
Machine Learning Methods for

Fuzzy Pattern Tree Induction

Robin Senge

aus Bad Brückenau

Fachbereich Mathematik und Informatik

Philipps-Universität Marburg

Dissertation

zur Erlangung eines

Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

Marburg/Lahn, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikations- und Dokumentenserver der Universitätsbibliothek Marburg

https://core.ac.uk/display/161975394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:info@robinsenge.com
http://www.uni-marburg.de/fb12
http://www.uni-marburg.de

ii

Vom Fachbereich Mathematik und Informatik der Philipps-Universiät Marburg

(Hochschulkennziffer: 1180) als Dissertation angenommen am: 15.04.2014

Erstgutachter: Prof. Dr. Eyke Hüllermeier

Zweitgutachter: Prof. Dr. Christophe Marsala

weitere Mitglieder der Prüfungskommission:

Prof. Dr. Manfred Sommer

Prof. Dr. Bernhard Seeger

Tag der mündlichen Prüfung: 20.06.2014

iii

Abstract

This thesis elaborates on a novel approach to fuzzy machine learning, that

is, the combination of machine learning methods with mathematical tools

for modeling and information processing based on fuzzy logic. More specif-

ically, the thesis is devoted to so-called fuzzy pattern trees, a model class

that has recently been introduced for representing dependencies between

input and output variables in supervised learning tasks, such as classifi-

cation and regression. Due to its hierarchical, modular structure and the

use of different types of (nonlinear) aggregation operators, a fuzzy pattern

tree has the ability to represent such dependencies in a very flexible and

compact way, thereby offering a reasonable balance between accuracy and

model transparency.

The focus of the thesis is on novel algorithms for pattern tree induction,

i.e., for learning fuzzy pattern trees from observed data. In total, three

new algorithms are introduced and compared to an existing method for the

data-driven construction of pattern trees. While the first two algorithms are

mainly geared toward an improvement of predictive accuracy, the last one

focuses on efficiency aspects and seeks to make the learning process faster.

The description and discussion of each algorithm is complemented with

theoretical analyses and empirical studies in order to show the effectiveness

of the proposed solutions.

Zusammenfassung

Diese Arbeit befasst sich mit einer neuen Methode im Bereich des “un-

scharfen maschinellen Lernens”. Dieser Bereich umfasst Methoden, die

eine Kombination von maschinellen Lernverfahren mit Konzepten aus der

Theorie unscharfer Mengen (Fuzzy Set Theory) darstellen. Im Speziellen

beschäftigt sich die Arbeit mit der Modellklasse der sogenannten Fuzzy

Pattern Trees. Diese Modellklasse wurde kürzlich vorgestellt und dient

der Modellierung von Abhängigkeiten zwischen Ein- und Ausgabevariablen

in Problemstellungen des überwachten Lernens (supervised learning) wie

beispielsweise Regression und Klassifikation. Aufgrund ihrer hierarchischen

und modularen Struktur sowie der Verwendung von unterschiedlichen, zum

Teil nicht-linearen Aggregationsoperatoren ist die Modellklasse in der Lage,

diese Abhängigkeiten flexibel und kompakt darzustellen. Dabei erreicht sie

eine gute Balance zwischen prädiktiver Genauigkeit und Transparenz.

Schwerpunkt dieser Arbeit ist die Entwicklung neuer Algorithmen zum Ler-

nen von Fuzzy Pattern Trees aus Daten. Insgesamt werden in dieser Ar-

beit neben einer Reihe von Heuristiken drei neue Algorithmen vorgestellt.

Während die ersten beiden nahezu ausschließlich auf die Verbesserung der

Prädiktionsgenauigkeit abzielen, wird mit dem dritten die Verbesserung der

Laufzeit während der Trainingsphase erreicht. Die Beschreibung der Algo-

rithmen ist immer sowohl von einer theoretischen Diskussion als auch einer

empirischen Evaluierung begleitet, die die Effektivität und Effizienz der Al-

gorithmen demonstriert und statistisch belegt.

vi

To myself.

Acknowledgements

During my PhD study, I was supported by the help of many people. Most

importantly, I would like to thank my advisor Prof. Eyke Hüllermeier. His

advice and support were always very helpful and directed me to the right

path for my studies. In particular, the discussions with him and his whole

research group of Computational Intelligence in the Department of Math-

ematics and Computer Science at the University of Marburg, were always

challenging and productive. It was always fun to be part of a group, in

which an environment of high-level scientific research culture exists and

flourishes.

During my studies, I had the opportunity to work together with many

great people. Besides Prof. Hüllermeier, I have the privilege to co-author

papers with Dr. Stefan Bösner, Dr. Weiwei Cheng, Prof. Juan José del Coz,

Dr. Krzysztof Dembczyński, Prof. Norbert Donner-Banzhoff, Dr. Thomas

Fober, Jörg Haasenritter, Dr. Dominik Heider, Sascha Henzgen, Dr. Oliver

Hirsch, Dr. Edwin Lughofer, Maryam Nasiri, Prof. Maria Rifqi and Ammar

Shaker. In addition, I would like to thank Amira Abdel-Aziz for their help

in revising the first versions of this thesis.

Last but not least, I would like to thank my wife Jennifer and my kids

Jamila and Rodney. They not only have been a constant motivation to me

to finish my studies on time, but they also reminded me that work is just a

part of it all.

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Machine Learning . 1

1.2 Fuzzy Set Theory . 5

1.3 Fuzzy Sets in Machine Learning . 10

2 Fuzzy Pattern Trees 13

2.1 Model Overview . 13

2.2 Aggregation and Structure . 15

2.2.1 Extending the Set of Operators 17

2.3 Important Properties of Fuzzy Pattern Trees 19

2.4 Universal Approximation Property . 22

2.5 Vapnik-Chervonenkis Dimension . 26

3 Learning Fuzzy Pattern Trees 29

3.1 Fuzzification and Defuzzification . 33

3.2 Optimization of CI Parameters . 37

3.3 Existing Learning Algorithms . 39

3.3.1 Huang, Gedeon & Nikravesh . 39

3.3.2 Yu, Fober and Hüllermeier . 40

3.4 Study on Surrogate Loss Functions . 43

3.5 Accelerating the Bottom-up Approach 46

3.5.1 Sparse Search . 46

iii

CONTENTS

3.5.2 Dynamic Operator Exclusion . 47

3.5.3 Limited Candidate History . 48

3.5.4 Experiments on Heuristics . 48

3.6 Top-down Approach . 56

3.6.1 Discussion . 56

3.6.2 Top-down Induction . 60

3.6.3 Experiments with PTTD . 63

3.6.4 Fast Top-down Learning . 67

3.7 Co-evolutionary Approach . 79

3.7.1 Evolutionary Algorithms . 79

3.7.2 Co-evolutionary Fuzzy Pattern Tree Learning 80

4 Experiments 85

4.1 CI vs. WA, OWA . 85

4.2 Comparing the Main Variants . 88

4.3 Comparison with State-of-the-art Methods 92

4.4 Comparison with State-of-the-art Methods for Regression 96

5 Related Model Classes 99

5.1 Fuzzy Rule-based Systems . 100

5.2 Hierarchical Fuzzy Rule-based Systems 103

5.3 Fuzzy Decision Trees . 105

5.4 Sum Product Networks . 107

5.5 Genetic Programming . 108

6 Conclusions and Outlook 111

7 Appendices 115

References 129

iv

List of Figures

1.1 One possible formulization of a subjective perception of the fuzzy concept

”much older than 5 years”. 6

1.2 Example of two fuzzy numbers (top), which are combined with the min-

imum t-norm (middle) and with the maximum t-conorm (bottom). . . . 7

1.3 Example of elements existing in a 2-dimensional space, i.e. described by

two attributes (x1, x2). 9

2.1 An interpreted example of a fuzzy pattern tree. 14

2.2 The same FPT as in the previous figure with additional information

about the implementation of each node. 15

2.3 Example of a grid in two dimensions with two fuzzy sets for each dimension. 24

2.4 The implementation of the selector subtree SSelp for the grid point p =

(c1, ..., c1). 25

2.5 The implementation of a constant function g(p). 25

2.6 The implementation of the function g̃(·) using a fuzzy pattern tree. . . . 25

3.1 Algorithm by Huang, Gedeon and Nikravesh 41

3.2 Creating a new candidate tree in a bottom-up manner. 42

3.3 Comparison of the accuracy of PTBU and PTBU-S on 40 datasets (one

ellipsoid per dataset). If both methods have the same mean accuracy,

the center of the ellipsoids lay on the dashed diagonal. Ellipsoids depart

from the diagonal indicate a difference in accuracy. The dimensions of

the ellipsoid are determined by the standard error of the mean estimate. 49

3.4 Predictive accuracy and training runtime of PTBU-DOE for different

values of τ . Each line represents one of the 40 classification datasets. . . 51

v

LIST OF FIGURES

3.5 Predictive accuracy and training runtime of PTBU-LCH for different

values of k. Each line represents one of the 40 classification datasets. . . 53

3.6 Pairwise similarity between candidate models (averaged over all pairs

of candidates and over 50 random samples) for three binary datasets:

credit, bupa, cancer. 57

3.7 Error curve (top-down strategy in dashed, bottom-up strategy in solid

line, averaged over the classes) on three datasets: bupa, cancer and credit. 58

3.8 Top-down induction: A leaf node is expanded through replacement with

a three-node tree. 60

3.9 Top-down algorithm . 61

3.10 In this example, three of the six models (Box 1–3) remain in the race

after this iteration. Models 4–6 can be excluded because their mean

error is unlikely (< δ) to become better than the one of the current best

model (Box 2). 69

3.11 Models compared to calculate the potential of leaf L. 72

3.12 Result of the comparison between PTTD and PTTD-PH for different

dmax values. The upper diagram shows the training time and the lower

shows predictive accuracy of the methods including standard error bars. 75

3.13 Result of the comparison between PTTD, PTTD-R and PTTD-fast for

different training set sizes. The upper diagram shows the training time

of all three variants. The middle one only shows PTTD-R and PTTD-

fast to be able to visually distinguish them. Finally, the lower shows

predictive accuracy of the methods. All diagrams are equipped with

standard error bars. 78

3.14 Example for the cross-over procedure. The dashed subtrees in (a) and

(b) are chosen randomly. They are interchanged to create two new indi-

viduals M ′1 and M ′2 for the next generation. 82

3.15 Example for the leaf mutation procedure. 83

3.16 Example for the operator mutation procedure. 84

3.17 Example for the subtree mutation procedure. 84

4.1 Pareto comparison of PTBU and PTTD. 89

4.2 Pareto comparison of PTBU and PTCoEvo. 89

vi

LIST OF FIGURES

4.3 Pareto comparison of PTTD and PTCoEvo. 90

5.1 Two possible hierarchical structures for fuzzy rule-based systems. 104

5.2 A classical (non-fuzzy) decision tree trained to predict the quality of

wine. (See example introduced in Chapter 2.) 106

5.3 An example of a small SPN. 108

5.4 An example of a model generated by a genetic algorithm. 109

vii

LIST OF FIGURES

viii

List of Tables

2.1 Fuzzy operators: t-norms . 16

2.2 Fuzzy operators: t-conorms . 16

3.1 Properties of the datasets used in classification experiments. 31

3.2 Properties of the datasets used in regression experiments. 32

3.3 Average rank and number of wins for each surrogate loss function. . . . 45

3.4 Mean accuracy measures with standard deviation comparing PTBU,

PTBU-S and PTBU-DOE with τ = 0.1 and tmax = 5 on the left side.

On the right side comparing PTBU and PTBU-LCH with k = 5 and

tmax = 10. 54

3.5 Mean training runtime measures with standard deviation comparing

PTBU, PTBU-S and PTBU-DOE with τ = 0.1 and tmax = 5 on the

left side. On the right side comparing PTBU and PTBU-LCH with

k = 5 and tmax = 10. 55

3.6 Average classification rates and standard deviation on test sets. 64

3.7 Difference in accuracy between training and test data 66

3.8 Mean time and accuracy results (including standard error) of the com-

parison between PTTD and PTTD-PH for different dmax values. 74

3.9 Mean time and accuracy results (including standard error) of the com-

parison between PTTD, PTTD-R and PTTD-fast for different training

set sizes. 77

4.1 Wins of PTTD vs. PTTD-CI in terms of predictive accuracy and training

runtime. 85

ix

LIST OF TABLES

4.2 Predictive accuracy and training runtime results of PTTD and PTTD-CI

for 40 benchmark datasets. 87

4.3 Average classification rates and standard deviation on test sets. 94

4.4 Average ranks of the algorithms (Quade) and results of the Holm test

(p-value and rejection of null hypothesis at the 5% significance level) . . 95

4.5 Experimental results in terms of RMSE. Additionally, for each dataset,

the rank of each method is shown in brackets. 97

5.1 An overview of some properties of the related model classes discussed in

this chapter. 100

7.1 Predictive accuracy results for different surrogate loss functions used

during induction withthe PTBU algorithm. Results include mean and

standard deviation. 116

7.2 Part I: Mean accuracy measures with standard deviation comparing

PTBU-DOE with different values of τ (0.1− 0.5). 118

7.3 Part II: Mean accuracy measures with standard deviation comparing

PTBU-DOE with different values of τ (0.6− 1.0). 119

7.4 Part III: Mean accuracy measures with standard deviation comparing

PTBU-DOE with different values of τ (1.1− 1.5). 120

7.5 Part IV: Mean accuracy measures with standard deviation comparing

PTBU-DOE with different values of τ (1.6− 2.0). 121

7.6 Part I: Mean accuracy measures with standard deviation comparing

PTBU-LCH with different values of k (1− 5). 123

7.7 Part II: Mean accuracy measures with standard deviation comparing

PTBU-LCH with different values of k (6− 9). 124

7.8 Accuracy results of the three main variants selected for comparison in

Section 4.2. 126

7.9 Training runtime results in seconds (s) of the three main variants selected

for comparison in Section 4.2. 127

x

1

Introduction

1.1 Machine Learning

Machine learning is one branch of the broad research field of Artificial Intelligence (AI).

The primary goal of machine learning is to develop strategies, i.e., computer programs,

which make use of data to improve their behavior. To be a bit more formal, I want to

recall a more prominent definition by Tom M. Mitchell:

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E.” [67]

Several components are involved in this brief definition: To start with, we are talking

about computer programs, the core of which mostly is an algorithm. Informally, an

algorithm takes input values, processes these in a predefined sequence of instructions

and returns a result as an output [26]. In general, algorithms are designed to solve

well-defined problems. In the early days of computer science, several frameworks have

been developed to describe the type of tasks (also called problems), which can be

solved by certain kinds of algorithms. Some famous ones are: the Turing machine [103]

introduced by Alan Turing and the lambda calculus [23] by Alonzo Church, just to

name two.

Independent of the concrete definition, all these frameworks share one property:

the algorithms have to be developed and implemented by humans. This circumstance

introduces at least two difficulties: first, the programmer would need to know a solution

to the problem at hand, and second, available human resources in terms of programming

1

1. INTRODUCTION

craft are limited in number. These factors hinder the development of algorithms for

difficult problems, because neither an exact nor an approximate solution is known or

the implementation might take too long or costs too much to be economically efficient.

Examples of such tasks can be drawn from many domains like biology, medicine,

multi-media, finance and many more. Some examples are:

• determining the most effective medication for a given patient (medicine)

• recognizing and determining concepts like faces or other objects in digital images

(multi-media)

• determining the risk of a loan default (finance)

• determining the quality of a good, produced in a factory (production)

These are just a few examples of typical tasks for which machine learning is used.

The wide spectrum of industrial sectors involved already foreshadows the huge amount

of potential applications of machine learning. However, there is also a potential draw-

back in using a learning algorithm compared to a classical algorithm (if existing). The

latter usually provides properties like completeness and correctness. In this case, a

correct solution is provably existing for every instantiation of the problem at hand. In

contrast, a learning algorithm usually does not guarantee a perfect solution. Rather,

it produces a model which mimics the unknown mapping between a problem, taken as

input, and its solution, provided as output with the help of examples provided as data.

Coming back to the definition by Mitchell, a machine learning approach to the

above problems uses data – referred to as experience – in order to enable the computer

to learn and improve according to some predefined performance measure.

In the remainder of this thesis, we will focus on a specific but still prevalent problem

of machine learning i.e. supervised learning. It is also referred to by learning from

examples. In the following, we will briefly introduce the basic setting and notation. For

a more comprehensive introductions see [34, 46].

Supervised Learning

Data usually comprises a set of examples. Emanating from a supervised learning [46]

setting, an example is a tuple (x, y), where x = (x1, . . . , xm) ∈ X denotes the input –

2

1.1 Machine Learning

also called instance – and y ∈ Y denotes the output. X = X1 × . . . × Xm denotes the

instance space, from which each instance is drawn. It often conforms to the Cartesian

product of domains Xj , also referred to as attributes. Depending on Y, several different

learning tasks can be distinguished. If Y is a set of categorical values, the task is about

classification. If Y equals the real numbers R, it is a regression task. Some more types

of learning problems will be introduced later.

Given a training dataset T ∈ (X× Y)n, the aim of a supervised learning algorithm

A is to find a mapping M : X→ Y. Thus A itself implements a mapping

A :
⋃
n∈N

(X× Y)n → H.

H denotes the so-called hypothesis space. M is called hypothesis or model. Applying

the model to an instance produces a prediction M(x) = ŷ.

In accordance with Mitchell’s definition, it is not enough to find an arbitrary hy-

pothesis M . Instead, M must be evaluated in terms of a performance measure, which

we seek to maximize. Or, equivalently, a loss function L : (Y×Y)→ R to be minimized.

To be more precise, the ultimate goal is to find a model M∗, which minimizes the risk

of error R:

M∗ = argmin
M∈H

R(M) = argmin
M∈H

∫
(x,y)∈(X×Y)

P((x, y)) · L(y,M(x)) d(x, y) (1.1)

P denotes the joint probability distribution over X×Y. Since P is usually unknown,

in practice, we have to rely on an estimate of R. One common possibility is to use the

empirical risk Remp:

M∗ = argmin
M∈H

Remp(M) = argmin
M∈H

1

|V|
∑

(x,y)∈V

L(y,M(x)) (1.2)

The validation set V is a set of examples, which has not been seen by the learning

algorithm before, and which we assume is drawn from the same distribution as the

training dataset T. Since T and V are just samples, one seeks to be more sure about

the risk estimate by repeating the steps of training and validation several times. A

popular procedure in this regard is cross-validation. Given a dataset D, cross-validation

randomly splits D into k folds. Then the following steps are repeated for every fold:

3

1. INTRODUCTION

1. Put the selected ith fold aside and run the learning algorithm on the remaining

k − 1 folds.

2. Calculate an error estimation on the ith fold.

In the end, all k error estimations are averaged. In practice, this procedure is used

for model selection, i.e. many potential hypothesis classes are evaluated and the one

which performs best usually is chosen for production. Since, this way the validation

set become an intrinsic part of learning, the estimated error on the validation data is

most often to optimistic. Therefore, it is recommended that another dataset, the test

set, is used to estimate the most realistic performance for a productive system.

Capacity Control

The kind of error we are interested in is the so-called generalization error. We are

explicitly interested in a small error on unseen data. Or, the other way around, we are

not primarily interested in a low training error (the error on the training set); because

a low training error does not necessarily imply a small generalization error. A model

with a low training error and a high generalization error is likely to overfit the data it

has seen. This is especially dangerous if a model class is very flexible like it is the case

for FPTs.

In order to explain these phenomena, we assume some underlying (still unknown)

data generating process, specified by P. This might for example be an underlaying

functional relationship between the input and output variables. Since we are ignorant

about the true relationship, we have to make some assumptions about it. This we do

by selecting a hopefully well fitting model class (e.g., polynomials of degree 2). These

assumptions strongly influence the learning process. Their implication on the resulting

model is also called inductive bias. Since we only make a guess about the correct model

class, it is possible, that we either under- or overestimate their true complexity. For

example, if the correct model class would be a polynomial of degree 3, then we have

underestimated their complexity and we might encounter underfitting, whereas if the

correct model class is a polynomial of degree 1 (linear function), then we are prone to

overfitting.

There are many so-called regularization techniques to avoid overfitting [4, 15, 34].

Generally, they are based on the idea to restrict die complexity of a model class. The

4

1.2 Fuzzy Set Theory

specific technique to use of course strongly depends on the model class at hand. Stick-

ing to the above example of polynomials, one way of restricting complexity would be

to upper-bound the maximum degree of the polynomials considered during learning.

Furthermore, another common approach is to constraint the weight vector, making

sure the weights are small in magnitude. This is referred to as shrinkage. Other model

classes like decision trees [85] and also, as will be seen in later sections, fuzzy pattern

trees can be regularized by restricting the size of a model. In this regard, the notion

“size” will be defined as the number of subcomponents of the model and we will see,

that this is a reasonable measure for its complexity.

As a side remark, the different goals of minimizing generalization vs. minimizing

training error is also one of the main differences between the fields of machine learning

and optimization [95].

1.2 Fuzzy Set Theory

Lotfi A. Zadeh first introduced his concept of a fuzzy set in [118]. Fuzzy sets extend

the mathematical concept of a (regular or ordinary) set by allowing elements to be

contained in the fuzzy set to a certain degree. To be more precise, a fuzzy set A

is identified by its so-called membership function µA. A membership function is a

mapping µ : X → [0, 1], where X denotes the domain or the universe of discourse.

Elements x ∈ X belong to A to the degree of membership (or simply degree) µA(x).

Note that µA(x) can take any value in the unit interval. As a special case, when µA

can only take two values (0 and 1), it is reduced to the characteristic function of an

ordinary set.

Common choices for membership functions are piecewise linear functions like bounded

linear functions, triangular or trapezoidal functions. Furthermore, also Gaussian mem-

bership functions are used in many applications.

Zadeh’s intention was to enable a human user to precisely express his subjective

perception of classes of objects, commonly refereed to in natural language. Examples

are ”short people”, ”much older than 5 years”, or ”high temperature”. In the following,

we will refer to such classes as fuzzy concepts or fuzzy terms. A membership function

for the second fuzzy concept, which refers to numbers, might be the one illustrated in

Figure 1.1.

5

1. INTRODUCTION

age

m
em

be
sh
ip

4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1.1: One possible formulization of a subjective perception of the fuzzy concept

”much older than 5 years”.

Working with fuzzy sets requires the ability to apply set operations. Basically,

operations on fuzzy sets are defined in terms of their membership functions: The com-

plement of A as denoted by Ā is defined by µĀ = 1 − µA. Three more notions play a

central role for ordinary sets as well as for fuzzy sets. These are containment (A ⊂ B),

union (A ∪B) and intersection (A ∩B), which can be defined as:

• ∀x ∈ X : A ⊂ B ⇔ µA(x) ≤ µB(x)

• ∀x ∈ X : µA∪B(x) = max(µA(x), µB(x))

• ∀x ∈ X : µA∩B(x) = min(µA(x), µB(x))

The operators (min and max) above, are the ones originally used by Zadeh. Mean-

while, many more operators have been found, which can replace min and max, while

keeping the same semantics of a conjunctive, respectively disjunctive, aggregation.

These classes of operators are called t-norms and t-conorms [59].

A t-norm >(·, ·) is a generalized conjunction, namely a monotone, associative and

commutative [0, 1]2 → [0, 1] mapping with neutral element 1 and absorbing element 0.

Likewise, a t-conorm ⊥(·, ·) is a generalized disjunction, namely a monotone, associative

and commutative [0, 1]2 → [0, 1] mapping with neutral element 0 and absorbing element

1.

6

1.2 Fuzzy Set Theory

m
em

be
rs

hi
p

0
1

0 1 2 3 4 5 6

"around 2" "around 4"

m
em

be
rs

hi
p

0
1

0 1 2 3 4 5 6

"around 2 and around 4"

number

m
em

be
rs

hi
p

0
1

0 1 2 3 4 5 6

"around 2 or around 4"

Figure 1.2: Example of two fuzzy numbers (top), which are combined with the minimum

t-norm (middle) and with the maximum t-conorm (bottom).

Using t-norms and t-conorms, more complex fuzzy sets can be constructed by com-

bining basic fuzzy sets. One simple example is shown in Figure 1.2. Starting with the

fuzzy sets of two fuzzy numbers, namely around 2 and around 4 (top), one is able to

derive the membership function of numbers, which belong to both sets simultaneously.

In this example, the minimum operator was used as corresponding t-norm. The name

of the derived fuzzy set might be around 2 and around 4. In the same way, the member-

ship function of numbers, which are around 2 or around 4 (bottom), is derived using

the maximum operator.

Semantics of Fuzzy Sets

So far, we have set the theoretical foundations of fuzzy sets and their membership

functions without caring about their semantics. Given a fuzzy set F and an element x,

what does it actually mean when we say: “µF (x) = 0.7”?

7

1. INTRODUCTION

Like for probability theory, where probability is given a semantic meaning by either

the “frequentist”, the “subjectivist” or even some other less prevalent views [33], for

fuzzy set theory there exist at least three different meanings referring to a degree of

membership. Dubois and Prade gave a comprehensive overview of possible semantics

in their work [31].

• Similarity : This view relates membership degrees to distances. This view is

prevalent in many data analysis applications, where the distance to prototypical

elements defines the membership i.e. the proximity of other elements to a class

or cluster. It is supposable the oldest view and was suggested in [10].

This view will also be the basis for this work and the methods which will be

introduces in the following chapters.

• Utility : F in this case embodies a set of more or less preferred elements; µF (x)

then determines the utility of each element. That is, µF (x) refers to the usefulness

of x. This way fuzzy sets can act as soft constraints to optimization problems.

The view was put forward in [11].

• Uncertainty : Zadeh introduced this interpretation in his works about possibility

theory [120] and approximate reasoning [119]. A membership value µF (x) in these

frameworks means the degree of possibility that a parameter x has a value u.

Towards Classification

Being able to dynamically construct more complex fuzzy sets with the help of fuzzy

logical operators is especially interesting from a machine learning perspective. Fuzzy

sets can be used as gradual / fuzzy selectors of instances, which e.g. shall belong to the

black class in Figure 1.3. There, a simple two-dimensional example is presented.

The instances are represented by a vector (x1, x2). As can be seen in the figure, they

are obviously arranged in three major groups, which are to some extent overlapping

and may not be clearly separated from each other easily. Two of the groups belong

to the white class (bottom-left and up-right), the other one belongs to the black class

(top-left). At the top and the right axis of the scatter plot, trapezoidal fuzzy sets are

shown (A, B and C, D), which are defined on their respective domain. Of course,

8

1.2 Fuzzy Set Theory

x1

x2

A B

0
1

C

D

0 1

Figure 1.3: Example of elements existing in a 2-dimensional space, i.e. described by two

attributes (x1, x2).

this example is idealized; in reality, class distributions seldom appear in such a strict

arrangement.

Considering the task to select the instances of the black class, a reasonable choice

of a fuzzy selector would be:

µSblack
(x1, x2) = >(µA(x1), µC(x2)). (1.3)

Sblack as defined by its membership function in (1.3) conjunctively combines the

two fuzzy sets A and C. Roughly speaking, in order to belong to the fuzzy set Sblack,

an instance has to belong to both fuzzy sets A and C, simultaneously. Here, the term

”belonging to” refers to a high membership value, i.e., the instance has to produce a

high output for both membership functions.

In the same way, we are able to create a fuzzy set for the white class:

µSwhite
(x1, x2) = ⊥(>(µB(x1), µC(x2)),>(µA(x1), µD(x2))) (1.4)

9

1. INTRODUCTION

First we select each of the two white groups individually as we did before for Sblack,

and then we aggregate them using a t-conorm. In words: An instance belongs to the

white class, if it either belongs to B and C or it belongs to A and D.

Membership in this case is interpreted as similarity. Taking fuzzy set Sblack as an

example, it is constructed in a way, that it relates the membership of an element to its

proximity to elements of the black class. The same applies for Swhite, respectively.

This example already reveals an important benefit of using a fuzzy set instead of

using an ordinary set in order to select instances of one class. The boundaries of the two

classes are blurred, which is a common phenomenon in machine learning. Assuming

sharp class boundaries when using ordinary sets (i.e. intervals) would not properly

reflect the reality of the class distributions. Instead, for an instance, for which we do

not know the actual class label and which is close to the class boundaries, both classes

appear to be valid options to some degree.

Let us look at the instance xcross like the one indicated as a cross in Figure 1.3.

Concerning the white class, xcross is located at the margin of the group of white ele-

ments, still within reach but also not directly covered. Hence, it seems reasonable to

not give a full membership of 1 nor a membership of 0. The same reasoning also applies

to the black class, independently.

After constructing Sblack and Swhite we not only have a fuzzy logical description of

the two classes but we are also able to predict the class of an unknown instance x′.

To this end, we simply compare the membership values Sblack(x
′) and Swhite(x

′) and

decide for the class with the higher membership.

As we already started to introduce fuzzy set theory in the realm of machine learning,

in the following section we will further focus on this symbiosis.

1.3 Fuzzy Sets in Machine Learning

In the past, fuzzy set theory has already been used in the realm of machine learning in

several regards. These include applications like fuzzy clustering [48], fuzzy rule-based

systems [99, 109], fuzzy decision trees [54, 110] and fuzzy association analysis [21, 29],

just to name a few.

In [51], Hüllermeier points out some potential contributions of fuzzy set theory to

the field of machine learning. These include the ability to express fuzzy (or gradual)

10

1.3 Fuzzy Sets in Machine Learning

concepts, like the ones we have discussed in the last section. In traditional machine

learning, acquiring a definition of a general (non-fuzzy) concept by a set of positive

and negative examples is also called concept learning [6]. Formally, a concept usually

is expressed in terms of predicates, which are conditions on the properties of the ob-

jects. For example, a bird is a small to medium size, winged, feathered, usually able to

fly animal. Extending concept learning to the fuzzy case has the following potential

advantages:

• Many real world concepts are fuzzy by nature and do not have sharp boundaries.

Therefore, it is inappropriate to make use of sharp constraints where there is no

sharp boundary in the real world. Allowing fuzzy predicates enriches the concept

description and makes it more realistic.

• A fuzzy concept can be considered particularly robust in the following sense:

Comparing a standard interval on the real numbers with a fuzzy interval (trape-

zoidal fuzzy set), the former is prone to a strange ”boundary effect”, whereas the

latter is not. This effect refers to the fact that a small variation of the boundary

points of the interval may have a strong influence on the model in the interval

case. The effect is alleviated when using fuzzy sets instead of intervals.

• Fuzzy set theory provides an interface between an arbitrary (most often a nu-

meric) scale and a symbolic scale, which usually consists of linguistic terms. This

provides a first layer of abstraction by utilizing natural language to describe

complex objects. This potentially improves the interpretability of the formal

description of a concept.

• In line with their improved interpretability, many fuzzy methods enable us to

combine modeling and learning. This is especially true for rule-based systems as

well as fuzzy pattern trees. For rule-based systems, experts are able to formulate

if-then rules, roughly describing the input-output relation of the system. Then,

implementing the linguistic terms employed by the expert in terms of fuzzy sets,

we are able to tune the parameters of these fuzzy sets in an optimal way using

the data we have observed. This is just one example of incorporating expert

knowledge into the learning process. Many more variants can be thought of.

11

1. INTRODUCTION

12

2

Fuzzy Pattern Trees

Fuzzy Pattern Trees (FPT) have independently been introduced by Huang et al. [49]

and Yi et al. [116], who called this type of model Fuzzy Operator Trees. The FPT model

class is related to several other model classes including fuzzy rule-based systems (FRBS),

fuzzy decision trees (FDT) and genetic programming (GP). These model classes and

their respective differences in comparison to FPTs are discussed in Chapter 5.

In this chapter we first introduce the basic constituent parts of the model class,

then these parts are assembled into a fuzzy pattern tree. The introduction is followed

by a discussion about the interpretatability of FPTs and the potential capability of an

expert to use the model class for typical modeling [71, 72, 91] and machine learning

tasks. After this, we focus on some aspects of FPTs, which are adjuvant in many

applications and also form the first contributions of this thesis.

2.1 Model Overview

A fuzzy pattern tree is a hierarchical, tree-like structure, whose inner nodes are marked

with generalized (fuzzy) logical and arithmetic operators, and whose leaf nodes are

associated with fuzzy predicates on input attributes. It propagates information from

the bottom to the top: A node takes the values of its descendants as input, aggregates

them using the respective operator, and submits the result to its predecessor. Thus,

an FPT implements a recursive mapping producing outputs in the unit interval.

Figure 2.1 shows an example of an FPT, which was trained from a wine quality

13

2. FUZZY PATTERN TREES

high quality wine

AVG

(Criterion I)

OR

alcohol is

high

density is

high

(Criterion II)

OR

(Criterion III)

AND

alcohol is

low

acidity is

low

sulfates is

high

Figure 2.1: An interpreted example of a fuzzy pattern tree.

dataset1. It represents the fuzzy concept – a fuzzy criterion for – wine with a high

quality. The node labels of the tree illustrate their interpretation and not yet their

implementation.

In order to interpret the whole tree and grasp the fuzzy pattern it depicts, we start

at the root node. It represents the final aggregation (a simple average in this case)

and outputs the overall evaluation of the tree for a given instance (a wine). Then, we

proceed to its children and so forth. The interpretation could be like this:

A high quality wine fulfills two criteria, which are able to compensate each other.

We call these two criteria – the left and right subtree of the root node – criterion I and

criterion II. Criterion I is fulfilled if the alcohol concentration of the wine is high or its

density is high. Criterion II is fulfilled, if the wine has a high concentration of sulfates

or a third criterion (III) is met. This is the case, if both alcohol concentration and the

wines acidity is low.

