The traveling salesman problem on cubic and subcubic graphs

Abstract

We study the traveling salesman problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3-conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal value of a TSP instance and that of its linear programming relaxation (the subtour elimination relaxation), is 4/3. We present the first algorithm for cubic graphs with approximation ratio 4/3. The proof uses polyhedral techniques in a surprising way, which is of independent interest. In fact we prove constructively that for any cubic graph on TeX vertices a tour of length TeX exists, which also implies the 4/3-conjecture, as an upper bound, for this class of graph-TSP. Recently, Mömke and Svensson presented an algorithm that gives a 1.461-approximation for graph-TSP on general graphs and as a side result a 4/3-approximation algorithm for this problem on subcubic graphs, also settling the 4/3-conjecture for this class of graph-TSP. The algorithm by Mömke and Svensson is initially randomized but the authors remark that derandomization is trivial. We will present a different way to derandomize their algorithm which leads to a faster running time. All of the latter also works for multigraphs

    Similar works