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Abstract
We present a polynomial-time 9/7-approximation algorithm for the graphic TSP for cubic graphs,
which improves the previously best approximation factor of 1.3 for 2-connected cubic graphs and
drops the requirement of 2-connectivity at the same time. To design our algorithm, we prove
that every simple 2-connected cubic n-vertex graph contains a spanning closed walk of length at
most 9n/7− 1, and that such a walk can be found in polynomial time.
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1 Introduction

The Travelling Salesperson Problem (TSP) is one of the most central problems in combi-
natorial optimization. The problem asks to find a shortest closed walk visiting each vertex
at least once in an edge-weighted graph, or alternatively to find a shortest Hamilton cycle
in a complete graph where the edge weights satisfy the triangle inequality. The Travelling
Salesperson Problem is notoriously hard. The approximation factor of 3/2 established by
Christofides [4] has not been improved for 40 years despite a significant effort of many
researchers. The particular case of the problem, the Hamilton Cycle Problem, was among the
first problems to be shown to be NP-hard. Moreover, Karpinski, Lampis and Schmied [10]
have recently shown that the Travelling Salesperson Problem is NP-hard to approximate
within the factor 123/122, improving the earlier inapproximability results of Lampis [12]
and of Papadimitriou and Vempala [18]. In this paper, we are concerned with an important
special case of the Travelling Salesperson Problem, the graphic TSP, which asks to find a
shortest closed walk visiting each vertex at least once in a graph where all edges have unit
weight. We will refer to such a walk as to a TSP walk.

There has recently been a lot of research focused on approximation algorithms for the
graphic TSP, which was ignited by the breakthrough of the 3/2-approximation barrier in
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the case of 3-connected cubic graphs by Gamarnik, Lewenstein and Sviridenko [7]. This
was followed by the improvement of the 3/2-approximation factor for the general graphic
TSP by Oveis Gharan, Saberi and Singh [16]. Next, Mömke and Svensson [14] designed a
1.461-approximation algorithm for the problem and Mucha [15] showed that their algorithm
is actually a 13/9-approximation algorithm. This line of research culminated with the
7/5-approximation algorithm of Sebö and Vygen [19].

We here focus on the case of graphic TSP for cubic graphs, which was at the beginning of
this line of improvements. The (3/2− 5/389)-approximation algorithm of Gamarnik et al. [7]
for 3-connected cubic graphs was improved by Aggarwal, Garg and Gupta [1], who designed a
4/3-approximation algorithm. Next, Boyd et al. [2] found a 4/3-approximation algorithm for
2-connected cubic graphs. The barrier of the 4/3-approximation factor was broken by Correa,
Larré and Soto [5] who designed a (4/3− 1/61236)-approximation algorithm for this class of
graphs. The currently best algorithm for 2-connected cubic graphs is the 1.3-approximation
algorithm of Candráková and Lukot’ka [3], based on their result on the existence of a TSP
walk of length at most 1.3n− 2 in 2-connected cubic n-vertex graphs. We improve this result
as follows. Note that we obtain a better approximation factor and Theorem 2 also applies to
a larger class of graphs.

I Theorem 1. There exists a polynomial-time algorithm that for a given 2-connected subcubic
n-vertex graph with n2 vertices of degree two outputs a TSP walk of length at most

9
7n+ 2

7n2 − 1 .

I Theorem 2. There exists a polynomial-time 9/7-approximation algorithm for the graphic
TSP for cubic graphs.

Note that our approximation factor matches the approximation factor for cubic bipartite
graphs in the algorithm Karp and Ravi [9], who designed a 9/7-approximation algorithm for
the graphic TSP for cubic bipartite graphs. However, van Zuylen [20] has recently found
a 5/4-approximation algorithm for this class of graphs. Both the result of Karp and Ravi,
and the result of van Zuylen are based on finding a TSP walk of length of at most 9n/7 and
5n/4, respectively, in an n-vertex cubic bipartite graph. On the negative side, Karpinski and
Schmied [11] showed that the graphic TSP is NP-hard to approximate within the factor of
535/534 in the general case and within the factor 1153/1152 in the case of cubic graphs.

Our contribution in addition to improving the approximation factor for graphic TSP for
cubic graphs is also in bringing several new ideas to the table. The proof of our main result,
Theorem 1, differs from the usual line of proofs in this area. In particular, to establish the
existence of a TSP walk of length at most 9n/7− 1 in a 2-connected cubic n-vertex graph,
we allow subcubic graphs as inputs and perform reductions in this larger class of graphs.
While we cannot establish the approximation factor of 9/7 for this larger class of graphs,
we are still able to show that our technique yields the existence of a TSP walk of length at
most 9n/7− 1 for cubic n-vertex graphs. At this point, we should remark that we have not
attempted to optimize the running time of our algorithm.