Next, we will proceed with the implementation of the tree. Figure 3.17 shows the

same model, but this time with more detailed information about the concrete operators,

their parameters and the fuzzy sets involved. The average in the root node is realized by

a weighted average operator (WA), which assigns the weight 0.65 to the left subcriterion,

whereas the right one receives the remaining weight of 0.35. The AND and OR nodes

are implemented by generalized logical operators (t-norms and t-conorms). Finally,

1The dataset is also part of the datasets used in the experiments in Chapter 4

14

2.2 Aggregation and Structure

M(x)

WA0.65

COMAX

Fhigh(xalcohol) Fhigh(xdensity)

COALG

ALG

Flow(xalcohol) Flow(xacidity)

Fhigh(xsulfates)

Figure 2.2: The same FPT as in the previous figure with additional information about

the implementation of each node.

fuzzy sets – defined on their corresponding attribute domains – will be used in order

to express the fuzzy linguistic terms contained in the leaf nodes.

2.2 Aggregation and Structure

As described above, internal nodes represent the aggregation of two membership val-

ues. The original set of aggregation operators used in [49] include three families of

aggregation operators. These are generalized conjunctions (t-norms) and generalized

disjunctions (t-conorms) as they where introduced in Section 1.2. Furthermore, two

different averaging operators are used, which are the simple weighted average and the

ordered weighted average [90, 114].

The operator set used in [49] is shown in Tables 2.1–2.2. The variables u and v

denote the membership values, to be aggregated.

An ordered weighted average (OWA) combination of k numbers v1, v2, . . . , vk is

defined by

OWAw(v1, v2, . . . , vk)
df
=

k∑
i=1

wivτ(i), (2.1)

where τ is a permutation of {1, 2, . . . , k} such that vτ(1) ≤ vτ(2) ≤ . . . ≤ vτ(k) and w =

(w1, w2, . . . , wk) is a weight vector satisfying wi ≥ 0 for i = 1, 2, . . . , k and
∑k

i=1wi = 1.

Thus, just like the normal weighted average (WA), an OWA operator is parameterized

15

2. FUZZY PATTERN TREES

Name Definition Code

Minimum min(u, v) MIN

Algebraic uv ALG

Lukasiewicz max(u+ v − 1, 0) LUK

Einstein uv
2−(u+v−uv) EIN

Table 2.1: Fuzzy operators: t-norms

Name Definition Code

Maximum max(u, v) MAX

Algebraic u+ v − uv COALG

Lukasiewicz min(u+ v, 1) COLUK

Einstein u+v
1+uv COEIN

Table 2.2: Fuzzy operators: t-conorms

by a set of weights. However, a weight does not directly refer to an argument, like

in WA, but instead to a rank: wi is the weight of the i-th smallest value among

v1, v2, . . . , vk.

Note that for k = 2, which is the case of FPT, (2.1) boils down to

OWAγ(u, v) = γ ·min(u, v) + (1− γ) ·max(u, v), (2.2)

which is simply a convex combination of the minimum and the maximum. In fact, the

minimum and the maximum operator are obtained, respectively, as the two extreme

cases γ = 1 and γ = 0.

When defining an order relation ”�” on aggregation functions in agreement with

the standard (point-wise) order on functions, then conjunctive aggregations A are those

with A � min, compensatory (averaging) those with min � A � max, and disjunctive

those for which max � A [41].

Therefore, the class of OWA operators nicely “fills the gap” between the largest

conjunctive combination, namely the minimum t-norm, and the smallest disjunctive

combination, namely the maximum t-conorm.

16

2.2 Aggregation and Structure

2.2.1 Extending the Set of Operators

The original selection of operators is to some extent arbitrary. In general, there exist

many different t-norm and t-conorms. Especially, there are parameterized families like

the Dubois & Prade t-norm [35],

DPα(u, v) =
u+ v − uv −min(u, v, 1− α)

max(1− u, 1− v, α)
, where 0 ≤ α ≤ 1 (2.3)

the Hamacher t-norm [45]

Hα(u, v) =
uv

α+ (1− α)(u+ v − uv)
, where 0 ≤ α ≤ +∞ (2.4)

and many more. Parametric operators like these have an important advantage in the

realm of machine learning. Their parameters can be optimized to best fit the data at

hand. This potentially allows a more accurate fit of the overall model. It should be

noted, however, that allowing for more and more operators also yields a higher runtime

of the learning algorithms, which will be introduced in Chapter 3. Therefore, it is

desirable to find a set of operators, which on the one hand is small and can efficiently

be optimized, and on the other hand is at least as expressive as the original operator

set. So far, we are not aware of a single parameterized operator family, which could be

used to substitute all originally used t-norms, respectively t-conorms. In the following,

three parameterized operators are proposed to be used for the FPT model class, one

for each class of aggregation operators: t-norms, t-conorms and averaging operators.

To start with, WA and OWA are replaced by the so-called Choquet integral (CI)

[41]. In order to define this operator in a formally correct way, it should be written as

an integral of a function with respect to a suitable non-additive measure. However, in

the discrete case with only two input arguments, one can show that it reduces to the

following simple expression:

CI(u, v) =

{
(1− β)u+ βv if u ≤ v
αu+ (1− α)v if u > v

, (2.5)

where α, β ∈ [0, 1]. Note the following special cases: CI = min and CI = max for

(α, β) = (0, 0) and (α, β) = (1, 1), respectively; for β = 1− α, one obtains the WA and

for β = α the OWA operator.

17

2. FUZZY PATTERN TREES

Especially interesting from a computational point of view, is the existence of an

efficient way to approximate the optimal parameters α and β. For this purpose, we

first use a closed form solution in order to minimize the squared loss of the operator

on our training data. This solution, however, does not ensure the parameters to reside

in [0, 1]. Hence, we simply force them to: If α is smaller than 0, we set it to 0; if it is

bigger than 1, we set it to 1. The same procedure is applied to β. This may yield a

suboptimal solution, however, in the general case it is assumed to be close to optimal.

This procedure is commonly used for constraint optimization problems [18] and was

also implemented by Huang et al. to determine the parameters of the WA and OWA

operators.

In order to further provide a real extension of the current t-norms, respectively

t-conorms, we use two convex combinations:

CC(u, v) :=γ1 ·MIN(u, v) + γ2 ·ALG(u, v)+

γ3 · LUK(u, v) + γ4 · EIN(u, v)

COCC(u, v) :=γ1 ·MAX(u, v) + γ2 · COALG(u, v)+

γ3 · COLUK(u, v) + γ4 · COEIN(u, v)

where γi ≥ 0, i ∈ {1, 2, 3, 4} and
4∑
1

γi = 1.

Note that CC and COCC are actually no longer t-norms, respectively t-conorms, be-

cause they do not satisfy the associativity property. However, one can easily prove, that

CC is a weak t-norm and COCC is a weak t-conorm as they were introduced by Yager in

[115]. Although CC and COCC do not satisfy associativity, they at least satisfy quasi-

associativity. Furthermore, associativity is never used in the realm of FPT. Although

the interpretation of weak t-(co)norms is not exactly the same as of t-(co)norms, [115]

describes them as being “and-like” and “or-like”, respectively. This is obvious for some

special cases of γi. Whenever there is one γi, which takes all the weight (e.g. γ1 = 1),

the CC and COCC operators actually coincide with the i-th t-(co)norm.

In order to find good parameters for these operators as well as parametric t-norms

and t-conorms, there might be the need for optimization methods like gradient descend

[13] or even evolutionary strategies like CMA-ES [14].

18

2.3 Important Properties of Fuzzy Pattern Trees

2.3 Important Properties of Fuzzy Pattern Trees

Apart from the properties of the FPT model class we already discussed, it exhibits two

other very interesting properties.

Monotonicity

The first one is the ability to model monotonicity constraints [32, 79]. The type of mono-

tonicity constraint which is meant here refers to the type of mapping a tree implements.

All operators introduced so far are monotonically increasing in their arguments, i.e.

µA(x) ≤ µA(x′) and µB(x) ≤ µB(x′)⇒ φ(µA(x), µB(x)) ≤ φ(µA(x′), µB(x′)), (2.6)

where φ(·, ·) denotes an operator, µA(·) and µB(·) denote membership functions and x

and x′ denote attribute values. Since every single operator is monotonically increasing,

every composition of these operators is also monotonically increasing. This means

that the whole tree is monotonically increasing in the membership values given by the

leaf nodes. Therefore, the question of how the output of the tree is influenced by an

attribute depends on how the leaf nodes’ membership depends on its attribute.

Note however, that the fuzzy sets in a tree are not necessarily monotonic. A regular

triangular or trapezoidal fuzzy set, for example, is not a monotonic function. Never-

theless, there are of course fuzzy sets, that are monotonic (e.g. Figure 1.1). They can

even be monotonically increasing or decreasing. This actually allows us to constrain the

influence of each single attribute in a way, which is suggested by background knowledge

about the problem domain.

Consider, for example, the problem of making a diagnosis for a given patient. To

be able to decide whether or not the patient is suffering from a certain disease, the

physician conducts several tests – e.g. measuring the temperature, blood pressure,

gathering important information by asking the patient or even measuring the level of

certain ingredients in the blood of the patient. Assuming that each single test returns

a score (or probability), in many cases these scores monotonically increase or decrease

together with the risk of actually suffering from the disease. The Marburg heart score

[19] constitutes a prevailing example. Roughly speaking, it aggregates several risk

factors for the purpose of predicting a severe heart disease. The presence compared to

19

2. FUZZY PATTERN TREES

the absence of a risk factor, in this case, shall only increase the probability of suffering

from the disease.

In order to learn an aggregation function on data of that kind, monotonically con-

straining the influence of each single test by only allowing monotonically increasing

fuzzy sets like ’high of age’ (cf. Figure 1.1) can guide the learning process and improve

the results.

This is especially true for problems with sparse data as was shown in [5]. Sparsity

in this regard means that there are only relatively few observations available to learn

from, compared to the dimensionality of the problem. This situation is also referred to

as curse of dimensionality [9]. Roughly speaking, when the dimensionality increases,

the volume of the instance space and in the same way the size of the hypothesis space

increases so fast that the available data becomes sparse. In this case, each type of

background knowledge reducing the model space, including monotonicity constraints,

will be useful.

Handling Missing Values

A common obstacle in machine learning is the problem of dealing with missing values.

A missing value refers to the absence of a value for a certain attribute of an instance.

Missing values can be treated in many different ways, depending on the assumptions

about the reason of missing the value. In the literature [87, 89], three main types

are distinguished, namely missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR).

MCAR denotes the situation where missing values of an attribute occur for a random

subset of instances. The second type denotes missing values, which occur (statistically)

depending on an observed attribute. In this regard, the name MAR is vexing, since

the values do not occur completely at random considering the information of the de-

pendent attribute. Nevertheless, the dependence between an observed attribute and

the occurrence of a missing value in another attribute may be of any strength. Except

for full dependence, the occurrence stays random. MNAR denotes the setting, when

the reason for a missing value (potentially fully) depends on unknown or unobserved

information.

It can be determined from data, whether data is MCAR, whereas it is impossible

to determine the cases of MAR and MNAR [87, 89].

20

2.3 Important Properties of Fuzzy Pattern Trees

The simplest way to handle missing values is to entirely exclude instances with

missing values from the dataset, which is called complete case analysis. When data

is MCAR, complete case analysis leads to unbiased results. However, in many cases

data is not MCAR, but MAR or MNAR. In these cases, omitting every incomplete

instance leads to biased results [89]. Another drawback of the complete case analysis

is a loss of information. Especially for small datasets with many missing values, this

reduces the information to learn from dramatically. Therefore, it is desirable to deal

with incomplete instances differently.

Depending on the machine learning technique one wants to apply, it is necessary

to include a preprocessing step and apply imputation methods. These methods replace

missing by estimated values. How the estimations are calculated depends on the impu-

tation method. Van Buuren provides an overview on imputation techniques in [104].

However, it is more elegant, if a machine learning method is capable of directly dealing

with missing values in a reasonable way. For FPT, this is the case, as will be explained

in more detail in the remainder of this subsection. To this end, we will show how a tree

is evaluated in case of missing values. This is sufficient for all of our current induction

algorithms to work properly with missing values.

Assuming that we have to determine the membership degree of an instance x̃ ∈ X

with missing values for the fuzzy pattern tree M , we will make use of the monotonicity

of the tree in the following way. x̃ shall exhibit missing values at an arbitrary but

positive number of attributes, for example x̃ = (x1, x2, ø, x4, ø), where ø denotes a

missing value. In this example, the values for the third and fifth attribute are missing.

For simplicity and without loss of generality, we also assume that there is only one fuzzy

set for each attribute (µ1(·), ..., µ5(·)). This means, that we are not able to evaluate

the fuzzy sets µ3(·) and µ5(·), but we definitely know in which range the unidentified

membership values must reside, namely [0, 1].

Now, for the following, it is adjuvant to define M to be M after replacing all fuzzy

sets in the leaf nodes by the identity function id(·). Then it yields that

M((·, ·, ·, ·, ·)) ≡M((µ1(·), µ2(·), µ3(·), µ4(·), µ5(·))). (2.7)

Due to monotonicity, we additionally know that

21

2. FUZZY PATTERN TREES

ν := M((µ1(x1), µ2(x2), 0, µ4(x4), 0))

≤ M((µ1(x1), µ2(x2), 1, µ4(x4), 0))

≤ M((µ1(x1), µ2(x2), 1, µ4(x4), 1)) =: ν

Due to the monotonicity of the tree in the membership values, we can now conclude,

that the proper membership degree for the incomplete instance x̃ must reside in ν =

[ν, ν]. In principle, this interval could be directly returned to the user. Although,

we were not able to identify the proper exact membership because of the missing

information, at least we are able to confine the interval of possible values. If we are

forced to make a point prediction, the simplest way is just predicting the mean of ν, ν.

Depending on the learning task, which we will discuss in the next chapter, it is

sometimes already enough to know ν in order to make a prediction (e.g., in classifica-

tion). Additionally, we will see that we can utilize the ability to determine ν efficiently,

in order to reduce the costs of a prediction.

2.4 Universal Approximation Property

As we have seen in the Chapter 1, learning in our case involves the minimization of

the empirical risk (1.2). Assuming our data comes from a probabilistic data generating

process P and let

f(x) = argmin
ŷ

E(L(ŷ, y)|x) (2.8)

= argmin
ŷ

∫
L(ŷ, y) d P(x, y) (2.9)

be the so-called Bayes predictor, which attains the lowest possible prediction error.

Then the question arises, if we are able to closely approximate f by means of a fuzzy

pattern tree model. This would be a hint towards the belief that we are able to succeed

in the minimization of (1.2).

22

2.4 Universal Approximation Property

To be more precise, in this section, we will give a proof, that there always exists

an FPT M to approximate an arbitrary function g : [0, 1]m → R up to any degree of

accuracy. This ability is called universal approximation property.

The proof is constructive in the sense that given a function g, we construct an FPT,

which implements a function g̃, to fulfill the desired approximation.

Theorem. (FPTs are Universal Approximators) Let m ∈ N and g : [0, 1]m → [0, 1]

be an arbitrary continuous function. Let ε ∈ R with ε > 0. Then, there exists a fuzzy

pattern tree M , which implements a function g̃, with

|g(x)− g̃(x)| < ε ∀x ∈ [0, 1]m.

Proof. Because g is continuous, for every x1 ∈ [0, 1]m and every ε > 0 there exists a

δx1,ε > 0, such that

∀x2 ∈ [0, 1]m : |x1 − x2| < δx1,ε ⇒ |g(x1)− g(x2)| < ε (2.10)

(Weierstrass definition) [86]. Because a continuous function, defined on a compact set

is uniformly continuous, it even holds that:

∃δε > 0 ∀x1,x2 ∈ [0, 1]m : |x1 − x2| < δε ⇒ |g(x1)− g(x2)| < ε (2.11)

Let us select δε according to (2.11).

In the following, we want to span a grid in [0, 1]m, for which it holds, that:

∀x ∈ [0, 1]m ∃p(j) ∈ G : |x− p(j)| < δε

Such a finite grid exists, because [0, 1]m is bounded and δε > 0. In order to create the

grid, let

γ =

√
(2δε)2

m
. (2.12)

γ is the maximum Euclidean distance, which two neighboring grid points may have

when they get projected onto one dimension. Now, let

k =

⌈
1

γ

⌉
and γ′ =

1

k
≤ γ (2.13)

Let {c1, c2, ..., ck} = {γ
′

2 ,
3γ′

2 , ...,
(2k−1)γ′

2 } be the possible grid point values on each single

dimension. Then we finally can define the grid points as:

G = {(ci1 , ..., cik)|cij ∈ {c1, ..., ck}} (2.14)

23

2. FUZZY PATTERN TREES

x1

x2

c1 c2

c1
c2

p(1,1)

p(1,2)

p(1,1)

p(2,2)

F(1,1) F(1,2)

0
1

F(2,1)

F(2,2)

0 1

Figure 2.3: Example of a grid in two dimensions with two fuzzy sets for each dimension.

This yields |G| = km. Figure 2.3 illustrates the grid by an example.

For each point p ∈ G let us create a small subtree Sp, which by itself consists of two

parts: the selector subtree SSelp and the value subtree SV alp . Both are then aggregated

by means of the conjunctive min operator. SSelp ”selects” exactly one grid cell, which

means, it assigns full membership to those instances x that are close enough to p and

zero membership to all other. This is accomplished with the help of a set of k fuzzy

sets Fi, j for each of the m dimensions. The i-th fuzzy set of the j-th dimension Fi,j is

defined as:

Fi,j(x) =

1 cj − γ′

2 ≤ xi < cj + γ′

2

0 otherwise
(2.15)

Figure 2.4 shows a selector for the grid cell centered by (c1, ..., c1) = (γ
′

2 , ...,
γ′

2).

SV alp will output a constant value of g(p). We could either just use a constant

membership function at the membership degree g(p), but this fuzzy set would not be

normalized, which is a common requirement. Therefore, instead we use an aggregation

of the two fuzzy sets:

low(x) =

1 x1 < 0.5

0 else

24

2.4 Universal Approximation Property

MIN

..
.

MIN

F1,1 F2,1

F·,1

Fm,1

Figure 2.4: The implementation of the selector subtree SSel
p for the grid point p =

(c1, ..., c1).

OWAg(p)

high low

Figure 2.5: The implementation of a constant function g(p).

high(x) =

1 x1 ≥ 0.5

0 else

Aggregating these two fuzzy sets with an OWA operator with a weight of α = g(p)

produces the desired membership function. Figure 2.5 illustrates the value subtree.

Then, we construct a tree, which implements the following function:

g̃(x) = max
p∈G
{µSp(x)}

This is achieved by successive pairwise aggregation of all subtrees Sp for all p ∈ G.

Figure 2.6 demonstrates the tree structure.

. .
.

MAX

MAX

Sp(1) Sp(2)

Sp(3)

Sp(4)

Figure 2.6: The implementation of the function g̃(·) using a fuzzy pattern tree.

25

2. FUZZY PATTERN TREES

Now, we have to reason about |g(x)− g̃(x)|. Let x̂ ∈ [0, 1]m be arbitrary but fixed.

Let G0 = {p ∈ G : |x̂− p| ≥ δε} and let G+ = {p ∈ G : |x̂− p| < δε}. Then, it holds:

1. ∀p ∈ G0 : µSp(x̂) = 0

2. ∀p ∈ G+ : |µSp(x̂)− g(x̂)| < ε

3. G+ is not empty.

Therefore, we can conclude, that also |g̃(x̂)− g(x̂)| < ε.

This proof holds for all functions g : [0, 1]m → R. In Section 3.1, however, we will

introduce a technique that enables us to easily extend the input space of g from [0, 1]m

to any compact set X.

2.5 Vapnik-Chervonenkis Dimension

The well-known Vapnik-Chervonenkis (VC) dimension [17, 105, 106, 107] is a general

measure of the potential capacity of model classes. This number is interesting for at

least two reasons. First, it provides a rough idea of how powerful a model class is.

”Powerful”, in this regard, means the ability of dealing with complex (especially non-

linear) problems. Second however, for a potentially very complex model class, it is

easier to overfit (see Section 1.1) than for less complex classes. This has to be taken

into account when using it and therefore, we will analyze the model class of fuzzy

pattern trees in the following.

Assuming a number of d points X = {xi|i = 1, ..., d} in the input space. Then, it is

theoretically possible to assign a positive or negative class (setting of binary classifica-

tion) to every point in 2d many ways. This is equivalent to selecting a subset C ⊂ X

of arbitrary size. Such a subset is also denoted as concept.

A model class M is said to shatter d points, if for every concept C ⊂ X there exists

a model M ∈M, which is consistent with C. Consistency, in this regard, means

M(x) = 1⇔ x ∈ C.

The model class M exhibits a VC-dimension of d, if d is the largest number for which

the above condition holds.

26

2.5 Vapnik-Chervonenkis Dimension

In order to prove, that the VC-dimension of a model class is d, one has to proceed

in the following way. First prove that the VC-dimension is at least d and then, that

it is not d+ 1. In our case however, we will easily prove that the model class of fuzzy

pattern tree classifiers has an unlimited VC-dimension.

Theorem. The model class of fuzzy pattern tree classifiers has a VC-dimension of ∞.

Proof. Let d ∈ N be arbitrary but fixed. Let X be a set of d points {x(1), . . . ,x(d)} ⊂
[0, 1]m. Let the elements of X+ ⊂ X be labeled positive (1) and the elements of

X− = X \X+ be labeled negative (0).

Like in the previous proof, we span a grid in [0, 1]m. This time, each cell of the grid

shall contain at most one point x ∈ X. Such a grid exists, because X is finite. In order

to create the grid, let

γ = min
{
|x(j)
i − x

(j′)
i |

∣∣ ∀i ∈ {1, ...,m} and j, j′ ∈ {1, ..., d}
}
.

γ is the minimum gab between a pair of points projected onto one dimension. Still, we

need to take the smallest distance between a point and the boarders of X into account.

Therefore, let

γ′ = min
{
γ, (1− x(j)

i), x
(j)
i

∣∣ ∀i ∈ {1, ...,m} and j ∈ {1, ..., d}
}
.

Just like before, let {c1, c2, ..., ck} = {γ
′

2 ,
3γ′

2 , ...,
(2k−1)γ′

2 } be the possible grid point

values on each single dimension. Then we can define the grid points as:

G = {(ci1 , ..., cik)|cij ∈ {c1, ..., ck}} (2.16)

See Figure 2.3 for an illustration of the grid.

The construction of the tree complies with the one in our previous proof with one

exception. The value subtree SV alp will output a constant value of 1 only in case there

exists a point xi ∈ X+ located within the cell centered by p, else it outputs 0.

Concluding the construction, the resulting tree will output 1 for a point x ∈ [0, 1]m

if and only if x belongs to a cell of the grid, which already contains an element of X+.

Therefore, the output of the elements of X+ themselves is 1. Due to the construction

of the grid (each cell at most contains one element of X) all elements of X− receive an

output of 0.

Hence, the tree shatters X and because d was set arbitrarily we have proven that

the VC-dimension of fuzzy pattern tree classifiers is ∞.

27

2. FUZZY PATTERN TREES

This result suggests, that for arbitrarily complex concepts, there is an FPT model,

which is adequate in terms of capacity. Having said that, as already mentioned before,

highly flexible model classes are prone to overfitting. This is especially true, when the

VC-dimension is even infinite. Theoretical results in the realm of the PAC Learning

Theory [57] have shown, that it might be even impossible at all to learn for such model

classes. Therefore, it is important to be able to adjust the models’ class complexity as

needed.

One way of doing this is to limit the size of the trees. Smaller trees are less ex-

pressive and hence exhibit a lower VC-dimension. In later sections when we introduce

algorithms, for building fuzzy pattern tree models from data, we will see, that these

algorithms always start with small trees, which stepwise become larger until they ter-

minate. This way, the effective VC-dimension stays finite and in fact, it dynamically

increases to hopefully match the complexity of the learning task.

This approach is in line with other algorithms inducing models of different model

classes like rule-based systems and decision trees. These will be discussed in Chapter 5.

Just like for fuzzy pattern trees these algorithms start with small, hence simple, models

that grow until some termination criterion is met.

In the realm of PAC learning, this basic strategy is justified by theoretical results

[57]. The so-called Occam algorithms not only try to find a consistent hypothesis but

additionally prefer small ones. The size of an hypothesis usually is defined by the

length of its representation. The idea of Occam algorithms is that a simpler hypothesis

better generalizes to unseen data than complexer ones. This is basically what Occams

razor [16] suggests. Hence the name.

28

3

Learning Fuzzy Pattern Trees

In the last chapter, we have seen how an expert is able to model an FPT using his/her

expert knowledge, hence this approach can be entitled knowledge-driven. In this sec-

tion, we focus on another way of FPT construction, namely algorithmic or data-driven

approaches to induce FPT models. As already seen in the introductory section, data

usually comprises a set of training examples

T = {(x(i), y(i))}ni=1 ⊂ X× Y .

Being able to induce FPT models utilizing data is helpful in at least two regards.

First, sometimes one is facing a new prediction problem for which there is no expert

knowledge available. In this situation, there is no expert able to model an FPT. And

second, even though there might be expert knowledge available, comparing an expert

model with an algorithmically induced model can yield new insights and ignite an

alternating development process.

To this end, we will introduce several algorithms starting with an already existing

one by Huang, Gedeon & Nikravesh [49], followed by several new ones. For each

algorithm, we first motivate its development by a discussion about drawbacks of existing

approaches, then introduce the method itself as a potential solution to these drawbacks

and in the end validate its success in an experimental study.

In order to provide comprehensive overall studies, the experimental setup is con-

sistent throughout this work. When comparing learning algorithms1 we always use a

3-times 10-fold cross validation procedure. Most of the time we will use 40 classification

1All upcoming algorithms are implemented in the WEKA Machine Learning Framework [112].

29

3. LEARNING FUZZY PATTERN TREES

datasets listed in Table 3.1 for comparing different variants of FPT induction. How-

ever, in Section 4.4 we will evaluate the performance of FPT on 12 regression datasets.

Both sets are assembled from and freely available at the UCI [7] and STATLIB [66]

repositories. Tables 3.1 and 3.2 also summarize some of their properties: the number

of instances (#instances), the number of numerical attributes (#num) and the number

of nominal attributes (#nom). Additionally, for classification datasets the number of

classes (#classes) and for regression datasets the mean and the standard derivation of

the output variable are provided.

Before we actually concentrate on the learning algorithms we have to take care of

two prerequisites. In the following section we start with the preparation of data. Since

FPTs are designed to work with “fuzzy data” and most data is not of this type, we have

to add a pre-processing and a post-processing step. These steps can be implemented

with the help of an expert. However, because an expert might not be available, in

the following section we propose a generic way to transform regular data into data

applicable to FPTs. The second requirement concerns the optimization of parameters

for the newly introduced CI operator. The optimization procedure will be an important

component used by every algorithm discussed.

30

No. Name #instances #num #nom #classes
1 analcatdata-braziltourism 411 4 4 6
2 analcatdata-cyyoung8092 97 7 3 2
3 analcatdata-germangss 400 1 4 4
4 analcatdata-homerun 163 13 14 2
5 analcatdata-lawsuit 264 3 1 2
6 australian 690 6 9 2
7 authorship 841 69 1 4
8 autos 205 15 10 6
9 balance-scale 625 4 0 3
10 biomed 209 7 1 2
11 blood 748 4 1 2
12 bupa 345 6 0 2
13 cancer 683 9 1 2
14 cars 406 6 1 3
15 cloud 108 6 1 4
16 cmc 1473 2 8 3
17 confidence 72 3 0 6
18 credit 690 6 10 2
19 fl2000 65 14 2 3
20 flag 194 17 11 8
21 flare2 1065 0 10 7
22 german 1000 7 14 2
23 glass 214 9 0 6
24 haberman 306 3 1 2
25 heart 270 7 7 2
26 ionosphere 351 34 1 2
27 iris 150 4 1 3
28 irish 500 2 3 2
29 lupus 87 3 0 2
30 lymphography 148 3 15 4
31 metStatRST 336 3 0 12
32 pima 768 8 0 2
33 primary-tumor 339 0 17 22
34 prnn-crabs 200 6 1 2
35 prnn-synth 250 2 0 2
36 schizo 340 12 2 2
37 sonar 208 60 0 2
38 vehilce 846 18 1 4
39 wine 178 13 1 3
40 zoo 101 1 15 7

Table 3.1: Properties of the datasets used in classification experiments.

31

3. LEARNING FUZZY PATTERN TREES

No. Name #instances #num #nom mean stddev
44 auto-mpg 390 8 0 23.42 7.81
45 concrete 1030 9 0 35.82 16.71
46 flare1M 323 8 3 0.14 0.48
47 flare2C 1066 8 3 0.3 0.84
48 forestfires 517 11 2 12.85 63.66
49 housing 506 14 0 22.53 9.2
50 imports-85 205 16 10 13207.13 7868.77
51 machine 209 7 2 105.62 160.83
52 servo 167 3 2 1.39 1.56
53 slump 103 11 0 36.04 7.84
54 winequality-red 1599 12 0 8.32 1.74
55 winequality-white 4898 12 0 5.88 0.89

Table 3.2: Properties of the datasets used in regression experiments.

32

3.1 Fuzzification and Defuzzification

3.1 Fuzzification and Defuzzification

Fuzzification

We proceed from the common setting of supervised learning as already introduced

in Section 1.1 and assume data to be a set of instances exhibiting an attribute-value

representation, which means that an instance is a vector

x ∈ X = X1 × X2 × . . .× Xm ,

where Xi is the domain of the i-th attribute Ai. In addition to these input attributes,

every instance x is assigned to an output value y ∈ Y. For now, we only consider two

cases: either Y = R (regression) or Y = {0, 1} (binary classification), where 0 indicates

the negative and 1 indicates the positive class.

Each domain Xi is discretized by means of a fuzzy partition, that is, a set of fuzzy

subsets

Fi,j : Xi → [0, 1] (j = 1, . . . , ni) (3.1)

such that
∑nj

j=1 Fi,j(x) > 0 for all x ∈ Xi. The Fi,j are often associated with linguistic

labels such as “small” or “large”, in which case they are also referred to as fuzzy terms

(the identifier of an underlaying fuzzy concept).

To make fuzzy pattern trees amenable to numerical, ordinal, nominal or binary

attributes, these attributes have to be “fuzzified” and discretized beforehand. The

fuzzy partitions are either provided by an expert, who uses his expert knowledge to

define comprehensible and reasonable fuzzy sets for each attribute domain. If an expert

is not available, there are generic methods to infer fuzzy partitions from data.

Discretization of data by means of an automatically generated fuzzy partition is

far from trivial. First, since the fuzzy partition is the main building block for every

kind of fuzzy logic-related machine learning method, the discretization should suite the

method it is used in and enable it to capture the dependencies and structure in the

data. Second, and equally important, the discretization must be comprehensible by an

expert of the application field. Otherwise, one of the main benefits of fuzzy systems,

namely their interpretability, would be lost.

In the following, one way of generating a fuzzy partition is presented, which will also

be used in the experiments in the following sections. To accommodate our supervised

setting, we will explicitly take the output

33

3. LEARNING FUZZY PATTERN TREES

We discretize a domain Xi using three fuzzy sets Fi,1, Fi,2, Fi,3 associated, respec-

tively, with the terms “low”, “medium” and “high”. The first and the third fuzzy set

are defined as

Fi,1(x) =

1 x < min

0 x > max

1− x−min
max−min otherwise

,

Fi,3(x) =

1 x > max

0 x < min
x−min

max−min otherwise

,

with min and max being the minimum and the maximum value of the attribute domain.

It is clear that these fuzzy sets can capture two types of influence of an attribute,

namely a positive and a negative one: If the value of a numeric attribute increases,

the membership of the “high”-term of that attribute also increases (positive influence),

whereas the membership of the “low”-term decreases (negative influence). Due to the

monotonicity of all aggregation operators (see Section 2.3), this furthermore implies

the same kind of influence towards the output of the whole tree.

Apart from monotone dependencies, it is of course possible that a non-extreme

attribute value is “preferred” by a class or coincides with the maximum numerical

output value. The fuzzy set Fi,2 is meant to capture dependencies of this type. It is

defined as a triangular fuzzy set with center c:

Fi,2(x) =

0 x ≤ min
x−min
c−min min < x ≤ c
1− x−c

max−c c < x < max

0 x ≥ max

(3.2)

The parameter c is determined so as to maximize the absolute (Pearson) correlation

between the membership degrees of the attribute values in Fi,2 and the corresponding

binary class information on the training data. In case the correlation is negative, Fi,2

is replaced by its negation 1− Fi,2.

Nominal attributes are modeled as degenerated fuzzy sets: For each value v of the

attribute, a fuzzy set with membership function

Fi,v(x) =

{
1 x = v

0 otherwise

34

3.1 Fuzzification and Defuzzification

is introduced. Full membership is only given to elements which equal v. Zero member-

ship is assigned to all others.

Defuzzification

The defuzzification procedure for FPT models is more complex. It depends on the

learning task at hand. Note that the range of output values of a tree is the unit

interval, i.e., the output variable assumes values in the range [0, 1]. One can think of

the output value as the degree of membership of a fuzzy subset G of the underlying

domain Y.

An FPT model consists of one or more trees, together with a coding scheme for the

output variable. This scheme basically constitutes two steps, a de-/composition step

and a de-/fuzzification step.

Before training, the original problem may be decomposed via decomposition schemes

like one-vs-rest [3] or others, to either create several binary classification or regression

tasks. For each of these tasks, then a fuzzification is performed and a tree is trained.

After training, when a query instance has to be predicted, each tree provides a pre-

dicted membership. These memberships are defuzzified and composed to become a

final prediction in Y. In the following, three prominent examples are given.

Multi-class Classification

In multi-class classification, each instance is associated with a class label

y ∈ Y = {y1, y2, . . . , yk} .

A pattern tree classifier is a collection of pattern trees

{M1, . . . ,Mk} ,

where Mi is the tree associated with class yi ∈ Y following a one-versus-rest scheme.

