (u, v) in G

if (u, v) is inserted into G

if PUB(u) + PUB(v) < β(1− 7λ/9)

add (u, v) to H

if (u, v) is deleted from G

if (u, v) ∈ H

remove (u, v) from H

PBO.change-status(u, v)

STACK.push(u); STACK.push(v)

While !STACK.Empty()

• w = STACK.pop()

• if |PUB(w)− dH(w)| > βλ/9

balance(w)

Balance (v)

PBO.change-public(v, dH(v))

S = PBO.F ind(v) \\ uses new PUB(v)

For each (v, w) ∈ S

• if (v, w) ∈ H ,

remove (v, w) from H

• if (v, w) ̸∈ H ,

add (v, w) to H

• PBO.change-status(v, w)

• STACK.push(w)

STACK.push(v)

Figure 7.2: How the algorithm of Lemma 42 handles an update to G

have changed. The first lines of the update procedure in Figure 7.2 explicitly handle any unbalanced

edge inserted into G by adding it to H . The only time we ever change PUB(v) is in the balance

procedure, which after changing PUB(v) finds and fixes all unbalanced edges incident to v.

The balancing invariant is clearly maintained, since all internal updates occur through bal-

ance(v), which only updates the unbalanced edges found through PBO.find(v).

For running time analysis, we are allowed O(mλ−1/β) time per external update, plus an addi-

tional O(mλ−1/β) time per internal update. We thus need a charging scheme which shows that all

the steps of the algorithm can be executed in time O(mλ−1/β) per update to H . In particular, we

will think of every update to an edge (x, y) in H as giving O(mλ−1/β) credits to both x and y.

The only non-constant operations performed by the algorithm are PBO.find(v) and PBO.change-

public(v, dH(v)), both of which only occur during the execution of balance(v). The key observation

is that balance(v) only occurs when the publicity invariant is violated for v, and since dH(v) only

changes due to an update of an edge in H incident to v, at least βλ/9 such updates must have

occurred since the last time balance(v) was executed. Thus, by the time balance(v) is executed

again, v has accrued O((mλ−1/β) · (βλ/9)) = O(
√
m) credits, which pays for the O(

√
m) term

122

in PBO.find(v) and PBO.change-public(v, dH(v)).

The other terms in PBO.find(v) and PBO.change-public(v, dH(v)) only require an additional

O(1) time per update to H . In PBO.find(v) the additional term is O(number of unbalanced edges

found), and each unbalanced edge found leads to an internal update to H . In PBO.change-public(v, dH(v)),

the additional term is O(|dH(v) − p0|), where p0 was the original PUB(v). For p0 and dH(v) to

differ, at least |p0 − dH(v)| updates to edges in H incident to v must have occurred since the last

execution of balance(v) (when PUB(v) was set to p0), so if each of these updates gives O(1) credits

to v, it will be enough to implement PBO.change-public(v, dH(v)). �

Proof of Theorem 19 We use the algorithm of Lemma 42. Since this algorithm is locally balancing,

by Lemma 40 each update to G leads to amortized O(λ−1) internal updates, yielding the O(λ−1)

bound for amortized update ratio. Thus, by Lemma 42, an update to G can be processed in amortized

time O(
√
mλ−2/β). By Theorem 17, the time to maintain an orientation in G only causes a constant

overhead on top of this. �

7.8.5 Dynamic Orientation: Proving Theorem 17

For ease of reading, we repeat the statement of Theorem 17 below:

Theorem 22 In a graph G, we can maintain an orientation, under insertions and deletions, with

the following properties: the max load at all times is at most 3
√
m, the worst-case number of edge

reorientations per insert/deletion in G is O(1), and the worst-case time spent per insertion/deletion

in G is O(1).

The dynamic orientation algorithm we use is a bit technical, but at its core boils down to a

simple lazy update algorithm. For simplicity of analysis, we assume that we begin with a graph

with no edges, and update from there. Let us start with a few definitions and observations.

Definition 27 Define a vertex to be small if it has degree (not load) less than 2
√
m and large if it

has degree greater than or equal to 2
√
m. We say that a vertex is very small if it has degree less

than
√
m (note: a very small vertex is also small). Given some orientation, define a vertex in the

current orientation to be heavy if it has load greater than 2
√
m, and light otherwise. Define a vertex

to be very heavy if it has load greater than 3
√
m (note: a very heavy vertex is also heavy). Note

123

that heavy vertices are always large, and small vertices are always light. Finally, m always refers

to the number of edges in the current version of the graph.

Observation 2 A graph can contain at most
√
m large vertices, and at most 2

√
m vertices that are

not very small (i.e. vertices of degree ≥
√
m). Otherwise, the total degree of these vertices would

be greater than 2
√
m
√
m = 2m, so the number of edges in the graph would be greater than m.

Observation 2 yields a simple method for computing a 2
√
m-orientation in linear time. Simply let

small vertices own all of their edges; if an edge is between two small vertices or two large vertices,

it can be oriented arbitrarily. Now no vertex can have load greater than 2
√
m, as then all its owned

edges would go to large vertices, in which case there would be more than 2
√
m large vertices in the

graph, which contradicts Observation 2.

