11,949 research outputs found

    Universal Approximation Property of Hamiltonian Deep Neural Networks

    Full text link
    This paper investigates the universal approximation capabilities of Hamiltonian Deep Neural Networks (HDNNs) that arise from the discretization of Hamiltonian Neural Ordinary Differential Equations. Recently, it has been shown that HDNNs enjoy, by design, non-vanishing gradients, which provide numerical stability during training. However, although HDNNs have demonstrated state-of-the-art performance in several applications, a comprehensive study to quantify their expressivity is missing. In this regard, we provide a universal approximation theorem for HDNNs and prove that a portion of the flow of HDNNs can approximate arbitrary well any continuous function over a compact domain. This result provides a solid theoretical foundation for the practical use of HDNNs

    Introduction to neural ordinary differential equations

    Get PDF
    This thesis aims to provide a comprehensive overview of Neural Networks (NN) and Neural Ordinary Differential Equations (NODEs) from a mathematical standpoint and insights into their training methods and approximation capabilities. The first chapter covers the basics of NNs, including the mathematics of gradient descent and Universal Approximation theorems (UA), as well as an introduction to residual NNs. The second chapter dives into the world of NODEs, which can be thought of as continuous idealisations of residual NNs. Then we explore some UA theorems for NODEs and examine three different training methods: direct backpropagation, continuous adjoint, and the adaptative checkpoint adjoint method (ACA). Additionally, we explore some applications of NODEs, such as image classification, and provide a PyTorch code example that trains a NODE to approximate the trajectories of a Lorenz System using ACA

    Training Echo State Networks with Regularization through Dimensionality Reduction

    Get PDF
    In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network

    Neural Networks in Nonlinear Aircraft Control

    Get PDF
    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law

    Artificial Neural Network Methods in Quantum Mechanics

    Full text link
    In a previous article we have shown how one can employ Artificial Neural Networks (ANNs) in order to solve non-homogeneous ordinary and partial differential equations. In the present work we consider the solution of eigenvalue problems for differential and integrodifferential operators, using ANNs. We start by considering the Schr\"odinger equation for the Morse potential that has an analytically known solution, to test the accuracy of the method. We then proceed with the Schr\"odinger and the Dirac equations for a muonic atom, as well as with a non-local Schr\"odinger integrodifferential equation that models the n+αn+\alpha system in the framework of the resonating group method. In two dimensions we consider the well studied Henon-Heiles Hamiltonian and in three dimensions the model problem of three coupled anharmonic oscillators. The method in all of the treated cases proved to be highly accurate, robust and efficient. Hence it is a promising tool for tackling problems of higher complexity and dimensionality.Comment: Latex file, 29pages, 11 psfigs, submitted in CP

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore