644 research outputs found

    Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond

    Get PDF
    Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    Likelihood Consensus and Its Application to Distributed Particle Filtering

    Full text link
    We consider distributed state estimation in a wireless sensor network without a fusion center. Each sensor performs a global estimation task---based on the past and current measurements of all sensors---using only local processing and local communications with its neighbors. In this estimation task, the joint (all-sensors) likelihood function (JLF) plays a central role as it epitomizes the measurements of all sensors. We propose a distributed method for computing, at each sensor, an approximation of the JLF by means of consensus algorithms. This "likelihood consensus" method is applicable if the local likelihood functions of the various sensors (viewed as conditional probability density functions of the local measurements) belong to the exponential family of distributions. We then use the likelihood consensus method to implement a distributed particle filter and a distributed Gaussian particle filter. Each sensor runs a local particle filter, or a local Gaussian particle filter, that computes a global state estimate. The weight update in each local (Gaussian) particle filter employs the JLF, which is obtained through the likelihood consensus scheme. For the distributed Gaussian particle filter, the number of particles can be significantly reduced by means of an additional consensus scheme. Simulation results are presented to assess the performance of the proposed distributed particle filters for a multiple target tracking problem

    Distributed Estimation and Performance Limits in Resource-constrained Wireless Sensor Networks

    Get PDF
    Distributed inference arising in sensor networks has been an interesting and promising discipline in recent years. The goal of this dissertation is to investigate several issues related to distributed inference in sensor networks, emphasizing parameter estimation and target tracking with resource-constrainted networks. To reduce the transmissions between sensors and the fusion center thereby saving bandwidth and energy consumption in sensor networks, a novel methodology, where each local sensor performs a censoring procedure based on the normalized innovation square (NIS), is proposed for the sequential Bayesian estimation problem in this dissertation. In this methodology, each sensor sends only the informative measurements and the fusion center fuses both missing measurements and received ones to yield more accurate inference. The new methodology is derived for both linear and nonlinear dynamic systems, and both scalar and vector measurements. The relationship between the censoring rule based on NIS and the one based on Kullback-Leibler (KL) divergence is investigated. A probabilistic transmission model over multiple access channels (MACs) is investigated. With this model, a relationship between the sensor management and compressive sensing problems is established, based on which, the sensor management problem becomes a constrained optimization problem, where the goal is to determine the optimal values of probabilities that each sensor should transmit with such that the determinant of the Fisher information matrix (FIM) at any given time step is maximized. The performance of the proposed compressive sensing based sensor management methodology in terms of accuracy of inference is investigated. For the Bayesian parameter estimation problem, a framework is proposed where quantized observations from local sensors are not directly fused at the fusion center, instead, an additive noise is injected independently to each quantized observation. The injected noise performs as a low-pass filter in the characteristic function (CF) domain, and therefore, is capable of recoverving the original analog data if certain conditions are satisfied. The optimal estimator based on the new framework is derived, so is the performance bound in terms of Fisher information. Moreover, a sub-optimal estimator, namely, linear minimum mean square error estimator (LMMSE) is derived, due to the fact that the proposed framework theoretically justifies the additive noise modeling of the quantization process. The bit allocation problem based on the framework is also investigated. A source localization problem in a large-scale sensor network is explored. The maximum-likelihood (ML) estimator based on the quantized data from local sensors and its performance bound in terms of Cram\\u27{e}r-Rao lower bound (CRLB) are derived. Since the number of sensors is large, the law of large numbers (LLN) is utilized to obtain a closed-form version of the performance bound, which clearly shows the dependence of the bound on the sensor density, i.e.,i.e., the Fisher information is a linearly increasing function of the sensor density. Error incurred by the LLN approximation is also theoretically analyzed. Furthermore, the design of sub-optimal local sensor quantizers based on the closed-form solution is proposed. The problem of on-line performance evaluation for state estimation of a moving target is studied. In particular, a compact and efficient recursive conditional Posterior Cram\\u27{e}r-Rao lower bound (PCRLB) is proposed. This bound provides theoretical justification for a heuristic one proposed by other researchers in this area. Theoretical complexity analysis is provided to show the efficiency of the proposed bound, compared to the existing bound