The basic idea behind our algorithm is as follows: as G changes, we will reorient edges to

maintain the following invariant:

Invariant 1 There exists no edge (u, v) such that u is very small, v is very heavy, and (u, v) is

owned by v.

Lemma 43 Any orientation that satisfies Invariant 1 has maximum load at most 3
√
m.

Proof: The proof follows directly from Observation 2. The orientation cannot have a very heavy

vertex v, because by Invariant 1, for all 3
√
m edges (u, v) owned by v, vertex u would have to be

not very small, but by Observation 2 there are at most 2
√
m not very small vertices in the graph. �

Note that there are two ways a vertex u can go from being small to very small. The obvious way

is if many edges incident to u are deleted. Another possibility, however, is if many edges are added

to other parts of the graph: for example, if originally u has degree 10 and the graph has 70 edges

then u is small but not very small, but if 31 more edges are added to the graph then u will become

very small. Similarly, a vertex v can become very heavy either due to edge insertions incident to v,

or due to a large number of edge deletions in the graph as a whole. We will have to handle these

two types of transitions separately.

Our dynamic orientation algorithm will proceed by occasionally scanning some set of edges and

fixing the edges that are oriented in the wrong direction.

Definition 28 Given an edge (u, v), we define the FIX(u, v) operation as follows:
124

1. if u is small and v is large then reorient edge (u, v) so that u owns the edge (if u already

owned (u, v) then do nothing).

2. if v is small and u is large then reorient (u, v) so that v owns the edge.

3. if u and v are both small or both large, then do nothing (i.e. keep the current orientation of

edge (u, v)).

We now show a simple algorithm for maintaining a 3
√
m-orientation in amortized update time

O(1). We will not do a formal analysis, since this algorithm is only meant to serve as intuition

for the worst-case algorithm below. For each vertex v the algorithm will maintain the set of edges

owned by v. The algorithm is as follows: whenever due to some change in G a vertex v reaches

load above 3
√
m, we run operation FIX(u, v) for all edges (u, v) owned by v. Note that after all the

edges owned by v are fixed, the load of v will be at most 2
√
m. This is because for all edges (u, v)

where u is small, ownership of edge (u, v) will be given to u, and by Observation 2 there are are

most 2
√
m large vertices u.

We now sketch the update time analysis. Whenever a vertex v reaches load above 3
√
m the

algorithm fixes all the edges owned by v – that is, 3
√
m+ 1 = O(

√
m) edges. Rebuilding a vertex

v thus requires O(
√
m) time and O(

√
m) edge reorientations. How often can such a rebuilding

occur? We know that after v is rebuilt, it has load at most 2
√
m. There are now two ways in which v

could once again transition to being very heavy, and so have to be rebuilt once again. One possibility

is that there are
√
m edge insertions incident to v: the O(

√
m) rebuild time can then be amortized

over these
√
m edge insertions, leading to amortized time O(1). Alternatively, if the total number

of edges in the graph decreases by a factor (3/2)2 ≥ 2, then all vertices could go from having load

2
√
m to 3

√
m, and so all vertices will have to be rebuilt. But the O(m) time required to rebuild the

entire graph can be amortized over the Ω(m) deletions required for m to decrease by a factor of 2.

Worst Case Update time As with the amortized algorithm, our worst-case algorithm will repeat-

edly run the FIXoperation. But instead of doing this work all at once when a vertex violates Invariant

1, the algorithm will stagger this work over many updates. To maintain Invariant 1, we need to con-

cern ourselves with edges (u, v) where u is very small and v is very heavy. In particular, we need

to ensure that v does not end up with ownership of the edge. In order to arrive at this extreme case,

125

however, there must be a long transition period where u is small and v is heavy, but they are not yet

very small or very heavy. If we can ensure that at some point during this transition period we run

FIX(u, v), then edge u will gain ownership of edge (u, v), and Invariant 1 will be maintained.

Recall that there are two ways u can transition from small to very small (or, respectively, v

from heavy to very heavy): either Ω(
√
m) deletions (resp. insertions) of edges incident to u (local

changes), or Ω(m) insertions (resp. deletions) of edges in the graph as a whole (global changes).

Our algorithm needs to handle both types of transitions, so every time the adversary inserts/deletes

edge (u, v) in the graph, the algorithm will fix a constant number of edges incident to u and v (local

fixes), and a constant number of edges in the graph as a whole (global fixes). We will show that

these fixes are enough to maintain Invariant 1.

The Algorithm More formally, for every edge v, the algorithm will maintain two sets of edges:

N(v) contains all edges incident to v, while NO(v) contains all edges incident to v that are owned

by v. Each set will be stored as a doubly linked list, and the algorithm will repeatedly fix these lists

in a round-robin fashion. Thus for each list there will be a current pointer from which fixes will

proceed; whenever a new edge is inserted into the list, it will be inserted at the very end, i.e. right

behind the current pointer. The algorithm will also maintain a global list E of all the edges in the

graph, as well as a current pointer for this list.

We now describe the algorithm. Whenever the adversary inserts or deletes edge (u, v), the

algorithm performs the following operations:

1. if the adversary inserts edge (u, v), then run FIX(u, v) (if u and v are both small or both large

orient edge (u, v) arbitrarily).

2. Run operation FIX on the next 10 edges in the global edge list E. Move the current pointer

accordingly. We refer to these fixes as global fixes.

3. If u is small, run operation FIX on the next 10 edges in N(u). Move the current pointer

accordingly. Do the same for vertex v (if v is small). We refer to these fixes as local fixes

incident to u (resp. v).

4. if u is heavy, run operation FIX on the next 10 edges in NO(u). Move the current pointer

accordingly. Do the same for vertex v (if v is heavy). We refer to these fixes as local fixes
126

incident to u (resp. v).

Analysis It is clear that our algorithm fixes at most 31 edges for every change to the graph: 10

global fixes, at most 20 local fixes, and a final fix for the newly inserted edge. Thus the algorithm

has worst-case constant update time, and performs a worst-case constant number of reorientations

per change to G.

We must now show that the algorithm maintains an orientation with maximum load 3
√
m. By

Lemma 43, it is sufficient to prove the following:

Lemma 44 The dynamic orientation algorithm maintains Invariant 1.

Proof: Let us say, for contradiction, that at some point during the execution of the algorithm there

is an edge (u, v) in the graph such that u is very small, v is very heavy, and (u, v) is owned by v.

Let T be the first time such an event occurs. Let us consider the last time T
′

during which v was

given ownership of edge (u, v) (this might have been during the original insertion of (u, v)). Since

the algorithm only assigns ownership within the FIX(u, v) operation, we must have that at time T
′

either u was large or v was small (and hence light), since otherwise ownership could not have gone

to v. Thus, at some point between T
′

and T a transition must have occurred, after which u was small

and v has heavy. Let T ∗ be the time of the last such transition. That is, right before T ∗ either u was

large or v was light, but during the whole time interval [T ∗, T] we always have that u is small and v

is heavy. Also, since T ∗ comes after T
′
, and T

′
was the last time ownership of (u, v) was given to

v, we have that between T ∗ and T , edge (u, v) is always owned by v. This leads to the cornerstone

of our proof by contradiction: we know that the algorithm must never have run FIX(u, v) during the

time interval [T ∗, T], because throughout that interval u is small and v is heavy, so FIX(u, v) would

have given ownership to u.

We know that right before T ∗ either u was large or v was light. The analysis of the two cases

is essentially identical, but for clarity we handle them separately. For both cases we define the

following: let m∗ be the number of edges in the graph at time T ∗, and let m be the number of edges

at time T .

Case 1: right before time T ∗ vertex v was light. At time T we have that v is very heavy. Note

that a lot of dynamic updates to G must occur for v to go from light to very heavy. For example,
127

there could have been
√
m edge insertions incident to v, or there could have been a lot of edge

deletions in other parts of the graph. On the other hand, there could not have been too many updates

between time T ∗ and time T , because eventually one of these updates would cause the algorithm to

run FIX(u, v), which we argued above cannot occur in the time interval [T ∗, T]. We will thus exhibit

both an upper and a lower bound on the necessary number of updates in time interval [T ∗, T], and

show that they are contradictory, thus showing that the originally assumed violation of Invariant 1

cannot occur.

Let us first upper bound the number of updates in time interval [T ∗, T]. We know that during

this interval, the algorithm performed less than m∗ global fixes, because (u, v) already existed at

time T ∗ and edges are fixed in a round-robin fashion, so if there were m∗ global fixes the algorithm

would have fixed all edges that existed at time T ∗ and in particular would have run FIX(u, v), which

we know is impossible. Since the algorithm performs 10 global fixes per update to G, there could

have been at most m∗/10 updates in time interval [T ∗, T]. Similarly, we can argue that there can

must be less than 3
√
m∗ local fixes incident to v in the time interval [T ∗, T], as otherwise the

algorithm would run FIX(u, v). This is because during the entire time interval we always have

(u, v) ∈ NO(v), and yet at time T ∗ vertex v is not yet very heavy so it has load less than 3
√
m∗;

since v is always heavy in the time interval [T ∗, T], the local fixes all go through NO(v) in a round-

robin fashion, so there can be at most 3
√
m∗ such local fixes before the algorithm reaches (u, v).

Since the algorithm performs 10 local fixes per edge change, we know that the adversary performed

at most 3
√
m∗

10 insertions/deletions of edges incident to v during the interval [T ∗, T]. To summarize,

we know that during the interval [T ∗, T], the adversary performed a total of at most m∗

10 updates,

and at most 3
√
m∗

10 updates of edges incident to v

We know yield a contradiction by showing that since v is by definition light right before T ∗, this

small number of updates between time T ∗ and time T is not enough to cause v to be very heavy at

time T . We know that

LOAD(v) at time T ≥ 3
√
m. (7.9)

While

LOAD(v) right before time T ∗ ≤ 2
√
m∗. (7.10)

However, since there were at most m∗/10 edge changes to G during time interval [T ∗, T], we know

128

that

m ≥ 9

10
m∗. (7.11)

Also, note that during the whole interval from T ∗ to T vertex v was heavy, so FIX(u, v) would never

reorient an edge towards v; thus, the only way the load of v could increase in time interval [T ∗, T]

is due to newly inserted edges incident to v. However, we know that there were at most 3
√
m∗

10 edge

changes incident to v during that time interval, so

LOAD(v) at time T ≤ 3
√
m∗

10
+ LOAD(v) right before time T ∗. (7.12)

Combining Equations 7.10, 7.11, and 7.12 above yields

LOAD(v) at time T ≤ 3
√
m∗

10
+ LOAD(v) right before time T ∗

≤ 3
√
m∗

10
+ 2

√
m∗

≤
3
√

10m/9

10
+ 2

√
10m/9

≤ 2.3(

√
10√
9
)
√
m

< 3
√
m

(7.13)

Note that Equation 7.13 directly contradicts Equation 7.9, so we are done.

Case 2: vertex u was large right before time T ∗. The analysis is exactly analogous to Case 1

above: we know that in the time interval [T ∗, T] there must have less than m∗ global edge fixes and

less than 2
√
m∗ local edge fixes incident to u, because otherwise we would have fixed edge (u, v).

But this implies that there were at most m∗/10 edge updates to G as a whole, and at most
√
m∗/5

edge updates incident to u. A bit of simple algebra analogous to that in the Equations above then

shows that this small number of updates is not sufficient for u to transition from large to very small,

which yields the desired contradiction. �

7.9 Conclusions

Our main result is a fully dynamic algorithm for maximum matching with update time O(m1/4)

and approximation ratio O(3/2+ ϵ). This is the first fully dynamic matching algorithm to achieve a
129

o(m1/2) update time while maintaining a better-than-2-approximate matching. It is also the fastest

known deterministic algorithm for achieving any constant approximation, and certainly any better-

than-2 approximation. (Since the publication of our paper, Bhattacharya et al. [Bhattacharya et al.,

2016] have made some progress in both of these dimensions; see end of Section 7.1.) The two main

open questions are whether we can achieve a (1 + ϵ) approximation in update time O(m1/2−ζ) for

some fixed ζ > 0, and whether we can achieve some better-than-2 approximation (even say 1.99)

in polylog update time. These results would be interesting even if randomized, and/or limited to

bipartite graphs.

Another possible direction of future research would be to extend our techniques. Our main tech-

nique is a new characterization of better-than-2 approximate matchings in terms of local constraints.

Given that local problems tend to be much easier in the dynamic setting, as well as in several other

models of computations such as streaming or distributed computing, it would be interesting to de-

velop other local characterizations of approximate matchings, especially ones that don’t rely on

an intermediate subgraph. Also, can approximate weighted matchings be characterized in such a

fashion?

130

Part III

Bibliography

131

Bibliography

[Abraham et al., 2014] Abraham, I., Chechik, S., and Talwar, K. (2014). Fully dynamic all-pairs

shortest paths: Breaking the o(n) barrier. In Approximation, Randomization, and Combinato-

rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014,

Barcelona, Spain, pages 1–16.

[Abraham et al., 2010] Abraham, I., Fiat, A., Goldberg, A. V., and Werneck, R. F. (2010). Highway

dimension, shortest paths, and provably efficient algorithms. In Proc. the 21st SODA, pages 782–

793, Austin, Texas, USA.

[Aingworth et al., 1999] Aingworth, D., Chekuri, C., Indyk, P., and Motwani, R. (1999). Fast

estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput.,

28(4):1167–1181.

[Awerbuch et al., 1998] Awerbuch, B., Berger, B., Cowen, L., and Peleg, D. (1998). Near-linear

time construction of sparse neighborhood covers. SIAM J. Comput., 28(1):263–277.

[Baswana et al., 2011a] Baswana, S., Gupta, M., and Sen, S. (2011a). Fully dynamic maximal

matching in o (log n) update time. 2013 IEEE 54th Annual Symposium on Foundations of Com-

puter Science, 0:383–392.

[Baswana et al., 2011b] Baswana, S., Gupta, M., and Sen, S. (2011b). Fully dynamic maximal

matching in O (log n) update time. In IEEE 52nd Annual Symposium on Foundations of Computer

Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 383–392.

[Baswana et al., 2003] Baswana, S., Hariharan, R., and Sen, S. (2003). Maintaining all-pairs ap-

proximate shortest paths under deletion of edges. In Proceedings of the Fourteenth Annual ACM-

132

SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA.,

pages 394–403.

[Baswana et al., 2007] Baswana, S., Hariharan, R., and Sen, S. (2007). Improved decremental algo-

rithms for maintaining transitive closure and all-pairs shortest paths. J. Algorithms, 62(2):74–92.

[Baswana and Kavitha, 2006] Baswana, S. and Kavitha, T. (2006). Faster algorithms for approxi-

mate distance oracles and all-pairs small stretch paths. In Proceedings of the 47th Annual Sym-

posium on Foundations of Computer Science, FOCS, pages 591–602.