We conclude with a brief discussion on possible improvements of the bound from Theorem 1.
In Section 5, we give a construction of a 2-connected cubic n-vertex graph with no TSP
walks of length smaller than 5

4n− 2 (Proposition 16) and a 2-connected subcubic n-vertex
graph with n2 = Θ(n) vertices of degree two with no TSP walks of length smaller than
5
4n + 1

4n2 − 1 (Proposition 14); the former construction was also found independently by
Mazák and Lukot’ka [13]. We believe that these two constructions provide the tight examples
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for an improvement of Theorem 1 and conjecture the following. We also refer to a more
detailed discussion at the end of Section 5.

I Conjecture 3. Every 2-connected subcubic n-vertex graph with n2 vertices of degree has a
TSP walk of length at most

5
4n+ 1

4n2 − 1 .

Note that Conjecture 3 is of interest for small values of n2; in particular, its statement
is known to be true if n2 ≥ n/3 [14]. We would like to stress that it is important that
Conjecture 3 deals with simple graphs, i.e., graphs without parallel edges. Indeed, consider
the cubic graph G obtained as follows: start with the graph that has two vertices of degree
three that are joined by three paths, each having 2` internal vertices of degree two, and
replace every second edge of these paths with a pair of parallel edges to get a cubic graph.
The graph G has n = 6`+ 2 vertices but no TSP walk of length shorter than 8`+ 2.

2 Preliminaries

In this section, we fix the notation used in the paper and make several simple observations
on the concepts that we use.

All graphs considered in this paper are simple, i.e., they do not contain parallel edges.
When we allow parallel edges, we will always emphasize this by referring to a considered
graph as to a multigraph. We will occasionally want to stress that a graph obtained during
the proof has no parallel edges and we will do so by saying that it is simple even if saying so
is superfluous. The underlying graph of a multigraph H is the graph obtained from H by
suppressing parallel edges, i.e., replacing each set of parallel edges by a single edge.

If G is a graph, its vertex set is denoted by V (G) and its edge set by E(G). Further, the
number of vertices of G is denoted by n(G) and the number of its vertices of degree two by
n2(G). If w a vertex of G, then G− w is a graph obtained by deleting the vertex w and all
the edges incident with w. Similarly, if W is a set of vertices of G, then G−W is the graph
obtained by deleting all vertices of W and edges incident with them. Finally, if F is a set of
its edges, then G \ F is the graph obtained from G by removing the edges of F but none of
the vertices.

A graph with all vertices of degree at most three is called subcubic. We say that a graph
G is k-connected if it has at least k + 1 vertices and G−W is connected for any W ⊆ V (G)
containing at most k − 1 vertices (here, we deviate from the standard terminology since we
do not consider K2 to be 2-connected). If G is connected but not 2-connected, then a vertex
v such that G− v is not connected is called a cut-vertex. Maximal 2-connected subgraphs of
G and edges that are not contained in any 2-connected subgraphs of G are called blocks. A
subset F of the edges of a graph G is an edge-cut if the graph G \ F have more components
than G and F is minimal with this property. Such a subset F containing exactly k edges
will also be referred to as k-edge-cut. An edge forming a 1-edge-cut is called a cut-edge. A
graph G is k-edge-connected if it has no `-edge-cut for ` < k. Note that a subcubic graph G
with at least two vertices is 2-connected if and only if it is 2-edge-connected.

A θ-graph is a simple graph obtained from the pair of vertices joined by three parallel
edges by subdividing some of the edges several times. In other words, a θ-graph is a graph
that contains two vertices of degree three joined by three paths formed by vertices of degree
two such that at most one of these paths is trivial, i.e., it is a single edge. In our consideration,
we will need to consider a special type of cycles of length six in subcubic graphs, which
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v6

v3

v1

v2 v4

v5

x6

x3

Figure 1 A θ-cycle with poles v3 and v6.

resembles θ-graphs. A cycle K = v1 . . . v6 of length six in a subcubic graph G is a θ-cycle, if
all vertices v1, . . . , v6 have degree three, their neighbors x1, . . . , x6 outside of K are pairwise
distinct, and G − V (K) has three connected components, one containing x1 and x2, one
containing x4 and x5, and one containing x3 and x6. See Figure 1 for an example. The
vertices v3 and v6 of the cycle K will be referred to as the poles of the θ-cycle K.

We say that a multigraph is Eulerian if all its vertices have even degree; note that we do
not require the multigraph to be connected, i.e., a multigraph has an Eulerian tour if and
only if it is Eulerian and connected. A subgraph is spanning if it contains all vertices of the
original graphs, possibly some of them as isolated vertices, i.e., vertices of degree zero. It
is easy to relate the length of the shortest TSP walk in a graph G to the size of Eulerian
multigraphs using edges of G as follows. To simplify our presentation, let tsp(G) denote the
length of the shortest TSP walk in a graph G. The proof of the next observation is omitted
because of the space constraints.

