148 research outputs found

    Graph theoretic generalizations of clique: optimization and extensions

    Get PDF
    This dissertation considers graph theoretic generalizations of the maximum clique problem. Models that were originally proposed in social network analysis literature, are investigated from a mathematical programming perspective for the first time. A social network is usually represented by a graph, and cliques were the first models of "tightly knit groups" in social networks, referred to as cohesive subgroups. Cliques are idealized models and their overly restrictive nature motivated the development of clique relaxations that relax different aspects of a clique. Identifying large cohesive subgroups in social networks has traditionally been used in criminal network analysis to study organized crimes such as terrorism, narcotics and money laundering. More recent applications are in clustering and data mining wireless networks, biological networks as well as graph models of databases and the internet. This research has the potential to impact homeland security, bioinformatics, internet research and telecommunication industry among others. The focus of this dissertation is a degree-based relaxation called k-plex. A distance-based relaxation called k-clique and a diameter-based relaxation called k-club are also investigated in this dissertation. We present the first systematic study of the complexity aspects of these problems and application of mathematical programming techniques in solving them. Graph theoretic properties of the models are identified and used in the development of theory and algorithms. Optimization problems associated with the three models are formulated as binary integer programs and the properties of the associated polytopes are investigated. Facets and valid inequalities are identified based on combinatorial arguments. A branch-and-cut framework is designed and implemented to solve the optimization problems exactly. Specialized preprocessing techniques are developed that, in conjunction with the branch-and-cut algorithm, optimally solve the problems on real-life power law graphs, which is a general class of graphs that include social and biological networks. Computational experiments are performed to study the effectiveness of the proposed solution procedures on benchmark instances and real-life instances. The relationship of these models to the classical maximum clique problem is studied, leading to several interesting observations including a new compact integer programming formulation. We also prove new continuous non-linear formulations for the classical maximum independent set problem which maximize continuous functions over the unit hypercube, and characterize its local and global maxima. Finally, clustering and network design extensions of the clique relaxation models are explored

    On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem

    Get PDF
    We study the parameterized complexity of the Bounded-Degree Vertex Deletion problem (BDD), where the aim is to find a maximum induced subgraph whose maximum degree is below a given degree bound. Our focus lies on parameters that measure the structural properties of the input instance. We first show that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth, and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at most three. We thereby resolve the main open question stated in Betzler, Bredereck, Niedermeier and Uhlmann (2012) concerning the complexity of BDD parameterized by the feedback vertex set number. On the positive side, we obtain fixed-parameter algorithms for the problem with respect to the decompositional parameter treecut width and a novel problem-specific parameter called the core fracture number

    Approximation methods in geometry and topology: learning, coarsening, and sampling

    Get PDF
    Data materialize in many different forms and formats. These can be continuous or discrete, from algebraic expressions to unstructured pointclouds and highly structured graphs and simplicial complexes. Their sheer volume and plethora of different modalities used to manipulate and understand them highlight the need for expressive abstractions and approximations, enabling novel insights and efficiency. Geometry and topology provide powerful and intuitive frameworks for modelling structure, form, and connectivity. Acting as a multi-focal lens, they enable inspection and manipulation at different levels of detail, from global discriminant features to local intricate characteristics. However, these fundamentally algebraic theories do not scale well in the digital world. Adjusting topology and geometry to the computational setting is a non-trivial task, adhering to the “no free lunch” adage. The necessary discretizations can be inaccurate, the underlying combinatorial structures can grow unmanageably in size, and computing salient topological and geometric features can become computationally taxing. Approximations are a necessity when theory cannot accommodate for efficient algorithms. This thesis explores different approaches to simplifying computations pertaining to geometry and topology via approximations. Our methods contribute to the approximation of topological features on discrete domains, and employ geometry and topology to efficiently guide discretizations and approximations. This line of work fits un der the umbrella of Topological Data Analysis (TDA) and Discrete Geometry, which aim to bridge the continuous algebraic mindset with the discrete. We construct topological and geometric approximation methods operating on three different levels. We approximate topological features on discrete combinatorial spaces; we approximate the combinatorial spaces themselves; and we guide processes that allow us to discretize domains via sampling. With our Dist2Cycle model we learn geometric manifestations of topological features, the “optimal” homology generating cycles. This is achieved by a novel simplicial complex neural network that exploits the kernel of Hodge Laplacian operators to localize concise homology generators. Compression of meshes and arbitrary simplicial complexes is made possible by our general spectral coarsening strategy. Functional and structural properties are preserved by optimizing for important eigenspaces of general differential operators, the Hodge Laplacians, at multiple dimensions. Finally, we offer a geometry-driven sampling strategy for data accumulation and stochastic integration. By employing the kd-tree geometric partitioning algorithm we construct a sample set with provable equidistribution guarantees. Our findings are contextualized within prior and recent work, and our methods are thoroughly discussed and evaluated on diverse settings. Ultimately, we are making a claim towards the usefulness of examining the ever-present topological and geometric properties of data, not only in terms of feature discovery, but also as informed generation, manipulation, and simplification tools