Thus, the original k-class classification problem is decomposed into k binary problems,

one for each class yj ∈ Y. In the j-th problem, yj is considered as the positive class (for

which the sought model prediction is 1) and Y \ {yj} as the negative class (for which

the target is 0). As a special case, for binary classification (k = 2) we only need one

tree.

35

3. LEARNING FUZZY PATTERN TREES

Given a new instance x to be classified, a prediction is made in favor of the class

whose tree produces the highest score:

ŷ = argmax
yi∈Y

Mi(x) (3.3)

A single tree Mi can also be seen as a “fuzzy” selector of its class, hence the name

fuzzy pattern tree. Like a regular expression, a pattern tree selects instances belonging

to its class, albeit in a fuzzy way. Eventually, the class is determined by the pattern

tree that is most “confident” of being representative of the instance.

Regression

In the case of regression, i.e. Y = R, only one tree is needed. Therefore, no de-

/composition step is necessary. However, the defuzzification step is necessary in cases

where the output space Y does not coincide with the unit interval. For example, if Y
is an arbitrary interval [a, b], i.e., if the original output variable is lower-bounded by

a and upper-bounded by b, then the membership function could be given by a simple

linear scaling

G : y 7→ y − a
b− a

. (3.4)

Thus, the corresponding fuzzy set could be interpreted as a model of the linguistic term

“large”. Likewise, if the original output is unbounded, a possible re-scaling is

G : y 7→ 1

1 + exp(−αy)
. (3.5)

More generally, G can be any fuzzy subset of Y. In order to map the predicted mem-

bership values back into Y, we need to be able to compute G−1 : [0, 1] → Y, which is

the inverse of G.

Fuzzy Systems

Fuzzy pattern trees can also be considered as an interesting approach to fuzzy systems

modeling [99] and, in this regard, as an alternative to conventional fuzzy rule models.

Generalizing the simple regression scheme, we assume the domain Y to be discretized

by means of a fuzzy partition consisting of fuzzy sets G1, G2, . . . , Gk. Then, a single

pattern tree model implementing a mapping

Mi : (x1, x2, . . . , xn) 7→ Gi(y) ,

36

3.2 Optimization of CI Parameters

could be constructed for each of these fuzzy sets. Given an instance x = (x1, x2, . . . , xn),

a corresponding ensemble of pattern trees produces a fuzzy description of the output

in the form of a vector

M(x) = (M1(x), . . . ,Mk(x))

= (z1, . . . , zk) ∈ [0, 1]k .

The simple decoding (G−1(M(x))) then has to be replaced by a defuzzification step,

which could be accomplished, for example, by

ŷ = argmin
y∈Y

‖(z1, . . . , zk)− (G1(y), . . . , Gk(y))‖ .

The i-th pattern tree can be considered as a model describing conditions (on the input

attributes) under which the output variable Y is in Gi, e.g., under which “Y is medium”

or “Y is large”. Interestingly, compared to rule-based fuzzy systems, the “direction” of

modeling is thus reversed. In fact, in rule-based systems, one typically starts with the

rule antecedents, i.e., one fixes conditions on the input attributes and then assigns a

suitable (fuzzy) value for the output variable. In pattern trees, it is just the other way

around: First, the (fuzzy) output values are fixed, and then conditions on the input

attributes are specified.

Finally, it is worth mentioning that pattern tree-based fuzzy systems of the above

kind are in a sense generalizations of (standard) rule-based systems, in which rule

antecedents are combined by means of a t-norm and the rules themselves by means of

a t-conorm. In fact, given a system of that kind, all rules with the same consequent

part “Y is Gi” can be collected and represented as a three-level pattern tree: The

highest level consists of a node labeled with a t-conorm, while the mid level consists

of nodes labeled with a t-norm, one for each rule, aggregating the corresponding rule

antecedents. The lowest level represents the fuzzy sets as usual. Strictly speaking, a

tree of that kind is not a proper pattern tree, since it is not binary. However, noticing

that both t-norms and t-conorms are associative operators, it can easily be “binarized”.

3.2 Optimization of CI Parameters

As a prerequisite to the actual learning algorithm it is necessary to be able to optimize

the parameters of all parameterized operators in an efficient way1. Huang et al. already

1Parts of this section are submitted to be published in [94].

37

3. LEARNING FUZZY PATTERN TREES

provided a solution for the WA and OWA operators. Since we newly introduced the

CI operator, in the following we give a solution that is similiar to the existing one for

WA and OWA.

Optimizing the parameters of a CI operator constitues a constrained optimization

problem. We try to find those α and β that minimize the squared error between the

output of the node and a target vector z, given the two input vectors u and v, denoting

the outputs of the nodes’ children. We propose an optimization of the parameters in

two steps. First, find the optimum parameters for arbitrary values of α and β, hence

not considering the constraints

0 ≤ α, β ≤ 1 .

Second, trim the parameters to reside in [0, 1].

Looking at (2.5), we have to take care about two cases: u ≤ v and u > v. To this

end, we split the training instances into two groups T≤ and T> accordingly. Because

each of the parameters only appears in one of the cases, they can be optimized inde-

pendently of each other by using the instances of their respective group. In fact, the

following calculations are very similar in both cases. Hence, we will only present the

first one (α). For the sake of an easier notation, let u and v now be restricted to the

instances in T>. Starting from (2.5), we first proceed with a simple transformation:

αu+ (1− α′)v = z

α(u− v) = z − v

Again to ease notation, let p = u − v and let q = z − v. Then, minimizing the

squared loss, we get:

38

3.3 Existing Learning Algorithms

|T>|∑
i=1

(α′qi − pi)2 → min

|T>|∑
i=1

2(α′qi − pi)qi = 0

α′
|T>|∑
i=1

q2
i −

|T>|∑
i=1

piqi = 0

α′ =

|T>|∑
i=1

piqi

|T>|∑
i=1

q2
i

To ensure, that α is a valid parameter to the CI operator, we apply the following

update:

α = min{1,max{0, α′}} (3.6)

We are aware of the fact, that this update might yield a suboptimal solution for the

unconstrained case. However, dealing with the squared error ensures the following.

If the minimum does not reside inside the unit interval using (3.6) still preserves the

constrained minimum.

In Section 4.1 we present an experimental study that evaluates the CI operator

compared to WA and OWA.

3.3 Existing Learning Algorithms

3.3.1 Huang, Gedeon & Nikravesh

Following the original proposal of [49], pattern trees are built one by one, independently

of each other. For each class, the induction method performs the following main steps:

1. initialize with primitive pattern trees

2. filter candidates by evaluation of their similarity to the target class

3. check stopping criterion

4. recombine candidates using fuzzy operators

39

3. LEARNING FUZZY PATTERN TREES

5. loop at step 2

We can call this approach the bottom-up approach (PTBU) because new nodes are

introduced at the top (the root) of the trees. This way, a tree grows from the bottom

up to the top. Figure 3.1 contains the algorithm in detail.

During initialization, three sets are created. P denotes the set of all so-called

primitive pattern trees. These are one-node trees, representing a single fuzzy set Fi,j .

S, the so-called slave set is also initialized, containing all elements of P.

The first set of candidate trees C0 is a subset of P. It contains the B best candidate

trees. C0 contains the trees with the lowest average error (line 4). The average error

of a tree M is measured in terms of the predefined loss function L. It measures the

error between the predicted membership M(x(i)) and the actual ones given by G(y(i))

(cf. Section 3.1) for all training instances (x(i), y(i)) ∈ T.

Let Ψ be the set of available aggregation operators. Then, starting from line ten,

all possible combinations of an aggregation operator ψ ∈ Ψ, a tree M1 ∈ C0 and a

tree M2 ∈ S are used to create new candidates. Figure 3.2 illustrates the schema of a

resulting tree. It is created by taking the operator ψ as root node which aggregates the

two selected trees. In case the chosen operator is parameterized by a parameter θ, this

parameter is optimized in line 20. The optimization method depends on the operator

as it was described in Section 2.2.1.

In line 26, all candidate trees again are evaluated according to the loss function L.

Only the B best trees remain in Ct. The algorithm stops if it has reached the maximum

number of iterations tmax or the algorithm could not find model that improves the best

model of the previous iteration (line 30).

Finally, the candidate tree with the lowest empirical error is returned.

3.3.2 Yu, Fober and Hüllermeier

As mentioned before, the model class of fuzzy pattern trees has been introduced si-

multaneously also by Yu et al. under the name fuzzy operator tree (FOT). Basically,

the only difference refers to the way the trees are created. The approach of Yu et al.

was mainly motivated by the general need to define utility functions for various appli-

cations. Especially in economics and game theory, utility functions play an important

40

3.3 Existing Learning Algorithms

Bottom-up Algorithm

1: {initializing sets}
2: P = {..., Fi,j , ...|i = 1, ..., n; j = 1, ...,m}
3: S = P

4: C0 =
B

argmin
F∈P

[
∑

(x,y)∈T
L(y, F (x))]

5: {initializing termination criteria}
6: tmax = 5

7: t = 0

8: {starting iterative induction}
9: repeat

10: t = t+ 1

11: Ct = Ct−1

12: {first loop on each candidate in Ct−1}
13: for all Ct−1

i ∈ Ct−1 do

14: {second loop on each candidate in S, without Ct−1
i }

15: for all Sj ∈ S \ Ct−1
i do

16: {loop on each available operator ψ}
17: for all ψθ ∈ Ψ do

18: {optimize parameter θ}
19: θ = optimizeψ(Ct−1

i (T), Sj(T), (yl)
|T|
l=1)

20: {construct new candidate}
21: Ct = Ct ∪ new(ψθ, C

t−1
i , Sj)

22: end for

23: end for

24: end for

25: ∀M ∈ Ct : ltM = 1
|T|

∑
(x,y)∈T

L(y,M(x))

26: Ct =
B

argmin
M∈Ct

[ltM]

27: S = S ∪Ct

28: ltmin = min
M∈Ct

[ltM]

29: until t == tmax or ltmin ≥ l
t−1
min

30: return argmin
M∈Ct

[lM]

Figure 3.1: Algorithm by Huang, Gedeon and Nikravesh

41

3. LEARNING FUZZY PATTERN TREES

Mnew

ψ

M1 M2

Figure 3.2: Creating a new candidate tree in a bottom-up manner.

role [70]. In these fields, utility functions usually are defined by an expert in order to

evaluate the utility of different alternatives.

Keeping this in mind, it was proposed to create the trees in a two step procedure.

1. An expert is asked to determine the structure of the tree, i.e., he determines

the hierarchical structure, the basic criteria (leaf nodes) and the way these basic

criteria are aggregated into an overall evaluation by choosing the operator class

(t-norm, t-conorm or averaging operator) for each inner node.

In order to provide flexibility for the operator classes of t-norms and t-conorms,

the authors propose to use the Dubois & Prade families (2.3). They are param-

eterized by one real-valued parameter, which takes values from the unit interval.

In addition to this and just like Huang et al. the WA and the OWA operators

may be used.

2. All parameters of the tree (those of operators and fuzzy sets) are collected into

one parameter vector θ. This parameter vector is then optimized in order to best

fit a set of example evaluations, i.e., a training set of instances T.

Let M be the model the expert has determined. In order to accomplish the second

step, it was proposed to use an evolutionary algorithm (see Section 3.7.1) to find the

best parameter vector θ∗. The concrete optimization task is

θ∗ = argmin
θ∈Θ

∑
(x,y)∈T

L(Mθ(x), y) , (3.7)

where L is a suitable loss function.

42

3.4 Study on Surrogate Loss Functions

The approach by Yu et al. is interesting for the reason of its hybrid nature, com-

bining expert knowledge and machine learning techniques. Nevertheless, for many

applications, no expert is available to reasonably accomplish the first step of the proce-

dure. Because of this, we subsequently focus on learning the whole tree, including both

its structure and parameterization. We take the method of Huang et al. as a point of

departure and present several analyses, extensions and completely new algorithms.

3.4 Study on Surrogate Loss Functions

So far, we discussed about some loss function L, which we try to minimize with the help

of induction algorithms1. Depending on the learning task, indeed, this loss function

can be varied. Nevertheless, if for example the learning task is classification and our

target loss is classification accuracy, it does not mean, that we necessarily have to use

accuracy during induction. Instead, it sometimes is beneficial to use a different loss

function, a so-called surrogate. A prominent example is classification error. Although

it is used as final evaluation measure for most classification tasks, it exhibits at least

two weaknesses. First, it is not differentiable in every point and even worse, it includes

large constant regions. Like it is the case for many machine learning algorithms also

the following ones comprise an iterative optimization scheme. Hence, it is preferable to

either be able to calculate a non-zero gradient or difference quotient which guides the

search for an optimum during optimization.

From a theoretical point of view, it is difficult to anticipate which surrogate function

– practically there are many possibilities – might be especially suitable. Since Huang

et al. do not give any clear recommendation either, we tried to answer this question

experimentally. More specifically, we conducted a number of experiments in which we

compared loss functions of different type in terms of classification performance.

Apart from root mean squared error (RMSE) and a Jaccard-based error measure

(JacE), which have also been used in [49], three more measures have been tested. These

are the mean absolute error (MAE) and a mean sigmoidal error (MSigE) and standard

1Parts of this section were already published in [93].

43

3. LEARNING FUZZY PATTERN TREES

classification error (ClassE).

RMSE(a, b) =

√√√√ 1

n

n∑
i=1

(ai − bi)2 (3.8)

JacE(a, b) = 1−
∑n

i=1 min(ai, bi)∑n
i=1 max(ai, bi)

(3.9)

MAE(a, b) =
1

n

n∑
i=1

|ai − bi| (3.10)

MSigE(a, b) =
1

n

n∑
i=1

(1 + exp(−8((ai − bi)− 0.5)))−1) (3.11)

ClassE(a, b) =
1

n

n∑
i=1

{
0 sgn(ai − 0.5) = sgn(bi − 0.5)

1 otherwise
(3.12)

where n denotes the length of the vectors a and b.

As a potential disadvantage of the RMSE measure, note that the quadratic error

function, like all convex losses, is quite sensitive toward outliers: If an instance cannot

be classified correctly, it may yield a disproportionately high error, thereby devaluing

a model with otherwise strong performance. It was mainly for this reason that we also

tried the measure (3.11) with a sigmoid-shaped error function. The idea here is to pay

special emphasis on errors around 1/2, since this point is critical for the correctness of

the classification rule (3.3), whereas less distinction is needed for errors close to 0 or

close to 1. A sigmoid-shaped function, which is a smooth version of the step function

jumping from 0 to 1 at 1/2, does obviously comply with these requirements, so that

MSigE appears advantageous from this point of view. On the other hand, there are

also arguments against the expectation that MSigE may outperform RMSE:

• In contrast to problems like regression, the squared error is upper-bounded (namely

by 1), which means that the sensitivity toward outliers is less severe.

• One should note that a devaluation caused by a true outlier will probably apply

to all candidate models in more or less the same way. In other words, it is unlikely

to change the relative performance, and hence the selection, of a pattern tree in

comparison to other candidates.

• A sigmoid-shaped loss function is arguably less suitable for handling pseudo-

outliers, i.e., instances for which the current model has a high error even though

44

3.4 Study on Surrogate Loss Functions

they are not true outliers: A small improvement on such instances, moving their

score a bit to the correct direction, will hardly be rewarded, thereby preventing

the right model adaptation.

As can be seen, there are arguments both in favor and against a loss function like (3.11).

Regarding the standard classification error (ClassE), there is at least one good

reason for, and one good reason against it. Since, minimizing classification error is

the ultimate goal of classification, using ClassE directly evaluates each candidate tree

on the actual measure, we are interested in. There is no surrogate function involved.

However, ClassE comes with a major disadvantage, namely it is neither convex nor

continuous. In fact, it is a step function. These steps can cause a premature stop of

iterative algorithms like the one of Huang et al..

Experiments

In order to evaluate the suitability of each surrogate loss function for the PTBU algo-

rithm, we compared five variants of PTBU. All parameters of these variants have been

identical1 except for the choice of loss function. The complete results can be seen in

Appendix A.

Loss ClassE JacE MAE MSigE RMSE
Avg. rank 2.56 3.83 3.37 3.36 1.86
Num. wins 11 1 2 2 21

Table 3.3: Average rank and number of wins for each surrogate loss function.

Table 3.3 summarizes the results in terms of the average rank each variant achieves

on our 40 benchmark datasets. Additionally, also the number of wins (ranked first

place) of each loss is shown. The results are clearly in favor of RMSE that performed

best on 21 of the 40 datasets (while the second-best, ClassE, was only 11 times the

winner). Our explanation for the strong performance of RMSE is the convex shape

of the quadratic error function. In particular, convexity implies that larger deviations

from the target prediction (1 for positive and 0 for negative examples) are punished

disproportionately high, whereas small deviations are less critical. In connection with

1Parameter setting: tmax = 5, B = 5

45

3. LEARNING FUZZY PATTERN TREES

the “argmax” classification rule (3.3), this appears to be quite reasonable. This clas-

sification rule is indeed robust toward small deviations from the target prediction. In

fact, it will predict the correct class as long as the errors are all smaller than 1/2.

The second best performing measure is ClassE. It seems, that the disadvantage of

ClassE being a step function predominates.

Anyway, our experiments have clearly shown that, regarding accuracy, our recom-

mendation should be to use the RMSE measure (3.8). Specifically, we shall do so in

the experimental studies presented in all following sections.

3.5 Accelerating the Bottom-up Approach

In [49], it was shown that the bottom-up approach is quite competitive to many state-

of-the-art classification methods in terms of predictive accuracy. To further improve

the usability of the approach for real world applications, a crucial property is a small

runtime during the training and the test phase. Although testing (i.e., executing a

tree for a specific instance) is fast, training an FPT can be time consuming. In order

to improve this, three heuristics have been developed and will be introduced in the

remainder of this section. All three heuristics aim at reducing the search space (hy-

pothesis space) without significantly worsening the predictive accuracy of the models.

An experimental study will demonstrate their effectiveness.

3.5.1 Sparse Search

The first one is based on a rather simple idea, but as will be shown in the experimental

section, it has a strong positive effect on the runtime. In line 22 of the bottom-up

algorithm, a new candidate tree is created for every combination of an operator and a

candidate tree and a slave tree. This results in |Ct−1| · (|S|) · |Ψ| many possible new

candidate trees to fill up Ct in the first place. With the sparse search heuristic, we

reduce the number of trees included in Ct in the following way. A candidate Mnew =

new(ψθ, C
t−1
i , Sj) is only included into Ct if it holds that

lMnew < min(lCt−1
i
, lSj) , where (3.13)

46

3.5 Accelerating the Bottom-up Approach

lM =
∑

(x,y)∈T

L(y,M(x)) (3.14)

In words, a new candidate is only considered to be a valid element in the new candidate

set Ct, if it has a lower error on the training data in comparison to the minimum of

both of its children. At first sight, this seems to be an obvious condition. However,

by enforcing this condition, the search algorithm becomes more greedy and myopic. In

fact, the algorithm is only able to look one step ahead. Without the above condition,

it is possible to keep a candidate, which not directly (after one iteration) was found to

be helpful in combination with the current candidates, but still could be later on.

3.5.2 Dynamic Operator Exclusion

The second heuristic to introduce again aims at reducing the number of candidates

created in line 22. This time however, we make use of the order of operators (see

Section 2.2). According to this order, it holds that:

∀ α, β :

LUK � EIN � ALG �MIN

� CIα,β �

COMAX � COALG � COEIN � COLUK

As described in Section 2.2.1, the CI operator is able to express the minimum and

the maximum operator as special cases for (α, β) = (0, 0) and (α, β) = (1, 1), respec-

tively. Additionally, optimizing α and β can be accomplished efficiently. Therefore,

we will utilize α and β, more precisely (α + β) to decide, whether or not we create

candidates using t-norms or t-conorms.

Given two candidates Ct−1
i and Sj , the procedure consists of three steps:

1. Create a new candidate using the CI operator. Doing this includes the calculation

of the optimal parameters α∗ and β∗.

2. Only if α∗ + β∗ ≥ τ , the CI aggregation is considered similar to a conjunctive

aggregation, and therefore further candidates are created using t-norms (ALG,

EIN , LUK).

47

3. LEARNING FUZZY PATTERN TREES

3. Only if α∗ + β∗ ≤ 2 − τ , the CI aggregation is considered similar to a disjunc-

tive aggregation, and therefore further candidates are created using t-conorms

(COALG, COEIN , COLUK).

According to this procedure, the creation of candidates using t-norms is omitted if

the CI parameters suggest the best aggregation to be ”or-like”. Likewise, t-conorms are

ommited if the parameters suggest the best aggregation to be ”and-like”. A reasonable

choice of the additional parameter τ seems to be 0.2, as will be seen in the experiments.

3.5.3 Limited Candidate History

In line 28 of the bottom-up algorithm, the slave set S is updated by adding the selected

candidates for the current iteration. S therefore contains the history of candidate trees,

which have at least once been among the B best candidates in a previous iteration.

This forces S to grow in each iteration, which also increases the number of possible

combinations of new candidates, what in turn increases the runtime in each iteration.

S can also be considered as a sort of candidate set history. Limiting this history to

a fixed number of iterations, say k, restricts the growth of S and therefore the runtime

per iteration. Hence, after adding another candidate set to S in iteration t > k, the

implementation of this last heuristic removes Ct−k from S.

Again, we refer to the upcoming experimental section for a reasonable choice of k,

which will turn out to be 5.

3.5.4 Experiments on Heuristics

In this section, we will empirically show that the heuristics introduced in the last

sections yield runtime improvements without compromising the predictive accuracy

of the learned models. To accomplish this task, we will conduct one experiment per

heuristic.

Sparse Search

The first experiment compares the original bottom-up algorithm (PTBU) with a vari-

ant, which incorporates the sparse search heuristic (PTBU-S). Table 3.4 reports the

results of the cross-validation procedure on the first 40 classification datasets in terms

of predictive accuracy. Table 3.5 reports the runtime results accordingly.

48

3.5 Accelerating the Bottom-up Approach

Accuracy Comparison

PTBU

P
TB

U
−S

20 40 60 80 100

20
40

60
80

10
0

Figure 3.3: Comparison of the accuracy of PTBU and PTBU-S on 40 datasets (one

ellipsoid per dataset). If both methods have the same mean accuracy, the center of the

ellipsoids lay on the dashed diagonal. Ellipsoids depart from the diagonal indicate a dif-

ference in accuracy. The dimensions of the ellipsoid are determined by the standard error

of the mean estimate.

In terms of training runtime, PTBU-S clearly outperforms PTBU. It wins all 40

times and the average relative runtime decrease is 40.80%. However, comparing pre-

dictive accuracy is more difficult. We actually want to know, if applying the heuristic

affects the predictive accuracy of the method seriously. Of course, in general there is

always a trade-off between accuracy and runtime.

Looking at the win-loss statistic, PTBU-S wins 9 times but looses 21 times with

another 10 ties. Although, PTBU seems superior in this regard, Figure 3.3 shows the

49

3. LEARNING FUZZY PATTERN TREES

actual difference between both methods. Each ellipsoid represents a dataset. The x-

axis determines the accuracy of PTBU, whereas the y-axis determines the accuracy of

PTBU-S. The centers of the ellipsoids are located where the corresponding accuracies

of the two methods meet. The dimensions of the ellipsoids (height and width) refer

to the standard error of the mean estimates. Roughly speaking, this plot illustrates

that the differences between PTBU and PTBU-S for most datasets are minor except

for four, which are marked in red.

Dynamic Operator Exclusion

The second experiment aims at measuring the effect of the dynamic operator exclusion

heuristic (PTBU-DOE). To this end, we first compare several different values of τ

regarding predictive accuracy and training time. Figure 3.4 illustrate the results. The

precise accuracy and training time values can be found in the Appendix B. For now, the

exact values are not important. More important, however, are the trends, which can

be seen in the figure. On the one hand, accuracy does not seem to be affected by τ , at

least no clear up- or downtrend is visible. On the other hand, however, training runtime

is effected significantly. Note, that for runtime, the figure provides a logarithmic scale

in order to be able to differentiate datasets with a very low runtime in the figure. As

τ increases, runtime does too.

These two findings provide an empirical evidence, that the proposed heuristic indeed

works as expected. Next, we will fix τ to be 0.1 and compare PTBU-DOE and PTBU.

Tables 3.4 and 3.5 show the results and as the previous analysis already suggested,

in terms of accuracy, we find PTBU-DOE winning 18 times, loosing 19 times with

another 3 ties. Contrary to this balanced accuracy comparison, the comparison in

terms of runtime clearly favors PTBU-DOE with 39 wins and one loss. On average,

runtime declines by 44.3% relative to PTBU.

Limited Candidate History

The third heuristic is evaluated in the same manner as the second. First, a reasonable

value for the history size parameter k will be chosen empirically. PTBU-LCH then

denotes the PTBU variant, which is using the limited candidate history heuristic (LCH).

Then we will again compare to PTBU. In contrast to the previous experiment, we set

50

3.5 Accelerating the Bottom-up Approach

Different Values of Tau

tau

ac
cu

ra
cy

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

30
40

50
60

70
80

90

tau

tim
e

(s
)

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

0.
02

1
10

10
0

Figure 3.4: Predictive accuracy and training runtime of PTBU-DOE for different values

of τ . Each line represents one of the 40 classification datasets.

51

3. LEARNING FUZZY PATTERN TREES

the parameter tmax = 10, because the effect of LHC mainly prevails in later iterations.

This conclusion can be drawn on the basis of the results shown in Figure 3.5.

While runtime steadily increases with an increase of k, starting from k = 5, accuracy

does not increase anymore for most datasets. For many datasets, accuracy is even

almost constant for all values of k. Nevertheless, we choose k = 5 for a comparison

to PTBU, which corresponds to PTBU-LCH with k = 10. The precise accuracy and

runtime values of Figure 3.5 can be found in Appendix C.

Comparing PTBU and PTBU-LCH with k = 5 in terms of accuracy, PTBU-LCH

wins 16 times, looses 18 times with another 6 ties. Again, this is a balanced result and

we can consider both variants as similarly strong. However, what Figure 3.5 already

suggested, the runtime of PTBU-LCH is significantly smaller. With 39 wins, using

LCH decreases the training time by 40.43%. The details of this comparison are also

shown in Tables 3.4 and 3.5.

52

3.5 Accelerating the Bottom-up Approach

Different Candidate Histroy Sizes

history size

ac
cu

ra
cy

1 2 3 4 5 6 7 8 9

20
40

60
80

10
0

history size

tim
e

(s
)

1 2 3 4 5 6 7 8 9

0.
02

1
10

10
0

10
00

Figure 3.5: Predictive accuracy and training runtime of PTBU-LCH for different values

of k. Each line represents one of the 40 classification datasets.

53

3. LEARNING FUZZY PATTERN TREES

tmax = 5 tmax = 10
No. PTBU PTBU-S PTBU-DOE PTBU PTBU-LCH

1 77.54 ±1.84 77.62 ±1.56 77.62 ±1.56 77.70 ±1.64 77.62 ±1.56

2 78.74 ±10.16 79.07 ±10.69 79.81 ±11.35 78.07 ±11.03 78.74 ±10.16

3 37.00 ±4.47 27.00 ±5.92 38.08 ±4.03 33.67 ±4.58 33.67 ±5.56

4 83.81 ±8.85 82.79 ±9.05 83.39 ±8.81 83.21 ±9.44 83.20 ±9.49

5 96.71 ±3.13 97.47 ±3.06 95.57 ±2.85 97.60 ±2.93 97.72 ±2.95

6 85.51 ±3.73 85.51 ±3.73 85.65 ±3.76 85.65 ±3.77 85.51 ±3.73

7 93.78 ±2.35 94.85 ±2.19 95.44 ±2.23 96.39 ±1.81 95.84 ±1.81

8 58.48 ±10.61 58.17 ±12.36 59.30 ±11.98 62.17 ±10.21 59.13 ±9.23

9 90.02 ±2.09 89.44 ±2.91 90.02 ±1.97 90.29 ±1.83 90.29 ±1.83

10 87.21 ±7.67 87.05 ±7.44 87.53 ±6.54 87.21 ±8.19 86.90 ±8.06

11 77.09 ±1.67 77.09 ±1.67 76.83 ±1.31 77.14 ±1.28 77.14 ±1.56

12 59.04 ±4.31 59.04 ±4.31 58.58 ±5.15 59.93 ±4.59 60.22 ±4.15

13 95.90 ±2.38 95.90 ±2.38 96.19 ±2.23 96.10 ±2.32 96.05 ±2.32

14 72.73 ±5.12 72.24 ±4.99 72.90 ±5.85 72.74 ±4.77 72.41 ±5.60

15 35.39 ±13.61 32.73 ±15.66 35.12 ±14.91 37.91 ±13.37 38.88 ±13.60

16 52.23 ±3.72 51.28 ±3.31 52.01 ±4.03 52.96 ±3.43 53.05 ±3.71

17 75.18 ±12.26 72.80 ±8.83 82.68 ±10.82 85.42 ±10.23 85.83 ±9.49

18 85.36 ±3.70 85.36 ±3.70 85.31 ±3.67 85.17 ±3.80 85.31 ±3.68

19 76.11 ±11.74 74.13 ±12.49 77.78 ±12.26 74.60 ±12.08 76.59 ±11.22

20 66.68 ±8.65 66.20 ±9.33 65.14 ±8.17 65.00 ±11.18 67.74 ±9.16

21 82.75 ±0.68 82.82 ±0.61 82.75 ±0.68 82.72 ±0.81 82.72 ±0.74

22 72.27 ±3.71 72.27 ±3.71 72.37 ±3.85 72.47 ±3.72 72.60 ±3.84

23 61.38 ±7.53 62.00 ±7.68 60.29 ±7.39 61.49 ±6.77 62.31 ±8.05

24 75.92 ±5.09 75.92 ±5.09 73.42 ±2.18 74.63 ±4.19 74.96 ±4.38

25 80.25 ±5.86 80.25 ±5.86 78.89 ±5.93 81.60 ±5.54 80.37 ±5.93

26 87.48 ±5.28 87.76 ±5.71 87.76 ±5.54 88.81 ±5.82 88.99 ±5.62

27 96.00 ±4.50 94.22 ±6.25 92.22 ±6.80 95.56 ±5.05 95.56 ±5.05

28 92.60 ±3.83 92.27 ±4.19 93.33 ±3.54 97.40 ±2.30 95.20 ±3.18

29 77.31 ±15.00 75.79 ±14.91 77.31 ±13.79 77.31 ±15.00 77.31 ±15.00

30 79.27 ±10.53 79.48 ±9.05 77.90 ±9.48 80.37 ±8.56 80.17 ±9.05

31 35.60 ±8.18 28.79 ±7.06 31.82 ±7.50 36.00 ±7.60 36.39 ±7.75

32 73.39 ±3.78 73.39 ±3.78 73.31 ±4.90 73.05 ±4.06 72.96 ±4.17

33 43.76 ±7.12 42.56 ±6.75 44.35 ±6.71 44.95 ±7.03 44.56 ±7.46

34 77.00 ±11.11 76.50 ±10.35 77.17 ±11.12 77.00 ±11.11 77.00 ±11.11

35 82.00 ±6.01 58.53 ±12.14 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01

36 57.84 ±6.79 57.84 ±6.79 58.24 ±6.53 58.63 ±7.28 58.33 ±6.78

37 71.83 ±10.96 72.33 ±10.75 71.86 ±10.59 71.71 ±9.77 71.85 ±10.17

38 61.07 ±5.34 59.89 ±5.12 56.85 ±4.29 63.67 ±5.63 62.52 ±5.66

39 96.27 ±5.53 95.54 ±5.91 95.12 ±4.13 95.34 ±4.86 95.52 ±4.24

40 92.45 ±8.48 90.82 ±8.47 90.79 ±7.77 93.09 ±7.46 92.76 ±8.59

Table 3.4: Mean accuracy measures with standard deviation comparing PTBU, PTBU-S

and PTBU-DOE with τ = 0.1 and tmax = 5 on the left side. On the right side comparing

PTBU and PTBU-LCH with k = 5 and tmax = 10.