I Observation 4. For every graph G, tsp(G) is equal to the minimum number of edges of a
connected Eulerian multigraph H such that the underlying graph of H is a spanning subgraph
of G.

We now explore the link between Eulerian spanning subgraphs and the minimum length
of a TSP walk further. For a graph G, let c(F ) denote the number of non-trivial components
of F , i.e., components formed by two or more vertices, and let i(F ) be the number of isolated
vertices of F . We define the excess of a graph F as

exc(F ) = 2c(F ) + i(F ).

If G is a subcubic graph, we define

minexc(G) = min {exc(F ) : F spanning Eulerian subgraph of G}.

Note that any subcubic Eulerian graph F is a union of c(F ) cycles and i(F ) isolated vertices,
i.e., the spanning subgraph F of a subcubic graph G with exc(F ) = minexc(G) must also
have this structure. The values of minexc(G) for simple-structured graphs are given in the
next observation.

I Observation 5. The following holds.
1. If G is a cycle, then minexc(G) = 2 < n(G)+n2(G)

4 + 1.
2. If G = K4, then minexc(G) = 2 = n(G)+n2(G))

4 + 1.
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3. If G is θ-graph with k1, k2 and k3 vertices of degree two on the paths joining its two
vertices of degree three and k1 ≤ k2 ≤ k3 (note that k2 6= 0 by the definition of a θ-graph),
minexc(G) = 2 + k1 ≤ n(G)+n2(G)

4 + 1.

We next relate the quantity minexc(G) to the length of the shortest TSP walk in G.

I Observation 6. Let G be a connected subcubic n-vertex graph, and let F be a spanning
Eulerian subgraph F of G. There exists a polynomial-time algorithm that finds a TSP walk
of length n− 2 + exc(F ). In addition, the minimum length of a TSP walk in G is equal to

tsp(G) = n− 2 + minexc(G) .

Proof. Let F be a spanning Eulerian subgraph of G. We aim to construct a TSP walk of
length n−2+exc(F ). The subgraph F has c(F )+i(F ) components. Since F is subcubic, each
of the c(F ) non-trivial components of F is a cycle, which implies that F has n− i(F ) edges.
Since G is connected, there exists a subset S of the edges of G such that |S| = c(F ) + i(F )−1
and F together with the edges of S is connected. Clearly, such a subset S can be found
in linear time. Let H be the multigraph obtained from F by adding each edge of S with
multiplicity two. Since H is a connected Eulerian multigraph whose underlying graph is a
spanning subgraph of G, the proof of Observation 4 yields that it corresponds to an Eulerian
tour of length

|E(H)| = |E(F )|+ 2|S| = n− i(F ) + 2(c(F ) + i(F )− 1) = n− 2 + exc(F ),

which can be found in linear time. In particular, it holds that tsp(G) ≤ n − 2 + exc(F ).
Since the choice of F was arbitrary, we conclude that tsp(G) ≤ n− 2 + minexc(G).

To finish the proof, we need to show that n− 2 + minexc(G) ≤ tsp(G). By Observation 4,
there exists a connected Eulerian multigraphH with |E(H)| = tsp(G) such that its underlying
graph is a spanning subgraph of G. By the minimality of |E(H)|, every edge of H has
multiplicity at most two (otherwise, we can decrease its multiplicity by 2 while keeping the
multigraph Eulerian and connected). Similarly, removing any pair of parallel edges of H
disconnects H (as the resulting multigraph would still be Eulerian), i.e., the edge in the
underlying graph of H corresponding to a pair of parallel edges is a cut-edge. Let F be
the graph obtained from H by removing all the pairs of parallel edges. The number of
components of F is equal to

c(F ) + i(F ) = |E(H)| − |E(F )|
2 + 1.

Since F is subcubic, it is a union of c(F ) cycles and i(F ) isolated vertices, which implies
that |E(F )| = n− i(F ). Consequently, we get that

c(F ) + i(F ) = |E(H)| − (n− i(F ))
2 + 1,

which yields the desired inequality

n− 2 + minexc(G) ≤ n− 2 + exc(F ) = n− 2 + 2c(F ) + i(F ) = |E(H)| = tsp(G). J

3 Reductions

In this section, we present a way of reducing a 2-connected subcubic graph to a smaller one
such that a spanning Eulerian subgraph of the smaller graph yields a spanning Eulerian
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subgraph of the original graph with few edges. We now define this process more formally.
For subcubic graphs G and G′, let

δ(G,G′) = (n(G) + n2(G))− (n(G′) + n2(G′)) .

We say that a 2-connected subcubic graph G′ is a reduction of a 2-connected subcubic graph
G if n(G′) < n(G), δ(G,G′) ≥ 0, and there exists a linear-time algorithm that turns any
spanning Eulerian subgraph F ′ of G′ into a spanning Eulerian subgraph F of G satisfying

exc(F ) ≤ exc(F ′) + 1
4 · δ(G,G

′). (1)

For the proof of our main result, it would be enough to prove the lemmas in this section
with 1

4 replaced by 2
7 in (1). However, this would not simplify most of our arguments and we

believe that the stronger form of (1) can be useful in an eventual proof of Conjecture 3.
The reductions that we present are intended to be applied to an input subcubic 2-

connected graph until the resulting graph is simple or it has a special structure. A subcubic
2-connected graph is basic if it is a cycle, a θ-graph, or K4. A subcubic 2-connected graph that
is not basic will be referred to as non-basic. The reductions involve altering a subgraph K of
a graph G such that K has some additional specific properties. This subgraph sometimes
needs to be provided as a part of an input of an algorithm that constructs G′. We say that a
reduction is a linear-time reduction with respect to a subgraph K if there exists a linear-time
algorithm that transforms G to G′ given G and a subgraph K with the specific properties.
We will say that a reduction is a linear-time reduction if there exists a linear-time algorithm
that both finds a suitable subgraph K and performs the reduction. If a graph G admits
such a reduction, we will say that G has a linear-time reduction or that G has a linear-time
reduction with respect to a subgraph K.

As an example of our reductions, we state and prove a lemma describing the simplest
among our reductions; we leave the details of all other reductions because of the space
constraints.

I Lemma 7. Every non-basic 2-connected subcubic graph G that contains a cycle K with at
most two vertices of degree three has a linear-time reduction.

Proof. Since G is neither a cycle nor a θ-graph, it follows that V (G) 6= V (K). Since G is
2-connected, K contains exactly two vertices of degree three, say v1 and v2. Let x1 and x2
be their neighbors outside of K, and let k1 and k2 be the the number of the internal vertices
of the two paths between v1 and v2 in K. We can assume that k1 ≤ k2 by symmetry. If
x1 = x2, then either G is a θ-graph or x1 is incident with a cut-edge; since neither of these is
possible, it holds that x1 6= x2.

Suppose that k1 = 0 and k2 = 1, i.e., K is a triangle. Let z be the vertex of K distinct
from v1 and v2, and let G′ = G − z. Note that G′ is a 2-connected subcubic graph. We
claim that G′ is a reduction of G. Since n(G′) = n(G)− 1 and n2(G′) = n2(G) + 1, it follows
δ(G,G′) = 0. Consider a spanning Eulerian subgraph F ′ of G′. If F ′ contains the edge v1v2,
then let F be the spanning Eulerian subgraph of G obtained from F ′ by removing the edge
v1v2 and adding the path v1zv2. If F ′ does not contain the edge v1v2, i.e., v1 and v2 are
isolated vertices of F , then let F be the spanning Eulerian subgraph of G obtained from F ′

by adding the cycle K. It holds that exc(F ) = exc(F ′) in both cases.
It remains to consider the case k1 + k2 ≥ 2. Let G′ be obtained from G − V (K) by

adding a path x1wx2 where w is a new vertex; note that w has degree two in G′ and
δ(G,G′) = 2(k1 + k2). Since x1 6= x2, G′ is simple. We show that G′ is a reduction of G. Let
F ′ be a spanning Eulerian subgraph of G′; we will construct a spanning Eulerian subgraph
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F of G. If F ′ contains the path x1wx2, then let F be obtained from F ′ − w by adding the
vertices of K and the edges x1v1, x2v2, and the path in K between v1 and v2 with k2 internal
vertices. Note that the k1 vertices of the other path between v1 and v2 in K are isolated in
F . Observe that

exc(F ) = exc(F ′) + k1 ≤ exc(F ′) + k1 + k2

2 ,

since k1 ≤ k2. If w is an isolated vertex of F ′, then let F be obtained from F ′−w by adding
the cycle K. In this case, we get that

exc(F ) = exc(F ′) + 1 ≤ exc(F ′) + k1 + k2

2 .

