947 research outputs found

    Max-product Kantorovich sampling operators: quantitative estimates in functional spaces

    Full text link
    In this paper, we study the order of approximation for max-product Kantorovich sampling operators based upon generalized kernels in the setting of Orlicz spaces. We establish a quantitative estimate for the considered family of sampling-type operators using the Orlicz-type modulus of smoothness, which involves the modular functional of the space. From this result, it is possible to obtain the qualitative order of convergence when functions belonging to suitable Lipschitz classes are considered. On the other hand, in the compact case, we exploit a suitable definition of K-functional in Orlicz spaces in order to provide an upper bound for the approximation error of the involved operators. The treatment in the general framework of Orlicz spaces allows one to obtain a unifying theory on the rate of convergence, as the proved results can be deduced for a wide range of functional spaces, such as LpL^{p}-spaces, interpolation spaces and exponential spaces

    Approximation by Bernstein-Chlodowsky operators of max-product kind

    Get PDF
    We dene the max-product (nonlinear) Bernstein-Chlodowsky operators andobtain some upper estimates of approximation error for some subclasses of functions. Wealso investigate the shape-preserving properties for these operators

    Convergence results in Orlicz spaces for sequences of max-product Kantorovich sampling operators

    Full text link
    In this paper, we provide a unifying theory concerning the convergence properties of the so-called max-product Kantorovich sampling operators based upon generalized kernels in the setting of Orlicz spaces. The approximation of functions defined on both bounded intervals and on the whole real axis has been considered. Here, under suitable assumptions on the kernels, considered in order to define the operators, we are able to establish a modular convergence theorem for these sampling-type operators. As a direct consequence of the main theorem of this paper, we obtain that the involved operators can be successfully used for approximation processes in a wide variety of functional spaces, including the well-known interpolation and exponential spaces. This makes the Kantorovich variant of max-product sampling operators suitable for reconstructing not necessarily continuous functions (signals) belonging to a wide range of functional spaces. Finally, several examples of Orlicz spaces and of kernels for which the above theory can be applied are presented

    On Better Approximation Order for the Nonlinear Meyer-K\"onig and Zeller Operator of Maximum Product Kind

    Full text link
    Using maximum instead of sum, nonlinear Meyer-K\"onig and Zeller operator of maximum product kind is introduced by Bede et al. The present paper deals with the approximation processes for this operator. Especially in, it was indicated that the order of approximation of this operator to the function f under the modulus is and it could not be improved except for some subclasses of functions. Contrary to this claim, we will show that a better order of approximation can be obtained with the help of classical modulus of continuity

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation consists of two parts that focus on two interrelated areas of Applied Mathematics. The first part explores fundamental properties and applications of functions with values in L-spaces. The second part is connected to Approximation Theory and dives deeper into the analysis of functions with values in specific classes of L-spaces (in particular, L-spaces of sets). In the first project devoted to the theory and numerical methods for the solution of integral equations, we explore linear Volterra and Fredholm integral equations for functions with values in L-spaces (which are generalizations of set-valued and fuzzy-valued functions). In this study, we prove the existence and uniqueness of the solution for such equations, suggest algorithms for finding approximate solutions, and study their convergence. The exploration of these equations is of great importance given the wide variety of their applications in biology (population modeling), physics (heat conduction), and engineering (feedback systems), among others. We extend the aforementioned results of existence and uniqueness to nonlinear equations. In addition, we study the dependence of solutions of such equations on variations in the data. In order to be able to better analyze the convergence of the suggested algorithms for the solutions of integral equations, we develop new results on the approximation of functions with values in L-spaces by adapted linear positive operators (Bernstein, Schoenberg, modified Schoenberg operators, and piecewise linear interpolation). The second project is devoted to problems of interpolation by generalized polynomials and splines for functions whose values lie in a specific L-space, namely a space of sets. Because the structure of such a space is richer than the structure of a general L-space, we have additional tools available (e.g., the support function of a set) which allow us to obtain deeper results for the approximation and interpolation of set-valued functions. We are working on defining various methods of approximation based on the support function of a set. Questions related to error estimates of the approximation of set-valued functions by those novel methods are also investigated

    On Better Approximation Order for the Nonlinear Baskakov Operator of Maximum Product Kind

    Full text link
    Using maximum instead of sum, nonlinear Baskakov operator of maximum product kind is introduced by Bede et al. The present paper deals with the approximation processes for this operator. Especially in , it was indicated that the order of approximation of this operator to the function f under the modulus is and it could not be improved except for some subclasses of functions. Contrary to this claim under some circumstances, we will show that a better order of approximation can be obtained with the help of classical and weighted modulus of continuities.Comment: arXiv admin note: substantial text overlap with arXiv:2307.0642

    Machine Learning Methods for Fuzzy Pattern Tree Induction

    Get PDF
    This thesis elaborates on a novel approach to fuzzy machine learning, that is, the combination of machine learning methods with mathematical tools for modeling and information processing based on fuzzy logic. More specifically, the thesis is devoted to so-called fuzzy pattern trees, a model class that has recently been introduced for representing dependencies between input and output variables in supervised learning tasks, such as classification and regression. Due to its hierarchical, modular structure and the use of different types of (nonlinear) aggregation operators, a fuzzy pattern tree has the ability to represent such dependencies in a very exible and compact way, thereby offering a reasonable balance between accuracy and model transparency. The focus of the thesis is on novel algorithms for pattern tree induction, i.e., for learning fuzzy pattern trees from observed data. In total, three new algorithms are introduced and compared to an existing method for the data-driven construction of pattern trees. While the first two algorithms are mainly geared toward an improvement of predictive accuracy, the last one focuses on eficiency aspects and seeks to make the learning process faster. The description and discussion of each algorithm is complemented with theoretical analyses and empirical studies in order to show the effectiveness of the proposed solutions

