222 research outputs found

    Approximation Hardness of Graphic TSP on Cubic Graphs

    Get PDF
    We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used in the paper could be also of independent interest

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page

    The traveling salesman problem on cubic and subcubic graphs

    Get PDF
    We study the traveling salesman problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3-conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal value of a TSP instance and that of its linear programming relaxation (the subtour elimination relaxation), is 4/3. We present the first algorithm for cubic graphs with approximation ratio 4/3. The proof uses polyhedral techniques in a surprising way, which is of independent interest. In fact we prove constructively that for any cubic graph on TeX vertices a tour of length TeX exists, which also implies the 4/3-conjecture, as an upper bound, for this class of graph-TSP. Recently, Mömke and Svensson presented an algorithm that gives a 1.461-approximation for graph-TSP on general graphs and as a side result a 4/3-approximation algorithm for this problem on subcubic graphs, also settling the 4/3-conjecture for this class of graph-TSP. The algorithm by Mömke and Svensson is initially randomized but the authors remark that derandomization is trivial. We will present a different way to derandomize their algorithm which leads to a faster running time. All of the latter also works for multigraphs

    Graphic TSP in Cubic Graphs

    Get PDF
    We present a polynomial-time 9/7-approximation algorithm for the graphic TSP for cubic graphs, which improves the previously best approximation factor of 1.3 for 2-connected cubic graphs and drops the requirement of 2-connectivity at the same time. To design our algorithm, we prove that every simple 2-connected cubic n-vertex graph contains a spanning closed walk of length at most 9n/7-1, and that such a walk can be found in polynomial time

    On Approximability of Bounded Degree Instances of Selected Optimization Problems

    Get PDF
    In order to cope with the approximation hardness of an underlying optimization problem, it is advantageous to consider specific families of instances with properties that can be exploited to obtain efficient approximation algorithms for the restricted version of the problem with improved performance guarantees. In this thesis, we investigate the approximation complexity of selected NP-hard optimization problems restricted to instances with bounded degree, occurrence or weight parameter. Specifically, we consider the family of dense instances, where typically the average degree is bounded from below by some function of the size of the instance. Complementarily, we examine the family of sparse instances, in which the average degree is bounded from above by some fixed constant. We focus on developing new methods for proving explicit approximation hardness results for general as well as for restricted instances. The fist part of the thesis contributes to the systematic investigation of the VERTEX COVER problem in k-hypergraphs and k-partite k-hypergraphs with density and regularity constraints. We design efficient approximation algorithms for the problems with improved performance guarantees as compared to the general case. On the other hand, we prove the optimality of our approximation upper bounds under the Unique Games Conjecture or a variant. In the second part of the thesis, we study mainly the approximation hardness of restricted instances of selected global optimization problems. We establish improved or in some cases the first inapproximability thresholds for the problems considered in this thesis such as the METRIC DIMENSION problem restricted to graphs with maximum degree 3 and the (1,2)-STEINER TREE problem. We introduce a new reductions method for proving explicit approximation lower bounds for problems that are related to the TRAVELING SALESPERSON (TSP) problem. In particular, we prove the best up to now inapproximability thresholds for the general METRIC TSP problem, the ASYMMETRIC TSP problem, the SHORTEST SUPERSTRING problem, the MAXIMUM TSP problem and TSP problems with bounded metrics

    Graphic TSP in cubic graphs

    Get PDF
    We present a polynomial-time 9/7-approximation algorithm for the graphic TSP for cubic graphs, which improves the previously best approximation factor of 1.3 for 2-connected cubic graphs and drops the requirement of 2-connectivity at the same time. To design our algorithm, we prove that every simple 2-connected cubic n-vertex graph contains a spanning closed walk of length at most 9n/7 - 1, and that such a walk can be found in polynomial time

    Finding a Maximum 2-Matching Excluding Prescribed Cycles in Bipartite Graphs

    Get PDF
    We introduce a new framework of restricted 2-matchings close to Hamilton cycles. For an undirected graph (V,E) and a family U of vertex subsets, a 2-matching F is called U-feasible if, for each setU in U, F contains at most |setU|-1 edges in the subgraph induced by U. Our framework includes C_{= 5. For instance, in bipartite graphs in which every cycle of length six has at least two chords, our algorithm solves the maximum C_{<=6}-free 2-matching problem in O(n^2 m) time, where n and m are the numbers of vertices and edges, respectively
    corecore