    Approximate Gaussian Conjugacy: Parametric Recursive Filtering Under Nonlinearity, Multimodal, Uncertainty, and Constraint, and Beyond

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Frontiers of Information Technology & Electronic Engineering. The final authenticated version is available online at: https://doi.org/10.1631/FITEE.1700379Since the landmark work of R. E. Kalman in the 1960s, considerable efforts have been devoted to time series state space models for a large variety of dynamic estimation problems. In particular, parametric filters that seek analytical estimates based on a closed-form Markov–Bayes recursion, e.g., recursion from a Gaussian or Gaussian mixture (GM) prior to a Gaussian/GM posterior (termed ‘Gaussian conjugacy’ in this paper), form the backbone for a general time series filter design. Due to challenges arising from nonlinearity, multimodality (including target maneuver), intractable uncertainties (such as unknown inputs and/or non-Gaussian noises) and constraints (including circular quantities), etc., new theories, algorithms, and technologies have been developed continuously to maintain such a conjugacy, or to approximate it as close as possible. They had contributed in large part to the prospective developments of time series parametric filters in the last six decades. In this paper, we review the state of the art in distinctive categories and highlight some insights that may otherwise be easily overlooked. In particular, specific attention is paid to nonlinear systems with an informative observation, multimodal systems including Gaussian mixture posterior and maneuvers, and intractable unknown inputs and constraints, to fill some gaps in existing reviews and surveys. In addition, we provide some new thoughts on alternatives to the first-order Markov transition model and on filter evaluation with regard to computing complexity

    NLOS mitigation in indoor localization by marginalized Monte Carlo Gaussian smoothing

    Get PDF
    One of the main challenges in indoor time-of-arrival (TOA)-based wireless localization systems is to mitigate non-line-of-sight (NLOS) propagation conditions, which degrade the overall positioning performance. The positive skewed non-Gaussian nature of TOA observations under LOS/NLOS conditions can be modeled as a heavy-tailed skew t-distributed measurement noise. The main goal of this article is to provide a robust Bayesian inference framework to deal with target localization under NLOS conditions. A key point is to take advantage of the conditionally Gaussian formulation of the skew t-distribution, thus being able to use computationally light Gaussian filtering and smoothing methods as the core of the new approach. The unknown non-Gaussian noise latent variables are marginalized using Monte Carlo sampling. Numerical results are provided to show the performance improvement of the proposed approach

    Estimation for bilinear stochastic systems

    Get PDF
    Three techniques for the solution of bilinear estimation problems are presented. First, finite dimensional optimal nonlinear estimators are presented for certain bilinear systems evolving on solvable and nilpotent lie groups. Then the use of harmonic analysis for estimation problems evolving on spheres and other compact manifolds is investigated. Finally, an approximate estimation technique utilizing cumulants is discussed

    An Iterative Method Based on the Marginalized Particle Filter for Nonlinear B-Spline Data Approximation and Trajectory Optimization

    Get PDF
    The B-spline function representation is commonly used for data approximation and trajectory definition, but filter-based methods for nonlinear weighted least squares (NWLS) approximation are restricted to a bounded definition range. We present an algorithm termed nonlinear recursive B-spline approximation (NRBA) for an iterative NWLS approximation of an unbounded set of data points by a B-spline function. NRBA is based on a marginalized particle filter (MPF), in which a Kalman filter (KF) solves the linear subproblem optimally while a particle filter (PF) deals with nonlinear approximation goals. NRBA can adjust the bounded definition range of the approximating B-spline function during run-time such that, regardless of the initially chosen definition range, all data points can be processed. In numerical experiments, NRBA achieves approximation results close to those of the Levenberg–Marquardt algorithm. An NWLS approximation problem is a nonlinear optimization problem. The direct trajectory optimization approach also leads to a nonlinear problem. The computational effort of most solution methods grows exponentially with the trajectory length. We demonstrate how NRBA can be applied for a multiobjective trajectory optimization for a battery electric vehicle in order to determine an energy-efficient velocity trajectory. With NRBA, the effort increases only linearly with the processed data points and the trajectory length
    • …
    corecore