54

3.5 Accelerating the Bottom-up Approach

tmax = 5 tmax = 10
No. PTBU PTBU-S PTBU-DOE PTBU PTBU-LCH

1 7.14 ±1.93 3.53 ±0.36 2.38 ±0.39 56.95 ±8.78 36.29 ±7.96

2 1.65 ±0.33 0.65 ±0.09 11.26 ±17.33 6.71 ±3.13 3.57 ±0.95

3 2.26 ±0.76 1.28 ±0.45 0.81 ±0.08 18.88 ±2.66 13.09 ±2.41

4 2.65 ±0.78 1.22 ±0.38 0.83 ±0.23 16.04 ±10.12 6.26 ±2.89

5 0.31 ±0.07 0.16 ±0.04 0.14 ±0.07 4.18 ±1.84 3.00 ±1.20

6 4.88 ±1.35 2.66 ±0.43 1.25 ±0.20 32.96 ±4.77 14.88 ±3.62

7 172.90 ±35.73 40.45 ±6.99 42.86 ±8.59 876.40 ±81.95 343.28 ±42.63

8 19.80 ±1.73 7.80 ±1.70 7.03 ±0.69 114.34 ±12.81 50.67 ±6.00

9 1.66 ±0.19 1.03 ±0.10 0.65 ±0.14 26.05 ±4.64 15.79 ±3.65

10 0.47 ±0.11 0.35 ±0.11 0.16 ±0.05 3.28 ±1.05 2.28 ±0.73

11 0.70 ±0.27 0.43 ±0.08 0.34 ±0.17 4.95 ±0.63 3.58 ±1.38

12 0.49 ±0.07 0.28 ±0.05 0.19 ±0.06 5.35 ±1.41 4.11 ±1.64

13 1.18 ±0.11 0.77 ±0.10 0.46 ±0.08 17.54 ±4.77 9.73 ±2.56

14 1.95 ±0.18 1.16 ±0.22 0.67 ±0.08 14.89 ±2.54 11.58 ±1.71

15 0.72 ±0.25 0.34 ±0.07 0.28 ±0.09 8.09 ±2.07 3.92 ±0.86

16 10.68 ±0.92 8.89 ±4.95 3.41 ±1.08 92.14 ±11.30 60.02 ±8.86

17 0.35 ±0.08 0.16 ±0.05 0.20 ±0.10 6.74 ±2.01 4.76 ±1.88

18 4.50 ±0.27 3.07 ±1.10 1.50 ±0.27 30.87 ±7.88 15.05 ±3.23

19 4.40 ±2.55 1.53 ±0.20 1.39 ±0.13 18.91 ±3.11 9.29 ±1.42

20 29.73 ±4.60 8.95 ±1.34 8.97 ±1.44 156.87 ±28.67 80.07 ±12.70

21 19.68 ±1.59 11.95 ±1.85 7.66 ±1.75 162.70 ±21.25 96.25 ±6.24

22 12.51 ±1.31 4.57 ±0.55 3.89 ±0.51 84.90 ±20.12 30.39 ±6.35

23 2.05 ±0.18 1.24 ±0.14 0.99 ±0.28 18.19 ±2.75 17.76 ±12.54

24 0.20 ±0.04 0.16 ±0.05 0.10 ±0.04 2.59 ±0.96 2.13 ±1.02

25 0.81 ±0.10 0.60 ±0.14 0.30 ±0.09 6.60 ±1.62 4.37 ±0.79

26 5.00 ±0.53 1.68 ±0.30 1.82 ±0.32 22.09 ±3.41 10.39 ±3.04

27 0.41 ±0.07 0.13 ±0.05 0.13 ±0.06 8.12 ±2.79 5.15 ±1.56

28 0.88 ±0.10 0.57 ±0.11 0.37 ±0.06 6.37 ±1.10 6.79 ±1.05

29 0.09 ±0.06 0.05 ±0.04 0.06 ±0.04 0.51 ±0.45 0.23 ±0.21

30 2.67 ±0.26 1.80 ±0.37 0.85 ±0.10 16.75 ±4.17 8.29 ±1.46

31 3.44 ±1.36 1.32 ±0.27 1.44 ±0.38 31.60 ±2.93 23.59 ±6.01

32 1.41 ±0.19 0.79 ±0.13 0.55 ±0.16 12.47 ±4.00 7.43 ±2.61

33 22.40 ±1.52 11.56 ±2.43 9.87 ±0.80 183.36 ±20.75 99.12 ±5.81

34 0.14 ±0.08 0.11 ±0.06 0.08 ±0.07 0.54 ±1.05 0.22 ±0.32

35 0.03 ±0.05 0.03 ±0.04 0.03 ±0.04 0.09 ±0.37 0.05 ±0.16

36 1.30 ±0.20 0.80 ±0.11 0.43 ±0.09 11.48 ±2.56 6.45 ±2.38

37 6.54 ±0.63 2.98 ±0.72 1.92 ±0.17 34.26 ±7.30 14.86 ±2.31

38 16.90 ±4.73 7.02 ±0.76 5.40 ±0.77 83.57 ±8.68 49.98 ±6.46

39 1.42 ±0.20 1.02 ±0.21 0.53 ±0.12 18.66 ±7.83 9.70 ±3.58

40 1.66 ±0.48 0.93 ±0.23 0.80 ±0.40 10.21 ±2.33 6.13 ±1.62

Table 3.5: Mean training runtime measures with standard deviation comparing PTBU,

PTBU-S and PTBU-DOE with τ = 0.1 and tmax = 5 on the left side. On the right side

comparing PTBU and PTBU-LCH with k = 5 and tmax = 10.

55

3. LEARNING FUZZY PATTERN TREES

3.6 Top-down Approach

3.6.1 Discussion

As explained above, pattern tree induction seeks to create a (fuzzy) logical represen-

tation for each class in an iterative way. This is done in a bottom-up manner by

repeatedly combining two (of the currently best) candidate trees with a new root. The

bottom-up strategy can indeed be motivated intuitively. For example, it can be seen as

an iterative combination and construction of complex features, corresponding to trees

and subtrees, from basic features, given by the original attributes.

Nevertheless, we believe that a top-down (PTTD) instead of a bottom-up (PTBU)

construction of pattern trees is an interesting alternative1. Instead of merging two trees

into a completely new tree, being much bigger and having a quite different structure,

the idea is to modify the current tree only slightly. This can be done by expanding one

of its leaf nodes, namely by replacing a basic feature Fi,j with a compound feature (two

basic features, one of them being Fi,j itself, combined by a single operator). Thus, new

operators are introduced at the bottom of the tree and not on the top, which normally

means that later operators have a smaller influence on the input-output behavior than

those that were chosen earlier. We shall explore this idea in more detail in Section 3.6.2

below.

To help in understanding the main differences between bottom-up and top-down

induction, and to highlight potential advantages of the latter, it is appealing to compare

them with operators used in genetic algorithms (even though this analogy is admittedly

not perfect): While the merging of two pattern trees into a new tree in bottom-up

induction can be seen as a kind of recombination operator (combining two solutions

into a new one), the expansion of a leaf node in top-down induction is more in line with

a mutation (modifying a single solution). Now, it is well-known that recombination can

be quite beneficial, at least if the two solutions are complementary. However, to actually

reach an optimum once being close to it, the mutation operator is indispensable. In

particular, by making only small steps in the search space, it allows one to fully explore

this space, whereas a recombination alone does not. Indeed, by combining complete

candidate trees, bottom-up induction tends to make “large jumps” in the search space

(“genotype space”). For example, the combination operator may double the number of

1Parts of this section were already published in [93].

56

3.6 Top-down Approach

Candidate Similarity

iteration

1−
R

M
S

E

2 4 6 8 10 12

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

credit
cancer
bupa

Figure 3.6: Pairwise similarity between candidate models (averaged over all pairs of

candidates and over 50 random samples) for three binary datasets: credit, bupa, cancer.

nodes of the candidate trees in each iteration. As opposed to this, top-down induction

implements a more fine-grained exploration of the search space, trying a large number

of small steps in each iteration.

Besides, we also found another problem of the bottom-up approach, namely a lack

of diversity. In fact, despite strong differences on the structural (“genotype”) level, it

turns out that, after only a few iterations, all candidate trees tend to be very similar

to each other in the sense of implementing very similar X → [0, 1] mappings (i.e., the

trees are similar on the “phenotype” level). Consequently, a combination of two such

trees will remain almost ineffective. Figure 3.6 illustrates this problem by plotting the

average pairwise similarity between two candidate models M1 and M2, in terms of

1−

√√√√ 1

|T|
∑

(x,y)∈T

(M1(x)−M2(x))2

(RMSE-based similarity), as a function of the number of iterations.

Against the background of these considerations, one may expect that bottom-up

induction is more likely to get trapped in local optima or to find suboptimal solu-

tions, whereas top-down induction is more often able to reach a real optimum. Our

57

3. LEARNING FUZZY PATTERN TREES

bupa

iteration

R
M

S
E

0 5 10 15 20 25 30

0.
44

0.
46

0.
48

0.
50

PTBU
PTTD

cancer

iteration

R
M

S
E

0 5 10 15 20 25 30

0.
14

0.
18

0.
22

0.
26

PTBU
PTTD

credit

iteration

R
M

S
E

0 5 10 15 20 25 30

0.
30

0.
32

0.
34

0.
36

0.
38

PTBU
PTTD

Figure 3.7: Error curve (top-down strategy in dashed, bottom-up strategy in solid line,

averaged over the classes) on three datasets: bupa, cancer and credit.

58

3.6 Top-down Approach

experimental results are indeed in agreement with this conjecture. As an illustration,

Figure 3.7 shows some typical error curves of the two approaches, plotting the error

of the best model (on the training data) in each iteration against the number of the

iteration. As can be seen, the two approaches produce quite similar results at the

beginning, where the trees are very small; of course, a difference between top-down

and bottom-up induction cannot be expected at this stage. However, while bottom-

up induction reaches a saturation level quite quickly and apparently converges to a

suboptimal solution, top-down induction is still able to achieve improvements of the

solution.

Termination Criteria

Recall that two termination criteria are used in the PTBU algorithm. The first criterion

is satisfied if no improvement is achieved, i.e., if the tree with the lowest error in iteration

t − 1 could not be improved by the lowest error in the following iteration t. Thus, if

the condition ltmin ≥ lt+1
min holds, the induction process is stopped and the best tree of

iteration t is chosen to be the final tree for the respective class. This is a standard

stopping condition commonly used in iterative optimization procedures.1

The second termination criterion is satisfied if a candidate tree reaches a certain

depth. Note that, since candidate trees grow by one level in each iteration, this crite-

rion is equivalent to limiting the number of iterations, and hence the runtime of the

algorithm.

To get an idea of the relevance of the two termination criteria, we conducted an

experimental study in which we applied the pattern tree classifier to a number of

datasets and checked which of the two termination criteria was responsible for stopping

the algorithm. More specifically, as proposed in [49], we used PTBU with tmax = 5.

This classifier was applied ten times to each of the forty datasets. As a result, we found

that the algorithm terminates due to the maximum-depth criterion in almost 90% of

the cases, whereas the no-improvement condition is responsible in only 10%.

Despite being the more important stopping condition, or perhaps rather because

of that, the maximum-depth criterion can be criticized. Obviously, it does not take

the complexity of the learning task into consideration or, more specifically, the decision

1In general, this criterion can be criticized for being myopic. A standard way to improve it is to

use a kind of lookahead search.

59

3. LEARNING FUZZY PATTERN TREES

M1(x)

...

ALG

Flow(xalcohol) Fhigh(xsulfates)

(a) M1 before top-down extension.

M ′1(x)

...

ALG

COEIN

Flow(xalcohol) Flow(xacidity)

Fhigh(xsulfates)

(b) M1 after top-down extension M ′1.

Figure 3.8: Top-down induction: A leaf node is expanded through replacement with a

three-node tree.

boundaries separating the classes in the input space. In fact, while some classes can

be characterized quite easily with a small pattern tree, more complex trees might be

needed for other classes. Thus, it is clear that the maximum-depth criterion comes

with the danger of stopping either too early or too late.

More specifically, looking again at the performance curves in Figure 3.7, it seems

that the original pattern tree learner may actually stop too late: Given that the im-

provements in later iterations are negligible (in fact hardly visible graphically), the

algorithm could stop earlier, thereby producing smaller models of the same quality.1

For top-down induction, on the other hand, the condition is prone to premature stop-

ping, thereby preventing this method from finding an optimal solution. To avoid this

deficiency, we shall propose an adaptive termination criterion, that is, a criterion which

seeks to adapt the model complexity to the difficulty of the learning task in an optimal

way.

3.6.2 Top-down Induction

Based on the above discussion of possibilities to improve the original pattern tree

learner, concrete modifications will be proposed in this section.

The algorithm for learning pattern trees in a top-down manner (PTTD) is presented

in pseudo-code in Listing 3.9. It implements a beam search and maintains the B best

1Following the principle of Occam’s razor [16], these smaller trees should be preferred.

60

3.6 Top-down Approach

Top-down Algorithm

1: {initialization}
2: C0 = P = {..., Fi,j , ...|i = 1, ..., n; j = 1, ...,m}
3: M∗ = argmin

M∈C0

[errT(M)]

4: ε = 0.0025

5: t = 0

6: dmax = 0

7: {loop on iterations}
8: while |Ct| == 0 or ltmin > (1 + ε)lt−1

min do

9: t = t+ 1

10: {loop on each leaf}
11: for all L ∈ leafs(M∗) do

12: {skip leafs of max depth}
13: if dmax == 0 or depth(L) < dmax then

14: {loop on each available operator}
15: for all ψ ∈ Ψ do

16: {loop on nearly each primitive pattern tree}
17: for all P ∈ P\L do

18: Ct = Ct ∪ replaceLeaf(M∗, L, ψ, P)

19: end for

20: end for

21: end if

22: end for

23: {evaluate candidate trees and select}
24: M∗ = argmin

Ct
i∈Ct

[lT(Cti)]

25: ltmin = min
Ct

i∈Ct
[lT(Cti)]

26: end while

27: return M∗

Figure 3.9: Top-down algorithm

models so far (B = 5 is used as a default value).

The algorithm again starts by initializing the set of all primitive pattern trees P.

61

3. LEARNING FUZZY PATTERN TREES

Additionally, the first candidate set, C0, is initialized by the B best primitive pattern

trees, i.e., the trees with the lowest error.

After initialization, the algorithm iterates over all candidates trees. Starting from

line 11, it seeks to improve the currently selected candidate Ct−1
i in terms of a lower

training error. To this end, new candidates are created by tentatively replacing exactly

one leaf node L (labeled by a fuzzy term) of Ct−1
i by a new subtree. This new subtree is

a three-node pattern tree that again contains L as one of its leaf nodes (see Figure 3.8 for

an illustration). The new candidate tree thus obtained is then evaluated by computing

its error. Having tried all possible replacements of all leaf nodes of the trees in Ci, the

B best candidates are selected and passed to the next iteration, unless the termination

criterion is fulfilled.

In order to lower the overall runtime of the algorithm, all possible three-node trees

can be precomputed in advance and the outputs they produce can be stored for later

use. Additionally, an implementation should also consider to recalculate the output of

an adapted candidate tree in the following way: Starting from the substitute three-node

tree, only the nodes on the path from that subtree to the root node of the candidate

need to be recalculated.

To make the termination criterion adaptive and problem-specific (cf. Section 3.6.1),

our idea is to look for the relative improvement of the best model in the t-th iteration

as compared to the (t− 1)-st iteration. More specifically, our algorithm stops if

ltmin ≥ (1− ε)lt−1
min , (3.15)

i.e., if the relative improvement is smaller than ε, where ε ∈ (0, 1) is a user-defined

parameter. Based on empirical evidence, we propose ε = 0.25% as a suitable value for

this parameter. Noting that the error measures ltmin (t = 1, 2, . . .) form a monotone

decreasing sequence upper-bounded by 1 and lower bounded by 0, the above termination

criterion appears to be reasonable. In fact, as shown in Figure 3.7, when plotting ltmin

against t, one typically obtains a curve with a convex shape, strictly decreasing at the

beginning but flattening and converging toward a saturation level after a period of time.

Despite proposing this new criterion, the pseudo code includes a second termination

criterion, i.e., trees can be limited by their hight. Leaf nodes only get extended if they

did not reach a maximum depth dmax yet. In fact, this criterion is equivalent to the

tmax-criterion of PTBU in terms of the resulting maximum tree size. In each iteration

62

3.6 Top-down Approach

of the PTBU algorithm at most one tree level can be added. Hence, the largest tree

possible is a full binary tree of hight tmax. The same holds for the dmax-criterion of the

PTTD algorithm.

3.6.3 Experiments with PTTD

After the theoretical discussion about the potential advantages of PTTD over PTBU,

in this section, we will support them by empirical evidence.

In the following experiments, we included two variants of the original pattern tree

algorithm in the experiments, PTBU5 (tmax = 5) and PTBU10 (tmax = 10); these vari-

ants were also used in [49]. Likewise, we included two variants of the top-down pattern

trees, namely PTTDε.5 and PTTDε.25. These two variants only differ with respect

to the parameter ε of our new termination criterion (3.15). PTTDε.5 is parameterized

with ε = 0.5%, whereas PTTDε.25 uses ε = 0.25%. As an evaluation criterion, we used

RMSE (3.8) for both top-down and bottom-up learning. Moreover, for all variants,

a beam size of B = 5 and the same fuzzy partitions for input attributes were used,

namely those described in Section 3.1.

Recall that our new pattern tree learner differs from the original one with regard

to two properties, namely the direction of tree construction (top-down versus bottom-

up) and the termination criterion. In order to differentiate the effects produced by

these two modifications, we included yet another variant of the top-down pattern tree

learner, namely PTTD5. This variant does not use the adaptive termination criterion

(3.15) but the two standard termination criteria of the original algorithm, namely the

no-improvement and the maximum-depth (with dmax = 5) conditions.

3.6.3.1 Classifier Accuracy

In the first experimental study, we measured the classification rate (percentage of cor-

rect predictions) of the different methods. The results (mean accuracy with standard

deviation in brackets) are summarized in Table 3.6. Note, however, because some of

the implementations are not able to deal with missing values, we conducted a full-

case-study, i.e., for each dataset, we removed all instances, which had missing values.

Therefore, the results deviate from those in the previous experiments.

In order to verify that the top-down induction strategy, even without the adaptive

termination criterion, is able to improve upon the original bottom-up strategy, we first

63

3. LEARNING FUZZY PATTERN TREES

No. PTTDε.5 PTTDε.25 PTTD5 PTBU5 PTBU10
1 76.01±2.1 (4) 75.82±2.48 (5) 76.25±2.3 (3) 76.6 ±1.91 (1) 76.5 ±2.22 (2)

2 77.6±9.6 (4) 75.96±11.16(5) 79.56±10.26 (1) 79.33±10.94 (2) 77.96±10.47 (3)

3 39.4±6.11 (3) 39.5 ±6.42 (2) 40.3 ±6.34 (1) 37.25±6.13 (4) 36.5 ±6.67 (5)

4 85.51±8.46 (3) 90.95±7.83 (1) 88.83±9.02 (2) 83.9 ±8.11 (4) 83.4 ±8.17 (5)

5 94.92±2.72 (3.5) 94.77±2.4 (5) 94.92±2.37(3.5) 95.52±2.82 (2) 95.83±2.88 (1)

6 85.51±3.59 (3.5) 85.57±3.6 (2) 85.51±3.59(3.5) 85.62±3.58(1) 85.39±3.68 (5)

7 98.36±1.11 (2) 99.07±0.9 (1) 96.62±1.83(3) 94.63±3.03 (5) 95.65±2.61 (4)

8 72.82±9.66 (2) 74.65±9.51 (1) 69.36±9.26 (4) 65.88±9.43 (5) 71.32±8.4 (3)

9 87.14±3.92 (2) 87.29±3.32 (1) 86.05±3.46 (3) 85.43±3.09 (4.5) 85.43±3.09 (4.5)

10 87.05±7.89 (2) 88.5 ±6.82 (1) 86.37±7.54 (3) 85.62±7.3 (4.5) 85.62±7.36 (4.5)

11 76.93±1.8 (5) 77.03±1.84 (2) 77.33±1.85 (1) 76.98±1.42 (4) 77.01±1.47 (3)

12 70.74±7.49 (2) 70.69±7.04 (3) 71.37±7.74 (1) 68.71±8.25 (5) 69.36±7.4 (4)

13 96.22±2.45 (3.5) 96.55±2.19 (2) 96.78±2.25 (1) 95.9 ±2.33 (5) 96.22±2.49 (3.5)

14 72.21±4.43 (3) 72.6 ±4.35 (1) 72.41±4.5 (2) 71.08±4.09 (4) 70.98±4.37 (5)

15 42.31±14.55(2) 41.25±14.41(4) 42.33±15.42 (1) 42 ±15.38 (3) 40.84±14.47 (5)

16 54.92±3.37 (3) 55.49±3.29 (1) 55.17±3.07 (2) 53.86±4 (5) 53.93±3.39 (4)

17 86.5±9.43 (3) 87.11±9.26 (2) 87.64±9.37 (1) 83.96±9.84 (4) 83.14±10.96 (5)

18 85.51±3.75 (2.5) 85.42±3.68 (4) 85.51±3.75 (2) 85.62±3.78 (1) 85.39±3.78 (5)

19 87.67±12.19(1) 83.24±11.73(3) 87.62±11.06 (2) 74.52±12.83 (5) 79.95±12.4 (4)

20 67.41±8.63 (2) 68.29±7.47 (1) 66.36±7.58 (4) 67.36±8.2 (3) 65.3 ±9.2 (5)

21 82.72±0.78 (4) 82.74±0.75 (3) 82.67±0.74 (5) 82.82±0.63 (2) 82.84±0.63 (1)

22 73.38±2.81 (4.5) 74.28±3.35 (1) 73.64±3.25 (2) 73.52±3.28 (3) 73.38±3.01 (4.5)

23 64.4±8.8 (3) 67.51±8.34 (1) 64.78±8.64 (2) 60.83±7.3 (5) 62.98±8.37 (4)

24 74.37±6.29 (5) 74.64±5.85 (2) 74.9 ±5.89 (1) 74.44±5.68 (3.5) 74.44±5.88 (3.5)

25 82.07±6.08 (3.5) 82.59±5.51 (1.5) 82.07±5.85 (3.5) 82.59±5.75 (1.5) 81.78±6.01 (5)

26 91.28±5.4 (3) 91.97±4.87 (1) 91.68±5.04 (2) 88.49±5.39 (5) 88.84±5.42 (4)

27 95.6±5.6 (2) 95.6 ±5.6 (2) 95.6 ±5.6 (2) 95.33±5.7 (4) 95.07±6.23 (5)

28 97.68±2.09 (2) 98.68±1.86 (1) 97.28±2.15 (5) 97.64±2.14 (3.5) 97.64±2.14 (3.5)

29 75.08±12.5 (5) 77 ±12.85(3) 75.67±13.08 (4) 77.44±12.28 (1.5) 77.44±12.28 (1.5)

30 82.41±7.25 (2) 83.8 ±7.61 (1) 82.29±7.73 (3) 79.46±9 (5) 79.87±8.73 (4)

31 37.33±5.94 (5) 38.11±6.89 (4) 38.82±6.41 (2) 38.77±5.56 (3) 40.56±5.05 (1)

32 76.3±5.22 (3) 76.49±4.92 (2) 76.54±4.93 (1) 75.75±5.11 (4) 75.68±4.99 (5)

33 42.01±5.33 (4) 43.18±6.13 (2) 43.48±6.48 (1) 41.83±5.7 (5) 42.3 ±6.23 (3)

34 75.2±11.22 (3) 77.5 ±11.01(1) 76.7 ±11.21 (2) 73.5 ±10.11 (4.5) 73.5 ±10.11 (4.5)

35 83.84±6.88 (1) 83.76±6.9 (2.5) 83.76±7.08(2.5) 83.6 ±6.85 (4.5) 83.6 ±6.85 (4.5)

36 66.94±7.82 (2) 67.59±7.34 (1) 66.65±7.12 (3) 64.29±7.3 (5) 66.29±7.28 (4)

37 80.69±8.73 (1) 80.38±8.92 (2) 74.86±8.48 (3) 70.81±9.85 (4) 69.56±10.41 (5)

38 69.34±3.84 (2) 71.47±3.39 (1) 66.76±4.17 (3) 63.05±4.73 (5) 64.37±4.4 (4)

39 98.2±3.06 (2) 98.31±2.81 (1) 97.19±3.75 (3) 93.35±5.93 (5) 94.25±5.72 (4)

40 90.25±7.02 (5) 91.07±6.65 (3) 90.45±7.15 (4) 92.67±7.89 (2) 93.47±6.73 (1)

Table 3.6: Average classification rates and standard deviation on test sets.

compared PTTD5 and PTBU5. To this end, we applied a Wilcoxon signed-rank test

[111]. This is a non-parametric test that ranks the differences in performances of two

classifiers for each dataset, ignoring the signs, and comparing the ranks for the positive

and the negative differences. For the results in Table 3.6, the test rejects the null

64

3.6 Top-down Approach

hypothesis of equal performance at the 5% significance level (the p-value is 0.00017, the

average positive and negative rankings are R+ = 17.225 and R− = 3.275, respectively).

Thus, one can conclude that a top-down induction strategy is significantly better than

a bottom-up strategy, a finding that is furthermore confirmed by a simple sign test

(PTTD5 wins 30 times and PT5 only 10 times).

Next, we evaluated the effect of our adaptive termination criterion. To this end, we

compared PTTD5 with PTTDε.25. Again, the Wilcoxon test finds a significant differ-

ence in performance (at the significance level of 5%), this time in favor of PTTDε.25

or, in other words, in favor of our adaptive stopping condition (the p-value is 0.033, the

average positive and negative rankings are R+ = 12.937 and R− = 5.587, respectively).

In terms of wins and losses, PTTDε.25 wins 23 times, loses 15 times and ties 2 times.

Summarizing this experimental study, we can conclude that the top-down pattern

tree learner PTTDε.25 is significantly stronger than the original algorithm for pattern

tree induction. In particular, both modifications, the top-down induction strategy

and the use of an adaptive stopping criterion, seem to pay off and improve predictive

performance.

3.6.3.2 Overfitting

As one of the advantages of their approach, Huang et al. emphasize the fact that

the learning method apparently does not tend to overfit the training data. In order

to demonstrate this property, they compared the performance of the learner on the

training data and the test data, and found that the former is not much higher than the

latter.

Since we modified the original algorithm in several ways, notably by using a differ-

ent termination criterion, an obvious question is whether or not this robustness toward

overfitting is preserved by our learner. For this reason, we repeated the same kind

of experiment. Before presenting the results, however, we like to point out that the

experiment itself should be considered with caution. Even though it is true that a

small training error coming along with a high test error normally indicates an overfit-

ting effect, the difference between these two errors alone does actually not, as it loses

information about the absolute error rates. Consequently, an overfitting effect cannot

be distinguished from an underfitting effect. For example, although a learner with 10%

training and 20% test error seems to overfit a bit, it is still preferable to a learner with

65

3. LEARNING FUZZY PATTERN TREES

No. PTTDε.25 PTTDε.5 PTTD5 PTBU5 PTBU10
1 2.77 3.06 2.33 2.48 6.96
2 21.98 11.06 18.38 12.42 6.58
3 1.00 3.85 0.30 6.25 20.75
4 3.91 0.91 11.17 2.52 15.36
5 0.69 2.05 0.92 2.20 3.03
6 0.06 0.14 0.00 0.17 5.62
7 0.45 3.23 3.02 2.52 3.52
8 12.66 3.77 23.32 19.49 23.32
9 0.07 0.06 1.31 1.77 4.65
10 2.89 0.51 5.02 3.37 7.20
11 0.11 0.48 0.19 0.43 3.88
12 2.35 2.89 3.12 4.91 15.28
13 0.23 0.26 1.02 0.73 1.73
14 0.30 0.05 0.99 1.34 24.59
15 15.23 16.02 21.56 14.48 57.31
16 0.16 0.68 0.98 1.53 17.22
17 3.17 2.39 4.02 6.31 12.69
18 0.09 0.14 0.00 0.03 5.62
19 16.76 0.03 12.38 20.86 15.43
20 13.67 9.39 23.33 10.99 17.69
21 0.73 0.28 0.81 0.19 0.17
22 0.58 0.32 2.96 1.08 12.12
23 1.65 5.69 5.78 10.20 33.28
24 1.83 2.43 1.24 2.68 2.69
25 3.33 3.11 6.81 2.96 11.19
26 3.76 1.25 6.33 1.82 10.88
27 0.40 0.40 1.07 0.67 2.93
28 0.12 0.28 1.52 0.24 1.16
29 2.29 3.08 1.34 0.72 1.87
30 10.79 2.05 15.01 5.00 13.38
31 4.16 4.93 0.77 3.19 30.87
32 0.08 0.91 0.03 1.20 8.44
33 6.37 6.08 9.91 11.56 22.30
34 2.50 0.70 4.80 1.00 24.50
35 1.04 0.96 1.04 1.20 4.80
36 2.71 0.71 7.18 4.24 30.18
37 15.30 0.56 23.70 12.84 28.52
38 0.52 3.97 8.54 3.62 32.55
39 1.69 2.70 2.81 3.84 4.62
40 4.97 7.77 5.59 7.33 5.54
avg. 4.08 2.73 6.01 4.76 13.76

Table 3.7: Difference in accuracy between training and test data

30% training and test error, simply because the latter seems to strongly underfit the

training data. (In particular, note that the majority classifier, which always predicts

the most frequent class, is likely to have a very similar training and test error.) Seen

66

3.6 Top-down Approach

from this point of view, one may indeed argue that the truly relevant measure is the

performance on the test data, which has already been presented above.

Despite these reservations, a comparison of training and test error is of course

usefull and may provide some interesting information. Table 3.7 shows the differences

between the average accuracy of a method on the training data and on the test data

(corresponds to the results shown in Tables 3.6).

As can be seen, PTTDε.5 achieves the best result on average, followed by PTTDε.25.

Overall, the results are plausible in the sense of being in agreement with the flexibility

of the methods.

The larger the trees (due to a relaxed stopping condition), the worse the performance

becomes. Worth mentioning in this regard is the poor performance of PTBU10, which

is in contrast to what was reported in [49]. Yet, given that pattern trees of depth 10

are indeed rather complex models, this result is perhaps not surprising.

3.6.4 Fast Top-down Learning

In the last sections, we tried to improve predictive accuracy of the learning algorithms.

In the following section however, we focus on the runtime of the top-down algorithm1.

Recalling the general structure of the top-down algorithm, in each iteration many

slightly different candidate models are created – by extending each leaf in a variety

of ways. The number of these candidate models depend on the number of fuzzy sets

(fuzzy partitions of attribute domains), the number of possible aggregation operators

and the number of leaves of the current model, which we seek to improve. Depending

on the dataset at hand, the number of candidate models can be quite large. Then,

each model gets evaluated by first applying each model to the training instances and

then comparing the predictions and the actual output in terms of a loss function. The

runtime of this evaluation strongly depends on the number of training instances.

To be precise, the number of leaf nodes of M∗ in the t-th iteration is t, and taking

into consideration that the fuzzy sets combined in a three-node subtree (L and P in

Fig. 3.8) should pertain to different variables, is easy to see that the number of candidate

models is

|Ct| = t · a · (m− 1) · |F| , (3.16)

1Parts of this section were submitted to be published in [94].

67

3. LEARNING FUZZY PATTERN TREES

where a is the number of aggregation operators, m the number of variables, and |F|
the size of the fuzzy partitions (number of fuzzy sets ni in (3.1), for simplicity assumed

to be the same for all variables). Needless to say, this number might be large, while

many of the candidates will differ only slightly. Moreover, all candidates are tested on

the entire training data, giving rise to |Ct| · |T| tree evaluations.

Two major changes will be introduced, which significantly reduce the runtime es-

pecially for large datasets with either many attributes or many instances. The first

one seeks to speed up the identification of the best model among a set of candidate

models (subsections A–B), whereas the second one restricts the total number of such

candidates (subsection C).

3.6.4.1 Racing Algorithms

In [64] Maron et al. first introduced the idea of so-called Hoeffding races intended to

accelerate the selection of a good model from a set of candidate models, which is a

common task in machine learning methods. Especially in cases, where the set of candi-

date models and the number of test instances are large, evaluating all candidate models

on every test example can be unnecessarily time consuming. Instead of evaluating the

models on every test example (e.g. in a cross-validation setup), Maron suggests to have

a race between the models.

A race starts with all available candidate models. These are treated as black boxes,

that is why they were also called learning boxes. The racing algorithm iterates over

a random order of the test set. In each iteration, one example (or a small portion of

examples) is drawn to evaluate each of the models. For each model Mj , two variables

are stored, i.e. the number of examples nj it has been evaluated on and the current

mean estimate of its error errj .

We have to consider, however, that errj is only an estimate of the true error of the

j-th model. Though, we are able to calculate a confidence interval for the sample mean

of the error using Hoeffding’s formula:

ε =

√
B2log(2/δ)

2n

Given a predefined confidence level 1 − δ and a maximum possible error B, for each

model εj determines how close the current estimate is to the true error of the j-th

68

3.6 Top-down Approach

model1. Then, we can eliminate every model from the race whose best possible error

is still greater than the worst possible error of the current best model. This way, by

evaluating on more and more examples the confidence intervals become tighter and

more and more candidate models can be eliminated and hence are not evaluated on all

test examples. See Figure 3.10 for an illustration.

Racing example

learning boxes

er
ro

r

Box 1 Box 2 Box 3 Box 4 Box 5 Box 6

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.10: In this example, three of the six models (Box 1–3) remain in the race after

this iteration. Models 4–6 can be excluded because their mean error is unlikely (< δ) to

become better than the one of the current best model (Box 2).

The race ends if one of the following three conditions holds:

1. Only one of the learning boxes remains in the race.

2. A predefined maximum number of test examples has been used (e.g. N).

3. ε has reached a predefined threshold.

The second and third condition can be chosen to best meet application requirements.

If more than one model remains in the end, they are indistinguishable by 2εn, where n

is the number of test instances used.

Applying the Hoeffding bound for a given confidence level 1 − δ produces a valid

interval for one learning box in one iteration. In order to provide the validity of all

1Do not confuse the two different parameters ε and ε. The former constitutes the relative improve-

ment threshold while the latter determines the error threshold for the racing algorithm.

69

3. LEARNING FUZZY PATTERN TREES

confidence intervals in every iteration we have to account for multiple applications of

the Hoeffding bound. Maron et al. suggest to simply use a Bonferroni correction [61].

To assure the confidence level 1− δ at the end of the racing algorithm, the individual

confidence intervals have to be derived for δ′ = δ
N |Ct| , where N is the maximum number

of iterations and |Ct| is the number of candidate models. The validity of the update

rule then follows immediately from the union bound of probability.

In [65] Maron et al. introduced various extensions to the general idea of racing. Two

of them will be briefly explained in the following.

Bounding Errors

B was said to be the maximum error, that we are able to measure for a learner. For

classification tasks, B can easily be determined to be 1. For other error measures used

for regression this might be not as easy. In these cases, Maron et al. suggests to estimate

B by adding a few standard deviations to the mean of the error of the learner.

In our case, since our output always resides in [0, 1] and we are measuring (1.2) an

obvious bound is also 1.