Since it holds that exc(F ) ≤ exc(F ) + 1
4δ(G,G

′) in both cases, the proof of the lemma is
finished. J

We next summarize the facts that can be established using our reduction techniques; the
details are omitted because of the space constraints. We say that a 2-connected subcubic
graph G is a proper graph if G is non-basic, has no cycle with at most four vertices of degree
three, and has no cycle of length five or six with five vertices of degree three. We will call a
non-basic 2-connected subcubic graph G clean if none of the lemmas that we have proven
can be applied to G. Formally, a 2-connected subcubic graph G is clean if it is proper and
(CT1) no cycle of length at most 7 in G contains a vertex of degree two,
(CT2) every cycle of length six in G that is not a θ-cycle is disjoint from all other cycles of

length six,
(CT3) every cycle K = v1 . . . vm of length m ≤ 7 in G satisfies that if each of the edges

v1vm and v2v3 is contained in a 2-edge-cut, then the edges v1vm and v2v3 themselves
form a 2-edge-cut, and

(CT4) every cycle K = v1 . . . v6 of length six in G satisfies at least one of the following
(a) K is a θ-cycle, or
(b) each edge exiting K is contained in a 2-edge-cut but no two of them together form a

2-edge-cut, or
(c) each edge exiting K is contained in a 2-edge-cut, and there exists exactly one pair i

and j with 1 ≤ i < j ≤ 6 such that the edges vixi and vjxj form a 2-edge-cut, and
this pair satisfies j − i = 3, or,

(d) precisely one edge exiting K, say v1x1, is not contained in a 2-edge-cut, and there
exists a partition A and B of the vertices of G − V (K) such that x1, x2, x6 ∈ A,
x3, x4, x5 ∈ B, there is exactly one edge between A and B, and both A and B induce
connected subgraphs of G− V (K),

where xi is the neighbor of the vertex vi outside the cycle K, i ∈ {1, . . . , 6, }.

The next theorem summarizes our reduction results.

I Theorem 8. There exists an algorithm running in time O(n3) that constructs for a given
n-vertex 2-connected subcubic graph G a reduction of G that is either basic or clean.

4 Main result

We need few additional results before we can prove Theorem 1. The first concerns the
structure of cycles passing through vertices of a cycle of length six in a clean 2-connected
subcubic graph. Let v be a vertex of degree three in a graph G, and let x1, x2 and x3 be its
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neighbors. The type of v is the triple (`1, `2, `3) such that `1, `2 and `3 are the lengths of
shortest cycles containing paths x1vx2, x1vx3 and x2vx3. In our consideration, the order of
the coordinates of the triple will be irrelevant, so we will always assume that the lengths
satisfy that `1 ≤ `2 ≤ `3. A type (`′1, `′2, `′3) dominates the type (`1, `2, `3) if `′i ≥ `i for every
i = 1, 2, 3. If K is a cycle in a graph G and each vertex of K has degree three, then the type
of the cycle K is the multiset of the types of the vertices of K. Finally, a multiset M1 of
types dominates a multiset M2 types if there exists a bijection between the types contained
in M1 and M2 such that each type of M1 dominates the corresponding type in M2.

We can now show the following lemma (note that all vertices of the cycle K in the lemma
must have degrees three since G is assumed to be clean). The proof is omitted because of
the space constraints.

I Lemma 9. Let G be a clean 2-connected subcubic graph and let K = v1v2 . . . v6 be a cycle
of length six in G. If K is not a θ-cycle, then the type of K dominates at least one of the
following multisets:
{(6, 7, 7), (6, 7, 7), (6, 8, 8), (6, 8, 8), (6, 8, 8), (6, 8, 8)},
{(6, 7, 7), (6, 7, 8), (6, 7, 8), (6, 8, 8), (6, 8, 8), (6, 8, 8)}, or
{(6, 7, 7), (6, 7, 8), (6, 7, 9), (6, 7, 9), (6, 8, 8), (6, 8, 8)}.

The following lemma follows from the description of the perfect matching polytope
by Edmonds [6] and the fact that the perfect matching polytope has a strong separation
oracle [17]; see e.g. [8] for further details.

I Lemma 10. There exists a polynomial-time algorithm that for a given cubic 2-connected
n-vertex graph outputs a collection of m ≤ n/2 + 2 perfect matchings M1, . . . ,Mm and
non-negative coefficients a1, . . . , am such that a1 + · · ·+ am = 1 and

m∑
i=1

aiχMi
= (1/3, . . . , 1/3) ∈ RE(G) ,

where χMi
∈ RE(G) is the characteristic vector of Mi.

Lemma 10 gives the following; we note that variants of Lemma 11 have also been used
in [2, 7, 14].

I Lemma 11. There exists a polynomial-time algorithm that for a given 2-connected n-vertex
subcubic graph outputs a collection of m ≤ n/2 + 2 spanning Eulerian subgraphs F1, . . . , Fm

and probabilities p1, . . . , pm ≥ 0, p1 + · · ·+ pm = 1 that satisfy the following. If a spanning
Eulerian subgraph F is equal to Fi with probability pi, i = 1, . . . ,m, then P[e ∈ E(F )] = 2/3.
In particular, a vertex of degree three is contained in a cycle of F with probability one and a
vertex of degree two is isolated with probability 1/3.

We now combine Lemmas 9 and 11 to get the following.