[Baswana et al., 2012] Baswana, S., Khurana, S., and Sarkar, S. (2012). Fully dynamic randomized

algorithms for graph spanners. ACM Transactions on Algorithms, 8(4):35.

[Battista and Tamassia, 1996] Battista, G. D. and Tamassia, R. (1996). On-line planarity testing.

SIAM J. Comput., 25(5):956–997.

[Bender et al., 2009] Bender, M. A., Fineman, J. T., and Gilbert, S. (2009). A new approach to in-

cremental topological ordering. In Proceedings of the Twentieth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 1108–1115.

[Bernstein, 2009] Bernstein, A. (2009). Fully dynamic approximate all-pairs shortest paths with

constant query and close to linear update time. In Proc. of the 50th FOCS, pages 50–60, Atlanta,

GA, USA.

[Bernstein, 2012] Bernstein, A. (2012). Near linear time (1+ϵ)-approximation for restricted short-

est paths in undirected graphs. In Proc. of the 23rd SODA, pages 189–201, Kyoto, Japan.

[Bernstein, 2013] Bernstein, A. (2013). Maintaining shortest paths under deletions in weighted

directed graphs. In STOC, pages 725–734.

[Bernstein, 2016] Bernstein, A. (2016). Maintaining shortest paths under deletions in weighted

directed graphs. SIAM J. Comput., 45(2):548–574.

[Bernstein and Roditty, 2011] Bernstein, A. and Roditty, L. (2011). Improved dynamic algorithms

for maintaining approximate shortest paths under deletions. In Proc. of the 22nd SODA, pages

1355–1365, San Francisco, California, USA.
133

[Bernstein and Stein, 2015] Bernstein, A. and Stein, C. (2015). Fully dynamic matching in bipartite

graphs. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP

2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 167–179.

[Bernstein and Stein, 2016] Bernstein, A. and Stein, C. (2016). Faster fully dynamic matchings

with small approximation ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages

692–711.

[Bhattacharya et al., 2015a] Bhattacharya, S., Henzinger, M., and Italiano, G. F. (2015a). Deter-

ministic fully dynamic data structures for vertex cover and matching. In SODA 2015, 4-6 Jan-

uary, San Diego, CA, USA, pages 785–804.

[Bhattacharya et al., 2015b] Bhattacharya, S., Henzinger, M., and Italiano, G. F. (2015b). Deter-

ministic fully dynamic data structures for vertex cover and matching. In SODA 2015, 4-6 Jan-

uary, San Diego, CA, USA, pages 785–804.

[Bhattacharya et al., 2016] Bhattacharya, S., Henzinger, M., and Nanongkai, D. (2016). New de-

terministic approximation algorithms for fully dynamic matching. CoRR, abs/1604.05765.

[Bosek et al., 2014] Bosek, B., Leniowski, D., Sankowski, P., and Zych, A. (2014). Online bipartite

matching in offline time. In 55th Annual IEEE Symposium on Foundations of Computer Science,

FOCS 2014, 16-21 October, 2014, Philadelphia, PA, USA, pages 384–393.

[Chaudhuri et al., 2009] Chaudhuri, K., Daskalakis, C., Kleinberg, R. D., and Lin, H. (2009). On-

line bipartite perfect matching with augmentations. In INFOCOM, pages 1044–1052.

[Chechik, 2014] Chechik, S. (2014). Approximate distance oracles with constant query time. In

Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 654–

663.

[Cohen, 1998] Cohen, E. (1998). Fast algorithms for constructing t-spanners and paths with stretch

t. SIAM J. Comput., 28(1):210–236.

[Cohen and Zwick, 2001] Cohen, E. and Zwick, U. (2001). All-pairs small-stretch paths. J. Algo-

rithms, 38(2):335–353.
134

[Demetrescu and Italiano, 2001] Demetrescu, C. and Italiano, G. F. (2001). Fully dynamic all pairs

shortest paths with real edge weights. In 42nd Annual Symposium on Foundations of Computer

Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 260–267.

[Demetrescu and Italiano, 2004] Demetrescu, C. and Italiano, G. F. (2004). A new approach to

dynamic all pairs shortest paths. J. ACM, 51(6):968–992.

[Demetrescu and Italiano, 2005] Demetrescu, C. and Italiano, G. F. (2005). Trade-offs for fully

dynamic transitive closure on dags: breaking through the o(n2 barrier. J. ACM, 52(2):147–156.

[Dinitz, 2006] Dinitz, Y. (2006). Dinitz’ algorithm: The original version and Even’s version. In

Essays in Memory of Shimon Even, pages 218–240.

[Dor et al., 2000] Dor, D., Halperin, S., and Zwick, U. (2000). All-pairs almost shortest paths.

SIAM J. Comput., 29(5):1740–1759.

[Duan and Pettie, 2014] Duan, R. and Pettie, S. (2014). Linear-time approximation for maximum

weight matching. J. ACM, 61(1):1.

[Elkin and Peleg, 2004] Elkin, M. and Peleg, D. (2004). (1+epsilon, beta)-spanner constructions

for general graphs. SIAM J. Comput., 33(3):608–631.

[Eppstein et al., 1997] Eppstein, D., Galil, Z., Italiano, G. F., and Nissenzweig, A. (1997). Sparsi-

fication - a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696.

[Even and Shiloach, 1981] Even, S. and Shiloach, Y. (1981). An on-line edge deletion problem. J.

ACM, 28(1):1–4.

[Feldman et al., 2010] Feldman, J., Henzinger, M., Korula, N., Mirrokni, V., and Stein, C. (2010).

Online stochastic packing applied to display ad allocation. Algorithms–ESA 2010, pages 182–

194.

[Frederickson, 1985] Frederickson, G. N. (1985). Data structures for on-line updating of minimum

spanning trees, with applications. SIAM J. Comput., 14(4):781–798.

[Galil et al., 1999] Galil, Z., Italiano, G. F., and Sarnak, N. (1999). Fully dynamic planarity testing

with applications. J. ACM, 46(1):28–91.
135

[Gupta et al., 2014] Gupta, A., Kumar, A., and Stein, C. (2014). Maintaining assignments online:

Matching, scheduling, and flows. In SODA, pages 468–479.

[Gupta and Peng, 2013] Gupta, M. and Peng, R. (2013). Fully dynamic (1+e)-approximate match-

ings. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29

October, 2013, Berkeley, CA, USA, pages 548–557.

[Henzinger and King, 1995] Henzinger, M. and King, V. (1995). Fully dynamic biconnectivity and

transitive closure. In Proc. of the 36th FOCS, pages 664–672, Milwaukee Wisconsin.

[Henzinger et al., 2013] Henzinger, M., Krinninger, S., and Nanongkai, D. (2013). Dynamic ap-

proximate all-pairs shortest paths: Breaking the o(mn) barrier and derandomization. In FOCS

2013, pages 538–547.

[Henzinger et al., 2014a] Henzinger, M., Krinninger, S., and Nanongkai, D. (2014a). Decremental

single-source shortest paths on undirected graphs in near-linear total update time. In FOCS 2014,

pages 146–155.

[Henzinger et al., 2014b] Henzinger, M., Krinninger, S., and Nanongkai, D. (2014b). Sublinear-

time decremental algorithms for single-source reachability and shortest paths on directed graphs.

In STOC, pages 674–683.

[Henzinger et al., 2014c] Henzinger, M., Krinninger, S., and Nanongkai, D. (2014c). A

subquadratic-time algorithm for decremental single-source shortest paths. In Proceedings of

the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,

Oregon, USA, January 5-7, 2014, pages 1053–1072.

[Henzinger et al., 2015a] Henzinger, M., Krinninger, S., and Nanongkai, D. (2015a). Improved al-

gorithms for decremental single-source reachability on directed graphs. In Automata, Languages,

and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,

Proceedings, Part I, pages 725–736.

[Henzinger et al., 2015b] Henzinger, M., Krinninger, S., Nanongkai, D., and Saranurak, T. (2015b).

Unifying and strengthening hardness for dynamic problems via the online matrix-vector multi-

plication conjecture. In 47th ACM Symposium on Theory of Computing (STOC 2015).
136

[Henzinger et al., 2015c] Henzinger, M., Krinninger, S., Nanongkai, D., and Saranurak, T. (2015c).

Unifying and strengthening hardness for dynamic problems via the online matrix-vector multi-

plication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory

of Computing (STOC), pages 21–30.

[Henzinger and King, 1999] Henzinger, M. R. and King, V. (1999). Randomized fully dynamic

graph algorithms with polylogarithmic time per operation. J. ACM, 46(4):502–516.

[Henzinger and Thorup, 1997] Henzinger, M. R. and Thorup, M. (1997). Sampling to provide or

to bound: With applications to fully dynamic graph algorithms. Random Struct. Algorithms,

11(4):369–379.

[Holm et al., 1998] Holm, J., de Lichtenberg, K., and Thorup, M. (1998). Poly-logarithmic deter-

ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-

nectivity. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,

Dallas, Texas, USA, May 23-26, 1998, pages 79–89.

[Holm et al., 2001] Holm, J., de Lichtenberg, K., and Thorup, M. (2001). Poly-logarithmic deter-

ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-

nectivity. J. ACM, 48(4):723–760.

[Italiano et al., 1993] Italiano, G. F., Poutré, J. A. L., and Rauch, M. (1993). Fully dynamic pla-

narity testing in planar embedded graphs (extended abstract). In Algorithms - ESA ’93, First

Annual European Symposium, Bad Honnef, Germany, September 30 - October 2, 1993, Proceed-

ings, pages 212–223.

[Ivkovic and Lloyd, 1994] Ivkovic, Z. and Lloyd, E. L. (1994). Fully dynamic maintenance of

vertex cover. In Proceedings of the 19th International Workshop on Graph-Theoretic Concepts

in Computer Science, WG ’93, pages 99–111, London, UK, UK. Springer-Verlag.

[Kapron et al., 2013] Kapron, B. M., King, V., and Mountjoy, B. (2013). Dynamic graph connectiv-

ity in polylogarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,

2013, pages 1131–1142.

137

[Katriel and Bodlaender, 2006] Katriel, I. and Bodlaender, H. L. (2006). Online topological order-

ing. ACM Transactions on Algorithms, 2(3):364–379.

[King, 1999] King, V. (1999). Fully dynamic algorithms for maintaining all-pairs shortest paths and

transitive closure in digraphs. In 40th Annual Symposium on Foundations of Computer Science,

FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 81–91.

[Kopelowitz et al., 2014a] Kopelowitz, T., Krauthgamer, R., Porat, E., and Solomon, S. (2014a).

Orienting fully dynamic graphs with worst-case time bounds. In Automata, Languages, and

Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,

2014, Proceedings, Part II, pages 532–543.

[Kopelowitz et al., 2014b] Kopelowitz, T., Pettie, S., and Porat, E. (2014b). 3sum hardness in

(dynamic) data structures. CoRR, abs/1407.6756.

[Lacki, 2011] Lacki, J. (2011). Improved deterministic algorithms for decremental transitive clo-

sure and strongly connected components. In Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January

23-25, 2011, pages 1438–1445.

[Mehta et al., 2005] Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. (2005). Adwords and

generalized on-line matching. In focs05, pages 264–273.

[Micali and Vazirani, 1980a] Micali, S. and Vazirani, V. V. (1980a). An O(
√
|V | · |E|) algorithm

for finding maximum matching in general graphs. In Proceedings 21st IEEE Symposium on

Foundations of Computer Science (FOCS), pages 17–27.

[Micali and Vazirani, 1980b] Micali, S. and Vazirani, V. V. (1980b). An o(sqrt(|v|) |e|) algorithm

for finding maximum matching in general graphs. In 21st Annual Symposium on Foundations of

Computer Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27.

[Nash-Williams, 1961] Nash-Williams, C. S. J. A. (1961). Edge disjoint spanning trees of finite

graphs. Journal of the London Mathematical Society, 36:445–450.

138

[Neiman and Solomon, 2013a] Neiman, O. and Solomon, S. (2013a). Simple deterministic algo-

rithms for fully dynamic maximal matching. In Symposium on Theory of Computing Conference,

STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 745–754.

[Neiman and Solomon, 2013b] Neiman, O. and Solomon, S. (2013b). Simple deterministic algo-

rithms for fully dynamic maximal matching. In Symposium on Theory of Computing Conference,

STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 745–754.

[Onak and Rubinfeld, 2010a] Onak, K. and Rubinfeld, R. (2010a). Maintaining a large matching

and a small vertex cover. In Proceedings of the 42nd ACM Symposium on Theory of Computing,

STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–464.

[Onak and Rubinfeld, 2010b] Onak, K. and Rubinfeld, R. (2010b). Maintaining a large matching

and a small vertex cover. In Proceedings of the 42nd ACM Symposium on Theory of Computing,

STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–464.

[Pearce and Kelly, 2006] Pearce, D. J. and Kelly, P. H. J. (2006). A dynamic topological sort algo-

rithm for directed acyclic graphs. ACM Journal of Experimental Algorithmics, 11.

[Peleg and Schäffer, 1989] Peleg, D. and Schäffer, A. A. (1989). Graph spanners. Journal of Graph

Theory, 13(1):99–116.

[Peleg and Solomon, 2016] Peleg, D. and Solomon, S. (2016). Dynamic (1+ϵ)-approximate match-

ings: A density-sensitive approach. In Proceedings of the Twenty-Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,

pages 712–729.

[Peleg and Ullman, 1989] Peleg, D. and Ullman, J. D. (1989). An optimal synchronizer for the

hypercube. SIAM J. Comput., 18(4):740–747.

[Pettie, 2009] Pettie, S. (2009). Low distortion spanners. ACM Transactions on Algorithms, 6(1).

[Roditty, 2013] Roditty, L. (2013). Decremental maintenance of strongly connected components.

In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1143–1150.

139

[Roditty and Zwick, 2004a] Roditty, L. and Zwick, U. (2004a). Dynamic approximate all-pairs

shortest paths in undirected graphs. In Proc. of the 45th FOCS, pages 499–508, Rome, Italy.

[Roditty and Zwick, 2004b] Roditty, L. and Zwick, U. (2004b). On dynamic shortest paths prob-

lems. In Proc. of the 12th ESA, pages 580–591.

[Roditty and Zwick, 2008a] Roditty, L. and Zwick, U. (2008a). Improved dynamic reachability

algorithms for directed graphs. SIAM J. Comput., 37(5):1455–1471.

[Roditty and Zwick, 2008b] Roditty, L. and Zwick, U. (2008b). Improved dynamic reachability

algorithms for directed graphs. Siam J. Comp., 37(5):1455–1471.

[Roditty and Zwick, 2012] Roditty, L. and Zwick, U. (2012). Dynamic approximate all-pairs short-

est paths in undirected graphs. SIAM J. Comput., 41(3):670–683.

[Sankowski, 2005] Sankowski, P. (2005). Subquadratic algorithm for dynamic shortest distances.

In Computing and Combinatorics, 11th Annual International Conference, COCOON 2005, Kun-

ming, China, August 16-29, 2005, Proceedings, pages 461–470.

[Sankowski, 2007] Sankowski, P. (2007). Faster dynamic matchings and vertex connectivity. In

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 118–126.

[Scheinerman and Ullman, 2011] Scheinerman, E. R. and Ullman, D. H. (2011). Fractional graph

theory: a rational approach to the theory of graphs.

[Thorup, 2000] Thorup, M. (2000). Near-optimal fully-dynamic graph connectivity. In Proceed-

ings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,

Portland, OR, USA, pages 343–350.

[Thorup, 2004] Thorup, M. (2004). Compact oracles for reachability and approximate distances in

planar digraphs. Journal of the ACM, 51(6):993–1024.

[Thorup, 2005] Thorup, M. (2005). Worst-case update times for fully-dynamic all-pairs shortest

paths. In Proc. of the 37th STOC, pages 112–119.

[Thorup, 2007] Thorup, M. (2007). Fully-dynamic min-cut. Combinatorica, 27(1):91–127.
140

[Thorup and Zwick, 2001] Thorup, M. and Zwick, U. (2001). Compact routing schemes. In SPAA,

pages 1–10.

[Thorup and Zwick, 2005] Thorup, M. and Zwick, U. (2005). Approximate distance oracles. Jour-

nal of the ACM, 52(1):1–24.

[Thorup and Zwick, 2006] Thorup, M. and Zwick, U. (2006). Spanners and emulators with sublin-

ear distance errors. In Proc. of the 17th SODA, pages 802–809, Miami, Florida.

[Vazirani, 1994] Vazirani, V. V. (1994). A theory of alternating paths and blossoms for proving

correctness of the O(sqrt{v e}) general graph maximum matching algorithm. Combinatorica,

14(1):71–109.

[Vazirani, 2012] Vazirani, V. V. (2012). An improved definition of blossoms and a simpler proof of

the MV matching algorithm. CoRR, abs/1210.4594.

141

	1 Introduction
	1.1 The Model
	1.2 A Brief History of Dynamic Algorithms
	1.3 Overview of the Thesis

	I Partially Dynamic Shortest-Paths Algorithms
	2 Dynamic Shortests Paths Introduction
	2.1 Preliminaries
	2.2 The Even and Shiloach Tree

	3 Single Source Shortest Paths: Randomized
	3.1 Related Work
	3.2 Our Results
	3.3 Techniques
	3.4 Framework
	3.5 The Emulator
	3.5.1 The Techniques of Thorup and Zwick
	3.5.2 Defining the Emulator
	3.5.3 Proving Theorem 4

	3.6 Conclusions

	4 Single Source Shortest Paths: Deterministic
	4.1 Our Results
	4.2 High Level Overview
	4.3 Preliminaries
	4.4 The Threshold Graph
	4.5 The Decremental SSSP Algorithm
	4.6 From Decremental to Incremental SSSP
	4.7 Conclusions

	5 All Pairs Shortest Paths in Directed Weighted Graphs
	5.1 Our Results
	5.2 Preliminaries
	5.3 Hop Distances and the Even and Shiloach Tree
	5.4 The Basic Approach
	5.5 A Simplified Not Quite O(mn) Algorithm
	5.5.1 The Algorithm
	5.5.2 Running Time Analysis
	5.5.3 Approximation Error Analysis

	5.6 The Final O(mn) Algorithm
	5.6.1 The Algorithm
	5.6.2 Running Time Analysis
	5.6.3 Approximation Error Analysis

	5.7 The h-SSSP Algorithm
	5.7.1 Limiting the dependence on Delta to O(Delta)

	5.8 Final Touches
	5.8.1 Removing the Assumption that We Know R in Advance
	5.8.2 The Incremental Setting
	5.8.3 A Fully Dynamic Algorithm

	5.9 Conclusions

	II Fully Dynamic Maximum Matching
	6 Dynamic Matching Introduction
	6.1 Preliminaries
	6.2 Previous Work

	7 Fully Dynamic Matching with Small Approximation Ratios
	7.1 Our Results
	7.2 Techniques
	7.3 Preliminaries
	7.4 The Framework
	7.4.1 General Graphs
	7.4.2 Small Arboricity Graphs

	7.5 A gamma-Restricted Fractional Matching Contains a Large Integral Matching
	7.6 An Edge Degree Constrained Subgraph Contains a Large Matching
	7.7 Maintaining an Edge Degree Constrained Subgraph
	7.8 Appendix of the More Technical Proofs
	7.8.1 Full proof of Theorem 20
	7.8.2 Proof of Lemma 31
	7.8.3 A Violation Oracle: Proof of Lemma 34
	7.8.4 Maintaining an Edge Degree Constrained Subgraph in General Graphs
	7.8.5 Dynamic Orientation: Proving Theorem 17

	7.9 Conclusions

	III Bibliography
	Bibliography

