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Abstract 

Option pricing is a very attractive issue of financial engineering and optimization. The problem of determining the 

fair price of an option arises from the assumptions made under a given financial market model. The increasing 
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mark for the development of new numerical pricing approaches and methods designed for advanced option pricing 

models. The objective of the paper is to present and compare the methodological concepts for the valuation of simple 

vanilla options using the relatively modern numerical techniques in this issue which arise from the discontinuous 

Galerkin method, the wavelet approach and the fuzzy transform technique. A theoretical comparison is accompanied 

by an empirical study based on the numerical verification of simple vanilla option prices. The resulting numerical 

schemes represent a particularly effective option pricing tool that enables some features of options that are depend-

ent on the discretization of the computational domain as well as the order of the polynomial approximation to be 

captured better. 
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1. Introduction 

During the last decades, both the options themselves 

and the financial models needed for their valuation have 

acquired increasing popularity. The simplest options, in 

other words vanilla options, as well as a number of 

more complex options, are currently the most fre-

quently used financial instruments, whether the purpose 

of their holding is adjusting the investment profile, 

hedging or speculation. Therefore, valuing different 

types of option contracts plays a very important role in 

modern financial theory and practice. The determina-

tion of the fair price of an option is thus an essential task 

that is typically formulated by various partial differen-

tial equations (PDEs), for which analytical solutions 

can be derived in a closed form only under very restric-

tive conditions.  

With increasing complexity, closed-form formulae 

are no longer readily available, so a wide range of stud-

ies have focused on the numerical realization of the op-

tion pricing problem, ranging from stochastic simula-

tions (see Glasserman, 2003) to numerical solutions of 

PDEs using finite difference methods (FDMs) (e.g., 

Duffy, 2006) or variational techniques (e.g., Topper, 

2005). 

In this paper, we focus on three relatively novel nu-

merical techniques in the field of financial engineering, 

based on the discontinuous Galerkin method (DGM), 

the wavelet methods (WM) and the fuzzy transform 

technique (FT), which all fall into the class of variation 

methods. These new approaches represent a very pow-

erful tool for the numerical simulation of option pricing, 

because they allow us to capture better some features of 

different options under various market conditions with 

respect to the discretization of the computational do-

main as well as the order of the polynomial approxima-

tion. 

The DGM combines the ideas and techniques of the 

finite volume method (FVM) and the finite element 

method (FEM) to take advantage of their strengths 

while eliminating their shortcomings. The FEM is a 

high-order method that is primarily designed for prob-

lems for which the exact solution is sufficiently regular 

and no steep derivatives or discontinuities in the data or 

solutions are presented. The starting point is a varia-

tional formulation of the solved PDE and a concept of 

a weak solution as an element of the suitable infinite-

dimensional function space (usually called the space of 

test functions). Then, we can compute a discrete solu-

tion using the Ritz–Galerkin method as soon as a finite-

dimensional subspace of the space of test functions is 

specified. There are various ways to define these 

spaces. However, they are typically constructed as 

spaces of continuous piecewise polynomial functions 

with respect to the decomposition of the computational 

domain into finite elements. The basis of such a space 

is finite and is formed by the basis functions that gener-

ate the whole space. Therefore, the FEM in its simplest 

form can be observed as a special way of constructing 

these spaces, which are called finite element spaces; see 

Ciarlet (1978). 

On the other hand, the FVM based on discontinu-

ous, piecewise constant approximations allows us to 

capture discontinuities in the solution but has a low or-

der of accuracy. The FVM was originally developed for 

the discretization of conservation laws. Similarly to the 

FDM, the values are calculated at discrete places in a 

meshed geometry. The essential idea is to divide the do-

main into many discretization cells, called finite vol-

umes, and approximate the integral conservation law 

for each of these volumes. More precisely, the volume 

integrals in the solved PDE that contain a divergence 

term are converted into surface ones using the diver-

gence theorem. Then, these terms are evaluated using 

the numerical fluxes that are conserved from one finite 

volume to its neighbour; that is, the flux entering a 

given volume is identical to that leaving the adjacent 

one. This feature is called local conservativity. To con-

struct the discrete solution, we assume that the solution 

in each finite volume is constant; thus, the finite volume 

approach produces the piecewise constant approxima-

tions related to the discrete unknowns (see Eymard et 

al., 2000). Taking all of the above into account, the 

DGM can be viewed as a generalization of the finite-

volume techniques into higher-order schemes or as an 

imaginary bridge between the finite element and the fi-

nite volume.  

The DGM provides the numerical solution of the 

PDEs composed of piecewise polynomial functions on 

a finite-element mesh without any requirements for the 

continuity of the solution across particular elements. 

Therefore, this approach is suitable for problems for 

which other techniques fail or have difficulties. Alt-

hough the DGM was developed in the early 1970s (see 
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Reed and Hill, 1973), its potency in option pricing prob-

lems has not been fully exploited yet. From this point 

of view, this method represents a very promising nu-

merical tool. 

Wavelet methods use wavelets as basis functions. 