I Lemma 12. There exists a polynomial-time algorithm that given a clean 2-connected
subcubic graph G outputs a spanning Eulerian subgraph F of G such that

exc(F ) ≤ 2n(G) + 2n2(G)
7 .

Proof of Lemma 12. We first apply the algorithm from Lemma 11 to get a collection of
m ≤ n/2 + 2 spanning Eulerian subgraphs F1, . . . , Fm and probabilities p1, . . . , pm. We show
that

E [exc(F )] ≤ 2n(G) + 2n2(G)
7 , (2)
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which implies the statement of the lemma since the number of the subgraphs F1, . . . , Fm is
linear in n and the excess of each them can be computed in linear time. In particular, the
algorithm can output the subgraph Fi with the smallest exc(Fi).

We now show that (2) holds. We apply a double counting argument, which we phrase as
a discharging argument. At the beginning, we assign each vertex of degree three charge of
2/7 and to each vertex of degree two charge of 4/7. Let c1(v) be the initial charge of a vertex
v. Note that the sum of the initial charges of the vertices is the right side of the inequality
(2).

We next choose a random spanning Eulerian subgraphs F among the subgraphs F1, . . . , Fm

with probabilities given by p1, . . . , pm. The charge of each vertex that is isolated in F is
decreased by one unit, and the charge of each vertex contained in a cycle of length k by 2/k
units. Let c2(v) be the new charge of a vertex v. Observe that the total decrease of charge
of the vertices is equal to exc(F ), i.e.,

exc(F ) =
∑

v∈V (G)

c1(v)− c2(v) .

Hence, it is enough to prove that

E

 ∑
v∈V (G)

c2(v)

 ≥ 0. (3)

To prove (3), we consider the expectation of c2(v) for individual vertices v of G.
If v is a vertex of G of degree two, then every cycle of G that contains v has length at

least eight by (CT1). With probability 1/3, the vertex v is isolated and looses one unit
charge; with probability 2/3, it is contained in a cycle and looses at most 2/8 = 1/4 units of
charge. We conclude that

E [c2(v)] ≥ 4
7 −

1
3 −

2
3 ·

1
4 = 1

14 > 0 .

If v is a vertex of G of degree three with type (`1, `2, `3), we proceed as follows. Since each
edge incident with v is contained in F with probability 2/3, v is contained in a cycle of F
with a particular pair of its neighbors with probability 1/3. It follows that the expected
value of c1(v) is at least

E [c2(v)] ≥ 2
7 −

1
3

(
2
`1

+ 2
`2

+ 2
`3

)
.

Since G is clean, the type of v dominates (6, 6, 6). If the type of v dominates (7, 7, 7), then
E [c2(v)] ≥ 0. Hence, we focus on vertices contained in cycles of length six in G in the rest of
the proof.

Let K = v1 . . . v6 be a cycle of length six in G. Since G is clean, each vertex of K has
degree three. Suppose that K is not a θ-cycle. By (CT2), K is disjoint from all other cycles
of length six in G. Observe that

if the type of vi dominates (6, 8, 8), then E [c2(vi)] ≥ 1
126 ,

if the type of vi dominates (6, 7, 7), then E [c2(vi)] ≥ − 1
63 ,

if the type of vi dominates (6, 7, 8), then E [c2(vi)] ≥ − 1
252 , and

if the type of vi dominates (6, 7, 9), then E [c2(vi)] ≥ 1
189 .

Since the type of the cycle K dominates one of the three multisets listed in Lemma 9, it
holds that

E [c2(v1) + · · ·+ c2(v6)] ≥ 0 .
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It remains to analyze the case that K is a θ-cycle. By symmetry, we can assume that
the vertices v1 and v4 are its poles. Let xi be the neighbor of vi outside of K, i = 1, . . . , 6.
Further, let P = x6v6v1v2x2, P1 = x6v6v1 and P2 = x2v2v1. Since each of the paths P1
and P2 is contained in F with probability 1/3, the subgraph F contains the path P with
probability at most 1/3; let p be this probability. Since G is clean (and so proper), the
distance between x2 and x3 in G− V (K) is at least three; likewise, the distance between x5
and x6 in G− V (K) is at least three. Hence, any cycle containing P1 or P2 has length at
least 10, and any cycle containing P has length at least 14. Since F contains the path P
with probability p, the path P1 but not P with probability 1/3− p, the path P2 but not P
with probability 1/3− p, and neither P1 nor P2 with probability 1/3 + p, it follows that

E [c2(v1)] = 2
7 − p ·

1
7 − 2

(
1
3 − p

)
· 1

5 −
(

1
3 + p

)
· 1

3 = 13
315 −

8
105p ≥

1
63 .

The symmetric argument yields that E [c2(v4)] ≥ 1
63 . Since every cycle in G containing the

path P2 has length at least 10, the type of v2 dominates (6, 6, 10) and thus E [c2(v2)] ≥ − 1
315 .