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Novel approaches for solving large-scale optimization problems on graphs

    Get PDF
    This dissertation considers a class of closely related NP-hard otpimization problems on graphs that arise in many important applications, including network-based data mining, analysis of the stock market, social networks, coding theory, fault diagnosis, molecular biology, biochemistry and genomics. In particular, the problems of interest include the classical maximum independent set problem (MISP) and maximum clique problem (MCP), their vertex-weighted vesrions, as well as novel optimization models that can be viewed as practical relaxations of their classical counterparts. The concept of clique has been a popular instrument in analysis of networks, and is, essentially, an idealized model of a “closely connected group”, or a cluster. But, at the same time, the restrictive nature of the definition of clique makes the clique model impractical in many applications. This motivated the development of clique relaxation models that relax different properties of a clique. On the one hand, while still possessing some clique-like properties, clique relaxations are not as “perfect” as cliques; and on the other hand, they do not exhibit the disadvantages associated with a clique. Using clique relaxations allows one to compromise between perfectness and flexibility, between ideality and reality, which is a usual issue that an engineer deals with when applying theoretical knowledge to solve practical problems in industry. The clique relaxation models studied in this dissertation were first proposed in the literature on social network analysis, however they have not been well investigated from a mathematical programming perspective. This dissertation considers new techniques for solving the MWISP and clique relaxation problems and investigates their effectiveness from theoretical and computational perspectives. The main results obtained in this work include (i) developing a scale-reduction approach for MWISP based on the concept of critical set and comparing it theoretically with other approaches; (ii) obtaining theoretical complexity results for clique relaxation problems; (iii) developing algorithms for solving the clique relaxation problems exactly; (iv) carrying out computational experiments to demonstrate the performance of the proposed approaches, and, finally, (v) applying the obtained theoretical results to several real-life problems

    In pursuit of linear complexity in discrete and computational geometry

    Get PDF
    Many computational problems arise naturally from geometric data. In this thesis, we consider three such problems: (i) distance optimization problems over point sets, (ii) computing contour trees over simplicial meshes, and (iii) bounding the expected complexity of weighted Voronoi diagrams. While these topics are broad, here the focus is on identifying structure which implies linear (or near linear) algorithmic and descriptive complexity. The first topic we consider is in geometric optimization. More specifically, we define a large class of distance problems, for which we provide linear time exact or approximate solutions. Roughly speaking, the class of problems facilitate either clustering together close points (i.e. netting) or throwing out outliers (i.e pruning), allowing for successively smaller summaries of the relevant information in the input. A surprising number of classical geometric optimization problems are unified under this framework, including finding the optimal k-center clustering, the kth ranked distance, the kth heaviest edge of the MST, the minimum radius ball enclosing k points, and many others. In several cases we get the first known linear time approximation algorithm for a given problem, where our approximation ratio matches that of previous work. The second topic we investigate is contour trees, a fundamental structure in computational topology. Contour trees give a compact summary of the evolution of level sets on a mesh, and are typically used on massive data sets. Previous algorithms for computing contour trees took Θ(n log n) time and were worst-case optimal. Here we provide an algorithm whose running time lies between Θ(nα(n)) and Θ(n log n), and varies depending on the shape of the tree, where α(n) is the inverse Ackermann function. In particular, this is the first algorithm with O(nα(n)) running time on instances with balanced contour trees. Our algorithmic results are complemented by lower bounds indicating that, up to a factor of α(n), on all instance types our algorithm performs optimally. For the final topic, we consider the descriptive complexity of weighted Voronoi diagrams. Such diagrams have quadratic (or higher) worst-case complexity, however, as was the case for contour trees, here we push beyond worst-case analysis. A new diagram, called the candidate diagram, is introduced, which allows us to bound the complexity of weighted Voronoi diagrams arising from a particular probabilistic input model. Specifically, we assume weights are randomly permuted among fixed Voronoi sites, an assumption which is weaker than the more typical sampled locations assumption. Under this assumption, the expected complexity is shown to be near linear
    • 

    corecore