    Numerical Approximate Methods for Solving Linear and Nonlinear Integral Equations

    Get PDF
    Integral equation has been one of the essential tools for various area of applied mathematics. In this work, we employed different numerical methods for solving both linear and nonlinear Fredholm integral equations. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations. Integral equations can be viewed as equations which are results of transformation of points in a given vector spaces of integrable functions by the use of certain specific integral operators to points in the same space. If, in particular, one is concerned with function spaces spanned by polynomials for which the kernel of the corresponding transforming integral operator is separable being comprised of polynomial functions only, then several approximate methods of solution of integral equations can be developed. This work, specially, deals with the development of different wavelet methods for solving integral and intgro-differential equations. Wavelets theory is a relatively new and emerging area in mathematical research. It has been applied in a wide range of engineering disciplines; particularly, wavelets are very successfully used in signal analysis for waveform representations and segmentations, time frequency analysis, and fast algorithms for easy implementation. Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical algorithms. Wavelets can be separated into two distinct types, orthogonal and semi-orthogonal. The preliminary concept of integral equations and wavelets are first presented in Chapter 1. Classification of integral equations, construction of wavelets and multi-resolution analysis (MRA) have been briefly discussed and provided in this chapter. In Chapter 2, different wavelet methods are constructed and function approximation by these methods with convergence analysis have been presented. In Chapter 3, linear semi-orthogonal compactly supported B-spline wavelets together with their dual wavelets have been applied to approximate the solutions of Fredholm integral equations (both linear and nonlinear) of the second kind and their systems. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. Convergence analysis of B-spline method has been discussed in this chapter. Again, in Chapter 4, system of nonlinear Fredholm integral equations have been solved by using hybrid Legendre Block-Pulse functions and xiii Bernstein collocation method. In Chapter 5, two practical problems arising from chemical phenomenon, have been modeled as Fredholm- Hammerstein integral equations and solved numerically by different numerical techniques. First, COSMO-RS model has been solved by Bernstein collocation method, Haar wavelet method and Sinc collocation method. Second, Hammerstein integral equation arising from chemical reactor theory has been solved by B-spline wavelet method. Comparison of results have been demonstrated through illustrative examples. In Chapter 6, Legendre wavelet method and Bernoulli wavelet method have been developed to solve system of integro-differential equations. Legendre wavelets along with their operational matrices are developed to approximate the solutions of system of nonlinear Volterra integro-differential equations. Also, nonlinear Volterra weakly singular integro-differential equations system has been solved by Bernoulli wavelet method. The properties of these wavelets are used to reduce the system of integral equations to a system of algebraic equations which can be solved numerically by Newton's method. Rigorous convergence analysis has been done for these wavelet methods. Illustrative examples have been included to demonstrate the validity and applicability of the proposed techniques. In Chapter 7, we have solved the second order Lane-Emden type singular differential equation. First, the second order differential equation is transformed into integro-differential equation and then solved by Legendre multi-wavelet method and Chebyshev wavelet method. Convergence of these wavelet methods have been discussed in this chapter. In Chapter 8, we have developed a efficient collocation technique called Legendre spectral collocation method to solve the Fredholm integro-differential-difference equations with variable coefficients and system of two nonlinear integro-differential equations which arise in biological model. The proposed method is based on the Gauss-Legendre points with the basis functions of Lagrange polynomials. The present method reduces this model to a system of nonlinear algebraic equations and again this algebraic system has been solved numerically by Newton's method. The study of fuzzy integral equations and fuzzy differential equations is an emerging area of research for many authors. In Chapter 9, we have proposed some numerical techniques for solving fuzzy integral equations and fuzzy integro-differential equations. Fundamentals of fuzzy calculus have been discussed in this chapter. Nonlinear fuzzy Hammerstein integral equation has been solved by Bernstein polynomials and Legendre wavelets, and then compared with homotopy analysis method. We have solved nonlinear fuzzy Hammerstein Volterra integral equations with constant delay by Bernoulli wavelet method and then compared with B-spline wavelet method. Finally, fuzzy integro-differential equation has been solved by Legendre wavelet method and compared with homotopy analysis method. In fuzzy case, we have applied two-dimensional numerical methods which are discussed in chapter 2. Convergence analysis and error estimate have been also provided for Bernoulli wavelet method. xiv The study of fractional calculus, fractional differential equations and fractional integral equations has a great importance in the field of science and engineering. Most of the physical phenomenon can be best modeled by using fractional calculus. Applications of fractional differential equations and fractional integral equations create a wide area of research for many researchers. This motivates to work on fractional integral equations, which results in the form of Chapter 10. First, the preliminary definitions and theorems of fractional calculus have been presented in this chapter. The nonlinear fractional mixed Volterra-Fredholm integro-differential equations along with mixed boundary conditions have been solved by Legendre wavelet method. A numerical scheme has been developed by using Petrov-Galerkin method where the trial and test functions are Legendre wavelets basis functions. Also, this method has been applied to solve fractional Volterra integro-differential equations. Uniqueness and existence of the problem have been discussed and the error estimate of the proposed method has been presented in this work. Sinc Galerkin method is developed to approximate the solution of fractional Volterra-Fredholm integro-differential equations with weakly singular kernels. The proposed method is based on the Sinc function approximation. Uniqueness and existence of the problem have been discussed and the error analysis of the proposed method have been presented in this chapte
    corecore