Shrinking the Intervals

During the process of racing, all mean error estimates errj move. Nonetheless, all

intermediate intervals are valid as we have discussed before. This means that e.g. the

lower bound of the j-th model at iteration k, say lower
(k)
j , remains valid for all later

iterations. The same applies for the upper bound upper
(k)
j . These facts can help to

shrink the intervals more efficiently by applying the following update rules:

lower
(k+1)
j = max{lower(k)

j , errj+1 − ej+1}

upper
(k+1)
j = min{upper(k)

j , errj+1 + ej+1}

Empirical Bernstein Stopping

In addition to the above extensions, in [68] Mnih et al. introduce the use of the empirical

Bernstein bound [8] instead of the Hoeffding’s inequality. It states that with probability

at least 1− δ

ε ≤ σ̄n

√
2log(3/δ)

n
+

3Blog(3/δ)

n
,

70

3.6 Top-down Approach

where σ̄n in our case denotes the empirical standard deviation of the error measured for

a learning box. The term involving B decreases at the rate of 1
n . The term involving

the square root, however, does not depend on B anymore. Hence, when σ̄n � B the

empirical Bernstein bound becomes tighter than Hoeffding’s inequality.

3.6.4.2 Application of Racing to Top-down Induction

Starting from line 11 until line 23 in the top-down algorithm various candidate models

are created. Then, these models are evaluated in order to select the best one, which

becomes the starting point of the consecutive iteration. This selection process currently

calculates the mean error of each candidate model on the given training data and then

selects the model with the lowest one (lines 24-26). For this reason, it is actually

the most time consuming step in the algorithm and we will replace it by the racing

algorithm.

To this end, we can apply the racing algorithm as it is. We only have to consider

a proper termination criterion for the race. Three potential criteria have already been

proposed and we will use the first and third one. That is, we will stop when there is only

one candidate model left or when ε has reached the threshold of ε/2 for all remaining

models. Our termination criterion of the top-down algorithm is parameterized by ε.

This means we are not interested in smaller performance improvements. Hence, we

stop the race if the remaining candidate models are not distinguishable by 2ε = ε.

3.6.4.3 The Potential-Heuristic

The second change aims at narrowing the search by using a heuristic. Recall that, in

each iteration of the original top-down algorithm, new candidate models Ct are created

by expanding every leaf node (line 17) of the current model. Our idea is to restrict this

expansion to a constant (and typically small) number p < |Ct| of leaf nodes with the

highest potential, a measure characterizing the leaf’s ability to contribute to the overall

improvement of the model. The general idea of the heuristic is to evaluate each leaf

node in terms of its potential to improve the overall output of the tree, hence the name

potential-heuristic (PH). The potential of a leaf node is defined as follows.

Let L be a leaf of a candidate tree ML ∈ Ct. We define a model MLOpt
by replacing

L in ML by LOpt, where LOpt is a fictitious “oracle leaf” that provides the ideal output

71

3. LEARNING FUZZY PATTERN TREES

ML

... ... L

(a) ML

MLOpt

... ... LOpt

(b) MLOpt

Figure 3.11: Models compared to calculate the potential of leaf L.

yi for every training instance (xi, yi) ∈ T (cf. Fig. 3.11). Then, we define the potential

of L in terms of the possible reduction of empirical risk:

PM (L) = err(MLOpt
)− err(ML)

Due to the monotonicity of the internal nodes, PM (L) is non-negative, and the higher

the potential, the more promising the leaf node appears to be. In fact, the potential

provides an upper bound on the improvement that can be achieved by expanding L.

Therefore, the p leafs with the highest potential are selected.

3.6.4.4 Runtime Considerations

Before presenting an empirical runtime analysis in the next section, we first have a look

at the theoretical improvement of our fast PTTD variant.

The number of candidate models to be considered by the original PTTD algorithm

in the t-th iteration is given by (3.16). Thus, upon termination of PTTD, the total

number of models evaluated is O(|M |2 ·m), where |M | denotes the size of the model

produced, measured in terms of the number of leaf nodes—the number of aggregation

operators, a, and the size of the fuzzy partitions, |F|, are considered as constants here.

Moreover, since the complexity of a single evaluation is linear in the size of the data

set T, the overall runtime complexity is O(|M |2 · |T| ·m). This essentially means that

the runtime is linear in the size of the data set, namely the number of examples and

the number of attributes, and quadratic in the size of the tree produced.

As for our fast variant, PTTD-fast, the use of the racing algorithm is supposed to

reduce the number of the overall model evaluations in each iteration. However, there is

72

3.6 Top-down Approach

no guarantee. In the worst case, when all candidate models are almost equally good, it

might still take a long time (many evaluations) to eliminate models until we are able to

select the best one. Nevertheless, for the purpose of top-down induction, we are only

interested in a ε-good solution. That is, we do not need to run each race until a single

winner is found. We rather stop the race whenever we are satisfied with every one of

the remaining candidate models. In the experimental section we will demonstrate the

resulting decreased runtime empirically.

Using the potential-heuristic limits the number of leaf nodes that are expanded in

each iteration to a constant number of p. That is, the number of candidate models

created in later iterations no longer linearly depend on the number of leafs. Therefore,

the PH strategy becomes more and more effective as the trees becomes larger. However,

calculating the heuristic introduces an overhead cost, which arises for every leaf node

in every iteration. This cost, though, basically only constitutes two evaluations of the

current best model per leaf node. Before, we had to evaluate a · |F| extensions. Needless

to say that a · |F| usually is much bigger than 2.

3.6.4.5 Experiments

For the purpose of an empirical study on the runtime behavior of PTTD-fast, we

present a case-study on a large real world dataset. It has been used in the KDD Cup

data mining challenge during the annual Conference on Knowledge Discovery and Data

Mining in 1999. The dataset contains more than 4.8 million log entries about network

connections in a simulated military network environment. Task of the challenge was to

build an intrusion detection system to distinguish between “bad” connections, called

intrusions or attacks, and “good” normal connections.

We evaluated the predictive performance of the models in terms of accuracy (pro-

portion of correct predictions). Runtime of the training phase is measured in seconds

(s) on a single core (2.3 GHz) with enough RAM available (120GB, no swapping).

In order to measure the effect of both modifications, we conducted two experiments.

The first one aims at evaluating the effect of the PH strategy. As explained earlier,

the PH strategy becomes more effective in the case of larger trees. Therefore, in the

first setup we vary parameter dmax between 1 and 6. Additionally, ε was set to 0.

This accounts for models that tend to be bigger with larger dmax. We compare the

original PTTD algorithm to PTTD-PH, the variant using the PH strategy with p = 3.

73

3. LEARNING FUZZY PATTERN TREES

dmax PTTD PTTD-PH

Time

1 0.5460 ± 0.0107 0.6397 ± 0.0819

2 9.0150 ± 0.7037 7.8127 ± 0.2851

3 39.9633 ± 1.3087 39.9193 ± 1.7134

4 189.5567 ± 6.7535 137.1877 ± 6.1803

5 558.8950 ± 31.566 253.7933 ± 12.116

6 1954.1900 ± 194.73 414.9607 ± 27.842

Accuracy

1 0.9488 ± 1.9E-03 0.9488 ± 1.9E-03

2 0.9824 ± 1.5E-04 0.9824 ± 1.5E-04

3 0.9931 ± 1.7E-04 0.9931 ± 1.7E-04

4 0.9953 ± 1.3E-04 0.9952 ± 1.2E-04

5 0.9957 ± 1.7E-04 0.9955 ± 1.7E-04

6 0.9960 ± 1.5E-04 0.9958 ± 1.6E-04

Table 3.8: Mean time and accuracy results (including standard error) of the comparison

between PTTD and PTTD-PH for different dmax values.

We expected the two variants to behave equally for a maximum depth up to 2. Then,

however, starting from dmax = 3, PTTD-PH should exhibit a shorter runtime because

the number of leaf nodes for a potentially full binary tree of this hight exceeds 3.

In this experiment, we repeated the following procedure 30 times and averaged

the results. First we shuffled the data and split it into two parts. The test part

contained 10% of the whole dataset. Then, we randomly selected 2000 examples from

the remaining training part to train the model1.

Looking at the results shown in Figure 3.12 (precise values are given in Table 3.8) we

can confirm our expectation. With an increasing size of the tree, the runtime increases

for both methods, however, PTTD-PH becomes more efficient starting from dmax = 3.

In terms of accuracy the figure nicely illustrates, that PTTD-PH still keeps the same

level of accuracy in comparison to PTTD. This result indicates that using the potential

measure (3.11) effectively helps in selecting the right leafs to be extended. Dropping

low-potential leafs did not affect the predictive quality of the resulting models.

In our second experiment we compare three algorithmic variants. PTTD again

denotes the original top-down induction algorithm, PTTD-R makes use of racing but

1We limited the number of training examples in order to facilitate a reasonable runtime for PTTD.

74

3.6 Top-down Approach

Time

maximum depth

 ti
m

e
(s

)

1 2 3 4 5 6

0
50

0
10

00
15

00
20

00 PTTD
PTTD−PH

Accuracy

maximum depth

 a
cc

ur
ac

y

1 2 3 4 5 6

0.
95

0.
96

0.
97

0.
98

0.
99

PTTD
PTTD−PH

Figure 3.12: Result of the comparison between PTTD and PTTD-PH for different dmax

values. The upper diagram shows the training time and the lower shows predictive accuracy

of the methods including standard error bars.

75

3. LEARNING FUZZY PATTERN TREES

not of PH, while PTTD-fast uses both racing and PH. This time, however, we keep

dmax = 3 constant and vary the size of the training set. Additionally, we set ε = 0.01

for all variants. The racing algorithm is parametrized with a confidence level of 0.95

(δ = 0.05). We conducted the experiments with both bounds, Hoeffding and Bernstein

but we found, that the results for the Bernstein bound hardly differ from the one

achieved using the Hoeffding inequality. Therefore and for the sake of clearness, we

only present the results for Hoeffding. Finally, for PTTD-fast, we set the number of

high-potential leaf nodes to be 3. We used the same experimental setup as before.

This time however the number of training examples varied between 250 and 1024000,

whereas dmax was kept constant.

The results of the second experiment are shown in Figure 3.13 (see Table 3.9 for

the detailed values). First of all, note that the number of examples are presented

on a logarithmic scale. Keeping this in mind, PTTD clearly shows a linear increase

in training time with an increasing number of training examples. This verifies our

runtime considerations, identifying |T| as a linear factor for PTTD. On the contrary,

PTTD-R and also PTTD-fast exhibit a considerable smaller runtime. The difference

in comparison to PTTD grows for larger training sets. In fact, the training runtimes of

PTTD-R and PTTD-fast grow only sub-linearly. The difference between PTTD-R and

PTTD-fast is relatively small, however, PTTD-fast still clearly outperforms the variant

without PH strategy. Moreover, the first experiment suggests that the difference can

be even bigger for larger trees. Looking at the predictive accuracy of the three methods

the bottom diagram of Figure 3.13 shows a standard learning curve with a saturation

starting from 32000 instances. All three curves are very close to each other, however,

PTTD-fast slightly hangs behind of the other two variants. Yet, the differences are not

significant.

76

3.6 Top-down Approach

size PTTD PTTD-R PTTD-fast

Time

250 10.2587 ± 0.8360 3.7200 ± 0.2779 3.1877 ± 0.2074

500 23.7040 ± 1.4132 8.5853 ± 0.5283 6.0333 ± 0.4127

1000 53.0553 ± 2.5585 17.1697 ± 0.8692 13.9383 ± 0.8639

2000 179.9030 ± 5.9025 37.9033 ± 1.2048 27.6983 ± 1.7574

4000 377.5310 ± 12.6147 67.6223 ± 3.0631 44.1893 ± 2.9369

8000 805.2417 ± 17.4475 135.3683 ± 4.3245 89.6927 ± 6.3608

16000 1574.1090 ± 47.5882 253.3040 ± 10.1971 153.5180 ± 8.6051

32000 3304.6977 ± 78.5015 439.7010 ± 17.0745 273.8480 ± 12.5710

64000 6394.3067 ± 138.9887 540.4683 ± 16.9115 423.1977 ± 7.5181

128000 12567.8710 ± 250.4649 666.9857 ± 15.7962 534.6757 ± 11.7633

256000 23936.8793 ± 510.9649 944.4373 ± 29.2997 750.5740 ± 15.4544

512000 48250.0403 ± 838.9186 1392.5327 ± 39.1369 1181.7050 ± 20.5539

1024000 98569.1807 ± 1633.0795 2279.9153 ± 42.7369 1993.1643 ± 30.3936

Accuracy

250 0.9921 ± 5.12E-04 0.9921 ± 4.96E-04 0.9921 ± 4.89E-04

500 0.9932 ± 4.06E-04 0.9932 ± 4.06E-04 0.9931 ± 4.16E-04

1000 0.9946 ± 2.16E-04 0.9946 ± 2.16E-04 0.9944 ± 2.14E-04

2000 0.9953 ± 1.26E-04 0.9954 ± 1.30E-04 0.9952 ± 1.23E-04

4000 0.9956 ± 1.64E-04 0.9956 ± 1.69E-04 0.9953 ± 1.68E-04

8000 0.9958 ± 1.08E-04 0.9958 ± 1.09E-04 0.9956 ± 1.14E-04

16000 0.9960 ± 8.96E-05 0.9960 ± 9.11E-05 0.9959 ± 8.91E-05

32000 0.9963 ± 2.92E-05 0.9963 ± 2.89E-05 0.9961 ± 4.46E-05

64000 0.9962 ± 2.30E-05 0.9962 ± 2.35E-05 0.9962 ± 1.94E-05

128000 0.9962 ± 5.89E-05 0.9961 ± 7.30E-05 0.9961 ± 7.04E-05

256000 0.9962 ± 1.84E-05 0.9961 ± 5.35E-05 0.9961 ± 5.23E-05

512000 0.9962 ± 1.69E-05 0.9962 ± 1.66E-05 0.9962 ± 1.78E-05

1024000 0.9962 ± 1.69E-05 0.9961 ± 5.80E-05 0.9961 ± 5.74E-05

Table 3.9: Mean time and accuracy results (including standard error) of the comparison

between PTTD, PTTD-R and PTTD-fast for different training set sizes.

77

3. LEARNING FUZZY PATTERN TREES

Time

examples

 ti
m

e
(s

)

250 1000 4000 16000 64000 256000 1024000

0
20

00
0

60
00

0
10

00
00

PTTD
PTTD−R
PTTD−fast

Time

examples

 ti
m

e
(s

)

250 1000 4000 16000 64000 256000 1024000

0
50

0
10

00
15

00
20

00

PTTD−R
PTTD−fast

Accuracy

examples

 a
cc

ur
ac

y

250 1000 4000 16000 64000 256000 1024000

0.
99

2
0.

99
3

0.
99

4
0.

99
5

0.
99

6

PTTD
PTTD−R
PTTD−fast

Figure 3.13: Result of the comparison between PTTD, PTTD-R and PTTD-fast for

different training set sizes. The upper diagram shows the training time of all three variants.

The middle one only shows PTTD-R and PTTD-fast to be able to visually distinguish them.

Finally, the lower shows predictive accuracy of the methods. All diagrams are equipped

with standard error bars.

78

3.7 Co-evolutionary Approach

3.7 Co-evolutionary Approach

PTBU as well as PTTD as outlined above can be criticized for several reasons, notably

the following1. First, the learning algorithms implement a kind of greedy search in the

hypothesis space. Since this space is extremely complex, it is likely to get stuck in local

optima. Clearly, the complexity of the search space and the highly non-linear nature

of the models prevents the use of search algorithms which guarantee optimality. Yet,

there is hope that better solutions can be found at the cost of an increased though still

acceptable search effort. To this end, we shall resort to search methods from the field

of evolutionary optimization.

Second, one may argue that for classification the problem is made more difficult

than necessary. In fact, as described above, the learning algorithm seeks to find, for

each class yi, a pattern tree that delivers outputs close to 1 for instances x from this

class and outputs close to 0 for instances from other classes. This property is indeed a

sufficient criterion for correct classification, but actually not a necessary one. Indeed,

according to (3.3), a prediction is made by combining the outputs of all pattern trees

using the argmax operator. Therefore, a prediction is correct as soon as the true class

receives the highest score. This does not mean, of course, that the score must be close

to 1, while all other scores are close to 0. Trying to comply with this much stronger

property will presumably lead to models that are more complex than necessary.

As an illustration, suppose that all classes are correctly characterized by simple

linear functions (i.e., the trees have depth 2 and a WA operator as a root node).

Combined with argmax, these functions will always produce the correct prediction,

even though the outputs will not always be close to 0 and 1, respectively. Instead,

more complex, non-linear models will be needed to produce these type of predictions.

3.7.1 Evolutionary Algorithms

Evolutionary algorithms (EA) are population-based stochastic search methods which

seek to optimize a solution by mimicking the process of biological evolution. They

can be applied in a quite universal way and have been used in a wide spectrum of

application domains.

1Parts of this section were already published in [92].

79

3. LEARNING FUZZY PATTERN TREES

To apply evolutionary algorithms to complex problems more efficiently, a modu-

larization technique, referred to as co-evolution, has recently been proposed [80]. The

general idea of co-evolution is to evolve the sub-components of a (structured) solution,

also referred to as species, in different sub-populations.

To assure that the sub-components can be assembled into a globally optimal solu-

tion, the fitness of an individual in a species is evaluated by its ability to participate

in a cooperative team consisting of one representative per species. The global fitness

function used in this context is also referred to as the shared domain model.

Determining the fitness of individuals of a certain species can simply be achieved

by the evaluation of collaborations formed with representatives from each of the other

species. Representatives of a species can be individuals of a certain fitness, or even

the whole population. Essential for the validity of an individuals fitness, which can

also be seen as a measure of the individual’s contribution to the overall solution, is the

selection of representatives of the other species.

3.7.2 Co-evolutionary Fuzzy Pattern Tree Learning

In our concrete application of pattern tree induction, an individual is a single pattern

tree. We evolve one species per class and denote by I
(t)
i the t-th generation of the i-th

species Si ∈ S, where S denotes the set of species. A hypothesis h consists of exactly

one individual for each species, that is, one pattern tree for each class. As a fitness

criterion (shared domain model), we use the classification accuracy of a hypothesis on

the training data.

The evolutionary process comprises the following steps:

Step 1 - Initialization

To obtain a first generation of pattern trees, random pattern trees of size 1 or 3 are

created. Here again, the size of a tree is defined as the number of nodes in the tree,

including both, internal and leaf nodes.

Step 2 - Evaluation

After a new generation has been created, the fitness of all individuals of each species

must be calculated. This is done by building every possible classifier, that is, every

80

3.7 Co-evolutionary Approach

combination

M
(t)
j1,...jk

= (M
(t)
1,j1

,M
(t)
2,j2

, ...,M
(t)
k,jk

) ∈ I(t)
1 × I

(t)
2 × ...× I

(t)
k (3.17)

of pattern trees with k denoting the number of species (classes) and Mi,ji being the

ji-th pattern tree of the i-th species. The number of possible combinations is mk, with

m the size of each population (we evolve each species using the same population size).

As mentioned above, a hypothesis M is evaluated by its accuracy on the training

data, i.e., acc(M). Moreover, the evaluation (fitness) of a single pattern tree M
(t)
ji

is

given by the best hypothesis in which it has participated:

Fit
(
M

(t)
ji

)
= max

j1,...,ji−1,ji+1,...,jk

[
acc(M

(t)
j1,...,jk

)
]
.

Step 3 - Termination

The proposed Co-EA terminates if one of the following conditions holds. First, the

iteration stops after a maximum number tmax of generations. Second, the Co-EA

also stops if no significant improvement can be achieved during a certain number of

iterations.

Therefore, two thresholds δ and timprove have been introduced to track the accuracy

improvement of the most accurate (best) hypothesis M t
best of each generation. If the

condition

acc(M
(t)
best) + δ ≥ acc(M

(t+l)
best)

holds for the last timprove generations, the algorithm stops.

Step 4 - Reproduction

Reproduction in terms of EAs means the creation of a new generation. Therefore,

individuals of the current (parent) generation are selected at random, with a probability

proportional to their fitness, to form a set of parents.

To make sure that the best solution found so far is not lost, elitist selection is

applied, which means that the best hypothesis of each generation is directly transfered

to the new generation.

Given two individuals M (t) and M ′(t), a cross-over operator on trees is used for

reproduction, that is, to create their children M (t+1) and M ′(t+1). To this end, one node

81

3. LEARNING FUZZY PATTERN TREES

M1(x)

...

ψ1

S1,1 S1,2

(a) M1 before cross-

over.

M2(x)

...

ψ2

S2,1 S2,2

(b) M2 before cross-

over.

M ′1(x)

...

ψ1

S2,1 S1,2

(c) M1 after cross-

over becomes M ′1.

M ′2(x)

...

ψ2

S1,1 S2,2

(d) M2 after cross-

over becomes M ′2

Figure 3.14: Example for the cross-over procedure. The dashed subtrees in (a) and (b)

are chosen randomly. They are interchanged to create two new individuals M ′
1 and M ′

2 for

the next generation.

within each tree is chosen at random and the corresponding subtrees are interchanged.

Figure 3.14 illustrates this operation by means of an example.

Step 5 - Mutation

To guarantee a proper level of diversity, a set of randomly chosen individuals are mu-

tated after reproduction. The probability of an individual being chosen for mutation is

uniform over the population and determined by the predefined mutation rate pmutate.

If an individual has been chosen for mutation, one of three different mutation operators

82

3.7 Co-evolutionary Approach

M1(x)

...

ψ1

Fhigh(xalcohol) Fhigh(xdensity)

(a) M1 before leaf mutation.

M ′1(x)

...

ψ1

Fhigh(xalcohol) Flow(xsulfates)

(b) M1 after leaf mutation becomes

M ′1.

Figure 3.15: Example for the leaf mutation procedure.

is applied. The selection of the mutation operator is again random.

1. Mutate Leaf: Randomly selects a leaf node and replaces it by another randomly

chosen leaf node. This comes down to replacing a fuzzy term Fij of an attribute

Ai by another term Flj of another attribute Al.

2. Mutate Operator: Randomly selects an internal node and replaces it with a ran-

domly chosen different one. Since an internal node represents a fuzzy operator,

this mutation changes the type of aggregation of its children.

3. Mutate Tree: Randomly selects a subtree and replaces it by a new, randomly

created tree. This operator combines the first and the second one.

After the mutation step, the algorithm continues with step 2.

Experiments

In the next chapter, we will compare this co-evolutionary approach – that we call

PTCoEvo – to PTBU and PTTD in terms of predictive accuracy and training runtime.

83

3. LEARNING FUZZY PATTERN TREES

M ′1(x)

...

MIN

S1,1 S1,2

(a) M1 before opera-

tor mutation.

M ′1(x)

...

COMAX

S1,1 S1,2

(b) M1 after operator

mutation becomes M ′1.

Figure 3.16: Example for the operator mutation procedure.

M1(x)

...

COALG

Flow(xalcohol) Fhigh(xsulfates)

(a) M1 before sub tree mutation.

M ′1(x)

...

COALG

ALG

Flow(xalcohol) Flow(xacidity)

Fhigh(xsulfates)

(b) M1 after sub tree mutation becomes M ′1.

Figure 3.17: Example for the subtree mutation procedure.

84

4

Experiments

This chapter consists of four sections. Each section concentrates on a specific question

that we try to answer empirically. The first section is dedicated to the evaluation of

the CI operator as a substitute for WA and OWA. Next, we compare the three main

variants of fuzzy pattern tree induction algorithms discussed in this thesis empirically

in terms of predictive accuracy and training runtime. Moreover, the third and forth

section contain comparisons of the strongest fuzzy pattern tree variant to current state-

of-the-art algorithms for classification and regression tasks.

4.1 CI vs. WA, OWA

We compare two sets of operators: the original one (the four t-norms and t-conorms,

WA and OWA) as in [93] (denoted by PTTD) and a second one where we substitute

WA and OWA by our new CI operator (denoted by PTTD-CI).

In order to compare the two operator sets by means of predictive accuracy and

training runtime we further configured the PTTD algorithm as follows: ε = 0, dmax = 5,

B = 1.

The results of the experiments are shown in Table 4.2.

PTTD Tie PTTD-CI

Accuracy 22 1 17

Runtime 13 0 27

Table 4.1: Wins of PTTD vs. PTTD-CI in terms of predictive accuracy and training

runtime.

85

4. EXPERIMENTS

The results can be summarized by means of a win-loss statistics (see Table 4.1).

In terms of predictive accuracy, the original operator set variant PTTD has the edge

over PTTD-CI. However, the difference (22 vs. 17 wins) is not significant. Regarding

training runtime, the difference is bigger, this time in favor of PTTD-CI. When con-

ducting a Wilcoxon signed-rank test we found that the difference is significant even for

a confidence level of 0.99 yielding a p-value of 1.23E-3.

To some extend, this result is astonishing. Due to the greater expressiveness of the

CI operator one could have expected more accurate results. However, keeping in mind

that we measure generalization error instead of training error, the effects of a higher

flexibility and a higher risk of overfitting might have canceled out each other.

86

4.1 CI vs. WA, OWA

Accuracy Runtime (s)
No. PTTD PTTD-CI PTTD PTTD-CI
1 76.32 ± 2.96 76.40 ± 2.60 4.08E+03 ± 1.13E+03 2.33E+03 ± 5.77E+02
2 73.93 ± 12.29 73.93 ± 12.83 5.27E+02 ± 2.61E+02 4.93E+02 ± 1.98E+02
3 33.42 ± 6.52 34.58 ± 4.96 1.47E+02 ± 7.25E+01 1.27E+02 ± 1.00E+02
4 92.41 ± 8.23 81.70 ± 8.03 1.53E+03 ± 1.47E+03 1.89E+03 ± 2.32E+03
5 96.95 ± 3.24 96.70 ± 2.80 8.48E+00 ± 5.10E+00 7.01E+00 ± 9.64E+00
6 85.65 ± 3.66 85.46 ± 3.68 4.71E+03 ± 2.18E+03 4.13E+03 ± 1.40E+03
7 99.66 ± 0.57 98.82 ± 0.00 3.02E+05 ± 9.43E+04 2.96E+05 ± 4.51E+04
8 72.17 ± 8.62 73.02 ± 9.15 1.86E+04 ± 4.28E+03 1.42E+04 ± 3.59E+03
9 90.99 ± 1.08 91.84 ± 0.76 8.05E+02 ± 3.64E+02 7.63E+02 ± 2.28E+02
10 87.71 ± 7.93 89.13 ± 7.39 4.11E+01 ± 5.73E+01 5.22E+01 ± 9.19E+01
11 78.83 ± 2.91 79.01 ± 2.77 5.19E+01 ± 4.00E+01 4.69E+01 ± 4.05E+01
12 71.24 ± 8.45 69.69 ± 8.58 3.02E+01 ± 2.65E+01 3.84E+01 ± 3.13E+01
13 96.64 ± 1.96 96.25 ± 2.26 1.26E+03 ± 4.57E+02 3.56E+02 ± 4.67E+02
14 71.92 ± 4.56 73.55 ± 5.12 2.20E+02 ± 1.20E+02 3.12E+02 ± 1.21E+02
15 32.33 ± 11.33 34.55 ± 13.76 1.90E+02 ± 7.32E+01 1.63E+02 ± 7.21E+01
16 54.99 ± 3.97 54.40 ± 3.46 1.23E+04 ± 4.31E+03 9.70E+03 ± 4.02E+03
17 86.31 ± 10.88 85.77 ± 10.20 8.01E+00 ± 2.96E+00 8.34E+00 ± 3.34E+00
18 86.47 ± 3.60 86.04 ± 3.33 8.05E+03 ± 3.35E+03 6.30E+03 ± 2.97E+03
19 78.02 ± 14.54 39.76 ± 24.94 6.02E+02 ± 2.59E+02 1.99E+02 ± 8.37E+01
20 65.02 ± 10.03 63.32 ± 9.38 2.60E+04 ± 5.21E+03 1.48E+04 ± 3.71E+03
21 82.22 ± 1.18 81.94 ± 1.35 1.95E+04 ± 5.14E+03 1.01E+04 ± 2.79E+03
22 74.13 ± 3.58 73.67 ± 3.48 3.12E+04 ± 8.88E+03 3.15E+04 ± 1.29E+04
23 68.07 ± 7.54 67.73 ± 8.56 1.02E+03 ± 2.79E+02 1.04E+03 ± 2.53E+02
24 72.97 ± 2.17 73.20 ± 2.36 9.53E+00 ± 7.70E+00 1.27E+01 ± 1.42E+01
25 81.60 ± 7.37 80.25 ± 6.97 1.30E+03 ± 7.29E+02 1.00E+03 ± 4.93E+02
26 92.02 ± 5.00 92.12 ± 4.99 4.64E+03 ± 3.67E+03 3.69E+03 ± 3.08E+03
27 95.78 ± 4.79 96.22 ± 4.53 2.32E+01 ± 1.61E+01 2.73E+01 ± 1.42E+01
28 98.33 ± 2.17 98.60 ± 2.04 8.12E+01 ± 4.25E+01 2.67E+01 ± 4.69E+00
29 76.53 ± 14.99 76.16 ± 15.65 3.91E+00 ± 7.04E+00 2.21E+00 ± 2.89E+00
30 84.48 ± 7.85 83.54 ± 9.14 3.22E+03 ± 8.25E+02 2.66E+03 ± 9.70E+02
31 35.41 ± 6.68 35.01 ± 5.76 9.99E+01 ± 2.90E+01 1.02E+02 ± 3.43E+01
32 77.26 ± 3.55 76.61 ± 4.24 7.65E+02 ± 5.63E+02 5.17E+02 ± 3.44E+02
33 42.28 ± 5.71 42.00 ± 6.26 1.79E+04 ± 3.72E+03 7.58E+03 ± 1.60E+03
34 78.00 ± 11.26 78.67 ± 11.96 5.49E-01 ± 2.75E+00 2.03E+00 ± 8.70E+00
35 82.00 ± 6.01 84.93 ± 6.19 1.98E+00 ± 8.26E+00 1.22E+00 ± 2.02E+00
36 65.88 ± 7.31 65.10 ± 8.45 8.31E+02 ± 3.94E+02 7.84E+02 ± 6.59E+02
37 83.67 ± 7.15 85.11 ± 6.29 3.05E+04 ± 1.52E+04 2.78E+04 ± 1.62E+04
38 72.47 ± 3.98 73.25 ± 3.90 1.30E+04 ± 3.94E+03 1.53E+04 ± 3.98E+03
39 98.49 ± 2.94 98.88 ± 2.28 8.32E+02 ± 3.62E+02 8.41E+02 ± 3.62E+02
40 96.03 ± 6.19 93.79 ± 7.96 9.75E+01 ± 2.58E+01 9.92E+00 ± 6.88E+00

Table 4.2: Predictive accuracy and training runtime results of PTTD and PTTD-CI for

40 benchmark datasets.

87

4. EXPERIMENTS

4.2 Comparing the Main Variants

Because of the rather large amount different variants covered in this work, we restrict

the comparison to only three of them, one for each main algorithm: bottom-up, top-

down and co-evolutionary. For each of these algorithms, we select a configuration,

which arguably best trades off the accuracy of the resulting models and the runtime of

the algorithm. In order to provide a fair comparison, we optimally select one parameter

by means of an internal cross-validation procedure, namely the maximum depth dmax

of the resulting trees. The following configurations have been chosen:

PTBU : This variant corresponds to the algorithm listed in Figure 3.1. Additionally, as

the experiments in Section 3.5.4 suggest, we used the limited candidate history

and the dynamic operator exclusion heuristic. The parameter τ for the DOE

heuristic was set to 0.1, the LCH parameter k was set to 5.

PTTD : This variant corresponds to the algorithm listed in Figure 3.9. However, we

used the potential heuristic elaborated on in Section 3.6.4 with p = 3.

PTCoEvo : The co-evolutionary algorithm presented in Section 3.7 was parameterized as

follows: tmax = 5000, timprove = 500, δ = 0.01, m = 20, pmutate = 0.3.

The experiments were again conducted by means of a three times 10-fold cross-

validation. For each algorithm and dataset, the empirically best value for dmax was

found, searching in the range of [2, 10]. The detailed results can be found in Appendix D.

To allow for a comparison in terms of two opposed criteria, Figures 4.1, 4.2 and

4.3 show the runtime on a logarithmic scale of seconds and the classifiers classification

error. Each figure relates to one of three pairwise comparisons of the three methods.

For each dataset there exists an arrow directing from PTBU to PTTD, from PTBU to

PTCoEvo and from PTTD to PTCoEvo, respectively. The color of the arrows encode

the following cases:

red : The arrow directs down-left. This corresponds to a Pareto dominance of the

second method, being faster and more accurate.

violet : The arrow directs up-right, what corresponds to a Pareto dominance of the first

method.

88

4.2 Comparing the Main Variants

Pareto Plot: PTBU vs. PTTD

Time(s)

C
la

ss
ifi

ca
tio

n
E

rr
or

0.05 1 10 100 1000

0
10

20
30

40
50

60
70

PTBUPTTD

Figure 4.1: Pareto comparison of PTBU and PTTD.

Pareto Plot: PTBU vs. PTCoEvo

Time(s)

C
la

ss
ifi

ca
tio

n
E

rr
or

0.05 1 10 100 1000

0
10

20
30

40
50

60
70

PTBUPTCoEvo

Figure 4.2: Pareto comparison of PTBU and PTCoEvo.

89

4. EXPERIMENTS

Pareto Plot: PTTD vs. PTCoEvo

Time(s)

C
la

ss
ifi

ca
tio

n
E

rr
or

0.05 1 10 100 1000

0
10

20
30

40
50

60
70

PTTDPTCoEvo

Figure 4.3: Pareto comparison of PTTD and PTCoEvo.

green : The arrow directs down-right. This corresponds to the non-dominance situation,

where the second method is more accurate but also slower.

blue : The arrow directs up-left, what corresponds to the second non-dominance situ-

ation. This time, the second method is less accurate but faster.

Looking at Figure 4.1 (PTBU → PTTD), most arrows (26/40) aim downwards,

indicating a better accuracy for PTTD. However out of these, most arrows (18/26) are

green, what means that PTTD has a higher runtime than PTBU on these datasets.