Wavelets are known for their compression property, 

which means that they allow sparse representation of a 

wide range of functions and operators. Their advantage 

is that they form a Riesz basis for Sobolev spaces, 

which ensures the stability of the computation and the 

small condition number of the matrices arising from the 

discretization of partial differential equations. Wavelets 

can be constructed as piecewise polynomial functions 

of any order and thus allow the approximation of a high 

order for a wide class of functions. These interesting 

wavelet properties have led to the design of effective 

adaptive methods for solving differential, integral and 

integro-differential equations. Let us mention, for ex-

ample, the general concept for solving operator equa-

tions using wavelets, which was designed by Cohen et 

al. (2002) and modified in many other works. The ad-

vantage of methods based on these ideas is the small 

number of parameters representing the solution with de-

sired accuracy. The aforementioned high-order approx-

imation of functions leads to high-order adaptive meth-

ods. The small condition number of the diagonally pre-

conditioned discretization matrices results in a rela-

tively small number of iterations needed to determine 

the solution with the required accuracy. It has been 

demonstrated that, for a wide class of problems, these 

methods are asymptotically optimal; that is, the compu-

tation time depends linearly on the number of parame-

ters representing the solution. Another advantage is that 

the matrices arising from discretization can be repre-

sented by sparse matrices in the case of partial differen-

tial equations and partial integro-differential equations, 

for example equations representing jump diffusion 

models for option pricing, whereas classical methods 

lead to full matrices. Wavelet methods have already 

been used for option pricing (see, e.g., Hilber et al., 

2005, 2013; Li et al., 2014). In this paper, we present a 

method that is based on some of the ideas of Cohen et 

al. (2002) but that is more efficient in our numerical ex-

periments. 

The third numerical method considered in this arti-

cle is based on the fuzzy transform (F-transform for 

short) technique. The F-transform technique was intro-

duced by Perfilieva (2003) to approximate real valued 

functions usually from L2 space and has two phases: di-

rect and inverse. The direct F-transform transforms a 

continuous (or integrable) function defined in a 

bounded interval into a finite vector of real numbers, 

which are called the components of the F-transform. 

The inverse F-transform returns the vector of the F-

transform components to a continuous function that ap-

proximates the original function. The key parameter of 

the F-transform is a fuzzy partition of the domain of the 

considered functions by means of fuzzy sets that form 

the basis function. Setting fuzzy partitions affects the 

quality of the approximation of functions using the F-

transform. The first application of the F-transform in 

the numerical solution of ordinary differential equa-

tions, in particular the Cauchy problem, was described 

by Perfilieva (2003) and partial differential equations of 

special types for multivariable functions by Štěpnička 

and Valášek (2003, 2005). A generalization of the pre-

vious method of the numerical solution of partial differ-

ential equations was then proposed by Holčapek and 

Valášek (2017). The principal of the numerical solution 

of ordinary or partial differential equations consists of 

the substitution of the respective F-transform compo-

nents for all the functions and their (partial) derivatives 

in the differential equation. The F-transform compo-

nents of the derivatives of functions are then expressed 

by the method of finite differences (cf. Duffy, 2006). 

The result of the substitution of the F-transform com-

ponents and the expression of derivatives is a system of 

linear algebraic equations with unknown F-transform 

components of a function, which is a solution of the dif-

ferential equation. The approximate solution of the dif-

ferential equation is obtained by the inverse F-trans-

form. The contribution of the F-transform to the numer-

ical solution of differential equations consists mainly of 

the reduction of the number of linear algebraic equa-

tions, the solution of which becomes very complex for 

an increasing dimension of function spaces.  

The aim of the paper is to formulate the option pric-

ing problem using the three above-mentioned methods 

to develop methodological concepts for a comparison 

on preliminary numerical experiments. The paper is or-

ganized as follows. After specifying the option pricing 

problem in the forthcoming section, attention is paid to 

the particular methods (Sections 3 to 5). Next, in Sec-

tion 6, a simple numerical comparison is performed. 

Within the concluding remarks, in Section 7, we discuss 

the common features of the methods presented and the 

differences between them. 

2. Option pricing problem 

In this paper, we focus only on the simplest case of op-

tions, such as European vanilla options – this type of 

options can be exercised only at maturity T and the pay-

out is determined on the basis of the difference in the 

value or price of the underlying asset x and the strike 

price K. If this difference is positive, we say that an op-

tion contract is in the money (ITM), in the case of a 

negative difference, it is out of the money (OTM), and, 

finally, for equality of prices, we talk about at the 

money options (ATM), the prices of which are the most 

sensitive to a change in the input parameters.  
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The problem of determining the (fair) price of op-

tion 𝑢 = 𝑢(𝑥, 𝑡) (at time to maturity t and depending on 

the value of the underlying factor x, e.g., the price of the 

underlying stock or stock index) can be formulated as 

the following non-stationary partial differential equa-

tion: 

∂𝑢

∂𝑡
+ ℒ𝐵𝑆(𝑢) = 0 in ℝ

+ × (0; 𝑇) (1) 

with the linear operator 

ℒ𝐵𝑆(𝑢) = − 
1

2
𝜎2𝑥2

∂2𝑢

∂𝑥2
−  𝑟𝑥

∂𝑢

∂𝑥
+ 𝑟𝑢, (2) 

where the constants 𝑟 and 𝜎 are the risk-free interest 

rate and the volatility of the underlying factor, respec-

tively. 

Formulation (1)–(2) is known in the literature as the 

Black–Scholes (BS) equation and describes the devel-

opment of the price of the vanilla option; see the pio-

neering papers by Black and Scholes (1973) and Mer-

ton (1973). From the mathematical point of view, this 

equation represents a convection–diffusion problem 

that has to be equipped with a suitable set of initial and 

boundary conditions to be well posed. 

