16,052 research outputs found

    The Hyperdimensional Transform: a Holographic Representation of Functions

    Full text link
    Integral transforms are invaluable mathematical tools to map functions into spaces where they are easier to characterize. We introduce the hyperdimensional transform as a new kind of integral transform. It converts square-integrable functions into noise-robust, holographic, high-dimensional representations called hyperdimensional vectors. The central idea is to approximate a function by a linear combination of random functions. We formally introduce a set of stochastic, orthogonal basis functions and define the hyperdimensional transform and its inverse. We discuss general transform-related properties such as its uniqueness, approximation properties of the inverse transform, and the representation of integrals and derivatives. The hyperdimensional transform offers a powerful, flexible framework that connects closely with other integral transforms, such as the Fourier, Laplace, and fuzzy transforms. Moreover, it provides theoretical foundations and new insights for the field of hyperdimensional computing, a computing paradigm that is rapidly gaining attention for efficient and explainable machine learning algorithms, with potential applications in statistical modelling and machine learning. In addition, we provide straightforward and easily understandable code, which can function as a tutorial and allows for the reproduction of the demonstrated examples, from computing the transform to solving differential equations

    Analysis of the Performance Measures of a Non-Markovian Fuzzy Queue via Fuzzy Laplace Transforms Method

    Get PDF
    Laplace transforms play an essential role in the analysis of classical non-Markovian queueing systems. The problem addressed here is whether the Laplace transform approach is still valid for determining the characteristics of such a system in a fuzzy environment. In this paper, fuzzy Laplace transforms are applied to analyze the performance measures of a non-Markovian fuzzy queueing system FM/ FG/1. Starting from the fuzzy Laplace transform of the service time distribution, we define the fuzzy Laplace transform of the distribution of the dwell time of a customer in the system. By applying the properties of the moments of this distribution, the derivative of this fuzzy transform makes it possible to obtain a fuzzy expression of the average duration of stay of a customer in the system. This expression is the fuzzy formula of the same performance measure that can be obtained from its classical formula by the Zadeh extension principle. The fuzzy queue FM/ FE_k /1 is particularly treated in this text as a concrete case through its service time distribution. In addition to the fuzzy arithmetic of L-R type fuzzy numbers, based on the secant approximation, the properties of the moments of a random variable and Little's formula are used to compute the different performance measures of the system. A numerical example was successfully processed to validate this approach. The results obtained show that the modal values of the performance measures of a non-Markovian fuzzy queueing system are equal to the performance measures of the corresponding classical model computable by the Pollaczeck-Khintchine method. The fuzzy Laplace transforms approach is therefore applicable in the analysis of a fuzzy FM/FG/1 queueing system in the same way as the classical M/G/1 model

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Review of modern numerical methods for a simple vanilla option pricing problem

    Get PDF
    Option pricing is a very attractive issue of financial engineering and optimization. The problem of determining the fair price of an option arises from the assumptions made under a given financial market model. The increasing complexity of these market assumptions contributes to the popularity of the numerical treatment of option valuation. Therefore, the pricing and hedging of plain vanilla options under the Black–Scholes model usually serve as a bench-mark for the development of new numerical pricing approaches and methods designed for advanced option pricing models. The objective of the paper is to present and compare the methodological concepts for the valuation of simple vanilla options using the relatively modern numerical techniques in this issue which arise from the discontinuous Galerkin method, the wavelet approach and the fuzzy transform technique. A theoretical comparison is accompanied by an empirical study based on the numerical verification of simple vanilla option prices. The resulting numerical schemes represent a particularly effective option pricing tool that enables some features of options that are depend-ent on the discretization of the computational domain as well as the order of the polynomial approximation to be captured better

    Unified Theories from Fuzzy Extra Dimensions

    Full text link
    We combine and exploit ideas from Coset Space Dimensional Reduction (CSDR) methods and Non-commutative Geometry. We consider the dimensional reduction of gauge theories defined in high dimensions where the compact directions are a fuzzy space (matrix manifold). In the CSDR one assumes that the form of space-time is M^D=M^4 x S/R with S/R a homogeneous space. Then a gauge theory with gauge group G defined on M^D can be dimensionally reduced to M^4 in an elegant way using the symmetries of S/R, in particular the resulting four dimensional gauge is a subgroup of G. In the present work we show that one can apply the CSDR ideas in the case where the compact part of the space-time is a finite approximation of the homogeneous space S/R, i.e. a fuzzy coset. In particular we study the fuzzy sphere case.Comment: 6 pages, Invited talk given by G. Zoupanos at the 36th International Symposium Ahrenshoop, Wernsdorf, Germany, 26-30 Aug 200

    Discrete approximations to vector spin models

    Get PDF
    We strengthen a result of two of us on the existence of effective interactions for discretised continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretising continuous-spin models, and show that, except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions.Comment: 12 page
    corecore