The same holds for vertices v3, v5 and v6.
Let Q1 be the set of all poles of θ-cycles in G, and let Q2 be the set of vertices contained

in θ-cycle that are not a pole of a (possibly different) θ-cycle. Since each vertex of Q2 has a
neighbor in Q1, it follows |Q2| ≤ 3|Q1|. The previous analysis yields that

E

 ∑
v∈Q1∪Q2

c2(v)

 ≥ |Q1|
(

1
63 − 3 · 1

315

)
= 2

315 |Q1| ≥ 0.

Since the set Q1 ∪ Q2 and the vertex set of cycles of length six that are not θ-cycles are
disjoint, the inequality (3) follows. J

We are ready to prove Theorems 1 and 2.

Proof of Theorem 1. By Observation 6, it is enough to construct a spanning Eulerian
subgraph F of G with

exc(F ) ≤ 2(n(G) + n2(G))
7 + 1.

If G is basic, such a subgraph F exists by Observation 5, and can easily be constructed in
polynomial time. If G is not basic, we can find a reduction G′ of G that is either basic or
clean in polynomial time by Theorem 8.

If G′ is basic, then we find a spanning Eulerian subgraph with

exc(F ′) ≤ 2(n(G′) + n2(G′))
7 + 1

as in the case when G itself is basic. If G′ is clean, then Lemma 12 yields that we can
construct in polynomial time a spanning Eulerian subgraph F ′ of G′ such that

exc(F ′) ≤ 2(n(G′) + n2(G′))
7 .

Since G′ is a reduction of G, we can find in polynomial time a spanning Eulerian subgraph
F of G such that

exc(F ) ≤ exc(F ′) + δ(G,G′)
4 ≤ exc(F ′) + 2δ(G,G′)

7 ≤ 2(n(G′) + n2(G′))
7 + 1 ,

which finishes the proof of the theorem. J
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Figure 2 Replacing a vertex of degree two with a cycle of length four in Lemma 13.

Proof of Theorem 2. Let G be an input cubic graph and let n be the number of its vertices.
We assume that G is connected since G would not have a TSP walk otherwise. Let F be
the set of bridges of G, which can be found in linear time using the standard algorithm
based on DFS. Further, let G′ be the graph obtained from G by removing the edges of F ,
and let n0 and n2 be the number of its vertices of degree zero and two, respectively. Note
that G′ has no vertices of degree one since if two edges incident with a vertex v in a cubic
graph are bridges, then the third edge incident with v is also a bridge. Finally, let k be the
number of non-trivial components of G′, i.e., the components of G′ that are not formed by a
single vertex. Observe that the number of vertices of degree two in G′ is at most 2k − 2, i.e.,
n2 ≤ 2k − 2.

We next apply the algorithm from Theorem 1 to each non-trivial component of G′, and
obtain a collection of k TSP walks such that the sum of their lengths is at most

9
7(n− n0) + 2

7n2 − k .

These k TSP walks can be connected by traversing each of the edges of F twice, which yields
a TSP walk in G of total length at most

9
7(n− n0) + 2

7n2 − k + 2|F | ≤ 9
7(n− n0) + 2|F | . (4)

The inequality in (4) follows from the inequality n2 ≤ 2k − 2, which we have observed
earlier in the proof. Since any TSP walk in G must have length at least (n − n0) + 2|F |
(it must contain at least n − n0 edges inside the non-trivial blocks and each bridge must
be traversed twice), the upper bound in (4) on the length of the constructed TSP walk is
at most the multiple of 9/7 of the length of the optimal TSP walk in G, which yields the
desired approximation factor of the algorithm. J

5 Lower bounds

In this section, we provide two constructions of 2-connected subcubic graphs that illustrate
that the bound claimed in Conjecture 3 would be the best possible. The constructions are
based on two operations that we analyze in Lemmas 13 and 15. The proofs of the lemmas
are omitted because of the space constraints.

I Lemma 13. Let G be a 2-connected subcubic graph, let v be a vertex of G that has exactly
two neighbors, and let x and y be its two neighbors. Further, let G′ be the graph obtained
from G by removing the vertex v, adding a cycle v1v2v3v4 and edges xv1 and yv3 as in
Figure 2. The graph G′ is a 2-connected subcubic graph and it holds that n(G′) = n(G) + 3,
n2(G′) = n2(G) + 1 and minexc(G′) = minexc(G) + 1.
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Figure 3 The operation of replacing a diamond analyzed in Lemma 15.

Repeated applications of the operation described in Lemma 13 starting with the graph
K2,3 yields the following.

I Proposition 14. For every integer n ≥ 5, n ≡ 2 mod 3, there exists a 2-connected subcubic
n-vertex graph G such that

minexc(G) = n(G) + n2(G)
4 + 1.