For simplicity, we restrict our investigation to the 

case of the put option. Supposing the reversal time run-

ning, the initial condition is determined as a piecewise 

linear function (i.e., payoff) based on strike price 𝐾 as 

follows:  

𝑢(𝑥, 0) =  max(𝐾 − 𝑥, 0) ,   𝑥 ∈ ℝ+. (3) 

Thus, it is obvious that, for example, ITM options 

will be obtained at K > x, whereas x < K leads to the 

OTM options (for the call options hold the opposite). 

Further, we prescribe the boundary conditions of the 

Dirichlet type at both endpoints of the computational 

domain Ω = (0; 𝑆𝑚𝑎𝑥), i.e.,      

𝑢(0, 𝑡) = 𝐾𝑒−𝑟𝑡 , 𝑡 ∈ (0; 𝑇), (4) 

   
𝑢(𝑆𝑚𝑎𝑥 , 𝑡) ≈ 0, 𝑡 ∈ (0; 𝑇). (5) 

Condition (4) comes from the so-called put–call 

parity, and relation (5) is based on the asymptotic be-

haviour of the exact solution of the problem, in which 

the option price in a sufficiently large finite value Smax 

is approximated by asymptotic values at infinity. Other 

possible choices of boundary conditions are given by 

Hozman and Tichý (2016).  

Since boundary conditions are not homogeneous, 

we introduce the function  

𝑧(𝑥, 𝑡) =  𝐾𝑒−𝑟𝑡 (1 −
𝑥

𝑆𝑚𝑎𝑥
) ,    (6) 

to transform them into homogeneous ones. If we as-

sume 𝑢∗ = 𝑢 −  𝑧, then, after simple manipulation, we 

obtain a new equation: 

∂𝑢∗

∂𝑡
+ ℒ𝐵𝑆(𝑢

∗) = 𝑔 in Ω × (0; 𝑇) (7) 

with homogeneous boundary conditions and the initial 

condition  

    𝑢∗(0, 𝑡) = 𝑢∗(𝑆𝑚𝑎𝑥 , 𝑡) = 0, 𝑡 ∈ (0; 𝑇),       (8) 

𝑢∗(𝑥, 0) = max(𝐾 − 𝑥, 0)− 𝐾 (1 −
𝑥

𝑆𝑚𝑎𝑥
), 𝑥 ∈ Ω, (9) 

where 

            𝑔(𝑥, 𝑡) = −𝑒−𝑟𝑡
𝐾𝑟𝑥

𝑆𝑚𝑎𝑥
 .             (10) 

If 𝑢∗ is the solution of (7), then the solution of (1) 

restricted to Ω is the function 𝑢 = 𝑢∗ +  𝑧. The analyti-

cal solution of (1) at time 𝑡 is 

𝑢(𝑥, 𝑡) = −x Φ(−𝑑) + 𝐾𝑒−𝑟𝑡Φ(−𝑑 + 𝜎√𝑡),   

               𝑑 =
ln (

𝑥
𝐾
) + (𝑟 +

𝜎2

2
) 𝑡

𝜎√𝑡
 ,               

(11) 

where Φ denotes the cumulative distribution function 

of the standard normal distribution. Finally, note that 

the relations mentioned above can be generalized 

simply in the case of call options and even extended rel-

atively simply to a variety of exotic options; see, for ex-

ample, Haug (1997). 

3. Discontinuous Galerkin method 

The discrete solution 𝑈𝑙
𝐷𝐺  constructed by the DG 

method approximates the exact solution 𝑢∗(𝑥, 𝑡) in the 

time layer 𝑡𝑙 = 𝑙𝜏 (with a constant time step 𝜏 ≡ 𝑇/𝑀) 

for the whole computational domain Ω, that is, 

𝑈𝑙
𝐷𝐺 ∈ 𝑆ℎ ≡ {𝑣 ∈ 𝐿

2(Ω); 𝑣|𝐼𝑘 ∈ 𝑃𝑝(𝐼𝑘)∀ 𝐼𝑘 ∈ 𝒯ℎ},(12) 

where 𝒯ℎ is a partition of domain Ω and 𝑃𝑝(𝐼𝑘) denotes 

the space of all polynomials of order less than or equal 

to p defined for subintervals 𝐼𝑘 of length h. For a com-

plete overview of the DG technique, we refer the read-

ers to the book by Rivière (2008). Further, the approxi-

mate values of 𝑈𝑙
𝐷𝐺 at each time level 𝑙𝜏 are calculated 

according to the following scheme: 

(𝑈𝑙+1
𝐷𝐺 , 𝑣) +

𝜏

2
ℬℎ
𝐷𝐺(𝑈𝑙+1

𝐷𝐺 , 𝑣)

= (𝑈𝑙
𝐷𝐺 , 𝑣) −  

𝜏

2
ℬℎ
𝐷𝐺(𝑈𝑙

𝐷𝐺 , 𝑣)

+
𝜏

2
(𝑔((𝑙 + 1)𝜏), 𝑣)

+
𝜏

2
(𝑔(𝑙𝜏), 𝑣) ∀ 𝑣 ∈ 𝑆ℎ,  
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𝑙 = 0,… ,𝑀 − 1,             (13) 
 

wherein the initial state 𝑈0
𝐷𝐺 is defined as the 𝑆ℎ ap-

proximation of initial condition (9). The symbol (∙,∙) 
denotes the scalar product in the space 𝐿2(Ω), the func-

tion g is defined in (10) and the bilinear form ℬℎ
𝐷𝐺 in-

cludes the semi-discrete variants of diffusion, convec-

tion, penalty and reaction terms; for more details, see 

Hozman (2012).  