For 10 datasets, we can find Pareto-dominance, 2 times in favor of PTBU and 8 times

in favor of PTTD. Summarizing these results, one can state that PTTD usually finds

models with a lower error but in turn also exhibits a higher runtime.

The main drawback of the co-evolutionary approach (PTCoEvo) is its runtime.

This is also reflected in the experiments. One of the crucial reasons is the evaluation

step for each generation. During this step, mk different classifiers have to be evaluated.

Since the runtime of the proposed EA exponentially depends on the number of classes,

we restricted the experiments to those datasets with k smaller than 4. Additionally,

90

4.2 Comparing the Main Variants

we only used datasets with less than 1000 instances and at most 10 attributes. In the

end, we used 22 out of the 40 classification datasets.

In Figure 4.2 the results of comparing PTBU and PTCoEvo (PTBU → PTCoEvo)

are shown. For every dataset PTCoEvo needs much more time to train the models,

however in almost every case (19/22) the evolutionary search finds more accurate mod-

els than PTBU. In two cases, the difference in accuracy is even extreme. This is first

prnn crabs, where PTCoEvo is 20.6 percentage points more accurate than PTBU and

second analcatdata homerun, with a difference of 11.6. One explanation for this ex-

treme finding could be, that the greedy search strategy of PTBU might got stuck in a

local minimum in these cases.

In the third comparison, shown in Figure 4.3, the picture is not as clear in terms

of accuracy. In fact, both methods, PTTD and PTCoEvo perform equally well: 10

wins for PTCoEvo and 12 wins for PTTD. However, regarding the runtime, PTCoEvo

again needs several levels of magnitude more time. Again, especially interesting is the

huge difference in accuracy on the two datasets already mentioned above. Although

for analcatdata homerun, the difference has reduced to 4.02, the difference remains at

the very high level of 20.6 for prnn crabs.

In general, the high accuracy of PTTD together with its relatively low runtime

accentuates PTTD. To some extend, it is astonishing that a greedy search strategy

like the one employed in PTTD is able to compete with the evolutionary approach,

spending much more search effort indeed to find a better solution. This however might

be explained by the flexibility of the model class. Although in one iteration, the greedy

search of PTTD might take a suboptimal decision, in later iterations the algorithm

seems to be able to compensate for this.

This finding is in line with results on over-searching related to decision tree [69, 82]

and rule-based systems induction [55]. Roughly speaking, these results suggest that it is

not always beneficial to increase the search effort if you are interested in generalization

performance. When comparing the greedy PTTD algorithm to PTCoEvo, which spends

a lot more effort in searching for a good model, in many (not all) cases this does not

seem to be beneficial.

To finalize this empirical analysis, for the method pairs PTTD vs. PTBU and

PTCoEvo vs. PTBU, a paired Wilcoxon signed rank test [111] was conducted using

the results of the three methods on the 40 datasets. The test provides information

91

4. EXPERIMENTS

about the statistical significance of the difference between the methods in terms of

accuracy. The first comparison, i.e. PTTD vs. PTBU, results in a p-value of 0.01651.

Deciding for a significance level of 0.05, this rejects the null-hypothesis of equality.

For the second comparison, the p-value has been found to be 1.26E-3, also indicating

a significant difference. Being strict on statistical testing methodology, we have to

account for multiple testing. The most conservative way of doing so is to use the

Bonferroni correction [30], which divides the significance level by the number of tests

conducted. In this case, this would yield a corrected confidence level of 0.025, which is

still bigger than both p-values found.

4.3 Comparison with State-of-the-art Methods

Huang et. al. in [49] and Senge et. al. in [93] conducted an empirical comparison of

fuzzy pattern trees to several state-of-the-art classification methods. In the first place,

the aim of such a general comparison is not to show superiority of a new method, but

only general competitiveness. In practice, whenever there is a real world problem to

solve, the selection of a suitable algorithm does not depend on an average performance

on a set of arbitrarily chosen datasets. Rather, besides ensuring potentially important

model class properties like interpretability, monotonicity and others, only the best

performing algorithm will be chosen. This is in line with the “no free lunch” theorems

of optimization [113] and machine learning [34], which roughly state, that there can

not be a single algorithm providing the best solutions for every problem or dataset.

Nevertheless, if an algorithm is competitive in terms of an average performance over

a variety of datasets, this at least advises the algorithm to be a considerable candidate,

when one has to chose the best algorithm for a given problem. Because we already have

compared several variants of FPT induction algorithms, we chose PTTDε.25 configured

like in Section 3.6.2. We did not perform a dataset specific parameter optimization to

have a fair comparison.

In the experiment, we included a number of well-known classification methods from

the field of machine learning as baselines: The C4.5 decision tree learner (C4.5) [85],

nearest neighbor classification (NN) [1], support vector machines with linear and RBF

kernel1 (SVM), the RIPPER (Repeated Incremental Pruning to Produce Error Re-

1Implemented by Platt’s sequential minimal optimization [77].

92

4.3 Comparison with State-of-the-art Methods

duction) rule learner [24]. All these algorithms are also implemented in WEKA, and

we used these implementations with their default parameterization.1 Additionally, we

included the fuzzy rule learner SLAVE [39, 40]. An implementation of this algorithm

is offered by the KEEL suite [2], another machine learning framework. We ported this

implementation to WEKA.2

To compare multiple classifiers with a control classifier, Garćıa et. al. [37] suggest

the use of a two-step procedure. First, the non-parametric Quade test [81] is conducted

in order to test the null-hypothesis of equal performance of all classifiers. In case this

hypothesis is rejected, i.e., if there are statistically significant differences between the

methods, the Holm post hoc test [30, 47] is used to analyze the differences between

PTTDε.25 and the benchmark classifiers in a pairwise manner. Both tests are based on

the ranks of the methods: For each dataset, the methods are sorted according to their

performance, i.e., each method is assigned a rank (in case of ties, average ranks are

assigned). After that, the ranks are weighted, respectively, by the difference between

the minimum and the maximum performance values for each dataset. The average

weighted ranks are shown in Table 4.4.

In our case, the Quade test rejects the null-hypothesis quite clearly with a p-value of

2.7E-16. The results of the pairwise comparisons between PTTDε.25 and the baseline

classifiers using the Holm test are also summarized in Table 4.4. As can be seen, our

PTTDε.25 learner shows the best performance on average, though except for SLAVE,

the differences are not statistically significant.

1The following parameters are used in WEKA: C4.5: -C 0.25 -M 2; RIPPER: -F 3 -N 2.0 -O 2 -S

1; NN: -K 3 -W 0 -A LinearNNSearch -A ”EuclideanDistance -R first-last”; SMO: -C 1.0 -L 0.0010 -P

1.0E-12 -N 0 -V -1 -W 1 -K ”PolyKernel -C 250007 -E 1.0”
2We used the following parameter setting: 5 fuzzy sets, 500 iterations without change, mutation

probability 0.01, use weights, population size 100.

93

4. EXPERIMENTS

Table 4.3: Average classification rates and standard deviation on test sets.

No. SVM NN RIPPER C4.5 SLAVE PTTDε.25
1 78.25±1.82 75.23±4.14 76.4±2.25 76.2±3.28 77.04±6.63 75.82±2.48

2 77.47±9.39 74.96±9.46 79.4±11.79 80.8±9.16 75.78±13.63 75.96±11.16

3 19.4±5.62 7.4±3.64 38.65±6.6 37.1±5.8 25±5.71 39.5±6.42

4 88.15±7.61 51.82±11.19 95.53±6.09 95.57±6.01 74.98±10.77 90.95±7.83

5 93.87±1.99 97.49±2.7 97.73±2.75 98.26±2.55 93.48±5.48 94.77±2.4

6 84.84±3.65 85.48±4.01 85.74±4.01 85.86±4.05 85.51±3.9 85.57±3.6

7 99.67±0.63 99.52±0.79 94.08±2.41 94.24±2.49 76.74±5.58 99.07±0.9

8 72.25±10.6 68.48±10.61 72.98±9.8 80.3±9.93 28.22±11.88 74.65±9.51

9 87.78±2.16 86.91±2.71 80.6±3.54 77.89±3.52 68.4±6.54 87.29±3.32

10 86.61±6.83 90.06±6.25 89.86±5.71 88.01±8.69 78.17±9.87 88.5±6.82

11 76.15±0.47 74.92±3.57 77.86±3.33 77.64±3.44 76.01±4.62 77.03±1.84

12 58.04±1.15 62.67±8 67.09±7.47 66.38±7.7 56.98±6.13 70.69±7.04

13 97.07±2 96.87±2.13 96.16±2.45 95.64±2.53 89.55±4.42 96.55±2.19

14 73.3±5.84 72.76±4.93 78.81±4.98 84.68±5.36 63.36±6.68 72.6±4.35

15 29.67±9.79 21.56±9.82 50.65±16.68 71.69±17.73 17.85±11.72 41.25±14.41

16 48.56±3.93 46.8±3.05 52.54±3.48 51.57±3.53 42.7±3.63 55.49±3.29

17 64.57±11.66 83.54±10.3 75.39±14.55 77.86±12.95 63.86±21.44 87.11±9.26

18 85.01±3.7 85.94±3.82 85.3±3.34 85.68±3.69 85.3±4.37 85.42±3.68

19 73.71±8.96 81.33±12.58 80.05±13.41 81.29±15.16 71.71±16.41 83.24±11.73

20 61.37±10.36 54.87±10.67 61.65±8.32 64.73±9.47 25.01±10.93 68.29±7.47

21 83.01±0.36 81.9±1.14 82.74±0.76 82.93±0.35 83.01±3.33 82.74±0.75

22 75.08±3.53 72.06±3.28 72.2±4.23 71.38±2.7 70.18±4.54 74.28±3.35

23 57.81±7.92 70.12±6.84 66.59±9.58 69.05±8.01 62.61±11.42 67.51±8.34

24 73.46±1.01 69.74±4.48 72.04±5.61 71.12±5.3 73.93±7.55 74.64±5.85

25 83.85±5.96 78.59±6.08 79.85±6.25 78.44±6.4 71.78±8.09 82.59±5.51

26 88.16±4.99 86.33±4.85 88.9±4.85 89.63±4.8 80.92±6.04 91.97±4.87

27 96.27±4.84 95.2±5.5 93.47±8.69 94.93±5.43 92.13±8.16 95.6±5.6

28 98.8±1.6 98.72±1.59 98.8±1.6 98.8±1.6 98.12±1.78 98.68±1.86

29 75.61±14.1 74.81±16.66 75.44±12.42 77.53±12.07 75.75±16.57 77±12.85

30 85.91±7.45 81.14±8.28 75.36±12.18 75.7±11.62 69.27±12.47 83.8±7.61

31 27.62±4.65 39.42±6.69 36.48±6.86 39.95±7.84 8.99±6.02 38.11±6.89

32 76.85±4.25 74.24±4.65 75.62±4.71 74.85±5.35 66.3±5.01 76.49±4.92

33 46.37±5.68 39.65±5.4 39.41±5.42 40.59±5.64 24.83±6.85 43.18±6.13

34 96±4 95.5±4.5 90.6±6.61 93.7±4.88 61.7±12.4 77.5±11.01

35 85.6±6.74 86.32±7.25 83.68±7.37 84.48±7.14 79.52±8.07 83.76±6.9

36 59.24±5.85 64.29±9.3 81.24±8.3 80.76±6.66 50.47±7.82 67.59±7.34

37 76.27±8.95 83.36±8.46 73.12±10.12 73.86±8.46 63.48±13.44 80.38±8.92

38 74.37±3.89 71.03±3.84 68.53±4.35 71.92±4.79 29.47±4.59 71.47±3.39

39 99±2.41 95.97±4.03 93.58±7.13 93.59±5.42 81.23±8.94 98.31±2.81

40 93.65±6.53 92.49±7.56 88.93±8.73 92.49±7.01 86.98±11.01 91.07±6.65

94

4.3 Comparison with State-of-the-art Methods

Algorithm Avg. Rank p-Value Reject

PTTDε.25 2.4902 — —

C4.5 2.6932 0.7890 no

SVM 3.0792 0.4377 no

RIPPER 3.3939 0.2338 no

NN 3.6567 0.1243 no

SLAVE 5.6865 2.54E-5 yes

Table 4.4: Average ranks of the algorithms (Quade) and results of the Holm test (p-value

and rejection of null hypothesis at the 5% significance level)

95

4. EXPERIMENTS

4.4 Comparison with State-of-the-art Methods for Re-

gression

In this section, we adapt the method of pattern tree induction so as to make it applicable

to another learning task, namely regression. Thus, instead of predicting one among a

finite number of discrete class labels, the problem is to predict a real-valued target

output. We have already seen, that in theory FPT is able to approximate every real-

valued function (Section 2.4), here we are showing that the PTTD algorithm is indeed

able to find such trees.

As described in Section 3.1, for regression it is possible to choose a simple linear scal-

ing of the output variable into the interval [0, 1] (see Equation 3.4). This approach will

be denoted as PTTDreg. Additionally, we include a fuzzy systems variant PTTDsys,

partitioning the domain of the output variable in a uniform way by means of three

triangular fuzzy sets; the first with core {a} and support (a, b), the second with core

{b} and support (a, c), and the third with core {c} and support (b, c), where [a, c] is the

(observed) domain of the output and b = (a+ c)/2). PTTDreg and PTTDsys were run

with the adaptive termination criterion with ε = 0.001 and ε = 0.0025, respectively.

For comparison, we included several other regression methods implemented in WEKA:

Standard linear regression (LR), multilayer perceptrons (MLP), support vector ma-

chines with linear (SVMlin) and RBF kernel (SVMrbf), and regression trees (REP-

tree); all these algorithms are used with their default parameterization.1 Finally, we

also included the fuzzy rule learner (FR) proposed in [109], which is implemented in

the KEEL software [2] and which we ported out to WEKA. The datasets used in the

experiments are shown in Table 3.2.

Table 4.5 provides a summary of the results in terms of the RMSE (root mean

squared error). As can be seen, the pattern tree learners are quite competitive. In

terms of average ranks, PTTDreg is even the best method.

To test for statistical significance of the differences, we compared the methods in

a pairwise way by means of a Wilcoxon test. It turns out, however, that the test fails

to reject the null-hypothesis of equal performance most of the time, maybe due to

1LR: -S 0 -R 1.0E-8; MLP: -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a; SVM-lin -C 1.0 -N 0 -I

”RegSMOImproved -L 0.001 -W 1 -P 1.0E-12 -T 0.001 -V” -K ”PolyKernel -C 250007 -E 1.0”; SVM-rbf:

-C 1.0 -N 0 -I ”RegSMOImproved -L 0.001 -W 1 -P 1.0E-12 -T 0.001 -V” -K ”RBFKernel -C 250007

-G 0.01”; REPtree: -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0

96

4.4 Comparison with State-of-the-art Methods for Regression

the limited number of datasets included in this study. An exception is the fuzzy rule

learner, which performs significantly worse than both PTTDreg and PTTDsys (at a

significance level of 5%). In any case, the results suggest that pattern tree learning is

fully competitive to state-of-the-art regression methods in terms of predictive accuracy.

No. LR MLP SVMlin SVMrbf
44 3.35(5) 3.24(3) 3.43(6) 3.54(7)

45 10.47(5) 8.01(3) 10.91(7) 10.8(6)

46 0.44(1) 0.68(7) 0.46(5) 0.44(3)

47 0.77(1) 0.99(7) 0.83(5) 0.83(6)

48 47.6(4) 82.89(8) 46.56(2) 46.51(1)

49 4.87(5) 4.09(1) 4.95(6) 5.5(7)

50 2665.71(3) 2660.27(2) 2566.86(1) 2921.9(6)

51 145.43(6) 160.43(8) 62.72(1) 79.2(5)

52 1.11(5) 0.56(1) 1.27(7) 1.44(8)

53 2.7(2) 0.67(1) 2.77(4) 4.94(6)

54 0.65(2) 0.73(7) 0.66(3) 0.66(4)

55 0.75(2) 0.79(6) 0.76(3) 0.76(5)

avg. rank 3.42 4.50 4.17 5.33

No. PTTDreg REPtree PTTDsys FR
44 2.94(1) 3.34(4) 2.95(2) 5.87(8)

45 7.97(2) 7.21(1) 9.08(4) 13.7(8)

46 0.47(6) 0.44(2) 0.45(4) 0.83(8)

47 0.83(4) 0.77(2) 0.79(3) 1.15(8)

48 61.67(6) 46.86(3) 52.61(5) 75.67(7)

49 4.28(2) 4.56(3) 4.66(4) 7.43(8)

50 2876(5) 3560.71(7) 2825.72(4) 8198.64(8)

51 69.6(2) 147.82(7) 72.08(3) 78.23(4)

52 0.68(2) 0.74(3) 0.76(4) 1.17(6)

53 2.73(3) 5.04(7) 3.45(5) 7.41(8)

54 0.65(1) 0.68(6) 0.67(5) 1.13(8)

55 0.76(4) 0.75(1) 0.79(7) 1.3(8)

avg. rank 3.17 3.83 4.17 7.42

Table 4.5: Experimental results in terms of RMSE. Additionally, for each dataset, the

rank of each method is shown in brackets.

97

4. EXPERIMENTS

98

5

Related Model Classes

In the last chapters, FPTs have been carefully introduced and discussed. This chapter,

however, deals with related model classes. Many model classes actually are related to

some extend but we will focus on the arguably most related ones. These are:

• (hierarchical) fuzzy rule-based systems ((h)FRBS)

• fuzzy decision trees (FDT)

• sum-product networks (SPN)

• genetic programming (GP)

Table 5.1 already gives an overview about some distinctive properties of the above

model classes. They will be explained in detail in the remainder of this chapter.

99

5. RELATED MODEL CLASSES

Structure Information Flow Operators Building

FPT hierarchical bottom-up
t-norms, t-conorms,

averaging

expert modeling /
PTBU,PTTD,

PTCoEvo

FRBS flat – t-norms, t-conorms
expert modeling
iterative covering

EA

hFRBS
modular

hierarchical
bottom-up t-norms, t-conorms

expert modeling
iterative covering

EA
FDT hierarchical top-down fuzzy predicates recursive partitioning

SPN hierarchical bottom-up sum, product
back-propagation

EM

GP hierarchical bottom-up
arbitrary/

often arithmetic
genetic algorithm

Table 5.1: An overview of some properties of the related model classes discussed in this

chapter.

5.1 Fuzzy Rule-based Systems

After Zadeh had introduced fuzzy set theory, the first fuzzy systems that were proposed

have been fuzzy rule-based systems, using IF-THEN rules to describe the relationship

between the input and the output variables of a control system [75].

Many different variations have been proposed. Two of the most popular ones are

the one by Mamdani [63] and another one by Takagi and Sugeno [99], where the latter

one follows a slightly more complex scheme. Mamdani rules, however, follow the simple

syntax

IF X is A and ... and Y is B THEN Z is C ,

where X,Y are input attributes, Z is the output attribute and A, B and C are fuzzy sets.

The rule basically consists of two parts, the antecedent (IF part) and the consequence

(THEN part). The antecedent determines, to which part of the instance space this rule

is applied and to what extend. It basically constitutes a fuzzy subset of the instance

space. The consequence determines its conclusion. Roughly speaking, if X belongs to

fuzzy set A and Y belongs to fuzzy set B, then Z is predicted to be in C. In a system with

many rules, potentially many rules are applicable (antecedent fuzzy set membership is

greater than zero) in parallel for a specific query instance and the respective conclusions

are calculated. Therewith, the fulfillment of the antecedent is taken into account, when

aggregating the consequence fuzzy sets of these rules.

100

5.1 Fuzzy Rule-based Systems

Just like for FPTs, rule-based fuzzy systems require a fuzzification and a defuzzi-

fication step. The fuzzification step either constitutes the modeling by an expert to

create suitable fuzzy sets or fuzzy partitions [58, 63] or the use of unsupervised learning

techniques like fuzzy k-means clustering [20, 38]. Evaluating the rulebase, we obtain

a fuzzy output from aggregating the consequence fuzzy sets of the applicable rules.

Defuzzification methods then take the resulting fuzzy set as an input and produce a

crisp value to predict, which is required in most predictive applications. Several de-

fuzzification methods have been proposed [58]. The maximum approach e.g. takes the

value for which the fuzzy set produces the highest membership. In case this value is

not unique the mean of all that have been found is taken. Another possibility is the

use of the centroid method. This method returns the value that splits the area under

the fuzzy set in half.

Besides modeling rule-based systems by hand, several induction algorithms have

been proposed. Many have been motivated by existing algorithms designed for non-

fuzzy rule-based systems [24]. Approaches like [25, 28, 39, 50] involve several common

steps. The first step usually comprises an iterative local covering strategy that generates

an initial set of rules. After finding a rule that explains a part of the training examples,

these examples are either removed from the training set or their weight is reduced. This

reduces their influence in subsequent iterations. The second step then deletes or adjusts

contradicting rules. This step is called the pruning step and is necessary because the

first step does not account for potential contradictions in the rulebase. The final step

then tunes the parameters of fuzzy sets or adjusts the antecedents of single rules to

minimize generalization error. Each algorithm implements these three steps differently.

Often, however, evolutionary or genetic algorithms are involved.

A Comparison to FPTs

In Section 3.1, we have already described an extension of the original FPT approach

in which a model is specified in terms of an ensemble of pattern trees. For instance,

instead of using a single tree in our wine example shown in Figure 3.17, which specifies

the conditions for a “high quality” wine (and immediately implies a low quality if these

conditions are not satisfied), one may add corresponding trees for “medium quality”

and “low quality”. To make an overall prediction, it is then necessary to combine the

outputs of these trees. This approach is close to rule-based fuzzy systems: each FPT can

101

5. RELATED MODEL CLASSES

be associated with a rule or a set of rules with the same consequence; the aggregation

of the outputs of the trees then essentially corresponds to the step of defuzzification in

rule-based systems. In fact, using this procedure, every fuzzy rule-based system can be

transformed into an ensemble of FPTs. Hence, rule-based systems are a special case

of fuzzy pattern trees, or stated differently, FPTs are a generalization of rule-based

systems.

Even more, rule-based systems typically do not involve averaging operators which

adds valuable expressiveness to FPTs in comparison to fuzzy rule-based systems. Av-

eraging operators are particularly helpful in situations where linear relationships have

to be modeled. At first sight, this does not seem to be a hard task, though it is for

rule-based systems. Since a single rule typically only describes a (usually small) local

region of the input space, usually many rules are needed to accurately model a global

linear relationship. Therefore, the ability of FPTs to incorporate averaging operators

eliminates one of the weak points of rule-based systems.

One may argue that the use of different types of aggregation operators may com-

promise the interpretability of an FPT. In our opinion, however, this is not the case:

Each operator itself is easily interpretable, and thanks to the modularity of an FPT, it

can indeed be considered completely independent from the rest of the model.

Further comparing rule-based systems to FPTs, an obvious difference is the hier-

archical structure of FPTs. A hierarchical instead of a flat structure often allows for

representing models in a more compact way. One reason is that, in the class of FPTs,

much more transformations between formally equivalent expressions are possible than in

the class of rule models; for example, while the expression max{min{A,B},min{A,C}}

can be considered as a disjunction of two rules with antecedents A∧B and A∧C, respec-

tively, the same is not true for the logically equivalent expression min{A,max{B,C}}.

Moreover, the class of analytical expressions that can be represented, as well as the

“degree of nonlinearity”, are significantly increased thanks to the possibility of recur-

sion. For example, with an FPT of depth k it is possible to model all monomials of

degree k by just using the simple product as a t-norm, even if all membership functions

are linear. To make things worse, it has been shown that the number of rules necessary

to cover the complete input space growth exponentially by the number of attributes

(dimensions of the input space) [52].

102

5.2 Hierarchical Fuzzy Rule-based Systems

In this regard, it is interesting to note that similar advantages of “deep” over “flat”

structures have also been observed in other domains, currently for example in the field

of deep learning [12]: Although it is true that neural networks with a single hidden layer

exhibit universal approximation capabilities, the practical realization of this theoretical

property may require an extremely large number of neurons in this layer. The same

approximation quality might be achieved with a significantly smaller number of neurons

if these are distributed on several layers and connected in a proper way. Likewise, the

universal approximation property of fuzzy systems typically comes at the price of an

excessively large number of rules.

5.2 Hierarchical Fuzzy Rule-based Systems

As pointed out above, the exponential growth of the number of rules is a problem for

systems with a large number of variables. Motivated by this deficiency, several hierar-

chical fuzzy rule-based systems have been proposed. In these systems, rules are grouped

into several modules according to their task in the system. See Figure 5.1 for two ex-

amples. Each module delivers a part of the solution which can also be used as an input

for subsequent modules. Thereby, higher level modules aggregate the partial solutions

into a final one. Torra [101] gives a brief overview on the different types of hierarchical

structures, including [44, 56, 60, 97, 102]. Using a hierarchical structure, as already

argued above, is one way of managing complexity. It enables reusability of modules

and due to greater flexibility and expressiveness, the same functional relationship can

be usually modeled in a more compact way.

Although, hierarchical fuzzy rule-based systems seem to be very similar to fuzzy

pattern trees, there are some important differences. Indeed, every module in a hier-

archical rulebase is by itself a rule-based system, containing a set of rules and using

the same aggregation scheme as described earlier. Compared to an FPT, a single node

in the hierarchy is therefore much more complex and harder to interpret than a single

node in an FPT, either forming a simple aggregation of subtrees or a single fuzzy set

of an attribute domain.

Torra [101] argues that the construction of a hFRBS is difficult, due to the experts

task to both model the hierarchical structure and the rules within each module. In

order to assist the expert, several algorithmic approaches have been proposed. Most

103

5. RELATED MODEL CLASSES

Rule-base 2Rule-base 2

Rule-base 1Rule-base 1

AA BB CC DD

Rule-base 3Rule-base 3

Rule-base 1Rule-base 1

AA BB CC DD

Rule-base 2Rule-base 2

Figure 5.1: Two possible hierarchical structures for fuzzy rule-based systems.

approaches are not able to learn the whole system from scratch but rather depend on

an expert to create the structure and rules of the system. Only then, they are used to

tune the parameters of fuzzy sets or adapt rules. These methods differ by the extend

of tuning and their optimization method used. For example, Cheong [22] uses an EA

to tune the membership functions, whereas Lee [56] et al. and Wang [108] use gradient

descent. Tunstel [102] even uses genetic programming (which we will discuss later) to

create rules.

The hierarchical approach to FRBSs is supposed to mitigate the potential problem

of a large number of rules for high-dimensional data. However, grouping rules into

modules yields additional complexity to the model class that complicates interpretation

and learning. Furthermore, designing a hierarchical rule-based system, the expert has to

decide, whether the defuzzification step is included in a module or not. This decision

is crucial to the interpretation of the output of the module and can also strongly

influence the performance of the whole system. This has been analyzed by Maeda in

[62]. Roughly speaking, if a defuzzification step is conducted within a module, this

usually yields a loss of information. On the other hand, if no defuzzification is done,

104

5.3 Fuzzy Decision Trees

this can lead to a spread of fuzziness and hence to very uninformative results.

5.3 Fuzzy Decision Trees

Fuzzy decision trees (FDT) [54, 74, 117] are inspired by the work of Quinlan about

decision trees [83]. The output of a classical decision tree however is categorical or

discrete. They miss to adequately handle uncertainty, which is commonly introduced by

imprecise, noisy or missing data. Therefore, Quinlan suggested a probabilistic version

of decision trees [84] in order to deal with noisy data. In his work, however, the type of

uncertainty he takes care of is assumed to be caused by randomness. FDTs however,

model uncertainties using fuzzy set theory, aiming at uncertainty, which arises from

human thinking, reasoning and perception. Several approaches to the induction of

fuzzy decision trees can be found in the literature. Most are extensions to classical

decision tree algorithms like the one of Quinlan, called ID3 (iterative dichotomiser 3).

A regular decision tree constitutes a hierarchical structure like an FPT, however,

they work quite differently. Each internal node represents an attribute. Every outbound

edge directing to one of the nodes’ children is labeled by a boolean predicate regarding

the attribute. These predicates are mutually exclusive, i.e., only one condition can be

fulfilled at a time. Each leaf node – in the case of classification – corresponds to a class

label. Figure 5.2 illustrates an example, that has also been trained on the wine quality

dataset introduced in Chapter 2.

In order to classify an instance, the tree is traversed in a top-down manner in the

following way. Starting from the root node, each predicate is tested on the instance.

The predicate that matches the instance determines the path to proceed on the way

to one of the leaf nodes of the tree. The label of the leaf node then determines the

“decision”, i.e., class to predict. Although the given example refers to classification,

several variants have been proposed for different types of learning scenarios like e.g.

regression [27, 98].

Basically, decision trees split up instances into groups. These groups are determined

by the leaf nodes of the tree. Every instance belongs to exactly one group, i.e., the

group corresponding to the leaf node the instances ends up in when traversing the tree.

Because a decision tree predicts the same class for every instance of the same group,

these groups ideally are homogeneous in terms of their true class.

105

5. RELATED MODEL CLASSES

flavanoidsflavanoids

color intensitycolor intensity prolineproline

color intensitycolor intensity
mediummedium

< 1.57 ≥ 1.57

≥ 720< 3.8 ≥ 3.8

highhigh

< 720

mediummedium

mediummedium

< 3.4 ≥ 3.4

lowlow

Figure 5.2: A classical (non-fuzzy) decision tree trained to predict the quality of wine.

(See example introduced in Chapter 2.)

Keeping this in mind, the learning algorithm used for decision trees is straight

forward. The algorithms starts with a single leaf node, representing the group of all

instances and predicting the majority class. Then it finds a boolean predicate that

best splits this group of instances in order to create maximally homogeneous groups.

Quinlan proposed to use information gain for this purpose. It measures the increase

of information introduced by a splitting predicate. Then this procedure is applied

recursively to the newly created leaf nodes. Hence, the algorithm recursively partitions

the input space.

Fuzzy decision trees extend regular decision trees by using fuzzy logical predicates

instead of boolean predicates. To this end, the structure of the tree remains similar,

however, the outbound edges of a node now represent a fuzzy set. Instances satisfy fuzzy

predicates to a certain degree between 0 and 1 that is determined by the membership

function of the respective fuzzy set. Furthermore, it is possible that there is more

than exactly one fuzzy set for which the instance yields a positive membership degree.

As a consequence, there is no longer just one unique path down the tree for each

instance. Contrariwise, membership values of an instance are propagated down the

106

5.4 Sum Product Networks

tree on potentially many paths ending up in potentially many different leaf nodes.

Another important difference refers to the leaf nodes. These represent fuzzy subsets

of the domain of the target attribute. In order to infer a decision for a given instance,

a similar mechanism is used like for fuzzy rule-based systems. First all fuzzy sets of

those leaf nodes are aggregated that received a positive membership value. Then a

defuzzification strategy is applied in order to produce a crisp prediction.

Several learning algorithms have been proposed for fuzzy decision trees [54, 74,

117]. Basically, they all share the same framework based on the original proposal

described above. However, they vary in using different measures in order to extend the

information gain measure to the fuzzy case.

Despite the obvious differences to FPTs, Huang et al. have shown in [49] that it is

possible to transform every fuzzy decision tree into a set of fuzzy pattern trees.

5.4 Sum Product Networks

Sum product networks (SPN) have been introduced only recently by Poon et al. in [78].

The authors position them as being a compact and efficient alternative to graphical

models [76]. SPNs comprise an acyclic network structure of several layers. Each inner

node either represents a product or a sum operator. The input layer is formed by

leaf nodes, which represent random variables and the output layer consists of a single

root node. Edges link nodes indicating the flow of information, which is like for FPT

bottom-up. However, unlike FPTs, SPNs comprise weights on the inbound edges of

every sum operator node. Furthermore, the number of inbound edges to any node is

not restricted.

The evaluation of an SPN is performed in a recursive way, just like for FPTs.

However, the evaluation of a single node depends on its type. A sum node calculates

the sum of its incoming values, weighted by their respective weights. To be more

precise, the value of a sum node is: ∑
j∈Chi(i)

wijvj ,

where Chi(i) denote the children of the i-th node and vj the value of the j-th node.

wij then denotes the non-negative weight on the edge (i, j). The value of a product

node, hence, is just the product of the values of its children.

107

5. RELATED MODEL CLASSES

++

• •

X1

• •

++++

• • • • • •

X2 X3 X4 X5

X6

w1 w2

w3 w4 w5 w6

Figure 5.3: An example of a small SPN.

Poon et al. propose two possible learning methods for SPNs [78]. The first one is

related to the well-known back-propagation algorithm ofmulti-layer perceptrons [43]. To

this end, an SPN is initialized using a generic architecture, which can also be prescribed

by an expert. Then, iteratively, the weights get adjusted until convergence. Updating

the weights can either be accomplished by gradient descent like in back-propagation

[88] or by expectation maximization (EM) [73]. In a post-processing step, all edges

with weights equal to zero are removed. Then all non-root nodes without parents are

removed. This way, weights and structure can be learned simultaneously.

5.5 Genetic Programming

The aim of genetic programming (GP) is to solve problems by automatically finding

a computer program-based solution. To this end, the problem at hand is transformed

into an optimization problem, for which then an evolutionary algorithm (EAs) [14] is

used to solve it. The generic nature of EAs allow for applying GP to a large variety of

programming languages. Traditionally, however, functional languages like LISP [96] or

108

5.5 Genetic Programming

÷÷

-- ••

22 aa bb √ √

cc

Figure 5.4: An example of a model generated by a genetic algorithm.

HASKELL [100] are preferred. Using these, programs can be written in a functional

way, recursively calling to sub-functions and arguments. Then, programs can be rep-

resented in a tree structure, similar to the one of FPT. Inner nodes represent function

calls taking their children as arguments. Leaf nodes either represent constant values or

variables to the program.

