31,331 research outputs found

    Approximation systems for functions in topological and in metric spaces

    Full text link
    A notable feature of the TTE approach to computability is the representation of the argument values and the corresponding function values by means of infinitistic names. Two ways to eliminate the using of such names in certain cases are indicated in the paper. The first one is intended for the case of topological spaces with selected indexed denumerable bases. Suppose a partial function is given from one such space into another one whose selected base has a recursively enumerable index set, and suppose that the intersection of base open sets in the first space is computable in the sense of Weihrauch-Grubba. Then the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable relation between indices of base sets containing the argument value and indices of base sets containing the corresponding function value.This result can be regarded as an improvement of a result of Korovina and Kudinov. The second way is applicable to metric spaces with selected indexed denumerable dense subsets. If a partial function is given from one such space into another one, then, under a semi-computability assumption concerning these spaces, the ordinary TTE computability of the function is characterized by the existence of an appropriate recursively enumerable set of quadruples. Any of them consists of an index of element from the selected dense subset in the first space, a natural number encoding a rational bound for the distance between this element and the argument value, an index of element from the selected dense subset in the second space and a natural number encoding a rational bound for the distance between this element and the function value. One of the examples in the paper indicates that the computability of real functions can be characterized in a simple way by using the first way of elimination of the infinitistic names.Comment: 21 pages, published in Logical Methods in Computer Scienc

    Approximation systems for functions in topological and in metric spaces

    Full text link

    Twistor Approach to String Compactifications: a Review

    Full text link
    We review a progress in obtaining the complete non-perturbative effective action of type II string theory compactified on a Calabi-Yau manifold. This problem is equivalent to understanding quantum corrections to the metric on the hypermultiplet moduli space. We show how all these corrections, which include D-brane and NS5-brane instantons, are incorporated in the framework of the twistor approach, which provides a powerful mathematical description of hyperkahler and quaternion-Kahler manifolds. We also present new insights on S-duality, quantum mirror symmetry, connections to integrable models and topological strings.Comment: 99 pages; minor corrections; journal versio

    Quantum hypermultiplet moduli spaces in N=2 string vacua: a review

    Full text link
    The hypermultiplet moduli space M_H in type II string theories compactified on a Calabi-Yau threefold X is largely constrained by supersymmetry (which demands quaternion-K\"ahlerity), S-duality (which requires an isometric action of SL(2, Z)) and regularity. Mathematically, M_H ought to encode all generalized Donaldson-Thomas invariants on X consistently with wall-crossing, modularity and homological mirror symmetry. We review recent progress towards computing the exact metric on M_H, or rather the exact complex contact structure on its twistor space.Comment: 31 pages; Contribution to the Proceedings of String Math 2012; v2: references added, misprints corrected, published versio
    • …
    corecore