Numerical scheme (13) can in fact be interpreted as 

a system of linear algebraic equations with a sparse ma-

trix of the number of unknowns corresponding to the 

dimension of discrete space 𝑆ℎ, and the approximate so-

lution 𝑈𝑙
𝐷𝐺 can be expressed as a linear combination of 

basis functions, specifically 

               𝑈𝑙
𝐷𝐺 = ∑𝑢𝑗

𝑙𝜑𝑗

DOF

𝑗=1

,              (14) 

where DOF (degrees of freedom) denotes the number of 

basis functions of space 𝑆ℎ. For ease of illustration, Fig-

ure 1 shows examples of linear basis functions and Fig-

ure 2 non-linear (quadratic) ones, all constructed on the 

uniform partition 𝒯ℎ.  

 

Figure 1 Linear basis functions: the horizontal axis represents 

a unit partition of fictitious computational domain and the ver-

tical one the values of basis functions. 

 

Figure 2 Quadratic basis functions: the horizontal axis rep-

resents a unit partition of fictitious computational domain 

and the vertical one the values of basis functions. 

For each time layer 𝑡, we thus solve the problem 

(𝕄 +
𝜏

2
𝔹)𝕦𝐷𝐺

𝑙+1 = (𝕄−
𝜏

2
𝔹)𝕦𝐷𝐺

𝑙 +
𝜏

2
𝕘𝑙+1 +

𝜏

2
𝕘𝑙(15) 

for the unknown vector of the basis coefficients 𝕦𝐷𝐺
𝑙 =

{𝑢𝑗
𝑙}. Matrix 𝕄 = (𝑚𝑖𝑗), where 𝑚𝑖𝑗 = (𝜑𝑗 , 𝜑𝑖) repre-

sents the mass matrix, and matrix 𝔹 = (𝑏𝑖𝑗), where 

𝑏𝑖𝑗 = ℬℎ
𝐷𝐺(𝜑𝑗 , 𝜑𝑖) and vector 𝕘𝑙 has components given 

by (𝑔(𝑙𝜏), 𝜑𝑖). System (15) is then solved by a suitable 

linear algebraic solver, for example the generalized 

minimal residual method (GMRES), and the resulting 

approximate solution of (1)–(2) obtained by the DG 

method is of the form 𝑈𝑀
𝐷𝐺 + 𝑍𝑀, where 𝑍𝑀 is the 𝑆ℎ 

approximation of function 𝑧 at time 𝑇. 

4. Wavelet methods 

First, we briefly introduce the concept of a wavelet ba-

sis. We focus on a one-dimensional wavelet basis de-

fined in the interval Ω = (0; 𝑆𝑚𝑎𝑥) for the space  

  𝑉 = {𝑣 ∈  𝐿2 (Ω);  𝑣(0) = 𝑣(𝑆𝑚𝑎𝑥) = 0 }     (16) 

and Sobolev space 𝐻0
1(Ω). We assume that 𝐻 is one of 

these spaces and that 𝐽 is an index set such that each 

index 𝜆 ∈ 𝐽 has the form 𝜆 = (𝑗, 𝑘), where |𝜆| = 𝑗 de-

notes the level. Set 𝛹 = {𝜓𝜆 , 𝜆 ∈ 𝐽} is called a wavelet 

basis for space 𝐻, if the following conditions are satis-

fied:  

 Riesz basis. 𝛹 is a Riesz basis of 𝐻.  

 Locality. For all 𝜆 ∈ 𝐽, the length of the sup-

port of 𝜓𝜆 is bounded by 𝐶 ∙ 2−|𝜆|, where 𝐶 is 

a constant independent of |𝜆|.  

 Hierarchical structure. Set 𝛹 has the structure  

          𝛹 = 𝛷𝑗0 ∪⋃𝛹𝑗.

∞

𝑗=𝑗0

 (17) 

The functions from 𝛷𝑗 = {𝜑𝑗,𝑘 , 𝑘 ∈ 𝐼𝑗} are 

called scaling functions, and the functions 

from  𝛹𝑗 = {𝜓𝑗,𝑘 , 𝑘 ∈ 𝐽𝑗} are called wavelets 

on level 𝑗.  

 Vanishing wavelet moments. We assume that 

𝐿 ≥ 1 exists such that 𝜓𝑗,𝑙  have 𝐿 vanishing 

moments; that is, any polynomial 𝑝 of degree 

𝑚 ≤ 𝐿 − 1 satisfies 

                  ∫ 𝑝(𝑥)𝜓𝑗,𝑙
𝛺𝑗,𝑙

(𝑥)𝑑𝑥 = 0,      (18) 

where 𝑙 ∈ 𝐽𝑗, 𝑗 ≥ 𝑗0,  𝛺𝑗,𝑙 = supp 𝜓𝑗,𝑙 . 

