91 research outputs found

    Approximation Algorithms for Capacitated Minimum Forest Problems in Wireless sensor Networks with a Mobile Sink

    Get PDF
    To deploy a wireless sensor network for the purpose of large-scale monitoring, in this paper, we propose a heterogeneous and hierarchical wireless sensor network architecture. The architecture consists of sensor nodes, gateway nodes, and mobile sinks. Th

    Solving Capacitated Data Storage Placement Problems in Sensor Networks

    Get PDF
    Data storage is an important issue in sensor networks as the large amount of data collected by the sensors in such networks needs to be archived for future processing. In this thesis we consider sensor networks in which the information produced by the sensors needs to be collected by storage nodes where the information is compressed and then sent to a central storage node called the sink. We study the problem of selecting k sensors to be used as storage nodes so as to minimize the total cost of sending information from the sensors to the storage nodes and from the storage nodes to the sink. We formulate this problem as a version of the capacitated k-median problem and design an approximation algorithm for it . We assume that each storage node has limited capacity so it can collect information from only a restricted number of sensors. Our algorithm is based on an algorithm by Guha for the capacitated k-median problem. We also study the version of the problem where a storage node has unlimited capacity, so it can collect information from any number of sensors. We show that a local search algorithm by Arya et al. can be used for this problem and it produces a solution of cost at most 5 times the cost of an optimum solution

    Performance optimization of wireless sensor networks for remote monitoring

    Get PDF
    Wireless sensor networks (WSNs) have gained worldwide attention in recent years because of their great potential for a variety of applications such as hazardous environment exploration, military surveillance, habitat monitoring, seismic sensing, and so on. In this thesis we study the use of WSNs for remote monitoring, where a wireless sensor network is deployed in a remote region for sensing phenomena of interest while its data monitoring center is located in a metropolitan area that is geographically distant from the monitored region. This application scenario poses great challenges since such kind of monitoring is typically large scale and expected to be operational for a prolonged period without human involvement. Also, the long distance between the monitored region and the data monitoring center requires that the sensed data must be transferred by the employment of a third-party communication service, which incurs service costs. Existing methodologies for performance optimization of WSNs base on that both the sensor network and its data monitoring center are co-located, and therefore are no longer applicable to the remote monitoring scenario. Thus, developing new techniques and approaches for severely resource-constrained WSNs is desperately needed to maintain sustainable, unattended remote monitoring with low cost. Specifically, this thesis addresses the key issues and tackles problems in the deployment of WSNs for remote monitoring from the following aspects. To maximize the lifetime of large-scale monitoring, we deal with the energy consumption imbalance issue by exploring multiple sinks. We develop scalable algorithms which determine the optimal number of sinks needed and their locations, thereby dynamically identifying the energy bottlenecks and balancing the data relay workload throughout the network. We conduct experiments and the experimental results demonstrate that the proposed algorithms significantly prolong the network lifetime. To eliminate imbalance of energy consumption among sensor nodes, a complementary strategy is to introduce a mobile sink for data gathering. However, the limited communication time between the mobile sink and nodes results in that only part of sensed data will be collected and the rest will be lost, for which we propose the concept of monitoring quality with the exploration of sensed data correlation among nodes. We devise a heuristic for monitoring quality maximization, which schedules the sink to collect data from selected nodes, and uses the collected data to recover the missing ones. We study the performance of the proposed heuristic and validate its effectiveness in improving the monitoring quality. To strive for the fine trade-off between two performance metrics: throughput and cost, we investigate novel problems of minimizing cost with guaranteed throughput, and maximizing throughput with minimal cost. We develop approximation algorithms which find reliable data routing in the WSN and strategically balance workload on the sinks. We prove that the delivered solutions are fractional of the optimum. We finally conclude our work and discuss potential research topics which derive from the studies of this thesis

    Power Aware Routing for Sensor Databases

    Full text link
    Wireless sensor networks offer the potential to span and monitor large geographical areas inexpensively. Sensor network databases like TinyDB are the dominant architectures to extract and manage data in such networks. Since sensors have significant power constraints (battery life), and high communication costs, design of energy efficient communication algorithms is of great importance. The data flow in a sensor database is very different from data flow in an ordinary network and poses novel challenges in designing efficient routing algorithms. In this work we explore the problem of energy efficient routing for various different types of database queries and show that in general, this problem is NP-complete. We give a constant factor approximation algorithm for one class of query, and for other queries give heuristic algorithms. We evaluate the efficiency of the proposed algorithms by simulation and demonstrate their near optimal performance for various network sizes

    Improving Maximum Data Collection Based On Pre-Specified Path Using a Mobile Sink for WSN

    Get PDF
    Data aggregation is one of the challenging issues which are faced in the wireless sensor network by using Energy Harvesting Sensors. Data collection in a fixed pre-defined path with time varying characteristic forms a major problem in Energy Harvesting Sensor Networks. In the proposed work the Adjustment based allocation method is used to allocate fixed time slots to each sensor nodes in which the network throughput can be increased with less energy consumption. The mobile sink transmits the polling message to all the nodes within the transmission range and makes decision based on the profits gained by the sensor nodes in each timeslot. The NP-Hard problem is defined with the form of reducing the complexity of the sensor nodes where larger number of data can be collected from the environment. The data collection throughput is maximized with the use of optimized path for the mobile sink in the network. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Quality-Aware Scheduling Algorithms in Renewable Sensor