In general, every kind of basis functions (i.e. functions, that are available to be used

in inner nodes) is imaginable. In many practical cases, however, the selection of basis

functions is limited to arithmetic operators. Figure 5.4 shows an example. Given such

a set of operators, evolutionary strategies similar to the one described in Section 3.7 are

used to find a well performing program. This involves cross-over as well as mutation

operators.

Due to the generality of the GP approach, our co-evolutionary approach to FPT

learning can roughly be seen as a specialization of GP, restricting the basis functions

to fuzzy operators and membership functions and adding some additional limitations

to the structure of the tree. Learning FPTs, however, because of its restrictions, can

be accomplished more efficiently.

109

5. RELATED MODEL CLASSES

110

6

Conclusions and Outlook

In this work, we have elaborated on fuzzy pattern trees, a machine learning method

using fuzzy set theory in order to produce interpretable predictive models. Being able

to comprehend a prediction made by a machine enables experts to gain insight into

the underlying relationships of the data generating process. This not only increases

confidence in the decision of the machine, but also capacitates research in the domain

of application.

The contributions of this work are manifold.

• In Sections 3.1 and 2.2.1, the model class itself has been extended. First we

proposed a general way of fuzzifying input attributes into a comprehensive fuzzy

partition. Second, new and more expressive operators have been introduced, in

order to be able to create more flexible models.

• In the following sections of Chapter 2, we focused on important properties of the

model class. Besides giving an overview of known properties, two new theoretical

results have been presented. First, fuzzy pattern trees are universal approximators

and hence are able to approximate any real-valued function on a compact set.

Second, after utilizing the first result, it was shown that the VC dimension of

FPTs is potentially infinite.

• The main contributions reside in Chapter 3. To start with, three heuristics are

introduced, which aim at speeding up the induction method of Huang et. al. with-

out loosing predictive accuracy. Then, two completely new algorithms for pattern

tree induction are introduced. The first one (PTTD) reverses the construction of

111

6. CONCLUSIONS AND OUTLOOK

the tree in comparison to PTBU. The second one constitutes a co-evolutionary

algorithm (PTCoEvo).

• In order to make FPT induction applicable to nowadays “big data” problems, the

idea of racing algorithms was used to provide scalability of the PTTD induction

algorithm. Their effectiveness was demonstrated empirically by means of a real

world case-study.

• FPTs were applied to regression problems as well as they were used for fuzzy

systems modeling.

• All algorithms and modifications have been backed up with experiments which

empirically show the effectiveness of the proposed methods.

• The fifth chapter elaborates on a comparison between FPT and related model

classes. Comparing FPT to more or less similar model classes and their learning

algorithms clearly reveals the benefits of FPTs.

Still there is a lot of work for the future. One line of research could aim at applying

fuzzy pattern trees to different learning scenarios. Classification and regression are

only the most basic ones. Due to the habile nature of the trees (comprising a fuzzy

predicate, mapping from any type of input into [0, 1]), it is easy to think about applying

them to several other tasks like multi-task learning, multi-label classification, ordinal

regression, preference learning, label ranking, association analysis and many more.

A second line should deal with enabling the learning algorithms to take additional

background knowledge into account. Such kind of knowledge could e.g. be introduced

by constraints on the structure of the tree. One possibility is to group attributes into

sets. These sets, then, form subtrees, which are aggregated only in a later stage. This

could be useful in order to even increase interpretability. To give an example, imagine

the task of predicting an overall evaluation of a car for a given customer. The customer

might have different kinds of single criteria, which must be aggregated into an overall

utility. Grouping these single criteria by categories like costs, motor, extras etc. should

lead to subtrees only dealing with one of these categories. This would further improve

the interpretability of the resulting models.

The third line of research could elaborate on utility-based preference learning [36],

i.e., assigning a degree of utility to an option on the basis of which it is compared

112

to other options. Options in this regard usually are described by attributes just like

regular instances. It is assumed that the utility of an option depends on its attributes.

For example, imagine an online shop like Amazon (amazon.com) where it is possible to

rate a product by means of a 5-star scale. The product, e.g. a notebook, is described by

attributes like the type of CPU or the size of its hard disk. Learning a utility function

in this scenario would yield a model that is predicting the utility of an unrated product

given its properties.

In general, FPTs can be used to modeland learn such utility functions. The mono-

tonicity property discussed in Section 2.3 is especially interesting in this regard. There

are methods for learning so-called structured utility functions which require monotonic-

ity and ensure additivity like the UTA method [42, 53]. Such properties are important

in order to provide an interpretation of the learned models in terms of an aggregated

utility function. The building blocks of such a function are the so-called partial utility

functions that refer to the utility of a single attribute value or a subgroup of attribute

values.

Extracting partial utility functions for single attributes is particularly interesting

for producers. Knowing product properties that appear to be of high utility for buyers

enables producers to tailor their products accordingly. From a theoretical perspective,

however, this task is highly non-trivial. Nevertheless, due to the special properties of

FPTs accomplishing this task comes into reach.

113

6. CONCLUSIONS AND OUTLOOK

114

7

Appendices

Appendix A

All results of the study on surrogate loss functions of Section 3.4.

115

7. APPENDICES

No. ClassE JacE MAE MSigE RMSE
1 77.62 ±1.27 77.38 ±1.06 77.38 ±1.06 77.38 ±1.06 77.54 ±1.84

2 77.96 ±7.96 74.89 ±7.83 81.78 ±8.84 78.96 ±10.30 78.74 ±10.16

3 22.83 ±3.06 24.83 ±0.91 25.00 ±0.00 24.92 ±0.46 37.00 ±4.47

4 97.34 ±3.10 95.47 ±7.50 72.07 ±9.79 81.96 ±8.75 83.81 ±8.85

5 95.31 ±3.56 93.19 ±2.07 94.44 ±2.38 96.20 ±3.45 96.71 ±3.13

6 85.46 ±4.45 84.15 ±3.95 84.54 ±4.02 84.83 ±3.99 85.51 ±3.73

7 90.41 ±2.61 92.67 ±3.00 90.85 ±3.46 95.29 ±2.48 93.78 ±2.35

8 51.73 ±9.70 51.71 ±8.47 34.79 ±10.98 37.39 ±10.77 58.48 ±10.61

9 89.33 ±2.47 72.89 ±6.05 76.47 ±4.57 88.22 ±4.47 90.02 ±2.09

10 85.30 ±6.96 79.87 ±9.24 80.25 ±7.31 80.87 ±8.19 87.21 ±7.67

11 76.47 ±1.71 76.60 ±1.08 76.65 ±1.44 76.60 ±1.73 77.09 ±1.67

12 61.21 ±8.33 45.99 ±4.63 57.40 ±4.02 57.11 ±6.54 59.04 ±4.31

13 96.24 ±2.36 96.00 ±2.52 95.95 ±2.54 95.32 ±2.67 95.90 ±2.38

14 71.68 ±4.75 63.47 ±5.56 64.28 ±2.51 64.28 ±2.51 72.73 ±5.12

15 26.76 ±13.00 21.15 ±11.12 29.09 ±8.59 21.58 ±7.64 35.39 ±13.61

16 47.02 ±4.20 43.97 ±2.32 42.43 ±0.54 42.36 ±0.61 52.23 ±3.72

17 67.14 ±12.87 66.25 ±11.13 62.56 ±11.45 68.99 ±8.59 75.18 ±12.26

18 84.59 ±3.62 85.60 ±4.13 84.64 ±3.52 84.54 ±3.70 85.36 ±3.70

19 71.98 ±12.20 72.94 ±11.07 76.59 ±12.04 77.78 ±12.26 76.11 ±11.74

20 60.15 ±10.23 63.75 ±8.22 60.19 ±8.28 60.70 ±7.79 66.68 ±8.65

21 82.63 ±1.04 82.54 ±0.97 82.88 ±0.67 82.88 ±0.67 82.75 ±0.68

22 74.53 ±2.84 70.40 ±1.04 70.67 ±1.37 73.93 ±3.53 72.27 ±3.71

23 50.01 ±4.65 47.66 ±5.68 47.34 ±4.62 49.09 ±5.60 61.38 ±7.53

24 73.74 ±5.12 73.20 ±1.37 72.87 ±2.68 74.61 ±4.55 75.92 ±5.09

25 77.90 ±8.22 73.58 ±5.48 74.32 ±6.66 74.69 ±6.88 80.25 ±5.86

26 90.79 ±5.63 87.57 ±5.14 88.61 ±5.05 85.00 ±4.72 87.48 ±5.28

27 96.00 ±4.50 66.89 ±1.22 96.00 ±4.50 95.33 ±5.30 96.00 ±4.50

28 97.40 ±2.30 97.40 ±2.30 97.40 ±2.30 97.40 ±2.30 92.60 ±3.83

29 74.26 ±14.06 74.95 ±14.64 76.11 ±13.65 72.31 ±14.05 77.31 ±15.00

30 81.73 ±8.86 76.11 ±7.06 74.56 ±9.10 76.62 ±8.26 79.27 ±10.53

31 17.67 ±6.43 20.42 ±5.55 14.79 ±4.77 15.29 ±4.71 35.60 ±8.18

32 74.45 ±4.66 71.70 ±3.72 72.53 ±4.86 71.01 ±3.95 73.39 ±3.78

33 25.97 ±7.13 40.70 ±6.54 33.04 ±4.08 32.94 ±3.67 43.76 ±7.12

34 94.67 ±5.56 80.17 ±16.89 68.00 ±11.49 71.33 ±11.44 77.00 ±11.11

35 81.87 ±6.79 73.47 ±8.44 81.87 ±6.01 81.87 ±6.01 82.00 ±6.01

36 59.71 ±8.22 55.49 ±4.81 58.73 ±7.97 57.94 ±7.13 57.84 ±6.79

37 69.87 ±10.94 67.99 ±10.40 72.91 ±10.38 68.87 ±8.45 71.83 ±10.96

38 47.78 ±6.72 39.95 ±3.34 45.03 ±4.48 44.37 ±5.15 61.07 ±5.34

39 96.62 ±4.05 94.17 ±5.02 94.56 ±5.99 96.27 ±3.96 96.27 ±5.53

40 88.42 ±7.49 88.12 ±8.43 86.12 ±7.70 86.12 ±8.13 92.45 ±8.48

avg.
rank

2.56 3.83 3.37 3.36 1.86

Table 7.1: Predictive accuracy results for different surrogate loss functions used during

induction withthe PTBU algorithm. Results include mean and standard deviation.

116

Appendix B

All results of the dynamic operator exclusion experiment of Section 3.5.4.

117

7. APPENDICES

No. τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5
1 77.62 ±1.56 77.62 ±1.56 77.62 ±1.56 77.62 ±1.56 77.62 ±1.56

2 79.81 ±11.35 79.81 ±10.72 79.81 ±10.72 79.44 ±10.59 79.44 ±10.59

3 38.08 ±4.03 38.00 ±4.12 38.00 ±4.12 38.00 ±4.12 38.00 ±4.17

4 83.39 ±8.81 83.39 ±8.81 83.39 ±8.81 83.39 ±8.81 83.39 ±8.81

5 95.57 ±2.85 95.57 ±2.85 95.57 ±2.85 95.57 ±2.85 95.57 ±2.85

6 85.65 ±3.76 85.65 ±3.76 85.65 ±3.76 85.65 ±3.76 85.60 ±3.73

7 95.44 ±2.23 95.52 ±2.30 94.37 ±2.52 95.05 ±2.25 95.60 ±2.24

8 59.30 ±11.98 59.13 ±10.77 59.30 ±10.50 59.47 ±10.79 59.47 ±10.79

9 90.02 ±1.97 90.02 ±1.97 90.02 ±1.97 90.02 ±1.97 90.02 ±1.97

10 87.53 ±6.54 87.53 ±6.54 87.53 ±6.54 87.53 ±6.54 87.69 ±6.67

11 76.83 ±1.31 76.83 ±1.31 76.78 ±1.41 76.74 ±1.55 76.74 ±1.55

12 58.58 ±5.15 57.79 ±4.11 57.79 ±4.04 58.96 ±3.83 58.66 ±3.72

13 96.19 ±2.23 96.24 ±2.30 96.24 ±2.30 96.10 ±2.35 96.00 ±2.24

14 72.90 ±5.85 73.06 ±5.83 72.98 ±6.24 73.06 ±6.26 72.90 ±6.22

15 35.12 ±14.91 33.94 ±15.20 35.15 ±15.68 35.45 ±14.86 35.76 ±14.59

16 52.01 ±4.03 51.94 ±4.08 51.87 ±4.20 51.44 ±4.31 51.28 ±4.08

17 82.68 ±10.82 81.79 ±12.40 76.55 ±12.79 76.55 ±13.04 76.55 ±13.45

18 85.31 ±3.67 85.31 ±3.67 85.31 ±3.67 85.31 ±3.67 85.31 ±3.67

19 77.78 ±12.26 78.17 ±11.87 78.17 ±11.87 78.17 ±11.87 78.17 ±11.87

20 65.14 ±8.17 65.49 ±8.09 65.18 ±8.77 65.34 ±9.06 65.34 ±9.37

21 82.75 ±0.68 82.75 ±0.68 82.75 ±0.68 82.75 ±0.68 82.75 ±0.68

22 72.37 ±3.85 72.37 ±3.85 72.37 ±3.85 72.37 ±3.85 72.30 ±3.81

23 60.29 ±7.39 59.97 ±7.10 60.13 ±7.28 59.51 ±8.97 59.67 ±9.06

24 73.42 ±2.18 73.74 ±2.64 73.85 ±2.59 74.29 ±3.05 74.84 ±2.96

25 78.89 ±5.93 80.00 ±6.50 80.62 ±5.64 80.62 ±5.64 80.99 ±5.56

26 87.76 ±5.54 87.76 ±5.54 87.76 ±5.54 87.76 ±5.43 87.76 ±5.43

27 92.22 ±6.80 93.11 ±6.43 93.11 ±6.43 93.11 ±6.43 93.11 ±6.43

28 93.33 ±3.54 93.33 ±3.54 92.53 ±3.89 92.53 ±3.89 92.53 ±3.89

29 77.31 ±13.79 77.31 ±13.79 77.31 ±13.79 77.31 ±13.79 77.31 ±13.79

30 77.90 ±9.48 78.37 ±10.04 78.14 ±9.92 77.92 ±9.48 77.92 ±10.26

31 31.82 ±7.50 32.62 ±7.21 32.72 ±7.38 33.51 ±7.83 33.80 ±7.73

32 73.31 ±4.90 72.66 ±4.66 72.66 ±4.66 72.66 ±4.66 73.13 ±3.81

33 44.35 ±6.71 44.64 ±6.42 44.64 ±6.60 44.64 ±6.60 44.44 ±6.73

34 77.17 ±11.12 77.17 ±11.12 77.17 ±11.12 77.17 ±11.12 77.17 ±11.12

35 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01

36 58.24 ±6.53 58.14 ±6.45 58.24 ±6.15 58.04 ±6.51 58.33 ±6.74

37 71.86 ±10.59 71.86 ±10.59 71.70 ±10.85 71.86 ±10.96 71.84 ±10.86

38 56.85 ±4.29 57.05 ±4.62 57.76 ±4.58 57.92 ±4.02 58.24 ±4.01

39 95.12 ±4.13 94.95 ±4.00 95.33 ±4.19 95.52 ±3.70 95.70 ±3.50

40 90.79 ±7.77 90.45 ±8.43 90.45 ±8.43 90.45 ±8.43 90.45 ±8.43

Table 7.2: Part I: Mean accuracy measures with standard deviation comparing PTBU-

DOE with different values of τ (0.1− 0.5).

118

No. τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9 τ = 1.0
1 77.62 ±1.56 77.62 ±1.56 77.62 ±1.56 77.62 ±1.56 77.54 ±1.84

2 79.44 ±10.59 79.44 ±10.59 79.44 ±10.59 79.44 ±10.59 79.11 ±10.73

3 37.50 ±4.45 37.50 ±4.45 37.50 ±4.45 37.50 ±4.45 38.00 ±4.28

4 83.39 ±8.81 83.39 ±8.81 83.39 ±8.81 83.39 ±8.81 83.60 ±9.13

5 95.57 ±2.85 95.57 ±2.85 95.57 ±2.85 95.57 ±2.85 95.95 ±3.17

6 85.65 ±3.74 85.70 ±3.63 85.80 ±3.60 85.75 ±3.65 85.56 ±3.80

7 95.40 ±2.29 94.89 ±2.16 96.00 ±2.80 96.24 ±2.44 94.29 ±1.75

8 59.47 ±10.79 58.98 ±8.94 58.98 ±8.94 58.98 ±8.94 58.00 ±10.21

9 90.02 ±1.97 90.02 ±1.97 90.02 ±1.97 90.02 ±1.97 90.13 ±1.80

10 87.69 ±6.67 87.69 ±6.67 87.69 ±6.67 87.69 ±6.67 87.06 ±7.39

11 76.74 ±1.55 76.65 ±1.67 76.69 ±1.71 76.78 ±1.67 77.09 ±1.44

12 58.75 ±3.71 58.75 ±3.71 58.75 ±3.71 59.05 ±3.83 59.05 ±3.83

13 95.95 ±2.36 96.00 ±2.37 95.95 ±2.36 95.95 ±2.36 95.90 ±2.38

14 72.98 ±6.24 72.82 ±5.90 72.41 ±6.11 72.33 ±5.86 73.23 ±5.38

15 35.76 ±15.35 36.03 ±14.43 36.03 ±14.43 36.03 ±13.62 35.70 ±12.91

16 51.28 ±4.08 51.35 ±4.07 51.35 ±4.02 51.80 ±4.37 51.89 ±4.42

17 76.13 ±13.69 76.55 ±13.45 76.13 ±13.69 75.24 ±13.81 74.11 ±12.79

18 85.31 ±3.74 85.60 ±3.71 85.70 ±3.63 85.60 ±3.79 85.60 ±3.79

19 78.17 ±11.87 78.73 ±11.70 78.73 ±11.70 78.73 ±11.70 76.67 ±12.46

20 65.01 ±9.64 64.84 ±9.68 65.17 ±9.55 65.51 ±9.78 65.17 ±8.81

21 82.75 ±0.68 82.75 ±0.68 82.75 ±0.68 82.75 ±0.68 82.75 ±0.68

22 72.30 ±3.81 72.30 ±3.81 72.30 ±3.81 72.17 ±3.63 72.17 ±3.63

23 59.98 ±9.34 59.82 ±9.09 60.29 ±8.75 61.08 ±7.72 61.39 ±7.74

24 75.28 ±4.27 75.50 ±4.60 75.61 ±4.38 75.61 ±4.46 75.71 ±4.49

25 81.11 ±5.62 80.99 ±5.56 80.99 ±5.56 80.99 ±5.56 80.37 ±5.51

26 87.76 ±4.99 87.67 ±4.95 87.76 ±4.78 87.85 ±5.00 87.48 ±5.28

27 93.11 ±6.43 94.22 ±5.46 94.22 ±5.46 94.22 ±5.46 95.78 ±4.46

28 92.53 ±3.89 92.53 ±3.89 92.53 ±3.89 92.07 ±3.62 91.67 ±3.33

29 77.31 ±13.79 77.31 ±13.79 77.31 ±13.79 77.31 ±13.79 77.31 ±15.00

30 77.92 ±10.26 77.92 ±10.26 77.92 ±10.26 77.92 ±10.26 77.95 ±10.98

31 33.91 ±8.16 33.51 ±7.93 33.61 ±7.66 33.61 ±7.66 34.91 ±8.77

32 73.13 ±3.81 73.13 ±3.81 73.09 ±3.78 73.09 ±3.78 72.83 ±4.15

33 44.44 ±6.64 44.15 ±6.94 44.05 ±7.13 44.15 ±7.11 43.76 ±6.87

34 77.17 ±11.12 77.17 ±11.12 77.17 ±11.12 77.17 ±11.12 77.00 ±11.11

35 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01

36 58.33 ±6.74 58.33 ±6.74 58.24 ±6.93 58.43 ±6.59 58.43 ±6.81

37 71.84 ±10.86 71.84 ±10.86 72.16 ±10.84 72.17 ±10.74 72.17 ±10.74

38 58.27 ±4.28 58.15 ±4.58 59.37 ±4.35 60.47 ±4.81 61.10 ±5.20

39 95.14 ±5.03 95.14 ±5.03 95.14 ±5.03 94.97 ±4.92 96.46 ±4.50

40 90.45 ±8.43 90.45 ±8.43 90.79 ±7.77 90.79 ±7.77 92.76 ±7.75

Table 7.3: Part II: Mean accuracy measures with standard deviation comparing PTBU-

DOE with different values of τ (0.6− 1.0).

119

7. APPENDICES

No. τ = 1.1 τ = 1.2 τ = 1.3 τ = 1.4 τ = 1.5
1 77.54 ±1.84 77.54 ±1.84 77.54 ±1.84 77.54 ±1.84 77.54 ±1.84

2 79.11 ±10.73 79.11 ±10.73 79.11 ±10.73 79.11 ±10.73 79.11 ±10.73

3 38.00 ±4.28 38.00 ±4.28 38.00 ±4.28 38.00 ±4.28 38.00 ±4.28

4 83.60 ±9.13 83.60 ±9.13 83.60 ±9.13 83.60 ±9.13 83.60 ±9.13

5 96.97 ±3.06 96.85 ±3.01 96.21 ±3.17 96.21 ±3.17 96.21 ±3.17

6 85.51 ±3.73 85.51 ±3.73 85.51 ±3.73 85.51 ±3.73 85.51 ±3.73

7 94.33 ±2.04 94.29 ±2.13 94.17 ±1.98 94.13 ±2.07 94.21 ±2.29

8 57.84 ±10.34 58.79 ±10.27 58.79 ±10.27 58.47 ±10.34 58.47 ±10.34

9 90.18 ±1.78 90.02 ±2.09 90.02 ±2.09 90.02 ±2.09 90.02 ±2.09

10 87.21 ±7.67 87.21 ±7.67 87.21 ±7.67 87.21 ±7.67 87.21 ±7.67

11 77.01 ±1.58 77.01 ±1.58 77.01 ±1.58 77.01 ±1.58 77.01 ±1.58

12 59.05 ±3.83 58.95 ±3.79 58.95 ±4.02 59.24 ±4.19 59.24 ±4.19

13 95.90 ±2.38 95.90 ±2.38 95.90 ±2.38 95.90 ±2.38 95.90 ±2.38

14 73.14 ±5.33 73.06 ±5.34 72.90 ±5.18 72.74 ±5.17 72.57 ±4.93

15 35.36 ±13.19 35.36 ±13.19 35.36 ±13.19 35.36 ±13.19 35.36 ±13.19

16 52.30 ±3.64 52.28 ±3.65 52.28 ±3.65 52.28 ±3.65 52.28 ±3.65

17 74.58 ±12.95 74.58 ±12.95 74.58 ±12.95 74.58 ±12.95 74.17 ±12.72

18 85.51 ±3.81 85.51 ±3.81 85.51 ±3.81 85.51 ±3.81 85.51 ±3.81

19 76.11 ±11.74 76.11 ±11.74 76.11 ±11.74 76.11 ±11.74 76.11 ±11.74

20 66.70 ±8.01 66.87 ±7.92 66.53 ±8.25 66.69 ±8.27 67.03 ±8.19

21 82.85 ±0.60 82.85 ±0.60 82.85 ±0.60 82.85 ±0.60 82.85 ±0.60

22 72.17 ±3.63 72.17 ±3.63 72.17 ±3.63 72.17 ±3.63 72.17 ±3.63

23 61.85 ±7.22 61.70 ±7.27 61.70 ±7.27 61.54 ±7.10 61.54 ±7.10

24 75.49 ±5.11 75.49 ±5.11 75.49 ±5.11 75.49 ±5.11 75.49 ±5.11

25 80.49 ±5.67 80.49 ±5.67 80.49 ±5.67 80.49 ±5.67 80.37 ±5.77

26 87.48 ±5.28 87.48 ±5.28 87.48 ±5.28 87.48 ±5.28 87.48 ±5.28

27 96.00 ±4.50 96.00 ±4.50 96.00 ±4.50 95.78 ±5.10 95.78 ±5.10

28 91.67 ±3.33 92.67 ±3.84 92.60 ±3.83 92.60 ±3.83 92.60 ±3.83

29 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00

30 79.27 ±10.73 79.25 ±10.30 79.25 ±10.30 79.25 ±10.30 79.03 ±10.79

31 35.00 ±8.46 34.90 ±8.79 35.00 ±8.61 35.11 ±8.58 35.10 ±8.67

32 72.83 ±4.15 72.83 ±4.15 72.96 ±4.23 73.00 ±4.21 73.00 ±4.21

33 43.76 ±6.74 43.56 ±6.98 43.56 ±6.98 43.46 ±6.95 43.56 ±6.98

34 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11

35 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01

36 58.33 ±6.91 58.14 ±6.63 58.14 ±6.63 58.14 ±6.63 58.14 ±6.63

37 72.17 ±10.74 71.83 ±10.96 71.83 ±10.96 71.83 ±10.96 71.83 ±10.96

38 61.42 ±5.36 61.19 ±5.24 61.30 ±5.34 61.26 ±5.37 61.22 ±5.39

39 96.83 ±4.31 96.83 ±4.31 96.83 ±4.31 96.64 ±4.29 96.46 ±4.95

40 93.42 ±7.46 93.42 ±7.46 93.42 ±7.46 93.09 ±8.27 93.09 ±8.27

Table 7.4: Part III: Mean accuracy measures with standard deviation comparing PTBU-

DOE with different values of τ (1.1− 1.5).

120

No. τ = 1.6 τ = 1.7 τ = 1.8 τ = 1.9 τ = 2.0
1 77.54 ±1.84 77.54 ±1.84 77.54 ±1.84 77.54 ±1.84 77.54 ±1.84

2 79.11 ±10.73 78.74 ±10.16 78.74 ±10.16 78.74 ±10.16 78.74 ±10.16

3 38.00 ±4.28 38.00 ±4.28 38.08 ±4.29 38.00 ±4.12 37.00 ±4.47

4 83.60 ±9.13 83.81 ±8.85 83.81 ±8.85 83.81 ±8.85 83.81 ±8.85

5 96.33 ±3.25 96.84 ±3.19 96.84 ±3.19 96.84 ±3.19 96.71 ±3.13

6 85.51 ±3.73 85.51 ±3.73 85.51 ±3.73 85.51 ±3.73 85.51 ±3.73

7 93.98 ±2.65 93.90 ±2.35 93.74 ±2.35 93.74 ±2.35 93.78 ±2.35

8 58.48 ±10.61 58.48 ±10.61 58.48 ±10.61 58.48 ±10.61 58.48 ±10.61

9 90.02 ±2.09 90.02 ±2.09 90.02 ±2.09 90.02 ±2.09 90.02 ±2.09

10 87.21 ±7.67 87.21 ±7.67 87.21 ±7.67 87.21 ±7.67 87.21 ±7.67

11 77.01 ±1.58 77.01 ±1.58 77.01 ±1.58 77.01 ±1.58 77.09 ±1.67

12 59.52 ±4.33 59.24 ±4.19 59.04 ±4.54 59.24 ±4.19 59.04 ±4.31

13 95.90 ±2.38 95.90 ±2.38 95.90 ±2.38 95.90 ±2.38 95.90 ±2.38

14 72.57 ±4.93 72.65 ±4.91 72.65 ±4.91 72.65 ±4.91 72.73 ±5.12

15 35.36 ±13.19 35.36 ±13.19 35.06 ±12.83 34.79 ±13.96 35.39 ±13.61

16 52.28 ±3.73 52.46 ±3.66 52.19 ±3.83 52.19 ±3.72 52.23 ±3.72

17 74.64 ±13.42 74.64 ±13.42 76.07 ±11.68 74.64 ±11.88 75.18 ±12.26

18 85.51 ±3.81 85.51 ±3.81 85.51 ±3.81 85.51 ±3.81 85.36 ±3.70

19 76.11 ±11.74 76.11 ±11.74 76.11 ±11.74 76.11 ±11.74 76.11 ±11.74

20 67.03 ±8.19 67.20 ±8.39 67.04 ±8.38 67.04 ±8.38 66.68 ±8.65

21 82.85 ±0.60 82.85 ±0.60 82.85 ±0.60 82.85 ±0.60 82.75 ±0.68

22 72.20 ±3.65 72.20 ±3.65 72.20 ±3.65 72.23 ±3.68 72.27 ±3.71

23 61.23 ±7.58 61.23 ±7.58 61.23 ±7.58 61.54 ±7.49 61.38 ±7.53

24 75.49 ±5.11 75.81 ±5.18 75.81 ±5.18 75.81 ±5.18 75.92 ±5.09

25 80.37 ±5.77 80.37 ±5.77 80.37 ±5.77 80.37 ±5.77 80.25 ±5.86

26 87.48 ±5.28 87.48 ±5.28 87.48 ±5.28 87.48 ±5.28 87.48 ±5.28

27 95.78 ±5.10 95.56 ±5.05 95.56 ±5.05 95.56 ±5.05 96.00 ±4.50

28 92.60 ±3.83 92.60 ±3.83 92.60 ±3.83 92.60 ±3.83 92.60 ±3.83

29 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00

30 79.03 ±10.79 79.03 ±10.79 79.03 ±10.79 79.03 ±10.79 79.27 ±10.53

31 34.91 ±8.66 35.01 ±8.72 35.01 ±8.58 35.01 ±8.58 35.60 ±8.18

32 73.05 ±4.17 73.09 ±4.15 73.09 ±4.15 73.09 ±4.15 73.39 ±3.78

33 43.46 ±6.95 43.46 ±6.82 43.36 ±6.84 43.56 ±6.90 43.76 ±7.12

34 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11

35 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01

36 57.94 ±6.52 58.04 ±6.64 57.84 ±6.79 57.84 ±6.79 57.84 ±6.79

37 71.83 ±10.96 71.83 ±10.96 71.83 ±10.96 71.83 ±10.96 71.83 ±10.96

38 61.11 ±5.42 61.22 ±5.39 61.26 ±5.37 61.26 ±5.37 61.07 ±5.34

39 96.09 ±5.50 96.09 ±5.50 96.27 ±5.53 96.27 ±5.53 96.27 ±5.53

40 93.09 ±8.27 92.76 ±8.59 92.45 ±8.48 92.45 ±8.48 92.45 ±8.48

Table 7.5: Part IV: Mean accuracy measures with standard deviation comparing PTBU-

DOE with different values of τ (1.6− 2.0).

121

7. APPENDICES

Appendix C

All results of the limited candidate history experiment of Section 3.5.4.

122

No. k = 1 k = 2 k = 3 k = 4 k = 5
1 77.29 ±1.56 77.46 ±1.63 77.62 ±1.80 77.54 ±1.60 77.62 ±1.56

2 79.78 ±10.36 79.41 ±10.22 80.44 ±10.35 78.74 ±10.16 78.74 ±10.16

3 22.92 ±5.50 31.25 ±4.68 33.83 ±4.81 33.33 ±5.62 33.67 ±5.56

4 84.22 ±9.05 84.42 ±9.20 83.60 ±9.13 83.60 ±9.13 83.20 ±9.49

5 95.57 ±2.85 95.70 ±2.79 97.09 ±2.60 97.34 ±2.69 97.72 ±2.95

6 85.56 ±3.70 85.51 ±3.73 85.51 ±3.73 85.51 ±3.73 85.51 ±3.73

7 94.81 ±2.15 94.69 ±2.04 94.97 ±1.83 95.48 ±2.03 95.84 ±1.81

8 58.29 ±9.35 58.94 ±9.74 59.12 ±9.24 59.13 ±9.31 59.13 ±9.23

9 78.76 ±6.54 86.55 ±4.33 90.29 ±1.83 90.24 ±1.81 90.29 ±1.83

10 82.62 ±7.14 86.59 ±7.60 86.91 ±7.73 86.57 ±8.16 86.90 ±8.06

11 76.74 ±1.07 76.78 ±1.20 76.83 ±1.45 77.05 ±1.69 77.14 ±1.56

12 57.49 ±3.06 57.89 ±3.92 58.76 ±4.23 59.25 ±3.97 60.22 ±4.15

13 96.19 ±2.30 96.19 ±2.23 96.10 ±2.22 96.00 ±2.34 96.05 ±2.32

14 71.84 ±5.05 71.67 ±4.78 72.16 ±4.73 72.33 ±5.10 72.41 ±5.60

15 33.36 ±15.38 35.42 ±12.95 37.58 ±12.11 37.91 ±12.94 38.88 ±13.60

16 49.68 ±3.56 53.25 ±3.84 53.09 ±3.72 53.34 ±3.69 53.05 ±3.71

17 73.27 ±12.44 80.89 ±13.06 82.68 ±11.91 85.06 ±11.40 85.83 ±9.49

18 85.70 ±3.63 85.27 ±3.67 85.22 ±3.64 85.22 ±3.64 85.31 ±3.68

19 76.67 ±11.67 75.56 ±12.36 76.11 ±12.32 75.63 ±12.22 76.59 ±11.22

20 63.39 ±8.30 67.36 ±9.20 65.64 ±8.99 67.21 ±9.33 67.74 ±9.16

21 82.69 ±0.73 82.72 ±0.68 82.75 ±0.73 82.79 ±0.72 82.72 ±0.74

22 72.27 ±3.70 72.67 ±3.52 72.77 ±3.35 72.53 ±3.63 72.60 ±3.84

23 57.62 ±8.02 60.44 ±8.58 61.81 ±8.45 62.30 ±8.46 62.31 ±8.05

24 73.09 ±2.66 75.26 ±3.55 74.72 ±4.17 75.50 ±4.17 74.96 ±4.38

25 75.93 ±6.51 78.40 ±6.74 79.26 ±6.71 80.12 ±6.70 80.37 ±5.93

26 84.05 ±6.16 86.63 ±6.08 88.15 ±5.89 88.34 ±5.72 88.99 ±5.62

27 95.56 ±5.05 95.78 ±5.10 95.56 ±5.05 95.56 ±5.05 95.56 ±5.05

28 74.93 ±6.45 85.47 ±5.01 92.80 ±4.19 95.00 ±3.43 95.20 ±3.18

29 76.94 ±15.12 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00

30 75.90 ±10.11 79.27 ±10.23 79.25 ±10.81 79.70 ±8.93 80.17 ±9.05

31 28.94 ±7.51 35.58 ±7.50 35.98 ±8.06 35.59 ±7.95 36.39 ±7.75

32 71.70 ±4.36 72.62 ±4.74 72.96 ±4.35 73.14 ±4.13 72.96 ±4.17

33 40.71 ±6.18 44.55 ±7.25 45.34 ±7.26 45.15 ±7.43 44.56 ±7.46

34 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11

35 81.87 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01

36 57.75 ±5.80 57.75 ±6.48 57.94 ±5.89 58.14 ±6.21 58.33 ±6.78

37 72.01 ±10.64 70.23 ±9.60 71.52 ±9.72 71.85 ±10.47 71.85 ±10.17

38 52.80 ±5.32 56.86 ±5.50 57.96 ±4.83 61.98 ±6.08 62.52 ±5.66

39 93.80 ±5.40 95.33 ±5.31 95.33 ±4.41 95.52 ±4.24 95.52 ±4.24

40 86.76 ±9.20 90.79 ±8.61 92.76 ±8.25 92.79 ±8.17 92.76 ±8.59

Table 7.6: Part I: Mean accuracy measures with standard deviation comparing PTBU-

LCH with different values of k (1− 5).