The definition of the wavelet basis is not unified in 

the literature, and some of the above conditions may be 

generalized in some cases. 
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In our numerical experiments, we use the linear and 

quadratic spline wavelet bases from Černá and Finěk 

(2011). Graphs of the selected linear and quadratic 

spline wavelets are shown in Figure 3 and Figure 4, re-

spectively. In the case of a linear spline basis, a bound-

ary wavelet 𝜓2,1 and an inner wavelet 𝜓2,2 are dis-

played. In the case of a quadratic basis, two boundary 

wavelets 𝜓3,1 a 𝜓3,2 and an inner wavelet 𝜓3,3 are 

shown. 

 

Figure 3 Linear spline wavelet basis functions: the horizontal 

axis represents a reference unit interval and the vertical one 

the values of basis functions. 

 

Figure 4 Quadratic spline wavelet basis functions: the hori-

zontal axis represents a reference unit interval and the vertical 

one the values of basis functions. 

We use the Crank–Nicolson scheme to discretize 

equation (7) in time. The introduced notation is analo-

gous to that in the previous chapter; specifically, 𝜏 de-

notes the time step size and 𝑡𝑙 denotes the correspond-

ing time level. Furthermore, we denote 𝑈𝑙(𝑥) =
𝑢∗(𝑥, 𝑡𝑙), 𝑔𝑙(𝑥) = 𝑔(𝑥, 𝑡𝑙) and ℬ𝑊(𝑢, 𝑣) =
(ℒ𝐵𝑆(𝑢), 𝑣) for 𝑢, 𝑣 ∈ 𝐻0

1(𝛺). Then, the variational 

formulation of (7) has the form 

 

(𝑈𝑙+1, 𝑣)

𝜏
−
ℬ𝑊(𝑈𝑙+1, 𝑣)

2
=
ℬ𝑊(𝑈𝑙 , 𝑣)

2
 

+
(𝑔𝑙+1+𝑔𝑙,𝑣)

2
+
(𝑈𝑙,𝑣)

𝜏
                 

(19) 

for all 𝑣 ∈ 𝐻0
1(𝛺). To increase the efficiency of the 

Crank–Nicolson scheme, Richardson’s extrapolation 

can be used; see Finěk (2017).  

For discretization with respect to the spatial variable 

𝑥, we use the wavelet method. The adaptive wavelet 

method differs from classical approaches, because it is 

based not on local error estimates but on thresholding 

wavelet coefficients. Let 𝛹 = {𝜓𝜆 , 𝜆 ∈ 𝐽} be a wavelet 

basis of space 𝑉 such that 𝛹, when normalized with re-

spect to the 𝐻1 norm, is a wavelet basis of space 
𝐻0
1(𝛺). We expand solution 𝑈𝑙 in a wavelet basis 𝛹, 

that is,  

𝑈𝑙 =∑𝑢𝜆
𝑙

𝜆∈𝐽

𝜓𝜆 .              (20) 

We substitute (20) into (19) and obtain the bi-infi-

nite system  

𝔸𝕦𝑙+1 = 𝕗𝑙 (21) 

where 

   𝕦𝑙 = {𝑢𝜆
𝑙 }
𝜆∈𝐽
, 𝔸 = {𝐴𝜇,𝜆}𝜇,𝜆∈𝐽 , 𝕗

𝑙 = {𝑓𝜇
𝑙}
𝜇𝜖𝐽

  (22) 

and 

       𝐴𝜇,𝜆 =
(𝜓𝜆,𝜓𝜇)

𝜏
−
ℬ𝑊(𝜓𝜆,𝜓𝜇)

2
, 𝜆, 𝜇 ∈  𝐽,            (23) 

   𝑓𝜇
𝑙 =

(𝑔𝑙+1+𝑔𝑙,𝜓𝜇)

2
+
ℬ𝑊(𝑈𝑙,𝜓𝜇)

2
+
(𝑈𝑙,𝜓𝜇)

𝜏
, 𝜇 ∈ 𝐽.  (24) 

We solve the resulting system using the method of 

generalized residuals (GMRES) with diagonal precon-

ditioning. The algorithm comprises the following steps: 

1. Choose the time step 𝜏 and the number of basis 

functions’ DOFs. 

2. Compute the vector of coefficients 𝕦0 for the 

function 𝑈0 and 𝕦𝑊
0 = COARSE(𝕦0, DOF). 

3. For l = 0, 1, 2, . . . , M – 1, compute the right-hand 

side 𝕗𝑙 and calculate 𝕦𝑙+1 = GMRES(𝔸, 𝕗𝑙 , 𝕦𝑊
𝑙 ) and 

𝕦𝑊
𝑙+1 = COARSE(𝕦𝑙+1, DOF). 

4. Using 𝕦𝑊
𝑀 , compute the approximate solution 𝑈𝑀

𝑊 

of equation (7). The approximate solution of (1)–(2) is 

computed as 𝑈𝑀
𝑊 + 𝑧𝑀, where 𝑧𝑀(𝑥) = 𝑧(𝑥, 𝑇). 

In this algorithm, 𝕦𝑙+1 = GMRES(𝔸, 𝕗𝑙 , 𝕦𝑊
𝑙 ) means 

that 𝕦𝑙+1 is the solution of the system with (bi-infinite) 

matrix 𝔸 and the right-hand side 𝕗𝑙 using the GMRES 

with initial vector 𝕦𝑊
𝑙 . The routine 𝕦𝑊

𝑙+1 =
COARSE(𝕦𝑙+1, DOF) consists of thresholding, that is, 

taking DOF elements of vector 𝕦𝑙+1, which are the high-

est in absolute value, and we set the others to zero. 