The second operation is more involved. A diamond in a graph G is an induced subgraph
isomorphic to K−4 , i.e., the graph K4 with one edge removed.

I Lemma 15. Let G be a 2-connected cubic graph containing a diamond D. Let v1, v2, w1 and
w2 be the vertices of the diamond as depicted in Figure 3, and let x1 and x2 be the neighbors
of v1 and v2 outside of the diamond D. Further, let G′ be the graph obtained from G by
removing the vertices of the diamond D and inserting the subgraph depicted in Figure 3. The
graph G′ is a 2-connected cubic graph with n(G′) = n(G)+8 and minexc(G′) = minexc(G)+2.
Moreover, the graph G′ contains at least two diamonds.

Consider the cubic graph formed by two diamonds and two edges joining the vertices of
degree two in different diamonds, and repeatedly apply the operation described in Lemma 15.

I Proposition 16. For every integer n ≥ 8, n ≡ 0 mod 8, there exists a 2-connected cubic
n-vertex graph G with minexc(G) = n/4.

Propositions 14 and 16, and Observation 6 yield that neither the coefficient 5/4 nor the
coefficient 1/4 in Conjecture 3 can be improved. Indeed, for every α < 5/4, there exist
infinitely many 2-connected cubic graphs G with tsp(G) > αn(G)+o(n(G)) by Proposition 16.
Likewise, for every β < 1/4, there exist infinitely many 2-connected subcubic graphs G with
tsp(G) > 5

4n(G) + βn2(G) + o(n(G)). While neither of the two coefficients in Conjecture 3
can be improved, it may be possible to prove a stronger bound that is not linear in both
n(G) and n2(G).

Acknowledgements. The authors would like to thank the anonymous reviewers for their
valuable and insightful comments on the submission.



Z. Dvořák, D. Král’, and B. Mohar 27:13

References
1 Nishita Aggarwal, Naveen Garg, and Swati Gupta. A 4/3-approximation for TSP on cubic

3-edge-connected graphs. arXiv e-prints, 1101.5586, 2011.
2 Sylvia Boyd, René Sitters, Suzanne van der Ster, and Leen Stougie. The traveling salesman

problem on cubic and subcubic graphs. Mathematical Programming, 144(1-2):227–245,
2014.

3 Barbora Candráková and Robert Lukot’ka. Cubic TSP – a 1.3-approximation. arXiv e-
prints, 1506.06369, 2015.

4 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical report, DTIC Document, 1976.

5 José Correa, Omar Larré, and José A Soto. TSP tours in cubic graphs: beyond 4/3. SIAM
Journal on Discrete Mathematics, 29(2):915–939, 2015.

6 Jack Edmonds. Maximum matching and a polyhedron with 0, l-vertices. J. Res. Nat. Bur.
Standards B, 69(1965):125–130, 1965.

7 David Gamarnik, Moshe Lewenstein, and Maxim Sviridenko. An improved upper bound
for the TSP in cubic 3-edge-connected graph. Operations Research Letters, 33:467–474,
2005.

8 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2. Springer Science & Business Media, 2012.

9 Jeremy Karp and R Ravi. A 9/7-approximation algorithm for graphic TSP in cubic bi-
partite graphs. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques (APPROX/RANDOM 2014), volume 28 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 284–296. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.284.

10 Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds
for TSP. Journal of Computer and System Sciences, 81:1665–1677, 2015.

11 Marek Karpinski and Richard Schmied. Approximation hardness of graphic TSP on cubic
graphs. RAIRO Operations Research, 49:651–668, 2015.

12 M. Lampis. Improved inapproximability for TSP. Lecture Notes in Computer Science,
7408:243–253, 2013.

13 Jan Mazák and Robert Lukot’ka. Simple cubic graphs with no short travelling salesman
tour, 2016. Manuscript.

14 Tobias Mömke and Ola Svensson. Approximating graphic TSP by matchings. In 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pages 560–
569. IEEE, 2011.

15 Marcin Mucha. 13/9-approximation for graphic TSP. Theory of Computing Systems,
55:640–657, 2014.

16 Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach
to the traveling salesman problem. In 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 550–559. IEEE, 2011.

17 Manfred W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Mathematics
of Operations Research, 7(1):67–80, 1982.

18 Christos H. Papadimitriou and Santosh Vempala. On the approximability of the traveling
salesman problem. Combinatorica, 26:101–120, 2006.

19 András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
34:597–629, 2014.

20 Anke van Zuylen. Improved approximations for cubic and cubic bipartite TSP. In Integer
Programming and Combinatorial Optimization (IPCO), volume 9682 of Lecture Notes in
Computer Science, pages 250–261. Springer, 2016.

STACS 2017

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.284

	Introduction
	Preliminaries
	Reductions
	Main result
	Lower bounds