123

7. APPENDICES

No. k = 6 k = 7 k = 8 k = 9
1 77.62 ±1.56 77.78 ±1.49 77.78 ±1.46 77.70 ±1.64

2 78.44 ±11.87 78.37 ±12.35 77.67 ±11.70 78.07 ±11.03

3 34.50 ±5.27 33.75 ±5.64 34.25 ±5.77 33.67 ±4.58

4 83.41 ±9.22 83.20 ±9.49 83.20 ±9.49 83.21 ±9.44

5 97.47 ±2.90 97.73 ±2.94 97.60 ±2.92 97.60 ±2.93

6 85.56 ±3.72 85.51 ±3.73 85.65 ±3.77 85.65 ±3.77

7 96.16 ±1.83 96.35 ±2.00 96.31 ±1.83 96.39 ±1.81

8 59.11 ±8.81 60.41 ±9.46 61.04 ±9.21 62.17 ±10.21

9 90.29 ±1.83 90.29 ±1.83 90.29 ±1.83 90.29 ±1.83

10 87.05 ±7.94 86.57 ±8.00 87.37 ±8.01 87.21 ±8.19

11 77.09 ±1.35 77.14 ±1.28 77.09 ±1.30 77.14 ±1.28

12 59.64 ±4.49 58.86 ±4.06 59.44 ±4.52 59.93 ±4.59

13 96.05 ±2.32 96.00 ±2.40 96.05 ±2.31 96.10 ±2.32

14 72.49 ±5.29 72.65 ±5.12 72.74 ±4.97 72.74 ±4.77

15 38.55 ±12.74 38.82 ±13.97 38.21 ±13.44 37.91 ±13.37

16 53.34 ±3.75 53.34 ±3.23 53.00 ±3.36 52.96 ±3.43

17 86.31 ±9.84 86.31 ±9.84 85.89 ±10.57 85.42 ±10.23

18 85.12 ±3.82 85.17 ±3.74 85.07 ±3.73 85.17 ±3.80

19 76.19 ±12.94 75.71 ±12.84 76.67 ±13.02 74.60 ±12.08

20 65.52 ±10.19 65.85 ±10.08 65.01 ±10.80 65.00 ±11.18

21 82.66 ±0.86 82.72 ±0.81 82.69 ±0.78 82.72 ±0.81

22 72.40 ±3.64 72.37 ±3.60 72.10 ±3.67 72.47 ±3.72

23 61.05 ±7.78 61.49 ±7.01 62.11 ±6.60 61.49 ±6.77

24 74.74 ±4.29 74.74 ±4.29 74.63 ±4.19 74.63 ±4.19

25 81.60 ±5.46 82.10 ±5.15 81.85 ±5.53 81.60 ±5.54

26 89.09 ±5.69 88.71 ±5.84 88.90 ±5.84 88.81 ±5.82

27 95.56 ±5.05 95.56 ±5.05 95.56 ±5.05 95.56 ±5.05

28 95.93 ±2.95 97.40 ±2.30 97.40 ±2.30 97.40 ±2.30

29 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00 77.31 ±15.00

30 80.38 ±9.34 79.70 ±9.50 79.70 ±9.00 80.37 ±8.56

31 36.79 ±8.01 36.30 ±8.10 35.90 ±7.63 36.00 ±7.60

32 73.09 ±3.95 73.05 ±4.06 73.05 ±4.06 73.05 ±4.06

33 45.04 ±7.97 44.95 ±7.71 44.26 ±8.01 44.95 ±7.03

34 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11 77.00 ±11.11

35 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01 82.00 ±6.01

36 58.53 ±6.66 58.63 ±7.08 58.73 ±7.01 58.63 ±7.28

37 71.52 ±9.94 71.37 ±10.09 71.37 ±10.09 71.71 ±9.77

38 62.64 ±5.52 62.96 ±5.71 63.31 ±5.60 63.67 ±5.63

39 95.52 ±4.24 95.34 ±4.86 95.34 ±4.86 95.34 ±4.86

40 92.76 ±7.82 92.79 ±8.17 93.42 ±7.07 93.09 ±7.46

Table 7.7: Part II: Mean accuracy measures with standard deviation comparing PTBU-

LCH with different values of k (6− 9).

124

Appendix D

All results of the Pareto-comparison experiment of Section 4.2.

125

7. APPENDICES

No. PTBU PTTD PTCoEvo
1 77.70 ± 1.51 76.97 ± 1.35

2 79.81 ± 11.35 82.11 ± 8.05 78.67 ± 10.72

3 39.50 ± 5.85 38.17 ± 4.50

4 83.59 ± 8.72 90.80 ± 10.41 94.82 ± 8.03

5 95.95 ± 3.15 95.57 ± 2.68 97.47 ± 2.72

6 85.65 ± 3.76 85.51 ± 3.73 85.60 ± 3.97

7 95.64 ± 1.88 98.61 ± 0.99

8 62.20 ± 10.76 62.45 ± 9.44

9 90.34 ± 1.50 89.17 ± 2.20 92.21 ± 2.11

10 87.53 ± 6.54 87.87 ± 6.99 87.86 ± 6.57

11 76.96 ± 1.33 77.58 ± 2.46 77.76 ± 3.83

12 59.83 ± 5.45 66.79 ± 8.13 67.95 ± 8.65

13 96.24 ± 2.23 96.54 ± 2.38 96.73 ± 2.02

14 73.57 ± 5.43 72.74 ± 4.85 74.01 ± 6.89

15 39.18 ± 13.13 34.94 ± 14.19

16 54.04 ± 3.40 53.27 ± 3.30

17 84.35 ± 8.58 81.07 ± 13.71

18 85.36 ± 3.68 85.65 ± 3.60 85.41 ± 3.69

19 78.73 ± 12.28 79.13 ± 10.61

20 68.09 ± 9.44 69.46 ± 8.82

21 82.85 ± 0.60 82.79 ± 0.60

22 72.70 ± 3.22 73.87 ± 3.07 72.83 ± 3.60

23 60.76 ± 7.08 63.45 ± 7.49

24 73.95 ± 2.73 73.73 ± 2.87 74.73 ± 5.07

25 79.51 ± 5.48 80.99 ± 7.95 80.00 ± 7.25

26 88.71 ± 5.25 89.56 ± 5.86 89.08 ± 4.87

27 95.11 ± 4.93 96.67 ± 4.55 96.00 ± 4.50

28 96.07 ± 2.49 97.47 ± 2.29 98.13 ± 1.89

29 77.31 ± 13.79 76.16 ± 15.38 74.63 ± 13.13

30 77.90 ± 9.48 82.90 ± 9.58

31 33.12 ± 7.29 32.53 ± 7.77

32 73.57 ± 5.15 76.74 ± 4.65 76.31 ± 4.30

33 44.95 ± 6.63 44.27 ± 6.22

34 77.17 ± 11.12 77.33 ± 10.81 97.83 ± 5.20

35 82.00 ± 6.01 82.13 ± 5.92 84.80 ± 7.23

36 59.02 ± 7.32 59.51 ± 8.83

37 71.87 ± 9.83 75.65 ± 9.40

38 58.31 ± 5.11 63.04 ± 4.03

39 95.50 ± 4.02 98.12 ± 3.08 96.07 ± 3.64

40 92.79 ± 8.58 94.70 ± 7.28

Table 7.8: Accuracy results of the three main variants selected for comparison in Sec-

tion 4.2.

126

No. PTBU PTTD PTCoEvo
1 5.48 ± 1.27 0.78 ± 0.17

2 0.90 ± 0.13 0.26 ± 0.04 883.68 ± 1067.20

3 3.50 ± 0.71 0.25 ± 0.05

4 1.45 ± 0.55 2.50 ± 0.43 68.65 ± 36.04

5 0.25 ± 0.08 0.07 ± 0.03 670.63 ± 379.61

6 8.52 ± 3.47 0.58 ± 0.08 2827.07 ± 3327.33

7 73.50 ± 11.37 265.88 ± 21.99

8 10.82 ± 1.79 39.24 ± 4.01

9 10.67 ± 3.15 0.50 ± 0.11 3369.25 ± 1637.23

10 0.21 ± 0.06 0.53 ± 0.11 178.94 ± 83.88

11 0.42 ± 0.12 0.56 ± 0.09 5272.46 ± 5152.55

12 0.41 ± 0.10 0.49 ± 0.07 60.27 ± 25.41

13 1.01 ± 0.18 2.01 ± 0.35 5907.20 ± 4172.61

14 2.95 ± 0.39 1.49 ± 0.24 4506.19 ± 2484.45

15 2.72 ± 0.82 0.08 ± 0.03

16 1.52 ± 0.20 11.02 ± 1.61

17 0.38 ± 0.14 0.21 ± 0.07

18 1.31 ± 0.16 0.68 ± 0.10 3004.48 ± 3690.30

19 2.89 ± 0.20 2.90 ± 0.40

20 4.58 ± 0.45 46.08 ± 5.07

21 6.45 ± 0.77 38.72 ± 5.57

22 2.89 ± 0.70 22.57 ± 3.55 790.88 ± 381.06

23 2.64 ± 0.51 2.45 ± 0.22

24 0.06 ± 0.05 0.06 ± 0.03 1087.07 ± 708.59

25 0.63 ± 0.08 0.36 ± 0.05 40.57 ± 16.06

26 4.28 ± 0.50 5.61 ± 1.27 1185.08 ± 1142.90

27 0.37 ± 0.21 0.08 ± 0.03 3343.05 ± 1119.27

28 0.82 ± 0.08 1.25 ± 0.08 138.83 ± 46.72

29 0.17 ± 0.07 0.09 ± 0.06 16.27 ± 7.67

30 1.19 ± 0.24 3.34 ± 0.49

31 5.08 ± 0.45 1.50 ± 0.22

32 0.35 ± 0.07 1.35 ± 0.12 5032.81 ± 4003.85

33 34.24 ± 21.64 25.25 ± 2.19

34 0.08 ± 0.06 0.05 ± 0.04 317.07 ± 279.83

35 0.08 ± 0.20 0.03 ± 0.04 288.81 ± 232.27

36 0.23 ± 0.07 1.91 ± 0.13

37 4.00 ± 0.55 12.88 ± 1.21

38 12.55 ± 3.27 17.89 ± 1.98

39 0.25 ± 0.08 2.48 ± 0.73 4432.00 ± 2590.56

40 3.28 ± 0.89 2.29 ± 0.30

Table 7.9: Training runtime results in seconds (s) of the three main variants selected for

comparison in Section 4.2.

127

7. APPENDICES

128

References

[1] Aha, D. W. & Kibler, D. (1991). Instance-based learning algorithms. Machine

Learning, 6, 37–66. 92

[2] Alcalá-Fdez, J., Sánchez, L., Garćıa, S., del Jesús, M. J., Ventura, S., Garrell, J.,

Otero, J., Romero, C., Bacardit, J., & Rivas, V. M. (2009). Keel: A software tool

to assess evolutionary algorithms for data mining problems. Soft Computing, 13 (3),

307–318. 93, 96

[3] Allwein, E. L., Schapire, R. E., & Singer, Y. (2001). Reducing multiclass to binary:

A unifying approach for margin classifiers. Journal of Machine Learning Research,

1, 113–141. 35

[4] Alpaydin, E. (2004). Introduction to Machine Learning. Massachusetts Institute of

Technology (MIT) Press. 4

[5] Altendorf, E. E., Restificar, A. C., & Dietterich, T. G. (2012). Learning from sparse

data by exploiting monotonicity constraints. ArXiv preprint arXiv:1207.1364. 20

[6] Angluin, D. (1988). Queries and concept learning. Machine Learning, 2 (4), 319–

342. 11

[7] Asuncion, A. & Newman, D. (2009). UCI machine learning repository. Accessed 13

Nov 2009. 30

[8] Audibert, J.-Y., Munos, R., & Szepesvári, C. (2007). Tuning bandit algorithms in

stochastic environments. In Algorithmic Learning Theory, (pp. 150–165). 70

[9] Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. A Rand Corpo-

ration Research Study Series. Princeton University Press. 20

129

REFERENCES

[10] Bellman, R., Kalaba, R., & Zadeh, L. (1966). Abstraction and pattern classifica-

tion. Journal of Mathematical Analysis and Applications, 13 (1), 1–7. 8

[11] Bellman, R. E. & Zadeh, L. A. (1970). Decision-making in a fuzzy environment.

Management Science, 17 (4), B–141. 8

[12] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2 (1), 1–127. 103

[13] Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific. 18

[14] Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies - a comprehensive

introduction. Natural Computing, 1, 3–52. 18, 108

[15] Bishop, C. M. & Nasrabadi, N. M. (2006). Pattern Recognition and Machine

Learning, volume 1. Springer New York. 4

[16] Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s

razor. Information Processing Letters, 24 (6), 377 – 380. 28, 60

[17] Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability

and the vapnik-chervonenkis dimension. Journal of the Association of Computing

Machinery (ACM), 36 (4), 929–965. 26

[18] Bro, R. & De Jong, S. (1997). A fast non-negativity-constrained least squares

algorithm. Journal of Chemometrics, 11 (5), 393–401. 18

[19] Bösner, S., Haasenritter, J., Becker, A., Karatolios, K., Vaucher, P., Gencer, B.,

Herzig, L., Heinzel-Gutenbrunner, M., Schaefer, J. R., Hani, M. A., Keller, H.,

Sönnichsen, A. C., Baum, E., & Donner-Banzhoff, N. (2010). Ruling out coronary

artery disease in primary care: development and validation of a simple prediction

rule. Canadian Medical Association Journal, 182 (12), 1295–1300. 19

[20] Chang, P.-C. & Liu, C.-H. (2008). A tsk type fuzzy rule based system for stock

price prediction. Expert Systems with Applications, 34 (1), 135 – 144. 101

[21] Chen, G., Wei, Q., Kerre, E., & Wets, G. (2003). Overview of fuzzy associations

mining. In Proceedings of 2003 ISIS. 10

130

REFERENCES

[22] Cheong, F. & Lai, R. (2007). Designing a hierarchical fuzzy logic controller using

the differential evolution approach. Applied Soft Computing, 7 (2), 481–491. 104

[23] Church, A. (1932). A set of postulates for the foundation of logic. Annals of

Mathematics, 33 (2), 346–366. 1

[24] Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of 2009 In-

ternational Conference on Machine Learning, (pp. 115–123)., Tahoe City, CA. 93,

101

[25] Cordón, O., del Jesus, M. J., & Herrera, F. (1999). A proposal on reasoning meth-

ods in fuzzy rule-based classification systems. International Journal of Approximate

Reasoning, 20 (1), 21–45. 101

[26] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction

to Algorithms (2 ed.). The Massachusetts Institute of Technology (MIT) Press. 1

[27] De’ath, G. & Fabricius, K. E. (2000). Classification and regression trees: A pow-

erful yet simple technique for ecological data analysis. Ecology, 81 (11), 3178–3192.

105

[28] del Jesus, M. J., Hoffmann, F., Navascués, L. J., & Sánchez, L. (2004). Induction

of fuzzy-rule-based classifiers with evolutionary boosting algorithms. IEEE Transac-

tions on Fuzzy Systems, 12 (3), 296–308. 101

[29] Delgado, M., Maŕın, N., Sánchez, D., & Vila, M.-A. (2003). Fuzzy association

rules: General model and applications. IEEE Transactions on Fuzzy Systems, 11 (2),

214–225. 10

[30] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets.

Journal of Machine Learning Research, 7, 1–30. 92, 93

[31] Dubois, D. & Prade, H. (1997). The three semantics of fuzzy sets. Fuzzy Sets and

Systems, 90 (2), 141–150. 8

[32] Duivesteijn, W. & Feelders, A. (2008). Nearest neighbour classification with mono-

tonicity constraints. In Machine Learning and Knowledge Discovery in Databases

(pp. 301–316). Springer. 19

131

REFERENCES

[33] Fine, T. L. (1973). Theories of Probability. Academic Press. 8

[34] Flach, P. (2012). Machine Learning: The Art and Science of Algorithms That

Make Sense of Data. Cambridge University Press. 2, 4, 92

[35] Fodor, J. & Yager, R. R. (2000). Fuzzy set-theoretic operators and quantifiers. In

Fundamentals of Fuzzy Sets (pp. 125–193). Springer. 17

[36] Fürnkranz, J. & Hüllermeier, E. (2010). Preference Learning. Springer. 112

[37] Garćıa, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonpara-

metric tests for multiple comparisons in the design of experiments in computational

intelligence and data mining: experimental analysis of power. Information Sciences,

180, 2044 – 2064. 93

[38] Gath, I. & Geva, A. B. (1989). Unsupervised optimal fuzzy clustering. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11 (7), 773–780. 101

[39] González, A. & Pérez, R. (1999). Slave: A genetic learning system based on an

iterative approach. IEEE Transactions on Fuzzy Systems, 7, 176–191. 93, 101

[40] González, A. & Pérez, R. (2001). Selection of relevant features in a fuzzy genetic

learning algorithm. IEEE Transactions on Systems, Man and and Cybernetics, 31,

417–425. 93

[41] Grabisch, M., Marichal, J.-L., Mesiar, R., & Pap, E. (2009). Aggregation Functions

(1st ed.). New York, NY, USA: Cambridge University Press. 16, 17

[42] Greco, S., Mousseau, V., & S lowiński, R. (2008). Ordinal regression revisited:

Multiple criteria ranking using a set of additive value functions. European Journal

of Operational Research, 191 (2), 416–436. 113

[43] Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design.

PWS Publishing Company, Boston. 108

[44] Hagras, H. A. (2004). A hierarchical type-2 fuzzy logic control architecture for

autonomous mobile robots. IEEE Transactions on Fuzzy Systems, 12 (4), 524–539.

103

132

REFERENCES

[45] Hamacher, H. (1975). Über logische Verknüpfungen unscharfer Aussagen und deren

zugehörige Bewertungsfunktionen, volume 14 of Arbeitsbericht. 17

[46] Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The Elements of Statistical

Learning, volume 1. Springer New York. 2

[47] Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandi-

navian Journal of Statistics, 6, 65–70. 93

[48] Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy Cluster Anal-

ysis: Methods for Classification, Data Analysis and Image Recognition. John Wiley.

10

[49] Huang, Z., Gedeon, T., & Nikravesh, M. (2008). Pattern trees induction: A new

machine learning method. IEEE Transactions on Fuzzy Systems, 16 (4), 958 –970.

13, 15, 29, 39, 43, 46, 59, 63, 67, 92, 107

[50] Hühn, J. & Hüllermeier, E. (2009). Furia: An algorithm for unordered fuzzy rule

induction. Data Mining and Knowledge Discovery, 19 (3), 293–319. 101

[51] Hüllermeier, E. (2011). Fuzzy sets in machine learning and data mining. Applica-

tions of Soft Computing, 11 (2), 1493–1505. 10

[52] Ishibuchi, H. & Nakashima, T. (2001). Effect of rule weights in fuzzy rule-based

classification systems. IEEE Transactions on Fuzzy Systems, 9 (4), 506–515. 102

[53] Jacquet-Lagreze, E. & Siskos, J. (1982). Assessing a set of additive utility functions

for multicriteria decision-making, the UTA method. European Journal of Operational

Research, 10 (2), 151–164. 113

[54] Janikow, C. Z. (1998). Fuzzy decision trees: Issues and methods. IEEE Transac-

tions on Systems, Man, and Cybernetics, 28 (1), 1–14. 10, 105, 107

[55] Janssen, F. & Fürnkranz, J. (2009). A re-evaluation of the over-searching phe-

nomenon in inductive rule learning. In Proceedings of 2009 SIAM International

Conference on Data Mining, (pp. 329–340). 91

133

REFERENCES

[56] Joo, M. G. & Lee, J. S. (1999). Hierarchical fuzzy control scheme using structured

takagi-sugeno type fuzzy inference. In Proceedings of 1999 IEEE International Fuzzy

Systems Conference, volume 1, (pp. 78–83). 103, 104

[57] Kearns, M. J. & Vazirani, U. (1994). An introduction to computational learning

theory. 28

[58] Keshwani, D. R., Jones, D. D., Meyer, G. E., & Brand, R. M. (2008). Rule-based

mamdani-type fuzzy modeling of skin permeability. Applied Soft Computing, 8 (1),

285–294. 101

[59] Klement, E. P., Mesiar, R., & Pap, E. (2002). Triangular Norms. Kluwer Academic

Publishers. 6

[60] Linkens, D. A., Shieh, J. S., & Peacock, J. E. (1996). Hierarchical fuzzy modelling

for monitoring depth of anaesthesia. Fuzzy Sets and Systems, 79 (1), 43–57. 103

[61] Ludbrook, J. (1998). Multiple comparison procedures updated. Clinical and Ex-

perimental Pharmacology and Physiology, 25 (12), 1032–1037. 70

[62] Maeda, H. (1996). An investigation on the spread of fuzziness in multi-fold multi-

stage approximate reasoning by pictorial representation—under sup-min composition

and triangular type membership function. Fuzzy Sets and Systems, 80 (2), 133–148.

104

[63] Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple

dynamic plant. Proceedings of the Institution of Electrical Engineers, 121 (12), 1585–

1588. 100, 101

[64] Maron, O. & Moore, A. W. (1993). Hoeffding races: Accelerating model selection

search for classification and function approximation. Robotics Institute, 263. 68

[65] Maron, O. & Moore, A. W. (1997). The racing algorithm: Model selection for lazy

learners. Artificial Intelligence Review, 11 (1-5), 193–225. 70

[66] Meyer, M. & Vlachos, P. (2009). Statlib data, software and news from the statistics

community. Accessed 13 Nov 2009. 30

[67] Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill. 1

134

REFERENCES

[68] Mnih, V., Szepesvári, C., & Audibert, J.-Y. (2008). Empirical bernstein stopping.

In Proceedings of 2008 International Conference on Machine Learning, (pp. 672–679).

70

[69] Murthy, S. K. & Salzberg, S. (1995). Lookahead and pathology in decision tree in-

duction. In Proceedings of International Joint Conferences on Artificial Intelligence,

(pp. 1025–1033). 91

[70] Myerson, R. B. (1991). Game Theory: Analysis of Conflict. Harvard University

Press. 42

[71] Nasiri, M., Fober, T., Senge, R., & Hüllermeier, E. (2013). Fuzzy pattern trees

as an alternative to rule-based fuzzy systems: Knowledge-driven, data-driven and

hybrid modeling of color yield in polyester dyeing. In Proceedings of 2013 Joint IFSA

World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), (pp. 715–721). 13

[72] Nasiri, M., Hüllermeier, E., Senge, R., & Lughofer, E. (2011). Comparing meth-

ods for knowledge-driven and data-driven fuzzy modeling: A case study in textile

industry. In Proceedings of 2011 World Congress of the International Fuzzy Systems

Association, (pp. RW–103–1–6). 13

[73] Neal, R. M. & Hinton, G. E. (1998). A view of the em algorithm that justifies

incremental, sparse, and other variants. In Learning in Graphical Models (pp. 355–

368). Springer. 108

[74] Olaru, C. & Wehenkel, L. (2003). A complete fuzzy decision tree technique. Fuzzy

Sets and Systems, 138 (2), 221–254. 105, 107

[75] Passino, K. M. & Yurkovich, S. (1998). Fuzzy Control, volume 42. Citeseer. 100

[76] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann. 107

[77] Platt, J. C. (1999). Fast training of support vector machines using sequential

minimal optimization. In Advances in Kernel Methods: Support Vector Learning

(pp. 185–208). Cambridge, MA, USA: Massachusetts Institute of Technology (MIT)

Press. 92

135

REFERENCES

[78] Poon, H. & Domingos, P. (2011). Sum-product networks: A new deep architecture.

In Proceedings of 2011 IEEE International Conference on Computer Vision, (pp.

689–690). 107, 108

[79] Potharst, R. & Feelders, A. J. (2002). Classification trees for problems with mono-

tonicity constraints. ACM SIGKDD Explorations Newsletter, 4 (1), 1–10. 19

[80] Potter, M. A. & De Jong, K. A. (1994). A cooperative coevolutionary approach

to function optimization. In Parallel Problem Solving from Nature—PPSN III (pp.

249–257). Springer. 80

[81] Quade, D. (1979). Using weighted rankings in the analysis of complete blocks with

additive block effects. Journal of the American Statistical Association, 74 (367), 680–

683. 93

[82] Quinlan, J. & Cameron-Jones, R. (1995). Oversearching and layered search in

empirical learning. Breast Cancer, 286, 2–7. 91

[83] Quinlan, R. J. (1986). Induction of decision trees. Machine Learning, 1 (1), 81–106.

105

[84] Quinlan, R. J. (1987). Decision trees at probabilistic classifiers. Proceedings of

1987 International Workshop on Machine Learning, 31–37. 105

[85] Quinlan, R. J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers. 5, 92

[86] Reed, M. & Simon, B. (1981). I: Functional Analysis, volume 1. Access Online

via Elsevier. 23

[87] Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3), 581–592. 20

[88] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal

representations by error propagation. Technical report, DTIC Document. 108

[89] Schafer, J. L. & Graham, J. W. (2002). Missing data: Our view of the state of the

art. Psychological Methods, 7 (2), 147–177. 20, 21

[90] Schweizer, B. & Sklar, A. (1983). Probabilistic Metric Spaces. New York. 15

136

REFERENCES

[91] Senge, R., Fober, T., Nasiri, M., & Hüllermeier, E. (2012). Fuzzy Pattern

Trees: Ein alternativer Ansatz zur Fuzzy-Modellierung. at-Automatisierungstechnik,

60 (10), 622–629. 13

[92] Senge, R. & Hüllermeier, E. (2009). Learning pattern tree classifiers using a co-

evolutionary algorithm. In Proceedings of Knowledge Discovery, Data Mining und

Maschinelles Lernen, volume 19, (pp. 105–110). 79

[93] Senge, R. & Hüllermeier, E. (2011). Top-down induction of fuzzy pattern trees.

IEEE Transactions on Fuzzy Systems, 19 (2), 241 –252. 43, 56, 85, 92

[94] Senge, R. & Hüllermeier, E. (2014). Fast fuzzy pattern tree learning. IEEE

Transactions on Fuzzy Systems. Submitted and under review. 37, 67

[95] Sra, S., Nowozin, S., & Wright, S. J. (2011). Optimization for Machine Learning.

5

[96] Steele, G. L. (1990). Common LISP: The Language. Digital Press. 108

[97] Stufflebeam, J. & Prasad, N. R. (1999). Hierarchical fuzzy control. In Proceedings

of 1999 IEEE International Fuzzy Systems Conference, volume 1, (pp. 498–503). 103

[98] Suárez, A. & Lutsko, J. F. (1999). Globally optimal fuzzy decision trees for clas-

sification and regression. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 21 (12), 1297–1311. 105

[99] Takagi, T. & Sugeno, M. (1985). Fuzzy identification of systems and its applica-

tions to modeling and control. IEEE Transactions on Systems, Man and Cybernetics,

SMC-15 (1), 116–132. 10, 36, 100

[100] Thompson, S. (1999). Haskell: The Craft of Functional Programming, volume 2.

Addison-Wesley. 109

[101] Torra, V. (2002). A review of the construction of hierarchical fuzzy systems.

International Journal of Intelligent Systems, 531–543. 103

[102] Tunstel Jr., E. W. (1996). Adaptive Hierarchy of Distributed Fuzzy Control:

Application to Behavior Control of Rovers. PhD thesis. 103, 104

137

REFERENCES

[103] Turing, A. (1936-7). On computable numbers, with an application to the entschei-

dungsproblem (1936). Proceedings of the London Mathematical Society, 42, 230–265.

1

[104] Van Buuren, S. (2012). Flexible Imputation of Missing Data. Chapman & Hall.

21

[105] Vapnik, V., Levin, E., & Cun, Y. L. (1994). Measuring the VC-dimension of a

learning machine. Neural Computation, 6, 851–876. 26

[106] Vapnik, V. N. & Chervonenkis, Y. A. (1971). On the uniform convergence of

relative frequencies of events to their probabilities. Theory of Probability & its Ap-

plications, 16 (2), 264–280. 26

[107] Vapnik, V. N. & Kotz, S. (1982). Estimation of Dependences Based on Empirical

Data, volume 41. Springer-Verlag New York. 26

[108] Wang, L.-X. (1999). Analysis and design of hierarchical fuzzy systems. IEEE

Transactions on Fuzzy Systems, 7 (5), 617–624. 104

[109] Wang, L.-X. & Mendel, J. M. (1992). Generating fuzzy rules by learning from

examples. IEEE Transactions on Systems, Man and Cybernetics, 22 (6), 1414–1427.

10, 96

[110] Weber, R. (1992). Fuzzy-id3: A class of methods for automatic knowledge acquisi-

tion. In Proceedings of the International Conference on Fuzzy Logic Neural Networks,

(pp. 265 –268). 10

[111] Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1,

80–83. 64, 91

[112] Witten, I. H. & Frank, E. (2005). Data Mining: Practical Machine Learning

Tools and Techniques (2 ed.). Morgan Kaufmann. 29

[113] Wolpert, D. H. & Macready, W. G. (1997). No free lunch theorems for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1 (1), 67–82. 92

138

REFERENCES

[114] Yager, R. R. (1988). On ordered weighted averaging aggregation operators in

multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernet-

ics, 18(1), 183–190. 15

[115] Yager, R. R. (1997). On a class of weak triangular norm operators. Information

Sciences, 96 (1–2), 47 – 78. 18

[116] Yi, Y., Fober, T., & Hüllermeier, E. (2009). Fuzzy operator trees for modeling

rating functions. International Journal of Computational Intelligence and Applica-

tions, 8 (4), 413–428. 13

[117] Yuan, Y. & Shaw, M. J. (1995). Induction of fuzzy decision trees. Fuzzy Sets and

Systems, 69 (2), 125–139. 105, 107

[118] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. 5

[119] Zadeh, L. A. (1979). A theory of approximate reasoning. Machine Intelligence,

9, 149–194. 8

[120] Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets

and Systems, 100, 9–34. 8

139

Erklärung

Ich versichere, dass ich meine Dissertation “Machine Learning Methods for

Fuzzy Pattern Tree Induction” selbständig, ohne unerlaubte Hilfe ange-

fertigt und mich dabei keiner anderen als der von mir ausdrücklich be-

zeichneten Quellen und Hilfen bedient habe. Die Dissertation wurde in

der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule

eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient.

Marburg,

	List of Figures
	List of Tables
	1 Introduction
	1.1 Machine Learning
	1.2 Fuzzy Set Theory
	1.3 Fuzzy Sets in Machine Learning

	2 Fuzzy Pattern Trees
	2.1 Model Overview
	2.2 Aggregation and Structure
	2.2.1 Extending the Set of Operators

	2.3 Important Properties of Fuzzy Pattern Trees
	2.4 Universal Approximation Property
	2.5 Vapnik-Chervonenkis Dimension

	3 Learning Fuzzy Pattern Trees
	3.1 Fuzzification and Defuzzification
	3.2 Optimization of CI Parameters
	3.3 Existing Learning Algorithms
	3.3.1 Huang, Gedeon & Nikravesh
	3.3.2 Yu, Fober and Hüllermeier

	3.4 Study on Surrogate Loss Functions
	3.5 Accelerating the Bottom-up Approach
	3.5.1 Sparse Search
	3.5.2 Dynamic Operator Exclusion
	3.5.3 Limited Candidate History
	3.5.4 Experiments on Heuristics

	3.6 Top-down Approach
	3.6.1 Discussion
	3.6.2 Top-down Induction
	3.6.3 Experiments with PTTD
	3.6.4 Fast Top-down Learning

	3.7 Co-evolutionary Approach
	3.7.1 Evolutionary Algorithms
	3.7.2 Co-evolutionary Fuzzy Pattern Tree Learning

	4 Experiments
	4.1 CI vs. WA, OWA
	4.2 Comparing the Main Variants
	4.3 Comparison with State-of-the-art Methods
	4.4 Comparison with State-of-the-art Methods for Regression

	5 Related Model Classes
	5.1 Fuzzy Rule-based Systems
	5.2 Hierarchical Fuzzy Rule-based Systems
	5.3 Fuzzy Decision Trees
	5.4 Sum Product Networks
	5.5 Genetic Programming

	6 Conclusions and Outlook
	7 Appendices
	References