Then, output vector 𝕦𝑊
𝑙+1 contains DOF non-zero ele-
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ments. Each iteration of the GMRES requires the mul-

tiplication of infinite-dimensional matrix 𝔸 with the fi-

nite-dimensional vector. We compute this operation ap-

proximately following the method of Černá and Finěk 

(2013). Since we work with a sparse representation of 

the right-hand side and a sparse representation of the 

vector representing the solution, the method is adaptive. 

In our case, the most significant coefficients belong to 

wavelets with support close to strike 𝐾, because the in-

itial function has a discontinuous derivative there and 

the coefficients in the areas where the function is 

smooth are very small and can be thresholded. 

5. F-transform 

The F-transform was proposed by Perfilieva (2003) as 

a new approximate technique based on the tools of 

fuzzy modelling to transform functions of 𝐿2(Γ) space, 

where Γ  ℝ𝑑 is a compact convex subspace, into a fi-

nite system of real numbers, which provides com-

pressed information about the original functions, and 

these numbers are then used for an approximate contin-

uous reconstruction of the original functions from 𝐿2(Γ) 
space. The core of the F-transform consists of a fuzzy 

partition of domain Γ using a system of fuzzy sets 𝛷 =
{𝜑𝑘(𝑥) ; 𝑘 ∈ 𝕂, 𝑥 ∈ Γ}, where 𝕂  ℕ𝑑 is a finite index 

set, for which the following Ruspini condition holds:  

∑ 𝜑𝑘(𝑥) = 1, 𝑥 ∈ Γ.𝑘∈𝕂    (25) 

Fuzzy set 𝜑𝑘 refers to the k-th basis function of 

fuzzy partition 𝛷. Below, we briefly describe the F-

transform technique and its application to the numerical 

solution of the partial differential equation. As we men-

tioned in Section 1, we distinguish two phases of the F-

transform, namely direct and inverse. The direct F-

transform with respect to fuzzy partition 𝛷 transforms 

each function 𝑢 from 𝐿2(Γ) space into a finite system 

of real numbers ℱ = {𝐹𝑘; 𝑘 ∈ 𝕂}, where 

𝐹𝑘 = ∫ 𝑢(𝑥)𝛤
𝜑𝑘(𝑥) 𝑑𝑥 ∫ 𝜑𝑘(𝑥) 𝑑𝑥𝛤

⁄ , 𝑘 ∈ 𝕂.  (26) 

The real number 𝐹𝑘 determined by formula (26) is 

called the k-th F-transform component, which is the 

weighted average of 𝑢 at node xk with respect to the ba-

sis functions 𝜑𝑘 of fuzzy partition 𝛷. The inverse F-

transform of function 𝑢 with respect to fuzzy partition 

𝛷 provides a continuous function ℱ[𝑢]: Γ → ℝ, which 

is a linear combination of basis 𝜑𝑘 and F-transform 

components 𝐹𝑘, that is,  

ℱ[𝑢](𝑥) = ∑ 𝐹𝑘𝜑𝑘(𝑥), 𝑥 ∈𝑘∈𝕂 Γ.   (27) 

Concerning the numerical solution of equation (1) 

with the help of the F-transform, we assume Γ =
[0; 𝑆𝑚𝑎𝑥] × [0;  𝑇] and 𝕂 = {0,… , DOF } × {0, … ,𝑀}, 
where DOF ,𝑀 > 1. Note that Γ is a topological closure 

of the product of Ω × (0; 𝑇). Further, we assume ℎ =

𝑆𝑚𝑎𝑥/DOF and 𝜏 = 𝑇/𝑀 and define the basis function 

𝜑𝑗,𝑙(𝑥, 𝑡) for any (𝑗, 𝑙) ∈ 𝕂 as 

𝜑𝑗,𝑙(𝑥, 𝑡) = 𝒦 (
𝑥−𝑥𝑗

ℎ
)𝒦 (

𝑡−𝑡𝑙

𝜏
), (𝑥, 𝑡) ∈ Γ,  (28) 

where 𝑥𝑗 = 𝑗ℎ, 𝑡𝑙 = 𝑙𝜏 and 𝒦: ℝ →  [0;  ∞) is a contin-

uous function that is even and non-decreasing in the in-

terval [−1; 0], 𝒦(0) = 1, 𝒦(−1) = 0, and it holds that 

∫ 𝒦(𝑡)𝑑𝑡 = 1
+∞

−∞
. Function 𝒦 is called the generating 

function. Two examples of generating functions that are 

often used in practice can be seen in Figures 5 and 6. 

 

Figure 5 Triangular generating function: the horizontal axis 

represents a unit partition of fictitious computational domain 

and the vertical one the values of this basis function. 

 

Figure 6 Raised cosine generating function: the horizontal 

axis represents a unit partition of fictitious computational do-

main and the vertical one the values of this basis function. 