    No full text
    Wireless sensor network has emerged as a key technology for various applications such as environmental sensing, structural health monitoring, and area surveillance. Energy is by far one of the most critical design hurdles that hinders the deployment of wireless sensor networks. The lifetime of traditional battery-powered sensor networks is limited by the capacities of batteries. Even many energy conservation schemes were proposed to address this constraint, the network lifetime is still inherently restrained, as the consumed energy cannot be replenished easily. Fully addressing this issue requires energy to be replenished quite often in sensor networks (renewable sensor networks). One viable solution to energy shortages is enabling each sensor to harvest renewable energy from its surroundings such as solar energy, wind energy, and so on. In comparison with their conventional counterparts, the network lifetime in renewable sensor networks is no longer a main issue, since sensors can be recharged repeatedly. This results in a research focus shift from the network lifetime maximization in traditional sensor networks to the network performance optimization (e.g., monitoring quality). This thesis focuses on these issues and tackles important problems in renewable sensor networks as follows. We first study the target coverage optimization in renewable sensor networks via sensor duty cycle scheduling, where a renewable sensor network consisting of a set of heterogeneous sensors and a stationary base station need to be scheduled to monitor a set of targets in a monitoring area (e.g., some critical facilities) for a specified period, by transmitting their sensing data to the base station through multihop relays in a real-time manner. We formulate a coverage maximization problem in a renewable sensor network which is to schedule sensor activities such that the monitoring quality is maximized, subject to that the communication network induced by the activated sensors and the base station at each time moment is connected. We approach the problem for a given monitoring period by adopting a general strategy. That is, we divide the entire monitoring period into equal numbers of time slots and perform sensor activation or inactivation scheduling in the beginning of each time slot. As the problem is NP-hard, we devise efficient offline centralized and distributed algorithms for it, provided that the amount of harvested energy of each sensor for a given monitoring period can be predicted accurately. Otherwise, we propose an online adaptive framework to handle energy prediction fluctuation for this monitoring period. We conduct extensive experiments, and the experimental results show that the proposed solutions are very promising. We then investigate the data collection optimization in renewable sensor networks by exploiting sink mobility, where a mobile sink travels around the sensing field to collect data from sensors through one-hop transmission. With one-hop transmission, each sensor could send data directly to the mobile sink without any relay, and thus no energy are consumed on forwarding packets for others which is more energy efficient in comparison with multi-hop relays. Moreover, one-hop transmission particularly is very useful for a disconnected network, which may be due to the error-prone nature of wireless communication or the physical limit (e.g., some sensors are physically isolated), while multi-hop transmission is not applicable. In particular, we investigate two different kinds of mobile sinks, and formulate optimization problems under different scenarios, for which both centralized and distributed solutions are proposed accordingly. We study the performance of the proposed solutions and validate their effectiveness in improving the data quality. Since the energy harvested often varies over time, we also consider the scenario of renewable sensor networks by utilizing wireless energy transfer technology, where a mobile charging vehicle periodically travels inside the sensing field and charges sensors without any plugs or wires. Specifically, we propose a novel charging paradigm and formulate an optimization problem with an objective of maximizing the number of sensors charged per tour. We devise an offline approximation algorithm which runs in quasi-polynomial time and develop efficient online sensor charging algorithms, by considering the dynamic behaviors of sensors’ various sensing and transmission activities. To study the efficiency of the proposed algorithms, we conduct extensive experiments and the experimental results demonstrate that the proposed algorithms are very efficient. We finally conclude our work and discuss potential research topics which derive from the studies of this thesis

    Data quality maximization in sensor networks with a mobile sink

    Full text link

    Networks, Communication, and Computing Vol. 2

    Get PDF
    Networks, communications, and computing have become ubiquitous and inseparable parts of everyday life. This book is based on a Special Issue of the Algorithms journal, and it is devoted to the exploration of the many-faceted relationship of networks, communications, and computing. The included papers explore the current state-of-the-art research in these areas, with a particular interest in the interactions among the fields

    Energy efficient clustering and secure data aggregation in wireless sensor networks

    Get PDF
    Communication consumes the majority of a wireless sensor network\u27s limited energy. There are several ways to reduce the communication cost. Two approaches used in this work are clustering and in-network aggregation. The choice of a cluster head within each cluster is important because cluster heads use additional energy for their responsibilities and that burden needs to be carefully distributed. We introduce the energy constrained minimum dominating set (ECDS) to model the problem of optimally choosing cluster heads in the presence of energy constraints. We show its applicability to sensor networks and give an approximation algorithm of O(log n) for solving the ECDS problem. We propose a distributed algorithm for the constrained dominating set which runs in O(log n log [triangle]) rounds with high probability. We show experimentally that the distributed algorithm performs well in terms of energy usage, node lifetime, and clustering time and thus is very suitable for wireless sensor networks. Using aggregation in wireless sensor networks is another way to reduce the overall communication cost. However, changes in security are necessary when in- network aggregation is applied. Traditional end-to-end security is not suitable for use with in-network aggregation. A corrupted sensor has access to the intermediate data and can falsify results. Additively homomorphic encryption allows for aggregation of encrypted values, with the result being the same as the result as if unencrypted data were aggregated. Using public key cryptography, digital signatures can be used to achieve integrity. We propose a new algorithm using homomorphic encryption and additive digital signatures to achieve confidentiality, integrity and availability for in- network aggregation in wireless sensor networks. We prove that our digital signature algorithm which is based on Elliptic Curve Digital Signature Algorithm (ECDSA) is at least as secure as ECDSA. Even without in-network aggregation, security is a challenge in wireless sensor networks. In wireless sensor networks, not all messages need to be secured with the same level of encryption. We propose a new algorithm which provides adequate levels of security while providing much higher availablility [sic] than other security protocols. Our approach uses similar amounts of energy as a network without security --Abstract, page iv
    • …
    corecore