Differential equation (1) is solved similarly to that 

in the case of the method of finite differences, the only 

difference being that the function values at nodes 𝑥𝑗  are 

replaced by their F-transform components. To apply the 

F-transform, differential equation (1) is transformed 

into homogeneous equation (7). Using the Crank–Nic-

olson method for time discretization, we transform dif-

ferential equation (7) into the following equation: 

𝑢∗(𝑥,𝑡𝑙+1)−𝑢
∗(𝑥,𝑡𝑙)

𝜏
= −

1

2
(ℒ𝐵𝑆(𝑢

∗(𝑥, 𝑡𝑙+1)) +

           ℒ𝐵𝑆(𝑢
∗(𝑥, 𝑡𝑙)) − 𝑔(𝑥, 𝑡𝑙+1) − 𝑔(𝑥, 𝑡𝑙)).        (29) 

Further, we substitute the partial derivatives of func-

tion 𝑢∗ with their F-transform components 𝑈𝑘
𝐹𝑇 , which 
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are then expressed by the finite differences between 

components 𝑈𝑘
𝐹𝑇 . As a result, we obtain the following 

equation: 

𝑈𝑗,𝑙+1
𝐹𝑇 − 𝑈𝑗,𝑙

𝐹𝑇

𝜏
= 

−
1

2
(ℒ𝐵𝑆(𝑈𝑗,𝑙+1

𝐹𝑇 ) + ℒ𝐵𝑆(𝑈𝑗,𝑙
𝐹𝑇) − 𝐺𝑗,𝑙+1

− 𝐺𝑗,𝑙),  

(30) 

where 𝐺𝑗,𝑙+1 and 𝐺𝑗,𝑙 are the F-transform components of 

function 𝑔 and  

ℒ𝐵𝑆(𝑈𝑗,∗
𝐹𝑇) = − 

1

2
𝜎2𝑥𝑗

2 𝑈𝑗+1,∗
𝐹𝑇 −2𝑈𝑗,∗

𝐹𝑇+𝑈𝑗−1,∗
𝐹𝑇

ℎ2
−

                       𝑟𝑥𝑗
𝑈𝑗+1,∗
𝐹𝑇 −𝑈𝑗,∗

𝐹𝑇

ℎ
+ 𝑟𝑈𝑗,∗

𝐹𝑇 .                       (31) 

Let 𝕦𝐹𝑇
𝑙 = {𝑈𝑗,𝑙

𝐹𝑇} denote the vector of the F-trans-

form components of function 𝑢∗. Then, by simple ma-

nipulation, one can find the following system of linear 

algebraic equations: 

𝔸𝕦𝐹𝑇
𝑙+1 = 𝔹𝕦𝐹𝑇

𝑙 + 𝕕𝑙, 𝑙 = 0,… ,𝑀 − 1  (32) 

with two three-diagonal matrices 

𝔸 =

(

 
 

𝑏1 𝑐1 0 ⋯ 0
𝑎2 𝑏2 𝑐2 ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ 𝑎DOF −2 𝑏DOF −2 𝑐DOF −2
0 ⋯ 0 𝑎DOF −1 𝑏DOF −1)

 
 
,    (33) 

𝔹 =

(

 
 

𝑏1 −𝑐1 0 ⋯ 0
−𝑎2 𝑏2 −𝑐2 ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ −𝑎DOF −2 𝑏DOF −2 −𝑐DOF −2
0 ⋯ 0 −𝑎DOF −1 𝑏DOF −1 )

 
 

,    (34) 

where it holds for any 𝑗 = 1,… , DOF − 1 that 

𝑎𝑗 = 
1

4
𝜎2𝑥𝑗

2
𝜏

ℎ2
, 𝑏𝑗 = 1 − (

𝜎2𝑥𝑗
2

ℎ2
+
𝑟𝑥𝑗

ℎ
+ 𝑟)

𝜏

2
,  

𝑐𝑗 = (
𝜎2𝑥𝑗

2

2ℎ2
+
𝑟𝑥𝑗

ℎ
)
𝜏

2
   (35) 

and 𝕕𝑙 = {(𝐺𝑗,𝑙+1 + 𝐺𝑗,𝑙)
𝜏

2
} is the vector determined 

from the F-transform components of function g. 

Using the initial homogeneous boundary condi-

tions, namely 𝑈𝑗,0
𝐹𝑇 = 𝑢(𝑥𝑗 , 0) for 𝑗 = 0,… , DOF and 

𝑈0,𝑙
𝐹𝑇 = 𝑈DOF,𝑙

𝐹𝑇 = 0 for 𝑙 = 0,… ,𝑀, one can simply 

solve the previous system of linear algebraic equations, 

and the solution can be expressed by the F-transform 

matrix:  

ℱ =

(

 
 

0 0 ⋯ 0
𝑢(𝑥1, 0) 𝑈1,1

𝐹𝑇 ⋯ 𝑈1,𝑀
𝐹𝑇

⋮ ⋮ ⋱ ⋮
𝑢(𝑥DOF −1, 0) 𝑈DOF −1,1

𝐹𝑇 ⋯ 𝑈DOF −1,𝑀
𝐹𝑇

0 0 … 0 )

 
 

. (36) 

The approximate solution of function 𝑢∗ is obtained 

by the inverse F-transform as follows: 

ℱ[𝑢∗](𝑥, 𝑡) = ∑ 𝑈𝑘,𝑙
𝐹𝑇𝜑𝑘,𝑙(𝑥, 𝑡), (𝑥, 𝑡) ∈(𝑘,𝑙)∈𝕂 Γ. (37) 

The approximate solution of the differential equa-

tion (1) is determined by the transformation 𝑢 = 𝑢∗ +
 𝑧 described above, where 𝑧 is the function transforming 

equation (1) into the homogeneous form. 

6. Numerical experiments  

The numerical experiment presented below is based on 

data modified from Kopa et al. (2017) and especially 

Hozman and Tichý (2014), who provide a vanilla put 

option pricing case study of German option market (on 

September 15, 2011) using DG approach. We consider 

here one particular scenario only – intermediate ma-

turity option (193 calendar days) on DAX (German 

stock market index) with current index value 4,715 and 

the strike price 4,700, indicating a near ATM option. 

The fixed BS parameters of the model are the risk-free 

interest rate 𝑟 = 0.039 and the volatility 𝜎 = 0.4422. 

The relevant volatility value is set as the weighted av-

erage of observed implied volatilities, and the risk-free 

interest rate is determined based on this fixed volatility 

and the option price given by the analytical formula 

(11). 

Numerical approximation is crucially related to the 

discretization of the computational domain Ω, its length 

is deliberately chosen as eight times the strike price to 

suppress the influence of the inaccurate homogenous 

Dirichlet boundary condition (5). Together with this, 

we choose the time step 𝜏 = 1

3600
 so that the effect of 

time discretization on numerical results is negligible. 

For a more detailed comparison, each of the methods is 

considered in the form of linear as well as nonlinear 

(quadratic, cosine) approximation. The quality of the 

approximation can be easily observed by comparing the 

numerical results with the theoretical prices from (11). 

Therefore, we can consider relative error in the 𝐿2(Ω)-
norm on the whole computational domain evaluated at 

maturity, i.e.,  

𝑒𝐿2 =
√∫ (𝑢𝑀 − 𝑢(𝑇))

2
Ω

𝑑𝑥

√∫ 𝑢2(𝑇)
Ω

𝑑𝑥

 (38) 

where 𝑢𝑀  denotes the approximate solution obtained by 

one of the three numerical approaches.  

The results of corresponding errors in a logarithmic 

scale are illustrated in Figure 7. In all cases we can ob-

serve a monotone decrease of the relative errors with 

increasing number of basis functions. More precisely, 

for linear approximations (denoted as P1), all methods 
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have the same order of accuracy, which is expected as 

quadratic. In contrast, the results for nonlinear basis 

functions (denoted as P2 and cos) have a totally differ-

ent character amongst the methods. The best perfor-

mance is achieved by WM that shows a third order of 

accuracy for a quadratic basis. In the case of DGM, rel-

ative errors are smaller than for linear basis functions, 

however, they show the same trend as in the linear case, 

according to which DGM with quadratic approxima-

tions can be considered as a method with a quadratic 

order of accuracy. On the other hand, the results ob-

tained by FT approach, in the case of raised cosine basis 

functions, do not lead to any improvement compared to 

the linear case and are almost identical. 

Figure 7 The comparison of relative errors of the numerical 

solution for particular methods with linear (solid line) and 

nonlinear (dashed line) approximations: the horizontal axis 

represents a number of degrees of freedom and the vertical 

one the values of relative errors. 

Following the observations above, note that the re-

sults for DGM and WM correspond to the experimental 

properties of these methods, well-known for the class 

of convection-diffusion problems, see Rivière (2008) 

and Cohen et al. (2002), respectively. Since the FT ap-

proach is a relatively novel way, the results cannot be 

objectively compared, but serve as an important starting 

point for further development of this method. 

7. Conclusion 

In this paper, we briefly summarize the basic 

knowledge of option pricing and present three relatively 

novel approaches to the numerical solution of the BS 

equation governing vanilla option prices. The first nu-

merical scheme is derived from the discontinuous Ga-

lerkin method, which is based on discontinuous piece-

wise polynomial approximations. In contrast, wavelet 

methods employ continuous approximations and a basis 

with a hierarchical structure. The last technique is based 

on the F-transform, the application of which to the orig-

inal continuous problem leads to a new one for the un-

known components of this transform. The resulting 

problem is then discretized using the finite difference 

method. 

The potential of each of the three methods is demon-

strated within a simple experimental study. In the case 

of linear approximation, the results are very similar 

amongst all the methods, but, for non-linear basis func-

tions, the differences in these approaches should be sig-

nificant, especially due to the different types of basis 

functions (parabola vs. raised cosine). The wavelet ap-

proach has the best approximation properties for nu-

merical solutions of the BS model. On the other hand, 

the benefits of F-transform could mainly be reflected in 

the possibility of reducing the number of degrees of 

freedom in the discretization under the preserved order 

of accuracy, which actually leads to the shortening of 

the computational time. However, this advantage of the 

F-transform will be observable mainly in solving the 

BS equation containing several underlying factors, in 

which the complexity of the calculation grows expo-

nentially. Regarding the discontinuous Galerkin 

method, its main advantages are discontinuous pay-off 

functions and discrete sampling. 

Apart from the detailed experimental study, empha-

sis will be placed further on extending these numerical 

schemes to the valuation of options with more complex 

pay-off functions (i.e., exotic options) and more de-

tailed analysis of the sensitivity measures (simply 

called the Greeks). At the same time, the stochastic 

models for the standard parameters of option pricing 

models should be considered instead of the existing de-

terministic description, so the results obtained are 

closer to the market reality and correspond to the con-

clusions presented in this paper. This should provide 

more comprehensive information on the relationships 

amongst the presented methods. 
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