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Abstract 

Wireless sensor networks (WSNs) have gained worldwide attention in recent 

years because of their great potential for a variety of applications such as 

hazardous environment exploration, military surveillance, habitat monitoring, 

seismic sensing, and so on. In this thesis we study the use of WSN s for remote 

monitoring, where a wireless sensor network is deployed in a remote region 

for sensing phenomena of interest while its data monitoring center is located 

in a metropolitan area that is geographically distant from the monitored re­

gion. This application scenario poses great challenges since such kind of mon­

itoring is typically large scale and expected to be operational for a prolonged 

period without human involvement. Also, the long distance between the mon­

itored region and the data monitoring center requires that the sensed data 

must be transferred by the employment of a third-party communication ser­

vice, which incurs service costs. Existing methodologies for performance opti­

mization of WSNs base on that both the sensor network and its data monitor­

ing center are co-located, and therefore are no longer applicable to the remote 

monitoring scenario. Thus, developing new techniques and approaches for 

severely resource-constrained WSNs is desperately needed to maintain sus­

tainable, unattended remote monitoring with low cost. Specifically, this thesis 

addresses the key issues and tackles problems in the deployment of WSNs for 

remote monitoring from the following aspects. 

To maximize the lifetime ·of large-scale monitoring, we deal with the en­

ergy consumption imbalance issue by exploring multiple sinks. We develop 

scalable algorithms which determine the optimal number of sinks needed and 

their locations, thereby dynamically identifying the energy bottlenecks and 
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balancing the data relay workload throughout the network. We conduct ex­

periments and the experimental results demonstrate that the proposed algo­

rithms significantly prolong the network lifetime. 

To eliminate imbalance of energy consumption among sensor nodes, a com­

plementary strategy is to introduce a mobile sink for data gathering. However, 

the limited communication time between the mobile sink and nodes results in 

that only part of sensed data will be collected and the rest will be lost, for 

which we propose the concept of monitoring quality with the exploration of 

sensed data correlation among nodes. We devise a heuristic for monitoring 

quality maximization, which schedules the sink to collect data from selected 

nodes, and uses the collected data to recover the missing ones. We study the 

performance of the proposed heuristic and validate its effectiveness in improv­

ing the monitoring quality. 

To strive for the fine trade-off between two performance metrics: through­

put and cost, we investigate novel problems of minimizing cost with guaran­

teed throughput, and maximizing throughput with minimal cost. We develop 

approximation algorithms which find reliable data routing in the WS and 

strategically balance workload on the sinks. We prove that the delivered solu­

tions are fractional of the optimum. 

We finally conclude our work and discuss potential research topics which 

deri e from the studies of this thesis. 
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Chapter 1 

Introduction 

1.1 Introduction of Wireless Sensor Networks 

Wireless sensor networks (WSNs) have received significant attention in the last 

few decades because their applications have brought in numerous benefits, 

including harsh environment accessibility, feasibility enhancement, labor and 

material savings, productivity increases, and convenience improvement. The 

conventional architecture of a wireless sensor network is illustrated in Fig. 1.1, 

which consists of one sink (also referred to as a base station), and sensor nodes 

with the number from a few to thousands. A sensor node is a converter that 

measures a physical quantity and converts it into a signal which can be read 

by an observer or an instrument [6, 47]. Sensor nodes are deployed in the 

monitoring region to sense phenomena of interest and cooperatively send the 

sensed data to the sink wirelessly via one-hop/ multi-hop relays, depending 

on the r·adio transmit power at a source node and the distance between the 

node and the sink. The sink further forwards the data to the monitoring center 

for storage or processing, whe!e the center is typically connected to the sink 

by the Internet or other types of wired networks. 

WSNs have been applied in a variety of areas, such as industrial process 

control, home automation, disaster recovery, livestock tracking, biomedical 

health telemonitoring, hazardous environment exploration, and so on [3, 43, 

76]. The wide range of applications can be classified into two categories: event 

detection and environment surveillance. In event detection applications, sen-

1 
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Osink 0 

0 
0 

Internet 0 0 0 

0 
0 

0 0 

0 0 

0 

sensor node 
monitoring region 

monitoring center 

Figure 1.1: The conventional architecture of a wireless sensor network 

sor nodes report data to the sink once specified events are detected. Simple 
events detection can be fulfilled by nodes individually, e.g., when the given 
blood pressure threshold is exceeded in a heart attack detection system [96], or 
when a vibration occurs in a seismic sensing application [85]. While detecting 
complicated events requires the collaboration of multiple nodes, either closely 
or remotely located in relation to each other. Taking the reconnaissance mis­
sion in the battlefield as an example, nodes need to communicate with each 
other to precisely locate an occurrence [86, 91]. In surveillance applications, 
nodes take periodic surveillance tasks, for example, a WSN used for process 
control will report parameters such as pressure, temperature, and density [35]. 
The reporting frequency for such periodic surveillance depends on specified 
requirements, which differ from one application to another. For example, the 
WSN application for health telemonitoring requests real-time data reporting 
with high fidelity, while that for climate surveillance tolerates much longer 
latency and even moderate data loss. In addition, the reporting frequency is 
also constrained by the hardware constraints of sensor nodes, such as limited 
sampling frequency and buffer size. 
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1.2 Deploying WSNs for Remote Monitoring 

Remote monitoring is for the surveillance of remote regions while the monitor­

ing centers are typically located in a few metropolitan areas that are geograph­

ically distant from the monitored regions. To achieve unattended monitoring, 

sensor networks can be deployed in these remote regions to monitor surround­

ing environmental phenomena and forward the sensed data to the monitoring 

centers in real time. Remote monitoring is appealing especially to countries 

like Australia, where most remote regions are sparsely populated and some of 

them need to be monitored. One example is to use WSNs on large farms in var­

ious states of Australia for growing-environment surveillance (light, humidity, 

temperature, etc.) and crop attributes monitoring. Sensed data is sent to the re­

motely located monitoring center for crop growing analysis. Such remote crop 

paradigm enables users to acquire detailed information from distant farms in 

no time, dramatically saving labor and cost. Another example is to have WSNs 

in virgin forests all over Australia to detect forest fires caused by the searing 

heat experienced each year across Australian states. The remote fire alarm 

system will greatly reduce the occupational hazard of the forest manager and 

minimize the potential of property loss and casualties in forest fires. 

An essential difficulty in supporting such remote monitoring is transfer­

ring data over hundreds of kilometers from the deployed WSN to the mon­

itoring center. Clearly, the multi-hop data collection in which both the data 

source and destination are located in the same region is no longer applicable. 

And wnat makes it more challenging is that there is hardly any wired network 

access in remote regions because of deficiencies in facilities such as power sup­

ply and cables. 

To fulfill the remote data transfer from the WSN to the monitoring center, 

a third party communication service, such as 3G / 4G or a satellite network, 

is leased from a telecommunication company and an amount of service cost is 
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incurred accordingly. With such a leased service, the monitoring center does 
not have to be a costly static data center, instead, it can be an inexpensive 
mobile device, such as a laptop or a cell phone. No matter where the device 
is, as long as it has access to the leased third party network, it will be able 
to receive data from the deployed WSN. To transmit the sensed data to the 
third party network, at least one node in the WSN needs to be registered to 
the service provider and these kinds of nodes are referred to as sinks . A sink is 
communication-compatible with sensor nodes in the WSN and facilities in the 
third party network, which typically work on different radio bands. Illustrated 
in Fig. 1.2, data transfer in the remote monitoring scenario consists of two 
stages: one is the local data transmission from the source nodes to the sinks 
within the monitoring region, and the other is the remote data transmission from 
the sinks to the monitoring center through the third party network. 

0 

0 

0 

0 0 

0 

sensor node 

0 

o--___o 
°o I 

monitoring region sink 

Local data transmission 

monitoring center 

Remote data transmission 

Figure 1.2: An illustration of remote monitoring 

1.3 Challenges of Using WSNs for Remote Moni­

toring 

The small and low-cost sensors have limited batteries, computational ability, 
and buffer sizes, thereby posing challenges for using WSNs for remote mon-
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itoring in various aspects including scalability, longevity, monitoring quality, 

data delivery reliability, and service cost. 

• The region monitored by the WSN is usually vast, e.g., a forest or a farm, 

and this requires the deployment of a large number of sensors in the re­

gion. Accordingly, the workload of individual sensors is heavy, resulting 

in higher complexity and difficulty of managing network resources, such 

as bandwidth, energy and storage at sensors. The conventional WSN ar­

chitecture can hardly support large-scale monitoring and will cause net­

work disconnectivity, traffic congestion, and buffer overflow. 

• Environmental surveillance of a forest, swamp, or natural reserve is ex­

pected to be long-lasting. The longevity of a remote monitoring system 

depends on the lifetime of the deployed WSN. The remote regions mon­

itored by WSNs are usually inaccessible areas, where the sensor nodes 

have to rely on limited onboard batteries due to the lack of wired power 

supply. Even if the energy-harvesting technology (e.g., solar power, wind 

power) is applied to recharging batteries, the charge rate is unstable and 

constrained by the solar panel size and the weather. Thus, the life span 

is a major issue for using WSN s for remote monitoring. 

• The monitoring center typically requests sufficient data from the remotely 

deployed WSN for environment analysis or event recurrence. However, 

the data collection capacity of an individual sink is restricted by the con­

strained bandwidth, char:mel interference, and limited node-sink com­

munication time. As a result, some sensed data will not be successfully 

collected by the sinks· or transferred to the monitoring center, and the 

quality of the remote monitoring is compromised. Particularly, in WSNs 

with mobile elements, e.g., nodes and sinks carried by vehicles mov­

ing in the monitoring region to track a target or detect a specified phe­

nomenon, routing tables are frequently updated and data is easily lost 
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during transmission. 

• Wireless communication is unreliable in nature due to channel fading [28], 
interference, multi-path effects, data collisions, and so on. And if a WSN 
is deployed in a harsh environment with high dynamics, links usually 
have poor reliability. Consequences are high packet loss, error rates, and 
intermittent communication disruptions. Additionally, the low-powered 
radio frequency transceivers at sensor nodes worsen the problem. There­
fore, the monitoring center will experience unexpected data loss and re­
ceive out of order packets, which poses users great difficulty in analyzing 
or further processing the received data. 

• Leasing the third party network for remote data transfer incurs service 
cost, which is a unique characteristic for remote monitoring. The cost is 
charged by the service provider (telecommunication companyt and its 
amount is dependent on the charging strategy and the network through­
put. Sending a large volume of data through the third party network 
will be very costly and may result in a prohibitive penalty if the volume 
exceeds a pre-defined quota. For long-term monitoring, such cumulative 
expense would be very high and thereby undermine the applications of 
WSNs in remote monitoring. 

It is challenging to resolve the above mentioned problems due to the con­
strained resources in WSNs. It is even more difficult to jointly achieve these 
performance objectives in remote monitoring. For example, selectively turning 
off nodes in the network for a certain period effectively conserves energy and 
prolongs the network lifetime; however, this causes data loss and may result in 
network disconnectivity. On the other hand, keeping every node working all 
the time provides high data fidelity yet depletes the batteries of nodes much 
faster and shortens the network lifetime. Similarly a trade-off exists between 
the network throughput and the service cost. A large network throughput 
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is desirable to provide sufficient monitoring quality, however, the greater the 

volume of data sent through the third party network, the higher the cost. In 

general, one performance metric is optimized by compromising another or 

several others, and it is hard to encompass the entire desirable space once and 

for all [47]. 

1.4 Research Topics in Remote Monitoring 

To provide sustainable monitoring of a remote region with sufficient infor­

mation sent to the monitoring center at the expense of low cost on the long­

distance data transfer, this thesis focuses on (1) making the WSN used for 

remote monitoring as long-lasting as possible, (2) maximizing the quality of 

remote monitoring, and (3) optimizing the network throughput with minimal 

service cost. 

1.4.1 Network Lifetime Prolongation 

The network lifetime prolongation problem has been extensively studied in a 

traditional WSN where there is only one static sink with hundreds of thou­

sands of nodes. Such a multi-to~one data transmission model is typically sup­

ported by the multi-hop relay mechanism which efficiently conserves energy 

by utilizing intermediate relay nodes, compared with the one-hop routing pro­

tocols which result in prohibitive energy consumption on transmitting data 

from senders to far-mounted receivers. The multi-hop routing proto.cols are 

classified into two categorie·s according to the structures of_ networks in which 

they are applied. For flat WSNs, the developed protocols include Flooding, 

Gossiping, SPIN (Sensor Protocol for lnformation via Negotiation) [41], and 

SAR (Sequential Assignment Routing) [20]. Whereas for hierarchical WSNs, 

LEACH (Low Energy Adaptive Clustering Hierarchy) [40], PEGAGIS (Power-
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_ -_ ...... _ = ___ .,.. _-_ energy bottleneck sensor node ___ -_1 sensor node monitoring region 

monitoring center 

Figure 1.3: An illustration of the single static sink neighborhood problem 

Efficient Gathering in Sensor Information Systems) [60], and TEEN (Threshold 
sensitive Energy Efficient sensor Network protocol) [65] have been devised. 

In spite of the merits, the multi-hop data transmission structure does cause 
new problems, among which the most challenging is the single static sink neigh­
borhood problem [58, 99], as illustrated in Fig. 1.3. The single static sink receives 
data from its neighboring nodes, which not only report their own sensed data 
but also relay data from the other nodes and thus become energy bottlenecks 
in the WSN. Once these bottleneck nodes deplete their batteries, the sink will 
be disconnected from the sensor network and network lifetime will end, even 
if the rest nodes are still fully operational with sufficient residual energy. The 
energy imbalance issue becomes even worse in large scale WSNs since the 
sink neighboring nodes have to relay data for a great number of nodes and 
have their batteries depleting very quickly. 

A straightforward approach to tackling the single static sink neighborhood 
problem is to deploy multiple sinks in the network, which enable data from 
sensor nodes to flow to different destinations, instead of to a single one. Ac­
cordingly, the data relay workload is distributed to a larger number of nodes, 
thereby mitigating the energy bottleneck problem and prolonging the network 
lifetime [16, 50, 99]. Multiple sinks can be applied in WSNs to monitor remote 
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wild regions such as virgin forests, swamps, and deserts, where it is difficult 

for sinks to move once they are deployed. The multi-sink arrangement prob­

lem has been studied under both heterogeneous and homogeneous WSNs. 

In a heterogeneous WSN, where sinks are more powerful than the other 

nodes, the multi-sink placement problem is to deploy a favorable number of sinks 

at strategic locations in the network to prolong the network lifetime. Network 

deployment plays a significant role in system performance and has been stud­

ied in a variety of fields, such as power station placement in urban planning, 

database placement in cloud storage, gateway deployment in backbone net­

works, and router arrangement in LANs. In wireless sensor networks, the 

node placement largely influences the network performance. For example, 

variations in node density can eventually lead to unbalanced traffic [94], and 

a uniform node distribution would result in energy bottlenecks in the net­

work [70]. Thus, on-demand and careful node placement is essential to shape 

the network topology for desired network performance - low packet loss rate, 

short delivery latency, or long network lifetime [61, 92, 94,106]. In most WSN 

applications, however, nodes are randomly deployed and little control can be 

exerted. Therefore, controlled placement is pursued on the sinks. Sinks can 

simply be deployed at pre-defined locations in WSNs, such as Internet ac­

cess points, or locations with low Signal-to-Noise Ratios (SNRs). However, 

the determination of sink placement should take into account both the objec­

tive and multiple constraint factors. The complexity of solving the sink place­

ment problem depends on the priority of node assignment and sink position­

ing [106]. If nodes are partitioned into distinct groups prior to finalizing the 

locations of sinks, the multi-sink placement problem becomes local and can be 

solved independently within each group [69,108]. Otherwise, the problem is 

NP-hard, proven by Bogdanov et al. in [16] through a reduction to the dom­

inating set problem in a unit disk graph. The multi-sink placement problem 

studied in this thesis falls into the latter category. 
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Figure 1.4: A hierarchical wireless sensor network 

Whereas in a homogeneous WSN, all sensor nodes are identical, the multi­
sink assignment problem is to assign selected nodes as sinks and rotate the as­
signment among nodes to achieve energy balance in the network. A subset 
of nodes is identified as sinks to collect from other nodes and forward these 
data to the third party network. Accordingly, sensor nodes are partitioned into 
two tiers, as illustrated in Fig. 1.4. Nodes in the first tier act as gateways be­
tween the second tier nodes and the monitoring center, and they are referred to 
as gateways, cluster heads, or sinks (in this thesis). Such hierarchical network 
structure has been proven to be superior to the flat structure in various aspects: 
enhancing the network scalability [36], reducing routing table sizes at individ­
ual nodes by localizing data routing within each cluster [8], conserving com­
munication bandwidth by reducing inter-cluster transmission interference and 
message exchange [107] . Moreover, clusters are independent from each other 
and the data routing in one cluster will not be affected by topology changes or 
route updates in other clusters. The multi-sink assignment problem has been 
studied for energy conversation by aggregating the collected data at sinks to 
reduce the number of relayed packets [25], and switching selected nodes to the 
low-power sleep mode to reduce the rate of energy consumption [103]. A node 
is chosen to be the sink either because it is richer in resource compared with 
others, or as pre-assigned by the network designer. The identified sinks then 
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ship data to the monitoring center directly or collaboratively with each other. 

Since sinks bear a heavier workload than the other nodes and consume energy 

faster, dynamic sink-rotation among nodes is important to balance the energy 

consumption throughout the network. Accordingly, clustering protocols and 

sink selection approaches have been proposed and proven to be effective in 

prolonging network lifetime [38,40, 107]. 

1.4.2 Monitoring Quality Maximization 

Another strategy for the static single sink neighborhood problem is introduc­

ing mobile sinks, which travel in the monitoring region and visit all or some of 

the deployed nodes for data collection. In that case, the workload of data relay 

is shifted from individual nodes to mobile sinks, which therefore conserves 

energy at sensor nodes, reduces data collision, and improves delivery reliabil­

ity. In general, sink mobility has been demonstrated to be a blessing rather 

than a curse for network performance in lifetime, scalability [99], through­

put [75], connectivity [55], and latency [9]. Mobile sinks are appropriate for 

use in monitoring regions where there are tracks for the sinks to move along, 

such as natural reserves, battlefields, and farms. Being communication com­

patible with both sensor nodes and the third party facilities, the sinks traverse 

the monitoring region to gather data from individual nodes when entering 

their transmission ranges, and transmit the received data to the monitoring 

center through the third party network in real-time or at specified moments. 

The quality of monitoring a remote region by using a WSN with mobile 

sinks is mainly compromised by two factors. (1) The variations in sink loca­

tions result in frequent routing tables updates at sensor nodes and high prob­

ability of data loss, especially if sinks change their locations too often which 

makes routing tables out-of-date very soon. As a solution, data can be buffered 

locally at sensor nodes and sent to sinks only when the topology is stable. 
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However, under some circumstances, sinks keep moving without stop and 

data collection has to be accomplished in an unstable topology. Also, even 

if sinks have stops in their travels, the buffer size of each node is finite [81] 

and thus data has to be transmitted when sinks are still moving to avoid 

buffer overflow. (2) The limited communication time between mobile sinks 

and nodes also incurs data loss [99, 101]. If mobile sinks do not stop or stay 

long enough at specific spots in the network, they will not be able to collect 

all data stored at the nearby nodes, especially when the amount of stored data 

is large [84,110]. Specifically, the monitoring quality depends on the mobility 

pattern of sinks and the structure of data collection. 

According to the freedom of motion, the sink mobility patterns can be clas­

sified into uncontrolled mobility [49, 77, 80] and controlled mobility [14, 15, 63, 64]. 

(1) Uncontrolled mobile sinks are typically robots, livestock, or vehicles with 

pre-defined routes, and under the uncontrolled pattern, the trajectory, veloc­

ity, direction, and stops of each mobile sink are unable to be programmed for 

the purpose of a particular goal. One sub-category of this pattern is random 

moving, where mobile sinks are carried by robots or livestock which roam 

the sensor network. Shi et al. [80] provided theoretical results on the optimal 

movement of a mobile sink by converting the problems of sink mobility and 

flow routing from time domain to space domain. The uncontrolled pattern 

is easy and lightweight to explore, since no network information is required 

and no movement needs to be arranged. However, optimal network perfor­

mance can hardly be achieved under the random mobility pattern. The other 

sub-category of the uncontrolled mobility pattern is predictable movement, 

where mobile sinks move according to a certain strategic plan or along a given 

trail [91]. For example, mobile sinks carried on shuttles or airplanes follow 

the trajectories of the means of transportation which have been routed and 

scheduled. This pre-defined mobility, though not usually planned for achiev­

ing specific goals of network performance, can be utilized to notify the future 
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locations of a sink and to arrange data routing in advance to avoid unexpected 

route changes and data loss. (2) Under the controlled mobility pattern, sinks 

are controlled to move, stop, and sojourn in the monitoring region, and their 

trajectories are to be found consisting of a series of sojourn locations together 

with the sojourn time at each of these locations [58, 81, 90, 93,101]. The sinks 

can be attached to vehicles or people that follow instructions to move within 

the monitoring region. The first attempt at controlled mobility was made by 

Gandham et al. in [32], and an ILP (Integer Linear Program) model was stud­

ied to determine the locations of multiple mobile sinks, aiming at minimizing 

the maximum energy consumption among nodes. Later, Luo et al. [63] for­

mulated the network lifetime maximization problem as a min-max problem, 

under the simplified hypothesis that all sensors are uniformly deployed in a 

circle region. Wang et al [90] considered a grid network and studied a joint 

optimization problem of determining the sink trajectory and its sojourn time 

at certain deployed nodes so that the network lifetime is maximized. Basagni 

et al. [15] have incorporated two bottleneck constraints on-the mobile sink: the 

maximum distance between its two consecutive stops and the minimum so­

journ time at each stop. Liang et al. [58] recently considered an additional con­

straint on the length of the mobile sink trajectory and investigated the length­

constrained trajectory finding problem. The controlled mobility pattern is su­

perior to the uncontrolled pattern in improving network performance such 

as network lifetime [32], data delivery latency [9], and traffic balance [58], by 

manipulating and customizing sinks movements. For example, a controlled 

mobile sink can reach a sensor node before buffer overflow occurs at tfus node 

to avoid data loss, or before a pre-defined deadline to ensure the required data 

delivery latency [9], which can hardly be achieved by uncontrolled mobile 

sinks. Beneficial to network performance though it is, dealing with the con­

trolled mobility is more challenging due to high dynamics and constraint fac­

tors [58]. 
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More flexible data collection modes are available in a mobile-sink WSN, 

compared with the traditional many-to-one data routing mechanism in the 

conventional WSN with only one static sink. The data collection modes are 

classified into three modes: one-hop mode, multi-hop mode, and hybrid mode. 

(1) In the one-hop mode, data is buffered at individual nodes and collected 

when a sink moves into the transmission ranges of the nodes [81]. The one­

hop data collection is the most energy efficient since no data relay is engaged, 

it however suffers from the delivery latency, which consists of two segments. 

One is the time for data to be collected by sinks after being generated at nodes. 

The other is the time for data to be delivered from sinks to the monitoring cen­

ter, which can be neglected if mobile sinks forward data immediately after they 

receive them. (2) In the multi-hop mode, mobile sinks collect data generated 

from all nodes at the same time via multi-hop relay [58]. That is, by visiting 

and communicating with only one node, a mobile sink is able to gather data 

from all the other nodes. Such data collection spots are referred to as sink so­

journ locations and all these locations form the trajectory of the mobile sink. 

This mode nunirnizes data latency at the expense of a shortened network life­

time due to the energ imbalance issue - nodes close to sink sojourn locations 

are hea il loaded. To mitigate this issue, sink sojourn locations are preferred 

to be dispersed o er the network instead of being intensi ely distributed, and 

thus a oid frequent routing updates at nodes and corresponding energy o er­

head for message exchange. (3) In the h brid mode, sinks isit a subset of 

nodes, referred to as o-atei ay [98, 101] or rendezvous points [93], from each of 

, hich inks collect data generated from a section of nodes in the network. 

ultiple gate a rs need to be isited so that the mobile sink can collect data 

generated from all nodes. This mode eliminates individual node visiting in 

the one-hop mode and alle, iates unbalanced enerb consumption under the 

multi-hop mode, thereb achieving a fine trade-off between data latenc and 

neh ork lifetime. 
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1.4.3 Network Throughput Optimization with Minimal Ser­

vice Cost 

Network throughput is defined as the volume of data that can flow through 

a network within a given period. It is usually measured in bits per second 

(bit/s or bps) or data packets every pre-defined interval. In this thesis, we 

define network throughput as the amount of data received by the monitoring 

center within a specified period. The throughput is compromised by unreli­

able wireless data transmission in the WSN, and an obvious solution is data 

retransmission, which was originally proposed for wired networks. Retrans­

mission occurs more often in wireless networks than in wired networks, and 

multiple routing protocols designed for wired networks have been amended 

accordingly. For example, the non-congestion loss from the packet sender is 

hidden [12, 17], and the sender is adapted to realize that the data loss is not 

mainly due to congestion [48]. Another strategy is multi-path routing where 

data is routed through multiple paths with potentially high reliability [82]. 

Multi-path routing does not necessarily cause increased energy consumption 

because it can be superior to the shortest path routing in terms of the total 

number of transmissions required to deliver data successfully to the destina­

tion [27]. Though retransmission and multi-path strategies improve network 

throughput to some extent, data loss is still unavoidable in unreliable wireless 

sensor netvvorks. 

The reliability of links in the WS has a great impact on network through­

put. A sensor network with robust links delivers a large network throughput if 

data is always routed through the most reliable path. However, it is hard to tell 

a path reliability in advance, because the real-time link quality is not known 

till link failures ha e in fact occurred. To deal with this issue, researchers have 

studied predicting link reliability, and the related work can be classified into 

three categories based on the type of parameters that they study for prediction. 
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Studies in the first category used hardware parameters (e.g., RSSI, SNR) to de­

tect physical states of a link and predict its reliability [23,31]. These hardware­

based parameters can be obtained quickly and inexpensively. However, the 

accuracy of such prediction is low because the parameters are only updated 

when a packet is well received, and even they are successfully updated, the 

link reliability cannot be fully reflected. In the second category [18], software­

based parameters (e.g., PRR, ETX) are calculated according to the number of 

transmitted/received packets. These parameters are able to reflect link reli­

ability more accurately compared with hardware-based parameters, yet high 

calculation overhead is incurred with low agility. The third category is a hy­

brid of the first two, using both hardware and software based parameters and 

making the best use of their advantages. In addition to studying parameters, 

research on link prediction utilized the temporal and spatial correlation in link 

quality [13,30,66]. For example, Bas et al. [13] applied statistical channel mod­

els to studying spatial and temporal characteristics of link quality under vari­

ous environments with corresponding metrics. They modelled link temporal 

correlation by a sinusoidal correlation function and showed the dependency 

of the function on the average link quality. 

In addition to reliability of individual links, the routing structure also plays 

an important role in determining network throughput. For example, in a net­

work consisting of links with uniform reliability, the larger the average num­

ber of hops between data sources and destinations, the lower the successful 

data delivery rate and the smaller the network throughput. The problem of 

reliable data routing has been investigated over the last decade [66,83,87]. Re­

searchers have been studying the design of reliable data routing protocol with 

statistical or estimated link reliability information [66,100,102] . Meier et al. [66] 

conducted extensive experiments to analyze link reliability information statis­

tically, based on which they devised a data routing strategy. Related studies 

on data transmission in unreliable WSNs also include network transport pro-
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tocols which improve the end-to-end data transmission reliability [10, 11, 79], 

and routing protocols that find more reliable data forwarding [62, 105, 109]. 

One popular track is the hop-by-hop error recovery [83, 87]. Instead of only 

using the final destination node to detect data loss and request retransmis­

sion, intermediate nodes also track data loss. This is efficient in resource cost 

on end-to-end data recovery, which grows exponentially with the increase 

in source-destination distance. Wan [87] claimed that loss detection and re­

covery were preferred to be limited to a small number of hops (ideally one), 

and presented a simple, scalable, and robust transport protocol PSFQ (Pump 

Slowly, Fetch Quickly) to find reliable data transmission in WSNs. Another 

track focuses on routing protocol design for the network throughput improve­

ment [62, 105,109]. Ye et al. [105] provided a robust data delivery protocol in 

which each node keeps a cost for forwarding a packet along a certain path 

to the sink, and it is the receiver, not the sender, to decide whether to relay a 

packet by comparing its cost with that of the sender. Loh [62] used two metrics 

to manage data routing, and the proposed routing protocol supports reliable 

data delivery and low latency at the same time. 

The service cost of transferring data by the employment of a third party 

network is proposed in this thesis for the first time. Given a certain network 

throughput, the amount of service cost depends on the charging strategy of the 

servi ce provider (telecommunication company). It is usually charged on the 

basis of a specified charging period, such as fortnightly or monthly, with the 

fixed+penalty cost model which is widely adopted in cellphone and home­

use broadband service nowadays. The cost model consists of a fixed cost for 

a certain data quota w ithin the charging period, and a penalty cost applied to 

any data usage exceeding the quota during this period. In a WSN for remote 

monitoring, such a fixed+penalty model is applied to each sink and the service 

cost is the sum of costs on sinks in the WSN. 

The maximization of network throughput contradicts the minimization of 
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service cost. Intuitively, sending all sensed data to the monitoring center pro­

vides the highest network throughput yet tends to incur very high service cost; 

whereas no data transmission through the third party network results in zero 

service cost with nil network throughput. Thus, the highest network through­

put and lowest service cost cannot be achieved simultaneously. And the trade­

off between the two metrics is non-trivial. For example, a larger throughput 

does not necessarily correspond to a higher service cost, and vice versa. Both 

the amount of network throughput and service cost are influenced by the num­

ber of sinks, their locations, and the volume of data relayed through individual 

sinks. On the one hand, an appropriate number of sinks deployed at favorable 

locations in the network would increase end-to-end data delivery reliability, 

and lead to a large network throughput. At the same time, the service cost 

is not necessarily to be high, which is comprised by moderate fixed costs and 

little penalty if the data relay workload is properly arranged among sinks. On 

the other hand, undesirable sink deployment and data routing would reduce 

network throughput with undiminished service cost. 

1.5 Research Aims of This Thesis 

This thesis aims to develop techniques and approaches for the deployment 

of WSNs to maintain long-lasting, high-quality, low-cost remote monitoring. 

Specifically, we study the network lifetime prolongation by exploring multi­

sink placement and assignment, monitoring quality maximization in the mobile­

sink WSN, and optimization of network throughput and service cost of remote 

data transfer. The research aims of this thesis are listed as follows. 

• Multi-sink placement is explored to extend the network lifetime, with 

two problems to be addressed. The first one is how many sinks need to 

be deployed and where to deploy them. An increased number of sinks 
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reduces the average number of hops between a sensor node and a sink, 

thereby decreasing the energy consumed on multi-hop data routing and 

improving data delivery robustness. However, such improvement in 

network performance is at the expense of an increased cost, since a sink 

is usually very costly. In addition to the number of sinks, their position­

ing has a great impact on network performance, and needs to be studied 

along with the constraint of any physical barrier in the deployed envi­

ronment. Therefore, we need to explore the trade-off between network 

lifetime and the number of sinks, and determine the optimal locations 

of the sinks subject to environmental constraints. The second problem 

is how to route data from nodes to the deployed sinks. For energy ef­

ficiency, we need to properly allocate nodes and route their data to the 

sinks. The data relay workload among nodes that are directly connected 

to the sinks should be balanced to mitigate the energy bottleneck issue. 

• Multi-sink assignment is studied with the following three aims. First, the 

energy cost of nodes is to be modelled. In a homogeneous WSN, a node 

is assigned to work in either the sink mode or the normal mode, and it 

transits between the two modes within the network lifetime. To enable 

the two working modes at a single sensor, a supportive architecture is 

to be designed and mode transition needs to be discussed. Based on the 

architecture, the energy consumption components of nodes in different 

modes are to be analyzed and formulated. Second, a subset of nodes 
. . 

should be identified and assigned as sinks. Since a node in the sink mode 

depletes energy much faster than that in the normal node, a mechanism 

is to be devised to choose an appropriate set of sinks with the objective 

of balancing the energy consumption throughout the network. Third, 

a sink-rotation strategy is to be developed. Rotating the set of sinks is 

beneficial to mitigating the energy imbalance issue yet frequent rotation 
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results in energy overhead in message exchange and shorten the network 

lifetime. The rotation mechanism (e.g., periodic or irregular with to-be­

determined intervals) and the rotation interval are to be determined. 

• The quality of monitoring a region is to be maximized under the mobile­

sink scenario, which involves three issues to be dealt with. First and 

foremost, monitoring quality should be formulated. This is determined 

by not only the amount of received data but also the sufficiency of these 

data to reflect the situation of the monitored region. A large volume of 

redundant data is less informative than a smaller amount of represen­

tative data. Thus, a subset of all sensed data is to be chosen so that the 

monitored situation is most accurately reflected, subject to the amount of 

data that can be collected by the mobile sink. Next, the mobile sink is to 

be scheduled to collect the chosen representative data by visiting selected 

nodes in the WSN. Accordingly, the data routing from these nodes to the 

mobile sink is to be found. Lastly, the missing data can be recovered by 

the received data if there exists a correlation amongst sensed data and if 

such correlation can be explored. 

• The trajectory of a mobile sink is to be found considering the following 

constraints. (1) Travelling region. The mobile sink either moves along a 

pre-defined trajectory [101] or within a given area [98]. (2) Sojourn loca­

tions. The mobile sink only stops at certain locations instead of anywhere 

in the monitoring region [32]. Or, it must visit a set of given locations at 

specified moments [98]. (3) Travelling distance. The mobile sink, usually 

carried by a vehicle powered by petrol or electricity, is only able to travel 

before the power runs out [58]. (4) Maximum distance between two con­

secutive stops. The mobile sink moves at most a specified distance away 

from its current_sojourn location to reduce the possibility of data loss and 

buffer overflow [58,64]. (5) Minimum sojourn time at each stop. The mo-
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bile sink should avoid changing locations too frequently considering the 

overhead of data routing reconstruction and message exchange. Subject 

to one or more of the above constraints, the problem of finding a trajec­

tory is very difficult and effective algorithms need to be developed. 

• A fine trade-off between network throughput and service cost needs to 

be explored. The impact of the network throughput on the service cost 

should be researched. Both the amount of throughput and cost are de­

pendent on how data are routed from source nodes to the sinks. On the 

one hand, data should be routed along the most reliable paths, aiming at 

minimizing data loss. On the other hand, data routed to individual sinks 

should be balanced to avoid exceeding quotas at some sinks with penal­

ties being applied, while quotas at some other sinks are far from being 

fully utilized and the pre-paid fixed costs are wasted in a sense. Due to 

the contradiction in achieving the optimization of the two performance 

metrics, their balance is to be discussed in pre-defined scenarios with 

specified objectives and constraints. Under a specific scenario, the num­

ber of sinks is to be determined and the workload at individual sinks is 

to be adjusted. 

1.6 Thesis Contributions 

The main contribution of the thesis is to systematically study the use of wire­

less sensor networks for remote monitoring, including proposing new con­

cepts, formulating non-trivial optimization problems, and developing no el 

approaches to solve them. The proposed techniques balance energy consump­

tion throughout a WS to prolong the network lifetime significantly, route 

data strategically to reduce data loss and improve the monitoring quality con­

siderably, and adjust data relay workload at individual sinks to optimize net-
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work throughput and service cost. Specifically, the thesis contributions are 

listed as follows. 

• Remote monitoring is proposed for the surveillance of a remote region 

of interest, with monitored phenomena sent to its data monitoring cen­

ter, which is located geographically distant from the monitored region, 

by the deployment of a WSN in the region and the employment of a 

third party communication service for remote data transfer. Under this 

scenario, key issues are addressed and three optimization problems are 

studied in this thesis: network lifetime prolongation, monitoring qual­

ity maximization, and network throughput optimization with minimal 

service cost. 

• Multiple sinks are explored for network lifetime prolongation. The multi­

sink arrangement problem is studied in Chapter 2. Nodes are assigned 

as sinks dynamically during the network lifetime to balance energy con­

sumption throughout the WSN. The supportive sensor architecture is de­

signed and the energy cost models of nodes working in various modes 

are formulated with different identified energy consumption components. 

A scalable algorithm is developed to determine the appropriate set of 

sinks and schedule the sink rotation. During each rotation, a set of nodes 

is identified to be switched off for further energy conservation. The 

proposed algorithm for the dynamic sink assignment significantly pro­

longs network lifetime while effectively maintaining a required network 

throughput. Additionally, the multi-sink placement problem is investi­

gated in Chapter 2, where sinks are more powerful nodes and are strate­

gically deployed in the network. The proposed strategy properly trades­

off the number of sinks and the network lifetime. Specifically, it identifies 

the optimal number of sinks, finds the most favorable locations for sink 

placement, and designs a data routing protocol for energy consumption 
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balance among nodes. 

• The monitoring quality maximization problem in a mobile-sink WSN is 

explored in Chapter 3, where the motion of the sink is constrained and 

to be arranged. The data loss during transmission due to the limited 

node-sink communication time is investigated and the data correlation 

is studied to recover the missing data by the received data. Based on 

the analysis of data loss and the data correlation, monitoring quality is 

formulated for the first time. For the monitoring quality maximization 

problem, a three-stage heuristic is devised, which selects nodes whose 

sensed data can reflect the situation of the monitored region most ac­

curately, finds a trajectory meeting the motion constraints for the mobile 

sink, and schedules energy-efficient data routing from the selected nodes 

to the sink. The impact of the sink motion constraints on network per­

formance is also investigated through experiments. 

• Network throughput is defined and service cost is -modelled in Chap­

ter 4. The optimization of these two performance metrics is addressed in 

two scenarios with specified objectives and constraints. In the budget­

oriented scenario, the service cost is to be minimized with guaranteed 

network throughput. A heuristic is devised for it by identifying the most 

favorable number of sinks and optimizing the data routing. The perfor­

mance of the proposed heuristic is analyzed statistically and proven to be 

appealing. In the throughput-oriented scenario, the network throughput 

is to be maximized with minimal service cost. An approximate algorithm 

is developed, which finds the most reliable data routing in an unreliable 

WSN and controls the service cost at each sink. The delivered solution is 

proven to be fractional of the optimum. 

• For each proposed algorithm, extensive experiments by simulation are 

conducted. The impacts of constraint parameters on the algorithm per-
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formance are studied and the effectiveness of the proposed algorithms 

is validated in improving network performance in various aspects. The 

performance of the proposed algorithms is compared with that of com­

parable existing approaches and their superiority is demonstrated. 

1. 7 Thesis Overview 

The remainder of the thesis is organized as follows. Chapter 2 analyzes energy 

cost models of nodes in WSNs, discusses the problems of multi-sink placement 

and assignment in two types of WSNs, and proposes solutions for them sep­

arately. Chapter 3 focuses on maximizing monitoring quality when using a 

mobile sink for data collection in the WSN. It also studies the impact of sink 

motion constraints on network performance. Chapter 4 models the perfor­

mance metrics to evaluate the use of WSNs for remote monitoring and formu­

lates optimization problems under different scenarios, for which algorithms 

with guaranteed performance are developed accordingly. Chapter 5 summa­

rizes the thesis and proposes future work. 



Chapter 2 

Network Lifetime Maximization by 

Multiple Sinks 

2.1 Introduction 

Multi-sink sensor networks are proposed to improve network performance in­

cluding lifetime [99],, scalability [69], average data delivery latency [108], sys­

tem throughput [75], and network connectivity [29]. Particularly, using multi-
-

ple sinks is proven to be effective in mitigating the energy imbalance problem 

by distributing data routing workload more evenly throughout the network. 

In this chapter,, we consider deploying multiple sinks for data collection in a 

WS , and study network lifetime maximization of such a multi-sink WS . To 

be able to communicate with both the sensor nodes,, which typically work on 

low-power radios (e.g.,, IEEE 802.15.4), and third party facilities, which usually 

employ high-bandwidth radios (e.g., 3G or 4G),, the sinks must be equipped 

with dual radios: a low-power radio for local communication with sensor 

nodes in the WS , and a high-bandwidth radio which is compatible with the 

third party communication protocol. We first analyze the energy cost mod­

els of sinks and sensor nodes,, and define the multi-sink assignment problem 

and the multi~sink placement problem m homogeneous and heterogeneous 

WS 's respectively,, both with the objective of network lifetime prolongation. 

We then provide heuristics for them. We finally conduct extensive experiments 

25 
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by simulation to evaluate the proposed algorithms and investigate the impact 

of different constraint parameters on the network lifetime. 

The multi-sink assignment problem in homogeneous WSNs is to dynam­

ically assign and rotate nodes to work as sinks, aiming at balancing energy 

consumption and prolonging network lifetime. It has been extensively stud­

ied in the traditional WSN [38, 40, 107]. Low-energy adaptive clustering hi­

erarchy (LEACH) proposed by Heinzelman et al. in [40] is one of the most 

well-known dynamic sink assignment protocols. Based on the assumption 

that the network lifetime consists of a number of rounds, LEACH randomly 

selects a fixed number of sensor nodes as cluster heads in different rounds. 

Meanwhile, the radio components of non-cluster-head nodes are turned off all 

the time except during data transmission, in order to minimize the energy dis­

sipated at individual sensor nodes. Each node decides whether to become a 

cluster head independently according to the suggested percentage of cluster 

heads in the network and the number of times it has been selected as cluster 

head so far. LEACH has been improved by later works [38,107]. For example, 

Handy et al. [38] modified LEACH by replacing the stochastic cluster head se­

lection with deterministic selection. They analyzed bad-case-scenarios where 

all cluster heads are located near the network edges and data from other sen­

sor nodes have to bridge long routes to reach the cluster heads. They also 

proposed a new threshold for each node to become a cluster head by consid­

ering its current residual energy. The modified strategy was shown to increase 

the network lifetime delivered by LEACH by 30%. 

The dynamic multi-sink assignment problem studied in this chapter differs 

from the related work in several aspects, including energy cost modet net­

work lifetime definition, sink selection strategy, and data routing approach. 

With two types of radios embedded on each node, the energy consumption 

components on individual nodes vary from each other, which depend on their 

working modes. Another unique feature is that we incorporate network through-
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put as a constraint to the objectiv e of network lifetime maximization, and ex­

plo:re a fine trade-off between them. In addition, w e take residual energy at 

individual sensor nodes into consideration when choosing sinks, in the hope 

of balancing energy consumption more ev enly tmoughout the network. 

The multi-sink placement problem in heterogeneous WS s is to identify 

the optimal numJbeT of sinks and find their locations with the objective of 

di tributing data :rielay workload more evenly in the network. Previous re­

searches on the multi~sink placement problem aimed to improve network per­

fiormance in various aspects mduding network lifetime [99], data delivery la­

tency [72/f 10 ], n etwork scalability [691, and system throughput [75]. Among 

them,, fue . tudies that focused on network lifetime usually assumed that the 

numbeT of sn r is pr~de£ned 1[16,,51.,69,.75] or bounded by a given value [32]. 

A an example,, Bogdanov et .al. [16] con idered the multiple sink placement 

p[oblem under diffiemenit: data generation rates.. They dealt with several spe­

cial oommunication graphs by propos:ing h euristic algorithm . With the ob­

jective of maximizinP- network lifefune, they aimed to find the optimal posi­

tioning of mrutiple , mks ithrcm (Th the network flow teclurique, assuming that 

the po " ilble locations of inks were exactly the locations of the sensors. Qiu et 

ru. [['. 5] p110po ed two fu11ear pvogramnring solution by mcorpoTating an inter­

fe:['ence model and a fault tolerance model into the problem formulation. Kim 

et al. [[51] propo . ed how to place multiple inks and how to :route data traffic 

from en ·or node · ito the . e :s:mk .. 'The p:[10posed algorithm imp:roved the net­

worl r lifetime w ell as the fain1e . . Kim et al. [50] tudied the ame problem 

by employmP- linear proera:rn:mm and K-means clu tering techniques, under 

ilhe oonstraint . of the Tie idual energy of ensor, , the data generation rate, and 

potential mk locations. Gandham et al. [32] optimized the placement of ink 

by formnlatin° the problem as an integer lineaJt' p:r\Ogramming (ILP}, aiming 

at :rn:imm:izma-the maximum energy oorummption amono- ensors while min­

imiizi:rnc:; ithe it:otal en.e:r:gy cos1t on communication. Another track of re earch 
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related to the multi-sink placement is seeking the minimal number of relay 

nodes in WSNs [88,89,95]. Xuetnl. [95] aimed to find the minimum number of 

relay nodes and their locations to meet the constraints of network lifetime and 

connectivity. This problem was shown to be equivalent to finding the mini­

mum set covering, thus NP-hard, and a sub-optimal solution was proposed. 

Their later work [88, 89] sh1died the smallest number of relay nodes for rout­

ing traffic balance. Experimental results showed that the proposed approach 

provides near optimal solutions in a number of scenarios. 

Different from the previous work about the multi-sink placement problem, 

we study the identification of sink positions from a given location space, and 

devise a routing protocol with the constraint of an upper-bound on the number 

of hops between each node and its nearest deployed sink. We jointly deal with 

the optimal number of sinks for placement and the data routing for network 

lifetime maximization, subject to the mentioned constraints. Moreover, the 

proposed data routing is based on tree struchue, due to the difficulty of flow 

control [16, 75] at each node at each time instance. 

The remainder of this chapter is organized as follows. Section 2.2 formu­

lates the energy cost model and defines the multi-sink assignment and place­

ment problems. Section 2.3 and 2.4 propose corresponding algorithms for 

the network lifetime prolongation problems. Section 2.5 includes a series of 

simulations to validate the proposed algorithms and the experimental res1.1.lts. 

Section 2.6 concludes this chapter. 

2.2 System Model and Problem Definition 

We con ider a wirele en or network G(V, E), where V i the et of ensor 

nodes with n = I VI, and E is the set of links between node . Sen or node 

h ave identical data generation rate r g and their location are tationary and 

kn wn a priori. Each node in V is equipped with at lea tone low-power radio 
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interface, and the nodes with only low-power radios embedded are referred 

to as single-radio nodes. Some nodes (maybe all) in V are equipped with high­

bandwidth radios and they are referred to as dual-radio nodes, which can work 

on either type of the radios, or both of them. The transmission range of the 

low-power radio is r and there is a link between two nodes if they are within r 

of each other. 
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other no des 
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(b) Dual-radio node architecture 

Locals ensed 
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Figure 2.1: Illustration of node architectures 

The architectures of single-radio nodes and dual-radio nodes are illustrated 

in Fig. 2.1. A single-radio node has two components, MCU for sensing and 

low-power radio for local communication with other nodes in the sensor net­

work. Whereas a dual-radio node has four components including MCU, low­

pow er radio, flash memory buffer for data temporary storage, and 

high-bandw idth radio for data transmission to the third party network. Dual­

radio nodes w ith both radios on are acting as sinks, which collect data from all 

the other nodes via tree-based routing structure, buffer the data temporally, 

and further transmit them to the third party network. 
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We assume that no buffer overflow occurs during the network lifetime and 

there is no data aggregation at each relay node when proceeding data routing. 

To ensure the data freshness, we define the data delivery delay as the time for 

data to be received by the monitoring center after being generated, and the 

delay is required to be bounded by a user-specified threshold D, with D > 0. 

We assume that data transmission time (from a node to a sink, and from a sink 

to the monitoring center via the third party network) is negligible compared 

with the time for data buffered at a sink. We also assume the data transmission 

within the sensor network and through the third party network reliable. 

The powers of different radios vary greatly thus the energy consumption 

at individual nodes depends on the radios that they are working on. In this 

chapter, the low-power radio adopts 5% duty-cycle, which is a typical setting 

in the MAC layer [73]. Whereas the high-bandwidth radio follows the 'not­

always-on' model, where it stays in the sleep mode most of the time, and is 

only activated on a sink when necessary. The energy overhead caused by such 

sleep-to-active mode transition at a high-bandwidth radio is non-negligible 

and must be taken into account, denoted by £0 . 

The energy consumption of a node working only on low-power radio, 

which could be either a single-radio node or a dual-radio node with only low­

power radio on, is dominated by energy cost on data reception and transmis­

sion over the low-power radio, and the energy consumption per second of 

such a node v is 

ec (s) (v) = Pz · rg · d(v) , (2.1) 

where Pz is the power-per-bit (PPB) of the low-power radio, and d(v) is the 

number of descendants of node v in the routing tree (including itself), which 

send their data to a sink through v . 

The energy consumption of a sink (a dual-radio node with both radios 
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on) is constituted by four components: (i) data reception over the low-power 

radio; (ii) buffer operation; (iii) data transmission over the high-bandwidth 

radio; and (iv) high-bandwidth radio mode transition. The first three com­

ponents are determined by the amount of data relayed by a sink, while the 

last component depends on the frequency of the sleep-to-active mode tran­

sition at the high-bandwidth radio. To meet the data delay requirement, the 

high-bandwidth radio at a sink only needs to be activated every D to send 

the buffered data away, while staying in the sleep mode rest of the time. The 

energy consumption per second of a sink v is 

(2.2) 

where Pb and Ph are respectively the PPBs of buffer operation and the high­

bandwidth radio. 

Thus, for a node v E V, its per time unit energy consumption is 

ec(d) ( v) if vis a sink, 

ec(v) = ec(s) ( v) if vis a node with only the low-power radio on, (2.3) 

0 if vis not working on either radio. 

Network lifetime is defined as the time before the monitoring center is no 

longer able to receive a specified amount of data from each time of data trans­

mission, and it is denoted by L. Such pre-defined amount of data required 

to be received by the monitoring center-at each time of data transmission is 
. ' 

referred to as network throughput. Applications have different throughput re-

quirem~nts, some of which strictly require to receive all the sensed data while 

some others only concern general situation of the monitored region and toler­

ate data loss. 

Given a sensor network G(V, E) with multiple sinks that have access to the 

third party network for remote data transfer, the network lifetime maximiza-
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hon problem is considered in the following two scenarios. (1) In a homoge­

neous WSN, where nodes are identical and every node could become a sink 

during the network lifetime, data from at least a percentage of all nodes is re­

quired to be received by the monitoring center at least every period of D, with 

0 < a < l, and D > 0. Due to the fact that the power of high-bandwidth 

radio will drain sinks' batteries quickly and shorten the network lifetime, en­

ergy consumption among nodes needs to be balanced to prolong the network 

lifetime. Also, to guarantee the required network throughput, adequate num­

ber of nodes should be included in the routing trees rooted at the sinks. The 

throughput guaranteed network lifetime maximization problem is to appropriately 

arrange the two radios at individual nodes for the identification of a proper 

set of sinks out of V and the delay-constrained data forwarding from sinks 

to the remote monitoring center, such that the network lifetime is maximized, 

subject to that data from at least a percentage of nodes should be routed to 

the sinks. (2) In a heterogeneous WSN, where energy unconstrained sinks are 

to be placed at locations selected from a given set of potential sink locations S, 

all sensed data is required to be sent from the sources to the sinks within a 

specified number of hops h. The parameter his introduced to upper-bound 

the number of hops between each pair of data source and destination to avoid 

long data delivery delay and low end-to-end reliability. The h-hop constrained 

multiple sink placement problem is to place the optimal number of sinks at prefer­

able locations in S such that the number of hops between each node and its 

nearest sink is no more than h, meanwhile, the network lifetime is maximized 

under this sink deployment. 

To solve the network lifetime maximization problems, we need to jointly 

solve the following issues: (i) determining the optimal number of sinks and 

their locations in G, (ii) scheduling radios at sinks to meet the data delivery 

latency constraint D, (iii) devising a routing forest consisting of trees rooted 

at the identified sinks spanning selected or all the deployed nodes, and (iv) 



§2.3 Multiple Sink Assignment 33 

updating the set of sinks and the routing forest when necessary, such that the 

resultant network lifetime is maximized with the required network through­

put or the h-hop constraint met. 

2.3 Multiple Sink Assignment 

We first deal with the throughput guaranteed network lifetime maximization 

problem in a homogeneous WSN, where every sensor node is equipped with 

dual radios and could become a sink during the network lifetime. There are 

applications which require to receive a certain amount of data to for a general 

understanding of the monitoring region, such as crop monitoring and envi­

ronmental surveillance. Let O < a < 1 be the network throughput thresh­

old, which indicates that data from at least a percentage of nodes need to be 

transmitted to the sinks. The n dual-radio nodes are classified into two cate­

gories: active nodes that send their data to the sinks (sinks are always active 
-

nodes), and inactive nodes that do not need to send data and thus are switched 

to the sleep mode for energy conservation. Sinks have two radios on and ac­

tive nodes have only the low-power radio on. Inactive nodes do not work on 

any radio. The per time unit energy consumption of sinks and the two types 

of nodes has been formulated in Eq. (2.3). 

The network lifetime in such a homogeneous network is the time before 

the monitoring center no longer receives data from a percentage of nodes. Re­

ferring to the energy cost models analyzed in the previous section, sinks con­

sume more energy than the other nodes thus sinks are to be rotated among the 

n nodes during the network operation to distribute the energy consumption 

more evenly and prolong the network lifetime accordingly. We consider a peri­

odic rotation mechanism, by assuming that the network lifetime is comprised 

of R + 1 rounds and sinks are re-selected at the beginning of every round. The 

first R rounds are with equal duration T, and the last round is with duration 
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T 1 < T, i.e ., L = R · T + T 1
, shown in Fig. 2.2. We assume that the number of 

Round 
1 

Round 
2 

Network Lifetime: L 

T 

• • • I Rournd I • • • Round 
R 

Figure 2.2: R + 1 rounds in network lifetime 

T' {<t) 

Round I 
R+1 

sinks is fixed constant m in each round during the network lifetime. Given a 

set of sinks S, let V(r) ( s) be the set of nodes transmitting data to a sinks E S in 

round r. And Us ES V(r) (s) is the set of active nodes in round r. Denote by er( v) 

the residual energy of node v . In the first R rounds, each active node must 

have enough residual energy to survive at least the duration of T, that is, 

er(v) 
-(-) > T, foranyv E LJ V(r) (s), 1 < r < R. ec v 

sE S 

(2.4) 

::~~~ is the residual lifetime of node v. Whereas in round R + 1, some active 

nodes run out of energy and the duration of last round T 1 is the shortest resid­

ual lifetime among the active nodes. 

1 . { er ( v) I LJ ( ) } T = min - (-) V E v (R+l ) s I ec v 
5 SE 

(2.5) 

and T
1 < T. Also, in order to guarantee the required network throughput 

throughout the network lifetime, the number of active nodes must be at least 

I ex· n l in each round. · 

[ IV(r)(s)\ > 1ex·nl, 1 < r < R+l. (2 .6) 
sES 

With given network throughput threshold ex, data delivery delay bound 

D, the number of sinks m, and the duration of each round Tin the network 

lifetime, the throughput guaranteed network lifetime maximization problem 
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is to identify m sinks every period of T to relay data from at least a percentage 

of nodes in the network to the third party network at each time interval D, 

such that the network lifetime is maximized. The data delay requirement can 

be met by activating the high-bandwidth radio at each sink every D to flush 

the buffered data. The problem is thus equivalent to identifying m sinks out 

of the n nodes and finding an energy-efficient routing forest consisting of m 

trees rooted at the identified sinks to route data to the monitoring center for 

each round such that network lifetime is maximized, subject to the network 

throughput requirement being guaranteed in each round. 

To achieve the objective, we need to (i) identify an appropriate set of m 

sinks among the n nodes every period of T to balance energy consumption 

throughout the network, (ii) choose active nodes within each round to meet the 

throughput requirement all the time, and (iii) route data from the active nodes 

to them sinks energy-efficiently to conserve energy. We provide a heuristic for 

the throughput guaranteed network lifetime maximization problem. Recall 

that the network lifetime consists of a number of rounds with identical dura­

tion as well as the last round with a shorter duration. Maximizing the network 

lifetime is converted to finding the largest number of rounds within the life­

time and the longest duration of the last round. To this end, we first propose 

an energy-efficient data routing mechanism to balance energy consumption 

among nodes, subject to the amount of data routed to the monitoring center 

meeting the throughput requirement. We then determine the network lifetime 

by examining residual energy at nodes as the network operates. 

2.3.1 Routing Forest Establishment 

In this section we design the protocol for data routing within each round of 

the network lifetime. A routing forest is to be established to span at least a 

percentage of nodes in m trees rooted at sinks. We decompose the routing 
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forest establishing problem into three sub-problems: identifying the smallest 

set of active nodes to meet the network throughput requirement, partitioning 

the active nodes into m subsets such that the graph induced by each subset is 

connected, and finding the routing tree in each graph to maximize the residual 

energy among sensors in this graph after the duration of T . 

A set of active nodes is to be identified so that the data generated from them 

can be received by the base station via m sinks to meet the required network 

throughput. Nodes with relatively high residual energy should be chosen ac­

tive so that the energy consumption is more balanced throughout the network, 

while the other nodes with less energy left are turned inactive. Also, in order to 

make sure that these active nodes are able to reach their corresponding sinks, 

the graph induced by the set of active nodes should contain at most m con­

nected components. Otherwise, m sinks will not be adequate to successfully 

relay data from these active nodes to the third party network. This constraint 

is referred to as them-component constraint. 

Let V' be the set of active nodes to be identified. We sort the nodes in V 

by their residual energy in non-increasing order. Let v~, v;, ... v~ be the sorted 

node sequence, where er(vJ > er(v1), l < i < j < n, l < r < R + l. We 

then find the smallest set of active nodes V' consisting of the first imin nodes 

in the sequence, subject to the throughput threshold a and m-component con­

straints. To meet the throughput requirement, imin > I a · n 1- And subject 

to the m-component constraint, the number of connected components in the 

graph should not be greater than m. Let G[V'] be the graph induced by the 

nodes in V', and CC ( G [V' ]) be the number of connected components in G [V' ]. 

CC ( G[V']) should be no greater than m. The active nodes identification prob­

lem is to find the smallest set V' = { v~, ... , v; . } such that imin > J a · n l 
min 

and CC ( G[V']) < m. Here we adopt the binary search to efficiently locate the 

smallest imin subject t.o the two constraints. After imin is found, add the first 

imin nodes from the node sequence to V' to become the active nodes. 
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The set of active nodes V' is then to be partitioned into m subsets, corre­

sponding to them sinks. Assume that there are m' connected components in 

C[V'], where m' < m. Let S = { S1, S2, ... , Sm,} be the collection of vertex 

sets of the m' connected components. If m' = m, the active nodes have al­

ready been in m subsets and no further partition is needed. Otherwise, we 

conduct the partition as follows. We select a set with the largest number of 

vertices, S1 = max{ISil I Si E S, l < i < m'} and remove it from S. We par­

tition graph C[Sz ] induced by S1 into two connected sub-graphs with disjoint 

vertex sets Sll and S12 , such that the difference between the vertex numbers 

in these two sets, denoted by diff = abs( ISll l - ISd), is minimized, where 

Sll U S12 = Sz, Sll n S12 = 0. To this end, we find the minimum-cut in C[Sz ] 

between each pair of nodes s and t E S z, where the removing of edges in the 

minimum cut will partition the original graph into two connected sub-graphs 

with disjoint vertex sets Sll and S12 , and a corresponding value of di ff. Select 

the cut with the smallest value of di ff and remove the edges in this cut from 

C[Sz ] to obtain two vertex sets Sll and S12 . Put Sll and Si2 into F and increase 

the number of connected components m' by 1. This procedure continues until 

m' = m. As a result, active nodes are partitioned in m subsets S1, S2, ... , Sm, 

and m connected graphs Ci = C[Si] induced by Si are obtained, 1 < i < m. 

For each connected graph Ci, a routing tree Ti is to be found such that 

after the duration T, the minimum residual energy among nodes in this graph 

is maximized. Such a routing tree is referred to as the max-min tree. With a 

given a root, building a max~min tree was discussed in [57]. We adopt the 

method in [57] to build a max-min tree Ti(v ) rooted at each vertex v E Ci. The 

lifetime of tree Ti ( v) equals the minimum residual lifetim~ of nodes in the tree, 

L(Ti(v)) = min{ :;~:'.~ I u E Si}- The tree with the longest lifetime is selected as 

the routing tree for nodes in Ci, denoted by Ti, and the root is the sink. That is, 

L(Ti) = max{L(Ti(v )) Iv E Si}. In practice, to save the computation time, we 

only build max-min trees rooted at IS' I nodes with the highest residual energy 
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in Gi, where 1 < k < Si, instead of all vertices. By using the same approach, 

m routing trees T1 , T2, ... , Tm are built in G1, G2, ... , Gm for data collection and 

the corresponding m roots are serving as sinks within this round. 

2.3.2 Network Lifetime Determination 

We then devise an algorithm to determine the network lifetime. The algo­

rithm proceeds iteratively, where each iteration represents a round in the net­

work lifetime. In each round, the routing forest establishment algorithm is first 

called to form m trees for data collection in the current round. Then whether 

or not this round is the last round of network lifetime should be determined. 

Denote by lmin = min{ ::~~~ Iv E V (Ti) , l < i < m} the minimum residual 

lifetime of nodes in these trees, where V (Ti) is the set of nodes in tree Ti. The 

value of lmin is compared with T. (i) If lmin > T, it means no active node will 

use up the residual energy in this round and the network lifetime will not end 

at this stage. The network lifetime Lis increased by T and the residual energy 

of each node v E V is updated as follows, 

er (v) = er (v) - T · ec(v) - e6 , (2.7) 

where e6 is the extra energy cost at each node per round due to the fact that 

the execution of the routing forest establishment algorithm is accompanied 

with exchanging messages between nodes and distributing the results to the 

network. (ii) Otherwise (lmin < T), it means that some active nodes in these m 

routing trees are no longer be able to survive the duration of T and the current 

round is the last round in the network lifetime. Lis increased by T 1 = lmin and 

the algorithm terminates. In the end, the network lifetime Lis delivered. We 

refer to the proposed _heuristic as Dynamic_A.lg and the detailed description 

of the algorithm is in Algorithm 1. 



§2.3 Multiple Sink Assignment 

Algorithm 1: Dynamic_Alg 

Input : G(V, E), a, T, m 
Output: Network lifetime L 

L f-- O; r f-- O; terminate f-- false; 
er( v) f- IE, for each v E V; 
repeat 

rf--r+l; 
/* stage 1: identify the set of active nodes V' * I ; 
Let v~, v;, ... v~ be the node sequence in V sorted in non-increasing 

order of residual energy; 
Binary Search for the smallest set V' = { v~, ... , v; . } such that 

mzn 

imin > I a· Nl and CC( G[V']) < m; 
/* stage 2: partition V' into m subsets*/ ; 
m connected graphs induced by these subsets are obtained, Gi, with 
l < i < m; . 

/* stage 3: build max-min tree in each graph Gi * I ; 

39 

A routing forest consisting of m trees is obtained, Ti, with 1 < i < m; 

lmin f-- min{ ::~~~ J v E V(Ti),1 < i < m}; 

if lmin < T then 

l /* last round*/ ; 
T

1 
f-- lmin; L f-- L + T 1

; 

terminate f-- true ; 

else 

l Lf--L+T; 
Update nodes' energy according to Eq.(2.7); 

until terminate; 

Theorem 2.1. For a dual-radio homogeneous wireless sensor network G(V, E) with 

network throughput threshold a, the throughput guaranteed network lifetime maxi­

mization problem can be solved by algorithm Dynamic_.Alg with complexity 

0( n3 log n) within each duration of the network lifetime, where n is the number of 

nodes in G. 

Proof Algorithm Dynamic_.Alg is conducted every T within the network life­

time, and consists of the following three parts. Finding the number of con­

nected components in a graph is implemented in O(JE J + n), using either 

Breadth-First Search or Depth-First Search. Partitioning active nodes takes 
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O(n3 log n) time [46] . And building a max-min tree rooted at a given node 

takes O (I Eln2 ) time [57] . Thus the complexity of Dynami c.Alg is O(n3 logn). 

□ 

2.4 Multiple Sink Placement 

We now solve the h-hop constrained multiple sink placement problem in 

throughput-oriented applications, where data sensed from all nodes are re­

quired to be transmitted to the remote monitoring center. In WSNs deployed 

for such purpose, sinks equipped with dual radios, adequate battery supplies 

and storages are utilized for data transmission from the sensor network to the 

third party network, while the other nodes are cheap single-radio chips de­

ployed only for data sensing and local transmission. For the sake of simplicity, 

the set V only consists of n single-radio nodes, excluding the sinks whose num­

ber and locations are to be determined. The set of potential sink locations S is 

pre-defined by users, S = {s1, s2, ... , s151}, with ISi < n. In practice, the sink 

potential locations are typically determined by the terrain of the monitoring re­

gion. For instance, it is inappropriate to place a sink at a barrier that obstructs 

the wireless communication between nodes and the sink. Therefore, instead 

of assuming any spot in the monitoring region is suitable for sink placement, 

we define such a set of potential locations S. The hop constraint h quantifies 

the extent of multi-hop routing and trades off between the network lifetime 

and the number of sinks to be placed. A larger h may result in a smaller num­

ber of sinks but will cause higher energy consumption on data relay and a 

shorter network lifetime. On the contrary, the ideal situation for maximizing 

the network lifetime is h = l since each node can transmit its data to a sink 

directly and no data relay is required. Obviously, such an improvement on 

network lifetime is at the cost of using a prohibitively large number of sinks 

if the monitoring region is large and the transmission range of nodes is small. 
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An appropriate value of h can achieve a fine trade-off between the network 

lifetime and the number of sinks. 

The lifetime of such a heterogeneous WSN is the time of the first node's 

failure due to the depletion of its energy [19]. Because the sinks are energy 

unconstrained, the network lifetime is determined by the energy consumption 

of the single-radio nodes in V. Let S' C S be the set of chosen locations for 

sink placement and Ts be the tree rooted at sink s E S'. The energy consump­

tion of sensor nodes on wireless communication per time unit can be obtained 

by Eq. (2.1). Denote by CT(s) the set of children of sink s in Ts, which are 

within the transmission range of s. Nodes in {CT(s) I s E S'} relay data for 

other nodes in the network thus consume energy faster, referred to as the en­

ergy bottleneck nodes. The network lifetime is calculated by the initial energy 

of single-radio nodes IE, and the maximum energy consumption among the 

bottleneck nodes per time unit. 

IE 
L = min{-(- ) Iv E {CT(s) Is E S'} }.-

ec v 
(2.8) 

Maximizing the network lifetime is equivalent to minimizing the maxi­

mum number of descendants of bottleneck nodes in the routing tree rooted 

at each s E S'. In other words, the joint optimization problem is then to iden­

tify a S! C S with the minimum cardinality IS' I such that each node is no 

more than h hops from one of the sinks in S' and meanwhile the maximum 

numb.er of descendants of bottleneck nodes in the routing tree rooted at each 

s E s'· is minimized. To solve this problem, we need to jointly address the 

following two challenges: (i) determining the optimal number of sinks and 

their locations among S for placement so that any node is able to reach at least 

one sink within h hops, and (ii) devising a tree-based routing protocol for data 

transmission from nodes to sinks such that the network lifetime is maximized. 

The h-hop constrained multiple sink placement problem is NP-hard. Con-



42 Network Lifetime Maximization by Multiple Sinks 

sidering one of its special cases where h = 1 and there is no restriction on the 

potential sink locations, the problem becomes the Unit Disk Covering Problem 

(UDCP) that aims to find the minimum number of disks to cover all sensors 

in the network [44]. Assume that the radius of the disk (sink) is identical to 

the transmission range of sensors and a sensor is covered by a disk if they 

are within the transmission range of each other. Since the decision version 

of UDCP is NP-complete [ 44], the problem of concern in this section is NP­

complete, too. 

Due to the difficulty of jointly determining the optimal number of sinks and 

devising a routing protocol for the maximum network lifetime, we propose a 

heuristic instead. We decompose the problem into two sub-problems: finding 

the optimal number of sinks and their locations such that each node can reach 

a sink with no more than h hops; and under such a sink placement, finding 

a load-balanced forest to maximize the network lifetime, in which each sink 

is the root of a routing tree with the depth no more than h. Specifically, the 

heuristic first calculates the set of nodes covered by a sink at each potential 

location subject to the given h-hop constraint. It then identifies a subset of 

sinks and their locations with the minimum cardinality, covering all nodes in 

the network. It finally constructs load-balanced routing trees rooted at the 

chosen sinks for energy-efficient data gathering such that the network lifetime 

is maximized. We detail the heuristic as follows. 

2.4.1 The Optimal Number of Sinks 

We first find the minimum number of locations in S to ensure that all nodes are 

within h hops from at least one of these locations. For a potential sink location 

s E S,letN1 (s) = {u I (u,s) E E,u E V}bethesetofneighboringnodesof 

sink s and Nh (s) be the set of nodes within h hops from sinks, i.e., Nh (s) = 
{ v I the number of hops from v to s is no greater than h }. The calculation of 
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Nh (s) for each s E Sis as follows. A Breadth-First-Search (BFS) tree rooted at s 

is constructed, which is expanded layer by layer. The expansion will terminate 

when it reaches layer h. The set of nodes contained in this BFS tree is N h ( s). 

Let C = { N h ( s) I s E S} be the collection of sets derived by the set S. 

The problem of placing the optimal number of sinks at locations in S such 

that each node can reach one of the chosen sinks with no more than h hops 

is eq~ivalent to finding a sub-collection S' C S such that IS' I is minimized 

and UsES' Nh(s) = V. This is a set cover problem, which is NP-complete [22]. 

Instead, a greedy heuristic will be employed and it delivers an approximate 

solution to the problem with the approximation ratio of O(log B), where B = 

maxsES' {INh(s) I} < n. For convenience, a node vis referred to be covered by 

a sinks if the number of hops from v to s is no more than h; otherwise, vis 

uncovered bys. If a given node v cannot be covered by any sink in S', then 

the node is uncovered. The proposed algorithm proceeds iteratively. Initially, 

all nodes in V are uncovered and the set of chosen sinks S' is empty. The 

algorithm iteratively selects a sinks such that the set Niz(s) from C covering 

as many uncovered nodes as possible. Once a set Nh (s) is chosen, it will be 

removed from C. The sink s and its current location will be added to set S'. 

The algorithm continues until all nodes in V are covered by the sinks in S'. 

The proposed algorithm for finding the optimal number of sinks is referred to 

as F ind_Opt imal_S ink, and its detailed description is given in Algorithm 2. 

2.4.2 . Energy-efficient Data Routing 

Having placed sinks at S', we now devise an energy efficient tree-based rout­

ing protocol for data collection to maximize the network lifetime. Follow­

ing Eq. (2.8), maximizing the network lifetime is equivalent to minimizing 

the maximum energy consumption among bottleneck nodes, while the en­

ergy consumption of each bottleneck node is proportional to the number of 
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Algorithm 2: F ind_Opt imal _S ink 

Input : The set of nodes V, the set of potential sink locations S 
Output: The set of chosen locations for sink placement S' 

U +- V; 
C +- {Nh(s) Is E S}; 

. S' +- 0; / * the set of chosen sinks*/; 
while U -1- 0 do 

Select a set Nh (s) E C such that I U n Nh (s) I is maximized; 
S' +- S' U {s}; 
U +- U - N1i(s); 
C +- C - {N1i (s)}; 

return S'. 

its descendants in the routing tree rooted at a chosen sink. In other words, the 

optimization objective is to group nodes into different clusters headed at dif­

ferent sinks and make each node belong to one cluster only. For each cluster, 

a load-balanced routing tree rooted at the cluster head (a sink) will be built, 

such that (i) the number of hops from each node to its tree root is no more than 

h; and (ii) the maximum number of descendants among the bottleneck nodes 

is minimized. We refer to this clustering problem as the load-balanced forest 

problem, which can be approximately solved by the following three steps. 

Partitioning n nodes into h disjoint subsets. The IS' I sinks are compressed 

into a virtual super node V s , and every neighbor of a chosen sink in the original 

network now becomes a neighbor of the virtual node. A BFS tree rooted at 

Vs in the modified network is then constructed and as a result, the nodes in 

the network are partitioned into h disjoint subsets, according to the number of 

hops from each node to Vs , Let vi be the set of nodes in layer i, then U~1= l vi = 
V and Vi n Vj = 0, where 1 < i, j < h, i -1- j. Note that Vo contains only the 

root Vs and V1 contains only the bottleneck nodes. 

Finding a load-balanced tree rooted at each sink. Finding an optimal 

load-balanced tree has been shown NP-complete [59] . We here adopt a heuris­

tic proposed in [59] for the load-balanced tree construction. The heuristic is a 



§2.4 Multiple Sink Placement 45 

greedy algorithm, which expands the tree layer by layer in a top-down fash­

ion. Assuming a partial load-balanced tree spanning the nodes from layer Oto 

layer 1 < l < h has been constructed, we now expand the tree by including 

the nodes in layer Z + 1 as follows. 

We first construct a node-weighted bipartite graph G1 = (X, Y, E1, w ), where 

the nodes in V1 are grouped into different subsets according to their ancestors 

in V1, i.e., nodes in the same subset are the descendants of the same node in 

V1. Let X = { x1, x2, ... , x1x1} C V1 be the set of ancestors of the nodes in V1 

that are incident to nodes in layer Z + 1, and Y be the set of nodes in layer Z + 1, 

i.e., Y = V1+1 . For each x EX, its weight w(x) is the number of descendants 

of x in the current tree. And each node y E Y is assigned a weight w(y) = 1. 

EI is the set of edges consisting of ( x, y) if x E V1 is the ancestor of a node 

v E V1 and (v, y) E E. The load-balanced tree problem then is to choose a 

node x E X as the ancestor for every node y E Y such that the maximum 

number of descendants of nodes in V1 in the resulting tree is minimized. 

-
We then transform the problem into a maximum flow problem in an aux-

iliary flow network N 1 by assigning its links with different capacities dynam­

ically, where N1 = (X U Y U {s,t},Ef U { (s,x) I x E X} U { (s,y) I y E Y} U 

{ (x, t) I x E X}, c) is a directed flow network derived from G1, assuming s is a 

source node and tis a destination node. Directed edges from s toy E Y and 

s to x E. X are associated with capacity c(s, y) = 1 and c(s, x) = w(x) respec­

tively. The directed edge from y to x (y, x) E Ef has capacity c(y, x) = 1 if edge 

(x, y) E E1 . The capacity of the directed edge from each x E X tot, Lm, is the 

maximum load among the nodes in X, that is, c(x, t) = Lm. The value range of 

Lmiswithintheinterval [max1::;i:SI Xl{w(xi) I Xi E X},ma~l :Si:SI Xl{w(xi) I Xi E 

X} + IYI] - Given a value of Lm, we apply the maximum flow algorithm to N 1 

to find a flow f from s to t and check whether lf l = Ll :Si:S IXI{ w(xi) I Xi E 

X} + IYI. If yes, it delivers a feasible solution, we will check whether it still 

has a feasible solution by decreasing the value of Lm; otherwise, the value of 
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L m needs to be increased. The optimal value Lapt of L 111 can be found through 

binary search. In the end, every node y in layer l + l will be assigned an ances­

tor x E X if f (y, x) = 1. The proposed maximum flow algorithm thus can be 

applied at most jlog I Vz +i ll times to find the optimal load Lapt for the current 

tree expansion. 

The partial load-balanced tree is then expanded by including the nodes in 

layer l + l as follows. For each node y E Vz +i, node v E V1 becomes its parent 

if vis a descendant of x E X, (v, y) E E, and f(y, x) = l. As a result, the 

partial load-balanced tree is expanded upto layer h. It is straightforward that 

the approximate load-balanced tree rooted at the virtual node v5 is no more 

than h layers. 

Finding a load-balanced forest. The load-balanced forest consisting of IS' I 
load-balanced trees rooted at the IS' I chosen sinks is constructed as follows. A 

bipartite graph GB = (S', V1, E' ) is constructed, where V1 = {Cy(s)ls E S'} 

and an edge (s, v) E E' if sinks E S' is within the transmission range of node 

v E V1. A maximum matching in GB is then found. For each matched v E V1, 

there is a matched edge withs E S' as the other endpoint. For each unmatched 

node v E V1, if there are multiple edges in E' incident to v, one of the edges is 

arbitrarily chosen and the other endpoint of the chosen edge is a sinks E S'. 

For both cases, s is the root of a load-balanced tree and the subtree rooted at v 

in the original load-balanced tree will be part of this new tree. As a result, the 

n nodes have been partitioned into IS' ! load-balanced trees rooted at the IS' I 
chosen sinks, and each node can reach its root (a sink) within h hops. 

The proposed heuristic consists of algorithm F ind_Opt imal_S ink for sinks 

identification, and the algorithm finding load-balanced routing forest. For 

convenience, we refer to the heuristic for the h-hop constrained multiple sink 

placement problem as Heuristic_Opt...Mul tiP lace, or HOMP for short. 

Theorem 2.2. For a single-radio sensor network G(V, E) with S as the potential 

sink locations, and h as the hop upper bound between each node-sink pair, the h-hop 
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constrained network lifetime maximization problem can be solved by algorithm HOMP 

with complexity O ( n3 ) + 0 ( J EI n log n) , where n is the number of nodes in G. 

Proof In algorithm F i nd_Op t imal_S i nk, calculating the collection of sets S 

takes O( JEI I SJ), the number of iterations is bounded by min (n, I SJ) = I SJ, and 

the loop body can be implemented in time O(n JSJ) . Thus the time complex­

ity of algorithm F ind _Optimal _S i nk is O(JE J J SJ) + O(nJS J2 ) = O(n3 ) . And 

the time complexity of the proposed algorithm for finding a load-balanced 

forest is O (IE In log n), because it takes O (IE J + n) time to partition nodes, 

and O(JE Jn log n) time to build load-balanced trees O(I EJn log n ) [59]. The 

complexity of finding a load-balanced forest is O( JEJn) [22]. In summary, 

the the complexity of algorithm HOMP is O (n3 ) + O(JE Jnlogn) + O( JEJn) 

O(n3 ) + O( JEJnlogn). D 

2.5 Performance Evaluation 

In this section, we evaluate the proposed algorithms for multiple sink assign­

ment and placement by simulation. We vary the constraint parameters and 

investigate their impacts on the network performance. We also compare the 

proposed algorithms with other comparable strategies. 

2.s.1 · Experimen~ Settings 

We consider a wireless sensor network randomly deployed in a 1000m x 1000m 

square region. The transmission range r of the low-power radio is fixed to 

be 100 meters and the initial energy capacity of each sensor node is IE = 

200Joules. We adopt the energy consumption parameters of CC2 4 2 O radio [2], 

a typical 3G radio MO 6012 [5] based on WCDMA 2100@24dBm standard, and 

the NAND flash memory [1] for P1, Ph, E0 , and Pb respectively. We assume that 

the data generation rate of each sensor is rg = lbit / s. To avoid experimental 
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results being dependent on a specific network topology, for each network size 

n, 50 topologies are generated using the NS-2 simulator [4], and each value in 

figures is the mean of the results by applying the mentioned algorithm to the 

50 different network topologies. 

2.5.2 Evaluation of Multiple Sink Assignment Algorithm 

We first evaluate the performance of the proposed multi-sink assignment algo­

rithm Dynami c__Al g . Specifically, we provide a snapshot of the network life­

time by studying the energy consumption of individual nodes as the network 

operates. We then investigate the network lifetime by varying constraint pa­

rameters, including network throughput threshold a, round duration T, num­

ber of sinks m, and data delay threshold D. In the default setting, the extra 

energy consumption for routing re-construction and control message commu­

nication is e1::,. = 0.2Joules . We finally compare network lifetime delivered by 

different algorithms and show the effectiveness of Dynamic__Al g. 

" 3 • 
~ 200, . ,,.· • • -: ~-··· i •., .: :,~ .,.;-_;·r-
~ 100 .,-,.-:-.. •• 
w 
;;; 
~ 0 i,ooo 

cc 500 500 
Y (m) o o X (m) 

round25 

" 3 
:3, 200 1 • • •; • :. 
>, I, .,.. _.,.,~.,,, •... 
~ 100 • • '•: ~".j;; ·t·· 
Jj •• ••• 

" 3 

2, 200 • • • • . 

En •• ~· ·,L··.... ·=· . 
~ ,oo • r~·tt~"~-: .. 
w ... .. co "ii; • ••• :::, 0 :::, 0 

1000 ~ 1000 . 1000 ~ 1000 
a: 500 500 cc 500 500 

Y (m) 0 o X (m) Y (m) o o X (m) 
round50 round75 

" 3 
3200 
En •• •• •• : :: ·:• 
Q) 100 -!·~ '.,,:-- ·( • • 
ID • !'. ,·~r-..... " . : -, ' '' 
::J O • • •• 

1000 j1000 

CC 500 500 
Y (m) O o X (m) 

round100 

~ ~ w 3 3 3 3200 :3.. 200 3200 
>, • • • • >, En • • •• En • • •• g' 100 :-! ·- .... __ ........ ·. • !:!I • • • • ••• .... • • • • ._ • • • .., ,,, • ~ 100 • -!, ,:-··.~~ • :g 100 • ., _ ·,·- ·· .,·.·. ~ 100 • .. : ., • • •• ., .. • • ~ 11 -,,;:j;;.-.J.:.,_ . ~ 11f-::,~-;rl#P.:.<f>. ~ • ·\1t,-.,:·a,:o" ' ~ • "~:-,:,· : ' ,2 0 • o'• ~•" • " :J O o • o :::, 0 ft i:Po o d'. • • o<> o o ~ 0 fJ f'• •o~ o ,:,:, O:o ,Po ·~1000 O ~,0{)() QOQ 'OO O :21 000 ~ O O 'i O :O '01(){)() O O ~ O 

a:
o, 500 500 1000 111 1000 111 ,/'o 1000 ·~ 500 Qoo l!I' o o ~ 5(X} o 50Q ~ 50() 0 oO 5CXJ CI: o 50Q 

Y (m) 0 0 X (m) Y (m) 0 0 X (m) Y (m) 0 0 X (m) Y (m) 0 o X (m) 
round125 round150 round175 round186 

200 

180 

160 

140 

120 

1()() 

80 

60 

40 

20 

Figure 2.3: Residual energy at nodes in different rounds with n = 100, m = 5, a= 0.7, 
D = 1 hour and T = 2 hours 

We examine the residual energy at nodes after each round by fixing n 

100, m = 5, a = 0.7, D = l hour and T = 2 hours. With this setting, there are 

186 rounds in total within the network lifetime (1.34 x l06seconds) . Fig. 2.3 

shows the residual energy of individual nodes after every 25 rounds as well as 
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the last round. It is observed that in the first 75 rounds, all nodes have more 

than 50% of the initial energy left. With the increase in the number of rounds, 

nodes have less and less residual energy. In the 175 round, 44 nodes have less 

than 20% of initial energy left. In the last round, 37 nodes run out of energy, 

the throughput requirement is no longer met, and network lifetime ends. 

We then investigate the impacts of constraint parameters on network life­

time. · 
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Figure 2.4: Network lifetime with different network throughput threshold a, when 

m = 5, D = 1 hour, and T = 2 hours 

Impact of network throughput threshold a on network lifetime. We start 

by varying the network throughput threshold a from 0.3 to 1 with the incre­

ment of 0.1, while fixing n = 100, m = 5, D = 1 hour, and T = 2 hours. Fig. 2.4 

illustrates that with the increase of a, the network lifetime decreases steadily 

before a = 0.6, and goes down rapidly after that. This is because a small value 

of a does not always imply a small number of active nodes. For example, 

when a= 0.3, at least 100 x 0.3 = 30 active nodes should be selected as active 

nodes but they may be in more than m = 5 connected components. In that 

case, E.ome extra nodes need to be added in the active node set so that all active 

nodes are in at most m = 5 connected components (meet the m-component 

constraint). As such, the number of active nodes with different a (0.3, 0.4, 0.5, 

and 0.6 in Fig. 2.4) could be similar and the resultant network lifetime does not 

change much. When mis larger than 0.6, the greater the value of a, the larger 
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the number of active nodes required, and the larger the per time unit energy 

consumption at nodes, resulting in a shorter network lifetime. 

Note that when the node density n increases upto 300 with the stepping of 

50, the similar tendency of the network lifetime is obtained, shown in Fig. 2.4. 

However, when the value of n is relatively large, the curve of network lifetime 

L starts its dramatic decreasing from a smaller a. The reason is that with the 

same value of a, the higher the node density, the less extra nodes required to 

meet the m-component constraint, and the more distinct the impact of a on 

L. We can also see that with identical value of a, a shorter network lifetime L 

will be delivered with a larger network size n. That is because data from more 

nodes is sent to the base station during the network lifetime, which results in 

a shorter network lifetime. 
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Figure 2.5: Network lifetime with different round duration T, when m = 5, a = 0.7, 
and D = 1 hour 

Impact of round duration Ton network lifetime. We next investigate the 

network lifetime with different values of round duration T. We vary T from 1 

hour to 10 hours with the increment of 1, while keeping m = 5, a = 0.7, and 

D = 1 hour. Fig. 2.5 plots the impact of T on L under different network sizes n. 

Generally, the larger the value of T, the shorter the network lifetime L. This is 

due to the fact that frequent identification of sinks and active nodes results in 

better energy balance among nodes in the network. However, note that when 

T increases from 1 hour to 2-3 hours, the value of L slightly increases. The rea-
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son is that excessively frequent execution of the routing forest establishment 

algorithm leads to extra energy consumption and shortens the network life­

time. Thus, it indicates that the appropriate frequency of algorithm execution 

is significant to the network lifetime. Also, from Fig. 2.5 it can be observed that 

with the fixed T, the network lifetime is smaller as the network size n goes up. 

That is because by using a fixed number of sinks, the energy consumption is 

more evenly distributed in relatively small size networks. 
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Figure 2.6: Network lifetime with different number of sinks m, when a= 0.7, D = 1 

hour, T = 2 hours 

Impact of number of sinks m on network lifetime. We now vary the num­

ber of sinks m and evaluate its impact on network lifetime. Given the network 

size n, we fix a = 0.7, D = 1 hour, T = 2 hours, and increase m from 2 to 

20 (stepping of 2). The results are shown in Fig. 2.6, from which we can see 

that with a fixed number sinks, a longer network lifetime will be delivered in 

a smaller size network. It is interesting to notice that the increase in the num­

ber of sinks does not necessar_ily prolong the network lifetime. With a fixed 

n and increasing m, the network lifetime first increases and then decreases. 

Curv~s with different n have turning points with different values of m. Before 

these points, L rises dramatically as m ·increases, because more sinks are able 

to better balance the energy consumption among nodes. However, if m keeps 

increasing after a certain value, the network lifetime starts dropping. That is 

because the increase of m causes more energy consumed on high-bandwidth 
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radios, compromising the network lifetime. The experimental results reveal 

that it is not always profitable to use a large number of sinks for the purpose 

of a longer network lifetime. 

Impact of delay threshold D on network lifetime. We then evaluate the 

impact of data delivery delay threshold Don network lifetime by fixing m = 5, 

a = 0.7, T = 2 hours, and setting D to 10 minutes, 20 minutes, 30 minutes, 60 

minutes, and 120 minutes. Fig. 2.7 shows that a smaller value of D leads to a 

shorter network lifetime because frequent on-and-off switching of the 3G ra­

dios on sinks results in more energy overheads and a shorter network lifetime. 

This also implies a non-trivial trade-off between the data delivery delay and 

the network lifetime. Network lifetime can be sacrificed for a shorter delivery 

delay and fresher data received at the monitoring center, and vice versa. 
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Figure 2.7: Network lifetime with different data delivery delay threshold D, when 
m = 5, a= 0.7, T = 2 hours 

Performance comparison. We finally compare the performance of algo­

rithm Dynamic_Alg against those of another two algorithms. The first algo­

rithm randomly selects m nodes as the sinks from all deployed nodes at the 

beginning of the network lifetime, and builds trees rooted at these m sinks to 

span other nodes using Breadth-First Search, until at least I a· Nl nodes are 

included in these trees. The m routing trees are used for data collection un­

til the first node in the trees dies. We refer to this algorithm as Static_A lg. 

Static_Alg is executed only once in the network lifetime and is easy to im-
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Table 2.1: Network lifetime (second) delivered by three algorithms with different m 

and T 

(a) m = 8, T varies from 1 to 5 hours 

Algorithm T = 1 hour T = 2 hour T = 3 hour T = 4 hour T = 5 hour 

Static_Alg 100250 100250 100250 100250 100250 

LEACH...Alg 164469 184469 194469 144469 114469 
Dynamic...Alg 1164870 1364870 1494870 1304870 1134870 

(b) T = 3 hour, m varies from 4 to 12 

_ Algorithm m = 4 m =6 m = 8 m = lO m = 12 

Static...Alg 51373 71250 100250 125250 107132 

LEACH...Alg 118689 166333 194469 224469 184469 

Dynamic...Alg 580936 1282191 1494870 1604870 1434870 

plement in practice. The second algorithm is a variant of LEACH [40]. Similar 

to Dynamic_A_lg, the network lifetime also consists of a number of rounds 

with equal duration except the last round. Let P = m/n be the ratio of the 

number of sinks to the number of nodes in the network. Within each round, P 

percentage of nodes are selected as sinks. To balance the energy consumption 

overall the network, nodes serving as sinks in the current round cannot be se­

lected as sinks for the next 1 / P rounds. Denote by node; which are qualified 

to become sinks the sink candidates. Within each round, each sink candidate 

has a probability P to become a sink, and m nodes will be identified as sinks. 

Them sinks then include at least I a· n l - m nodes from the rest nodes to form 

m trees rooted at these sinks with the objective to minimize the total distance 

between nodes and corresponding sinks. The residual energy on nodes is up­

dated as the networkoperates and the network lifetime ends when sinks are 

no longer able to transmit dat_a from at least I a· n l nodes to the third party 

network. This algorithm is referred to as LEACH_A_lg. 

We evaluate the network lifetime delivered by the three mentioned algo­

rithms by fixing n = 100, D = 1 hour while varying the values of m and T. We 

first fix the value of m to be 8 and vary the value of T from 1 to 5 hours with the 

increment of 1 hour. The resultant network lifetime is listed in Table 2.1 (a). The 

network lifetime delivered by Static_A_lg stays the same with different val-
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ues of T , because Static_Alg is executed only once throughout the network 

lifetime and the network lifetime is irrelevant to the variety of T. However, the 

network lifetime by both Dynamic_Alg and LEACH_Alg varies as the value of 

--r increases: it first rises then goes down. That is because of the impact of --r 

on the network lifetime, as discussed previously. We then keep the value of --r 

3 hour and increase m from 4 to 12 with stepping of 2. The results are shown 

in Table 2.1 (b), from which we can see that with the increase in the value of 

m, the network lifetime delivered by these three algorithms first goes up (till 

m = 10) and then decreases, due to the impact of m on the network lifetime 

analyzed in the previous subsection. 

In general, Dynamic_Alg always outperforms the other two algorithms 

while LEACH_Alg always outperforms Static_Alg. Averagely, the network 

lifetime delivered by Dynamic_Alg is about 7 times and 12 times as long 

as those by LEACH_A l g and Static_Alg. The superiority of algorithms 

Dynamic_Alg and LEACH_Alg over Static_Alg lies in more balanced en­

ergy consumption among nodes by periodically re-selecting sinks and active 

nodes. Whereas Stat ic_Alg keeps the same set of sinks as well as unchanged 

set of active nodes throughout the network lifetime, causing energy bottle­

neck at sinks and ending the network lifetime much sooner. The advantages 

of Dynamic_Alg over LEACH_Alg include the following two aspects. The first 

one is its more efficient sink identification strategy. LEACH_Alg avoids nodes 

being re-selected as sinks for at least 1 / P rounds. However, this cannot guar­

antee that sink candidates are all with high residual energy. If nodes with low 

residual energy are selected as sinks, more severe energy unbalance will be 

caused in the network. While Dynamic_Alg first identifies active nodes with 

relatively high residual energy, and then selects sinks from active nodes to 

achieve the most evenly distributed energy consumption. The second reason 

is the more advanced routing forest establishment approach in Dynamic_Alg. 

The total distance minimization in LEACH_Alg does not necessarily lead to the 
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minimum energy consumption. Whereas Dynamic.Alg builds a routing for­

est to maximize the minimum residual energy of active nodes, which leads to 

a better balance in energy consumption among nodes. 

2.5.3 Evaluation of Multiple Sink Placement Algorithm 

We now study the performance of the multi-sink placement algorithm HOMP 

by evaluating the impacts of the upper bound on the number of hops from 

each node to its nearest sink, the distribution of potential sink locations, and 

the size of monitoring region on the network performance. We also compare 

the performance of HOMP with another heuristic to validate its effectiveness. In 

the default setting, the potential sink locations in S are randomly distributed 

overall the monitoring region with ISi = 100. 
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Figure 2.8: Impact of h on the network performance when IS I = 100 

Impact of h on network performance. We first investigate the network 

performance by varying the values of hand n. Fig. 2.8 shows that the smaller 

the values of hand n, the larger the number of sinks placed, and the longer the 

network lifetime. With the increase in e1ther horn, the number of sinks placed 

would decrease, and so is the network lifetime. The reason is that when fixing 

the network size n and increasing h, each sink can cover more nodes and a 

smaller number of sinks will be needed to cover all the nodes. Accordingly, 
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in a routing tree rooted at the sink, a heavier load is allocated at each child of 

a sink, and the network lifetime is shortened. Whereas with constant h and 

growing n, the network density increases, thus requires fewer sinks to cover 

all nodes, followed by a shorter network lifetime. 

Impact of the distribution of potential sink locations on network perfor­

mance. We next study the distribution of the potential sink locations S to the 

network performance by varying its distribution and size. Due to the physical 

limitations in the real networks, their locations may be constrained in speci­

fied areas in the monitoring region. We study the network performance under 

different distributions of the sink potential locations by adopting three distri­

butions [56] shown as the shaded areas in Fig. 2.9, and fixing h = 5, ISi = 100. 

In the corner distribution, sinks are only allowed to be placed in four corner 

areas of 250m x 250m in the monitoring region. In the strip distribution, sinks 

can be placed along two vertical strip areas with 250m x 1000m. And the over­

all distribution does not have any restriction on the potential locations in the 

region. The first two distributions are driven by applications in which not each 

sub-area in the monitoring region is suitable for sink placement (for example, 

lake or mountain in some areas), rather, sinks can only be deployed in speci­

fied sub-regions. In all these three scenarios, the I SI = 100 potential locations 

are randomly distributed in the shaded regions. 

(a) Corner d istribution (b) Strip distribution (c) Overall distribution 

Figure 2.9: Three different distributions of potential sink locations 
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Figure 2.10: Impact of distributions of Son the network performance when h = 5 

The experimental results indicate that less constraint imposed on the dis­

tribution of the potential sink locations provides better network performance. 

Shown in Fig. 2.10, among the three S distributions, the overall distribution 

leads to the best network performance with the smallest number of sinks and 

the longest network lifetime. Fig. 2.10 (a) plots the number of sinks placed un­

der the three distributions. The overall distribution requires the smallest num­

ber of sinks while the corner distribution needs the largest number of sinks. 

The reason behind is that placing sinks _only in sub-areas in the monitoring re­

gion makes the h-hop constraint (each node-sink pair within h = 5 hops) more 

difficult to meet. An extreme example is to distribute the [S[ = 100 potential 

sirtk locations only in one of corner area of 250m x 250m and the n = 100 

nodes are uniformly distributed in the monitoring region. Under this setting, 

no solution will be found sine~ nodes in the diagonal corner cannot reach any 

sink within 5 hops, no matter how many sinks are deployed. In general, the 

smaller the distribution area, the greater the number of sµ1ks required. Also, 

notice that the gap among the three distribution is obvious when n = 100 yet 

becomes smaller with the increase in n and is tiny when n = 300. It veri­

fies that in a network with high node density, the h-hop constraint is easier to 

meet wfrh relatively a smaller number of sinks. Fig. 2.l0(b) plots the network 
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lifetime under the three distributions. Not surprisingly, the overall distribu­

tion results in the longest network lifetime since no constraint is imposed on 

the potential locations thus the sinks can be placed at the most favorable spots. 

For the other two distributions, the strip one leads to longer lifetime compared 

with the corner one, because bottleneck nodes are located in a relatively larger 

area in the strip distribution, better balancing the energy consumption among 

nodes. And in the overall distribution, bottleneck nodes are more evenly lo­

cated throughout the network, contributing to the longest lifetime. 
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Figure 2.11: Impact of the size of S on the network performance when h = 5 

We then vary the size of S from 60 to 140 with the increment of 20, while 

keeping h = 5, and overall distribution being adopted. Shown in Fig. 2.ll(a), 

the number of sinks needed with different sizes of S varies slightly but larger 

ISi does lead to a longer network lifetime, as illustrated in Fig. 2.ll(b), due to 

the larger searching space for the sink placement. Opposite to our initiative 

guess that more sinks would be placed with a larger size of S, the numbers of 

sinks delivered are almost the same with different values of IS I-This is because 

the number of sinks needed mostly depends on the nodes density, rather than 

the potential locations density. Also, it is interesting to observe in Fig. 2.1 l(b) 

that the superiority of a larger ISi in terms of network lifetime becomes less 

evident as the network size n increases. The reason is that in a dense network, 
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Table 2.2: the number of sinks and network lifetime with different monitoring regions 

delivered by HOMP 

monitoring area (m2) 600 X 600 800 X 800 
1000 X 1200 X 1400 X 

1000 1200 1400 

n 36 64 100 144 196 

1s1 36 64 100 144 196 

number of sinks 9 14 20 29 38 

network lifetime 
13.20 11.70 9.93 9.21 8.81 

(105s) 

the number of potential sink locations plays a less important role in lifetime 

prolongation. While in a relative sparse network (e.g., n = 100), more options 

for sink placement potentially deliver a much longer network lifetime. 

Impact of monitoring region size on network performance. We now eval­

uate the network performance by varying the monitoring region size, while 

keeping the density of nodes and potential sink locations unchanged. We fix 

h = 5 and vary the monitoring area from 600m x 600m to 1400m x 1400m, 

which means that the network size n and the number of potential sink loca­

tions I 5 I will increase accordingly at the same rate. 

Table 2.2 illustrates that the larger the monitoring region _size, the greater 

the number of sinks placed. It verifies that with the same node density, more 

sinks are required to meet the h-hop constraint. It also shows that the network 

lifetime decreases with the increase of the monitoring region size. The reason 

behind is that despite of the increase in the number of sinks, each bottleneck 

node still undertakes more relay workload, which causes a shorter network 

lifetime. 

Performance comparison. We compare the performance of the proposed 

heuristic against the BPS tree-based heuristic in terms of network lifetime. Re­

call that the results delivered by algorithm HOMP include S' for sink place­

ment and load-balanced trees rooted at the IS' I chosen sinks. For the BPS-tree 

based heuristic, we assume that its first two stages are identical to those of 

algorithm HOMP. The only difference lies in the routing protocol design: in-
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stead of building a load-balanced tree, a BFS tree rooted at the virtual node 

will be built and IS' \ trees will be obtained by removing the virtual node and 

its incident edges from the built tree. We refer to this variant as algorithm 

BFS_Heurist i c _OpLMul tiP lace, or BFS_HOMP for short. 

l.25e+06 

IG0 HOMP I 
G-EJ BFS_HOMP 

"' ~ 
Q.) 

E 7.Se+05 
~ 
-" 
0 5e+05 
3: 
0 z 

2.5e+05 

~00 150 200 250 300 
Network size n 

Figure 2.12: Performance evaluation between algorithms HOMP and BFS_HOMP, when 
h = 5 and ISi = 100 

To evaluate the performance of algorithms HOMP and BF S_HOMP , we vary 

n from 100 to 300 while fixing h = 5 and IS\ = 100. Fig. 2.12 implies that 

with the increase of the network size n, the network lifetime delivered by ei­

ther algorithm HOMP or algorithm BFS _HOMP decreases, because the bottleneck 

nodes have to relay more data for other remote nodes. It is also shown that 

in terms of network lifetime, algorithm HOMP performs 13% better than algo­

rithm BFS_HOMP on average since the former distributes data relay workload 

among bottleneck nodes more evenly. With the increase of network size n, the 

gap between the network lifetime delivered by these two algorithms becomes 

larger. 

2.6 Conclusions 

In this chapter, we have studied the network lifetime prolongation problem 

by using multiple sinks for data collection in two types of sensor networks. 

Specifically, we first formulated the network throughput guaranteed network 
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lifetime maximization problem in homogeneous WSNs, where all nodes act as 

sinks alternately. We provided an approach to identify the sinks dynamically 

and route data from selected nodes to these sinks energy-efficiently to pro­

long the network lifetime while guaranteeing the required network through­

put. We then investigated the multiple sink placement problem in heteroge­

neous WSNs, assuming that sinks can only be placed at spots selected from 

given locations and each node is within h hops from at least one sink after the 

sinks are deployed. We addressed the problem by decomposing it into two 

sub-problems and solving them separately. We finally conducted extensive 

simulations to evaluate the performance of the proposed algorithms and study 

the impacts of constraint parameters on their performance. The experimental 

results showed that the proposed algorithms significantly improve network 

lifetime. 
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Chapter 3 

Monitoring Quality Maximization 

with a Mobile Sink 

3.1 Introduction 

Mobile sinks are introduced to sensor networks mainly for the purpose of net­

work lifetime prolongation. Though the mobile-sink WSN has been exten­

sively studied and proven to be effective in balancing energy consumption 

among nodes, it does bring in new challenges, where data loss is one of the 

most urgent to be addressed, especially when high data fidelity is required. 

For example, in a sewage disposal system, where sensors are deployed along 

pipes for waste sensing and a sink moving with the sewage flow collects data 

from sensors, it is desirable to gather as many sensed data as possible and send 

them to the monitoring center for wastewater analysis. However, the non-stop 

moving· of the sink and the limited data uploading speed of sensors result in 

that some data cannot be transmitted to the sink. In this chapter, we consider 

using a mobile sink in the WSN to collect sensed data of the monitoring re­

gion, and define monitoring quality as the criteria of how well the sink is able 

to collect data from the deployed WSN. We first provide system model and 

formulate monitoring quality. We then· define the problem of communication · 

time constrained monitoring quality maximization with NP-hardness proved, 

and propose a heuristic for it. We finally conduct extensive experiments by 

simulation to evaluate the effectiveness of the proposed algorithm. 

63 
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The mobile sink used for data transmission from sensor nodes to the third 

party network is a dual-radio device with adequate storage and wireless an­

tenna. It is usually installed on a shuttle, robot, or aircraft, which are petrol 

or electricity powered and need to be refused or recharged from time to time. 

The motion of the sink is typically constrained by the vehicle that it is attached 

to and the region which it moves in. First, the travelling distance of the mobile 

sink is constrained by the vehicle cruisingability (such as petrol/ electricity, 

maneuverability). Second, the travelling of the mobile sink is constrained in a 

given map. In other words, the vehicle carrying the sink cannot travel freely in 

the monitoring region without restriction [101]. Instead, it is programmed to 

move with conditions, such as avoiding obstacles, e.g., ponds, bushes, build­

ings and fences. Third, the sink carried by a vehicle like a city commuter can 

only sojourn at given stops instead of any spot along the road. In some appli­

cations, specified locations must be visited by the sink at certain stages. For 

example, the routes of shuttle buses must include some stations as scheduled. 

Last, the speed of a mobile sink is bounded by multiple factors including traf­

fic conditions, engine limitations, and speed restrictions on highways or in 

suburbs. 

We consider a densely deployed sensor network consisting of common nodes, 

and a set of gateways deployed along roads in a given road-map in the monitor­

ing region. Specifically, the gateways relay sensed data from common nodes 

to the mobile sink when the sink moves into their transmission ranges. The 

network is thus treated as three tiers: common nodes in the bottom tier, gate­

ways in the middle tier, and the mobile sink in the top tier. Accordingly, data 

is transmitted from the bottom tier to the top tier in order. If all sensors are 

gateways, they upload their sensed data to the mobile sink in one-hop trans­

mission mode. This achieves the most energy-efficient data collection by elim­

inating energy consumption on multi-hop routing, at the expense of a long 

data delivery latency because the sink has to visit individual nodes one by 
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one. On the other hand, if there is only one gateway in the entire network, 

it has to relay data for all the common nodes. Though time-efficient in data 

delivery it is, it becomes the traditional static sink structure which results in 

severe unbalanced energy consumption among sensor nodes. We adopt the 

hierarchical structure in this chapter for a desirable trade-off between energy 

conservation and data delivery latency. 

The mobile sink moves without stop in the road-map, which falls into some 

real applications, e.g., the sink installed on an airplane following flight routes, 

or carried by a floater flowing with water. The sink visits selected gateways 

one by one for data collection. The amount of data collected by the sink from a 

gateway is constrained by their limited communication time: data can be up­

loaded from the gateway to the sink only when the sink is within the gateway 

transmission range. Thus, data loss occurs if the communication time between 

a gateway and the sink is shorter than the time required for the gateway to up­

load all its stored data [84,110]. And the amount of data loss depends on (1) the 

sink speed, (2) the length of the sink trajectory within the transmission range 

of the gateway, referred to as intersection, and (3) the data uploading rate of a 

gateway. A simplified scenario is illustrated by Fig. 3.1 where the road-map 

is a circle. As a result, not sensed data from all nodes are able to be success­

fully sent to the mobile sink in a single trip [98, 1011 and the nodes whose data 

are received by the sink are referred to as active nodes, while the others whose 

data are not received are inactive nodes. Consequently the communication time 

constrained data collection scenario is proposed in the WSN with a mobile sink. 

Under this scenario, we focus on improving monitoring quality from two as­

pects. One is properly identifying the set of active nodes whose sensed data 

are the most representative among data generated from all nodes. The other 

is precisely estimating the unreceived data of inactive nodes by the collected 

ones of active nodes, based on the hypothesis that sensed data are highly spa­

tially and temporally correlated, especially among neighboring sensors [97]. 
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common node 

- -~ gateway 

! mobile sink 
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- - - - ► transmission range 

Figure 3.1: A hierarchical wireless sensor network with gateways, common nodes, 
and a mobile sink moving in a road-map 

The remainder of this chapter is organized as follows. Section 3.2 formu­

lates the system model and defines the problem to be solved, which is then 

proven to be NP-complete. Section 3.3 provides a three-stage algorithm for 

the problem. Section 3.4 uses extensive experimental results to evaluate the al­

gorithm performance and indicate its effectiveness. Section 2.6 concludes this 

chapter. 

3.2 System Model and Problem Definition 

The system model of a heterogeneous WSN with a mobile sink moving in 

a given road-map is based on the following assumptions. (1) All common 

nodes are densely and randomly deployed in the monitoring region with iden­

tical initial limited energy capacities. (2) Gateways are deployed alongside the 

roads in the map with adequate buffer sizes for data storage. (3) Sensed data 

are transmitted from common nodes to the mobile sink via gateways only. 

( 4) Gateways can always get recharged in time by the mobile sink directly or 

through the infrared ray, i.e., they are not energy-constrained. With the above 
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assumptions, sensed data are first generated by the common nodes, then trans­

mitted to and stored temporarily at the gateways, and finally relayed to the 

mobile sink when gateways are individually visited. The heterogeneous net­

work is denoted by G(V U GW, E), where Vis the set of common nodes with 

n = IVI, GW = {g1,g2, ... ,gm} is the set of gateways with m = IGW I, and E 

is the set of links. The locations of nodes and gateways are fixed and known 

a priori, All nodes and gateways are equipped with the same omni-directional 

antenna, i.e., their transmission ranges are fixed and identical, denoted by r. 

There is a link between two nodes or a node and a gateway if they are within 

the transmission range of each other. The data generation rates of common 

nodes are identical and denoted by rg, and the data uploading rate of gateway 

gi is denoted by ri, where 1 < i < m. There is no data aggregation at gateways 

or common nodes. 

The road-map is denoted by GM= (VM, EM) , where EM is the set of roads, 

VM = {po, p1, P2, ... , PnM } is the set of road crossings, and po is the depot in 

the map. The mobile sink is not allowed to move off-road -thus the trajectory to 

be found only contains roads in EM. Accordingly, the sink collects data from 

individual roadside deployed gateways once moving into their transmission 

ranges, with the following two constraints imposed on its motion. (1) In each 

single tour, the sink starts off from the depot p0 and returns to p0 in the end. 

Thus the trajectory should be closed with depot p0 as its starting and ending 

points. (2) The sink is able to travel no longer than Dmax in each tour, where 

Dmax is a pre-defined parameter, depending on the cruisingability of the mo­

bile sink. That is, the length of the found trajectory should not be greater than 

Dmax• The duration of each tour is no longer than Dmax / v, where v is the con­

stant speed of the sink, determined by- the application tolerant data delivery 

latency. 

Since a gateway gi is only able to communicate with the sink when the sink 

is within its transmission range, the maximum amount of data that gateway gi 
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can upload to the sink in one tour is 

d ( ) 
Ii . ata g · = - · r· l < z < m z V lt -- I (3.1) 

where Ii is the length of the intersection of the sink trajectory within the trans­

mission range of gi . Define the quota of gi as the maximum number of active 

nodes that can transmit their data to the sink via gateway gi in one tour. It is 

denoted by c(gi) and formulated as follows. 

l-Ii · Yi j, 1 < i < m. L · r g - -
(3.2) 

From Eq (3.2), we conclude that it is necessary to identify a subset of Vas the 

active nodes if Li=l c(gi) < n, which means not sensed data of all nodes can 

be collected by the mobile sink. Let V' be the set of active nodes. After V' is 

identified, the sink will only collect data from them via gateways while data 

from inactive nodes are discarded, as shown in Fig. 3.2. 

common node 

-- - ..... J gateway 

mobile sink 

,.......-----._ trajectory 

~ intersection 

- - - - ► transmission range 

Figure 3.2: An example with n = 15, m = 4, and c(g1) + c(g2) + c(g3) + c(g4 ) = 12. 
Only 12 common nodes can be chosen as the active nodes, and the rest 3 nodes are 
inactive nodes whose sensed data are discarded. 

Though data generated from inactive nodes have to be discarded, they can 
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be estimated by data collected from the active nodes assuming that high spa­

tial and temporal correlations of data exist among nodes especially in WSNs 

for environmental surveillance. Denote by the following T x n matrix X the 

original data sensed by n nodes within a slotted data collection period of T. 

X = Xt1 Xtn 

Xn 

where Xti represents the sensed data generated from node Vi at time slot t 

within T, l < t < T, l < i < n. Let Xti be the value of estimated data of 

node Vi at time slot t. The monitoring quality loss is formulated using the mean 

squared estimated error of all nodes per time unit over T, 

" "T ( ~ )2 
(T) L,viE V L,t= l Xti - Xti 

mse = - -------­
n-T 

(3.3) 

Note that the squared estimated error (xti - Xti) 2 = 0 for any v i E V' at any 

t E T. Maximizing monitoring quality is equivalent to minimizing monitoring 

quality loss. 

Given a sensor network G(V U GW, E) and a road-map GM = (VM, EM) 

in the monitoring region, gateways are deployed alongside roads in GM, and 

a mobile sink starts off the depot p0, moves in GM at a constant speed v, and 

needs to return to Po before it travels up to D max in one tour. The communication 

time constrained monitoring quality maximization problem is to find a closed path 

P with Po as its starting and ending points and with length no greater than 

Dmax, determine the active nodes and route their data to corresponding gate­

ways, such that the sink is able to efficiently collect sensed data of the active 

nodes by moving along P and the monitoring quality is maximized. To solve 
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the problem, the following two challenges should be addressed jointly. On 

the one hand, we must ensure that all sensed data of the active nodes can be 

successfully uploaded to corresponding gateways and then to the mobile sink 

to optimize the monitoring quality, which means individual gateway quota 

constraints need to be met during the identification of the active nodes, and 

the collected data are utilized to estimate the missing ones with the objective 

of minimizing the estimation error. On the other hand, given the road-map 

GM and the deployed network G, the to-be-found path P is constrained by 

the given depot Po and D max with the objective that the data collected by the 

mobile sink moving along Pis the most representative subset among all the 

sensed data, corresponding to the maximum monitoring quality. 

Theorem 3.1. The decision version of the communication time constrained monitor­
ing quality maximization problem in graph G(V U GW, E) with a mobile sink moving 
in road-map GM = (VM, EM ) is NP-complete. 

Proof We show the claim by a reduction from the Capacitated Minimum Span­
ning Tree Problem (CMSTP) [45]. Given a graph G = (V, E), the CMSTP is 

to find a minimal cost spanning tree rooted at a given node ensuring that all 

root-incident subtrees have no more than Q nodes, where Q is a pre-defined 

integer representing the cardinality constraint on the number of nodes in each 

subtree. CMSTP is NP-hard when 3 < Q < l Ii i J [71]. Given a graph G and 

the value of Q, the decision version of the instance of CMSTP problem is to de­

termine whether there is a tree spanning nodes in G such that for each subtree, 
the cardinality is no more than Q. 

We construct an instance of the communication time constrained monitor­

ing quality maximization problem in a sensor network G(V U GW, E) with 

a mobile sink moving in road-map GM = (VM, EM) , where VM = {po, p1}, 
EM = { (po, Pl)}, and I (po, Pl) I = 0 1:;_nx. Assume that each gateway is as­
signed with identical quota Q corresponding to the subtrees in CMSTP, where 
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m · Q > I VI. The decision version of this special case of the communication 

time constrained monitoring quality maximization problem is to determine 

whether there are m disjoint trees rooted at them gateways spanning nodes 

in V, subject to the size of each tree being no greater than Q, such that the 

sink moving back and forth on the road (po, Pl) collects data from these trees. 

Clearly, the sink closed tour is a return trip on road (po, p1 ) once and the total 

travelling distance is D max, meeting the distance constraint. 

If there is a solution to the instance of the special communication time con­

strained monitoring quality maximization problem, there is a solution to the 

instance of the CMSTP problem. Since the CMSTP is NP-hard when 3 < Q < 

l Ii i J and the reduction is polynomial, the decision version of the commu­

nication time constrained monitoring quality maximization problem is thus 

NP-hard. Meanwhile, the problem of concern is in NP class because it is easy 

to verify whether a given solution delivers a forest consisting of m trees with 

no more than Q nodes in each of them. Therefore, the communication time 

constrained monitoring quality maximization problem is NP-complete. 

□ 

3.3 Algorithm 

In the following we propose a novel heuristic for the communication time con­

strain~d monitoring quality maximization problem by decomposing the prob­

lem into three sub-problems and solving them separately. We also discuss the 

algorithm implementation in this section. 

3.3.1 Overview 

First, for the purpose of monitoring quality maximization, we need to study 

the relationship between monitoring quality and the sin.k's moving along an 
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individual road in GM. We refer to the quality benefit by collecting data through 

moving along a road as individual gain. Clearly, the individual gain of road 

eM E EM depends on the set of nodes which are selected to transmit their 

data to the sink via gateways deployed alongside eM, and such nodes are re­

ferred to as active candidates. Identifying active candidates in the network and 

allocating them to gateways are crucial to the calculation of individual gains. 

To this end, the algorithm explores the sensed data correlation, determines 

the set of active candidates from V, allocates them to roads in GM, and cal­

culates individual gains for roads. Second, having individual gains of roads, 

the maximum optimization problem (monitoring quality maximization prob­

lem)is converted into a minimum optimization problem (distance-constrained 

shortest path problem), and a feasible a path is delivered satisfying the follow­

ing three constraints: (1) the length of the path should not be greater than 

Dmax, (2) the path must start from and end at the depot po in each tour, and 

(3) the path should include as many roads with high individual gains as pos­

sible. And accordingly, the set of active nodes is identified. Third, an energy 

efficient routing protocol needs to be devised for data transmission from the 

active nodes to corresponding gateways. The algorithm reduces the routing 

finding problem to the Steiner Tree Problem and builds trees rooted at indi­

vidual gateways spanning the identified active nodes. 

3.3.2 Nodes Identification and Allocation 

Identifying active candidates. To study the monitoring quality benefit of trav­

elling each road eM E EM , we relax the distance constraint D max by assuming 

that D max is large enough and the mobile sink is able to move along each road 

in the road-map . Then the problem is converted to identifying a set of active 

candidates Ve C V whose sensed data can represent those of other (inactive) 

nodes with the minimum estimation error, subject to JVcl < [.~ 1 c(gi) , and 
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allocating the active candidates to each road eM E EM while the number of the 

allocated active candidates at a gateway is not greater than its quota. 

To identify the active candidates, we need to investigate sensed data corre­

lation and explore how data can recover each other. For the purpose of moni­

toring quality maximization, any single node should be represented by at least 

one active candidate. Specifically, the monitoring quality loss becomes zero 

when E7:1 c(gi) = n and thus Ve = V . Otherwise, the loss depends on how 

data of active candidates relate to those of other nodes. Obviously, the loss 

decreases if the selected active candidates are more data-related to the others. 

To explore such correlation, we set up an initial training phase with length 

T1, during which each node sends sensed data to its neighboring nodes. Data 

generated from a node vi at time slot t can be used to estimate those of its 

neighboring node v7 at t with the minimum error as follows [52], 

Xt ·= a· · · Xt · + b· · ] l ,] l l, ] ' (3.4) 

where ai,j together with bi,j is referred to as the estimation model and can be 

calculated as follows: 

'°' T1 '°' T1 '°' T1 n X Lt= l XtiXt j - Lt= l Xti Lt= l Xt j 

ai,j = - --'°'---,-T~1 -(--)-2_(_'°'_T_1 - --)2-, 
n X Lt= l Xtz - L.t= l Xt i 

(3.5) 

and 

(3.6) 

We define that vi is qualified .to represent its neighboring sensor v1 (including 
T1 ( - )2 

itself) if and only if I.1=1 xii-xt j < £, where £. is a pre-defined tolerant error. 

With a given £, each common node builds a set of nodes that it can represent, 

denoted by Cd_vi, where 1 < i < n, and data generated within T1 by each 
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node in Cd_vi can be estimated by those of vi with the mean error no greater 

than £. Note that vi E Cd_vi always holds. Let C = { Cd_vi lvi E V} be the 

collection of sets derived by the set of common nodes. We aim to find Ve C V 

with I Ve\ = [ ~ 1 c(gi) such that U viEVc Cd_vi = V. 

The algorithm proceeds iteratively. £ is initially assigned to zero and its 

value is increased by a constant Llc: at the beginning of each iteration. With a 

given £, a Ve will be identified to represent all common nodes. and the size of 

Ve will be checked. When the value of£ is very small (close to 0), every Cd _vi 
only contains vi itself, and thus all common nodes will be chosen as active 

candidates. With the increase of £, more nodes are included in Cd _vi while 

the size of the resultant Ve decreases. The iteration continues until \ Ve I < 
E;:1 c(gi). If IVel < [ ~ 1 c(gi), [ ~ 1 c(gi) - I Ve\ nodes are randomly chosen 
from V - Ve to become active candidates. The current value of £ is an upper 

bound of data estimation error per time unit over the initial training phase. 

The algorithm is referred to as Find_Active_Candidates and its detailed 

description is in Algorithm 3. 

Algorithm 3: Find_Active_Candidates 
Input : The set of nodes V, the increment Llc: 
Output: The set of active candidates Ve 

Ve +- V; £ +- O; 
while \Vel > E?!: 1 c(gi) do 

£ f- £ + L\£; 
Build Cd _vi for each vi E V; 
C +- {Cd_vi\vi E V}; 
Ve f-Set_Cover (V, C); 

if I V e\ < E;:1 c(gi) then 

l Randomly choose [ ~ 1 c(gi) - I Ve \ nodes from V - Ve as active 
candidates, and add them into Ve; 

return Ve . 

Algorithm Find_Active_Candidates delivers a set of active candidates 

Ve with \Ve\ = E?!: 1 c(gi ), and the estimation model can be calculated by 



§3.3 Algorithm 

Algorithm 4: Se t _Cove r 

Input : The set of nodes V, the collection of sets F 

Output: The set of active candidates S' 

U+-V; 
S +- F; 
S' +- 0; /* the set of active candidates*/; 

while U # 0 do 
Select a set Cd_vi E S such that I U n Cd_vi I is maximized; 

S' +- S' U { vi}; 
U +- U - Cd_vi; 
S +- S - {Cd_vi}; 

return S'. 
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Eq. (3.6) and Eq. (3.5). Using the model trained in T1, the monitoring qual­

ity is mainly compromised by the dynamic variance in data correlation over 

time, which leads to unstable data estimation error. To deal with this issue, 

we re-calibrate the estimation model regularly during the network lifetime for 

controlling monitoring quality loss. Particularly, the model trained in T1 is 

used only for the following period of T2, referred to as the- operation phase, and 

then it will be re-trained. We analyze the impact of T1 / T2 on the monitoring 

quality in Section 3.4. 

Allocating active candidates to roads. After Ve is identified, our milestone 

followed becomes allocating the active candidates to roads in GM. To this end, 

we first allocate them to individual gateways, and then to roads. 

For active candidates allocation to gateways, we aim to minimize the en­

ergy consumption on node-gat~way data transmission, which is distance de­

pendent. Accordingly, we formulate the problem as partitioning Ve' into m 

disjoint subsets S1, S2, ... , Sm, such that U~ 1 Si = Ve, Si n Si = 0, 1 < i, j < 

m, i # j, subject to (1) them subsets correspond to them gateways, i.e., I Si I = 

c(gi), 1 < i < m; and (2) a gateway and its active candidates subset should be 

as close as possible in distance, i.e., [ ~ 1 L u ESi,giE GW dist (u, gi) is to be mini- . 

mized, where dist ( u, gi) is the Euclidean distance between u and gi in G. 
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To solve the above problem, we first construct a weighted bipartite graph 

G' = (Ve U GW', E', d), where GW' = U~ 1 gauxi is the collection of m sets of 

auxiliary gateways, E' = { (u, g)l u E Ve,g E GW'}, and d(u,g) = dist (u, gt 

the Euclidean distance between u and g. Let gauxi = {gi1, gi2, ... , gie(gi) } be 
a set containing c(gi) copies of gi and dist (u,gij) = dist (u,gi ), for u E Ve 
and 1 < j < c(gi) - We next find a perfect matching of G' by the Hun­

garian algorithm [54L aiming to minimize L eEM d(e), where M is the set of 

matched edges with IM I = IVcl- In the resultant matching, all g E GW' 

and u E Ve are involved in the IM I matched edges. For each matched u E 

Ve, there is a matched edge with g E GW' as the other endpoint, represent­

ing that each active candidate is assigned to an auxiliary gateway. We then 

merge auxiliary gateways gi1, gi2, . . . , gie(gi) to their original node gi and put 

their matched nodes into Si. Since each auxiliary gateway g E GW' is as­

sociated with one active candidate u E Ve, the number of matched nodes 

added into Si is exactly c(gi). That is, !Si l = c(gi) , meeting the quota con­

straint. We finally assign each road eM E EM with corresponding set of ac­

tive candidates, denoted by S(eM ) = {Sil if gi is on the road eM E EM}- As 

a result, the set of active candidate Ve is partitioned into IEMI disjoint sets, 

S(e1) , S(e2), .. . , S(elEM I)- And the individual gain of road eM E EM is ob­

tained by using Eq.(3.3t denoted by q(eM) -

3.3.3 Distance-constrained Trajectory 

The closed path to be found in the road-map GM should include roads with 

high individual gains subject to the distance constraint Dmax• We approach 

the problem by referring to the methodology in [SSL that is, converting the 

maximum optimization problem into a classic distance-constrained shortest path 
problem, which has been extensively studied [21,39] . 

We first construct a weighted, directed graph Gd (VM, EM, w, d). Re-
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call that VM = {po, p1, p2, ... , PnM} represents the set of road crossings where 

p0 should be the starting/ ending point of the closed path, and EM is known 

as the set of road edges in which an edge eM E EM can be also expressed 

as eM = \Pi, Pj) where Pi, Pj E VM are the two endpoints of road eM in GM, 

The weight of each edge eM = \Pi, Pj) E EM is w(pi, Pj) = q( \Pi, Pj )) and 

d(pi, Pj) is the Euclidean distance between Pi and Pj, in other words, the ge­

ometric length of eM. Accordingly, finding an optimal tour in GM is then re­

duced to finding a closed path in Gd, starting from and ending at po, such that 

the total weight of the edges in the path is maximized, while D max is not vi­

olated by the sum of the edge length in the path. We refer to this problem as 

the distance-constrained longest path problem, which is NP-hard, since the well 

known NP-hard Hamiltonian problem [33] is a special case of the problem 

where no distance constraint is imposed. 

We transform the problem to a distance-constrained shortest path problem in 

another auxiliary directed graph G~ = (VM, EM, w', d) constructed as follows. 

For each directed edge \Pi, Pj) E EM, 

(3.7) 
otherwise, 

where <D and p are non-negative constants, <D > qmax, 0 < p < - 1- , and 
qmax 

qmax = maxeME EM{q(eM)} . The introducing of term p breaks the tie of two 

shortest paths between a pair ~f nodes with equal length by favoring the one 

with the larger individual gain. Let Ep be the set of edges in the identified path 

P. Consequently, the original distance-constrained longest path problem in Gd is 

well transferred to the distance-constrained shortest path problem in G~, which is 

defined as finding such a closed path P consisting of vertices in V M, with po 

as both its starting point and end point, s.t., L (pi,Pj)E Ep w' (pi, Pj) is minimized 

while L(P) = L (pi,Pj)EEp d(pi, Pj) < D max · 
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We modify an approximation algorithm by Chen et al. [21] for the 

distance-constrained shortest path problem, which finds a feasible tour and 

then locally improves the found tour. We calculate all pairs of shortest paths 

for all pairs of nodes u,v E VM in G~, denoted by D(u,v). P = (po ) initially. 

Let P = (po, p1, ... , Pi, po ) be the currently constructed path. We extend P by 

adding a next vertex u into P, which minimizes the total weight of the edges 

in the path r,1:,t w'(pj, PJ+l) + L ekE D(p;,u ) w'(ek) + L eiE D(u,po) w' (e1), subject to 

the constraint Dmax 

i-1 

L d(pj, PJ+l) + ID(pi, u) I+ ID(u, Po) I < Dmax• 
j=O 

(3.8) 

All vertices in D(pi, u) and D(u, po) should be added into Pin order. The pro­

cess continues until the distance constraint is no longer met. Note that D(pi, u) 

and D ( u, Po) may contain vertices that have already been visited and included 

in P. Adding them again to Pis, however, necessary. Otherwise, the mobile 

sink may not be guaranteed to return to p0 after visiting all other vertices in P. 

We here use an example to illustrate such tour extension as shown in Fig. 3.3. 

Assume that P = (po, p1, p3, Ps, po ) is the path to be extended, the shortest 

paths from ps to p7, and from p7 to Po are respectively D (ps, p7) = (ps, p1, p7 ) 

and D(p7, po) = (p7, p4, po ). We now check whether adding p7 to P still meets 

the Dmax constraint. If we only consider to add un-visited vertices into P, the 

updated path will be P = (po, Pl, p3, ps, p7, p4, po ). Assume L(P) < Dmax· 
Note that there is no edge directly connecting p5 and p7, or p7 and po in G~. 

However, after visiting p5 , the sink is not able to visit p7 by following P since 

(p5, p7 ) i E'. In order to reach p7, the mobile sink has to visit other vertices 

(p1 in this example). Since ID(ps, p7) I = d(ps, p1 ) + d(p1, p7) > d(ps, p7 ), the 

actual tour length may exceed Dmax· Therefore, we need to follow Eq.(3.8) to 

check whether the distance constraint is met. If it is still met, the updated path 

should be P = (po, P1 , p3, Ps, P1, p7, p4, po ). 
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I __.. 

p3 

Ps 

Figure 3.3: Tour extension in trajectory finding for the mobile sink 

We now improve the found tour further. Assume that a feasible tour 

P = (po, Pl, ... , Pk, po ) has been found with L(P) = L eE Ep dist(e) < Dmax, 

where dist(e) is the Euclidean distance between two endpoints of e. We per­

form a local improvement on the feasible solution by adding as many vertices 

to P as possible until the distance constraint is violated. To do so, we itera­

tively check whether there exists a vertex Pi (/_ P meeting the conditions: (i) 

(pi, p1) E EM and (p1, Pi+1) E EM, where (pi, Pi+1) E Ep, i -/- 0, and (ii) 

L(P) + d(pi, p1) + d(p1, Pi+1) - d(pi, Pi+1) < Dmax· If yes, add Pi into P since a 

better path P = (po, Pl, ... , Pi, Pf, Pi+l, ... , Pkt po ) is found. If there are multi­

ple vertices meeting the distance constraint, the one leading to the maximum 

individual gain will be added. This procedure continues until the Dmax con­

straint is no longer met. 

· Once Pis found, the set of active nodes can be determined, which is V' = 

U eE Ep S(e) (S(e) is the set of active candidates allocated to road e E EM), and 

the set of gateways GWp which will upload data to the sink are those deployed 

on edges in Ep. The mobile sink moves along Ep and collects the sensed data 

of active nodes by visiting gateways in GWp. 

There may exist duplicate nodes or edges in the tour. In the above exam­

ple, Pl is visited twice in P = (po, Pl, p3, ps, Pl, p7, p4, po ). Now assume the 

shortest path between p7 and Po is SP (p7, po ) = (p7, Pl, po ), the updated tour 

P = (po, Pl, p3, Ps, Pl, p7, P1, po ), where P1 is visited three times and edges 
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(po, p1 ) and (p1 , p7 ) are visited twice. This will compromise the monitoring 

quality since the mobile sink is not able to collect data when it moves along 

an edge that has been visited in the same tour, due to the constrained gateway 

quotas. 

3.3.4 Data Routing Protocol 

Having allocated active nodes V' to gateways in GWp, we next devise an 

energy-efficient routing protocol for the node-gateway data transmission in 

the operation phase. Assume an active node vi E V' is allocated to gateway 

g7 on road e E Ep, with dist(vi,gj) > r. In that case, vi cannot send its sensed 

data to g7 directly, rather, it needs at least one node acting as a relay node be­

tween them. Note that such relay nodes could be active nodes allocated to the 

same gateway, those allocated to other gateways, or inactive nodes. 

We aim to construct a routing structure F consisting of IGWp l trees, 

F = {Ti I Ti is tree rooted at gi spanning all active nodes in Si, 1 < i < IGWp l} 
(recall that Si is the subset of active nodes which send their data to the mobile 

sink via gateway gi). For a tree Ti rooted at gi, the Euclidean distance between 

any two connected nodes in Ti is to be minimized, s.t., L (u,v)ET;dist (u, v) is 

minimized, which is then reduced to the Steiner Tree Problem (STP), with Si 

as the terminal set. STP is NP-hard, and we find a solution for it by modifying 

the approximation algorithm by Kou et al. [53] as follows. 

First, we construct a weighted graph Gw = (V U GW, E, TJ ), where TJ (u, v) = 
dist (u, v) for each (u,v) E E. And we compute all pairs of shortest paths in 

Gw, An auxiliary complete weighted graph Gs; consisting of only Si is con­

structed. The weight assigned to each edge in Gs; is the length of the shortest 

path between the two endpoints of the edge in Gw. Second, we find a mini­

mum spanning tree (MST) in Gs;• Let EoPT be the set of edges in the MST. A 

subgraph of Gw, Gi, is induced by the edges in EoPT· Note that each edge in 
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EoPT corresponds to a shortest path in Cw. Third, we find a MST in the sub­

graph Ci, and prune those branches of the tree that do not contain the node in 

Si. The resultant tree Ti is an approximate Steiner tree with Si as the terminal 

set. Finally, assuming that the set of vertices in the Steiner tree is V si. for each 

u E V5i , we increase weights of its associated edges in Cw by a small constant 

~ w - As a result, the opportunity of the same node involved in more than one 

Steiner trees is reduced and the energy consumption among sensors can be 

further balanced. The found Steiner tree Ti is used to route data from nodes 

in Si to gateway gi, where 1 < i < I CWp I. And the trees form the routing 

structure F. 

Note that Ti rooted at gi may include nodes not in Si for the purpose of 

data relay, and in that case, the number of descendants of gi, I Vs i I, will exceed 

the quota c(gi)- However, gateway gi only receives data from active nodes in 

Si, and sensed data of the other nodes in tree Ti will not be forwarded to gi. 

The heuristic algorithm is referred to as Monitor_Quality_Max, or MQM 

for short. 

3.3.5 Algorithm Implementation 

We now discuss the implementation of algorithm MQM, illustrated in Fig. 3.4. 

The network lifetime L, which is defined as the time of the first sensor's 

failure due to the depletion of its energy [19], consists of multiple training 

phases and operation phases. The length of a training phase is T1 while the 

length of an operation phase is N times of the duration of a tour (t~)), i.e., 

T2 = N · L~) , where N is a positive integer, to ensure the mobile sink returns 

to the depot after each operation phase. At the beginning of the network life­

time, a minimum spanning tree spanning all common nodes in C is built for 

data collection within the training phase T1. Then the energy consumption of 

each node within T1 is calculated, denoted by Ec1 ( vi) . Let Er( vi) be the resid-
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Build a minimum spanning tree F' 

Ec1 (v;)=dT1 ( v;)* ET1 ( v;,u )+dR1 ( v;)*ER1 ( v;) 

NO 
YES 

End of the network lifetime 

NO 

Collect data generated from all common nodes 
within T1 via structure F'; 

U date E, v; fo r all l:5 i:5 n 

Call algorithm MQM, output the set of active nodes 
V ', the closed path P, and the routing structure F 

Eci(v;)=dTI(v;)*ETI(v;,u)+dRi(v;)*ERi(v;) 

YES 

The mobi le sink moves along P fo r min{E,(v;) mod 
Eci(v;)I 1:5 i:5 11} tours, and returns to depot po; 

L=L+T2=L+min{E,(v;) mod Eci(v;)ll :5 i:5 n}*L(P)/v; 
End of the network lifetime. 

The mobile sink moves along P fo r tours , and 
returns to depot po; 

L=L+ T 1=L+ *L(P)/v; 
Update Er(v;) fo r a ll I :5 i:5 n 

Figure 3.4: Flow chart of the network lifetime calculation 
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ual energy at node vi. If Er(vi) > Ec1 (vi) for 1 < i < n, no node will deplete 

its energy in the current training phase, and network lifetime Lis increased by 

T1 . Otherwise, at least one node will use up its energy within the following 

T1 and the network lifetime ends. At the end of each training phase, algo­

rithm MQM is implemented and delivers the set of active nodes V', a closed 

path P, and a routing structure F. At the beginning of each operation phase, 

the energy consumption of each node in one tour's duration (L V:) ) is calcu­

lated and denoted by Ec2 ( vi) - If the residual energy of any node is smaller 

than the amount of energy to be consumed within N tours (N · Ec2(vi)), the 

network lifetime ends when the node depletes its energy, and Lis increased by 

min { Er (Vi) mod Ec2 ( vi) I 1 < i < n} · LV:). Otherwise, the whole operation 

phase ends with all nodes alive, L is increased by T2 = N · L~P) , and the above 

procedure is repeated with a new training phase. That is, algorithm MQM 

is implemented every (T1 + T2 ) , with the trajectory and the routing structure 

re-delivered accordingly. 

The energy consumption of nodes in training phase and operation phase is 

calculated as follows. Considering only the energy consumption on wireless 

communication including data transmission and reception [74], we obtain the 

following equation. 

(3.9) 

ass~g vi transmits data to node u' in F', where ER ( vi) and Ey( vi , u' ) are the 

amounts of energy consumed by Vi on receiving 1 bit of data and transmitting 

1 bit of data to u'; dn(vi) and dR1 (vi) are respectively the amounts of data 

transmitted from and received by vi in the training phase T1 . 

(3.10) 

and 
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Er ( vi, u') = t elec + t amp · dist2 
( Vi, u'), (3.11) 

where t e/ec is the energy cost of processing 1 bit data and t amp is the transmitter 

amplifier, dist(vi, u' ) is the Euclidean distance between vi and u'. Let c(vi) be 

the number of nodes using vi as the relay node in the routing structure (either 

F' or F), then 

(3.12) 

and 

(3.13) 

Assuming Vi transmits data to node u in F, 

(3 .14) 

where dT2(vi) and dR2 (vi) are respectively the amounts of data transmitted 

from and received by vi in one tour. 

dT2 (v,) = { 

and 

L~) · rg · (c(vi) + l ) 

L(P) · r · c(v·) 
V g l 

if Vi E V', 

otherwise, 
(3.15) 

(3.16) 

Theorem 3.2. For a wireless sensor network G(V U GW, E) with a mobile sink mov­

ing in a given road-map, the communication time constrained monitoring quality 

maximization problem can be solved by the proposed algorithm MQM with complexity 

O (n4), where n is the number of sensor nodes in G. 
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Proof The complexity of algorithm MQM depends on the following four stages. 

In the first stage, the Fin d_Active _Ca n d i dat e s takes O(n4 ) with algorithm 

Set _Cove r being implemented in time O(n3) and the number of iterations 

in Find_Active _Ca n didat es being bounded by n. In the second one, al­

locating active candidates to gateways takes O(n4 ) because the computation 

complexity of the Hungarian algorithm is O(IV' l4 ) = O(n4 ). In the third one, 

the distance-constrained tour Pis found within O(n2 ) [58]. In the last stage, 

as shown in [53], the data routing structure Fis built in O(n3 ). Therefore, it is 

safe to conclude that the overall complexity of algorithm MQM is O ( n4) . □ 

3.4 Performance Evaluation 

In this section, we evaluate the performance of the proposed algorithm MQM 

through extensive experiments by simulation. Specifically, we vary network 

topologies with different numbers of gateways and common nodes, and eval­

uate the monitoring quality in terms of data estimation error, and the energy 

consumption on data collection. 

3.4.1 Experiment Settings 

We consider a wireless sensor network deployed in a 150m x 150m square 

region. The road-map in the monitoring region is shown in Fig. 3.5, in which 

there are 13 roads and 8 road crossings A, B, C, D, E, F, G, and H. The crossing 

A is the depot, where the sink starts from and returns to during each tour. 

The parameter settings in the simulation are as follows. The speed of the 

mobile sink v = 2 m/ s, the data transmission rates of gateways are identical 

to be 100 bits / s, the data generation rate of sensor nodes is r g = l bit / s, the 

transmission range of sensors and gateways is r = 10 m, the initial energy 

capacity of sensors IE = 100 Joules, €amp = 100 pJ / bit / m2
, Ee/ec = 50 nJ / bit, 
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monitoring region 

D 

GLiY 
F E 

Figure 3.5: A road-map in the monitoring region 

adopting the energy consumption model in [40]. All experiment results are 

the mean of the results delivered by the algorithm with 50 different network 

topologies and identical parameter settings. 

The synthetic data used for simulation is generated following a random 

walking pattern [26, 52, 68]. Firstly, the initial value for each common node 

is chosen uniformly in the range [O, 100]. Then, all common nodes are parti­

tioned into K classes, and the values of nodes belonging to the same class are 

further changed by making random step with a certain probability, which is 

uniformly chosen in the range [0.2, 1]. In that case, then common nodes have 

K classified behaviors in terms of their sensed data and nodes in the same class 

have the same behavior. For example, data correlation of common nodes is at 

its maximum when K = l (i.e., all common nodes have the same behavior), 

and it decreases when the value of K increases. 

We generate a set of synthetic data for T1 + T2 time units, following the 

above strategy. We use data generated within the first T1 units to train the 

estimation model, and adopt data generated in the last T2 units to evaluate 

the effectiveness of the model by calculating monitoring quality loss using 

Eq.(3.3). Define the ratio of T1 to T1 + T2 as the initial training phase ratio, 
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denoted by R = T1 / T2. Specifically, in our default simulation setting, T2 is 8 

times of L~) and R is set to be 10%. 

3.4.2 Impact of Constraint Parameters on Network Performance 
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Figure 3.6: Monitoring quality loss over each tour with different initial training phase 

ratios 

Impact of the training data set on monitoring quality. We first evalu-
-

ate the impact of the synthetic training data on the network performance, by 

studying the influence of the initial training phase ratio Ron the monitoring 

quality loss over each tour. As shown in Fig. 3.6, we vary R from 2.5% to 15% 

with the increment of 2.5% while fixing n = 100, m = 50, D max = l000m. 

Two main observations are obtained accordingly. The first one is that with a 

fixed R, the loss goes up as the number of tour increases, which is due to the 

reason mentioned in Section 3.3 that the estimation model is outdated and un­

able to reflect the sensed data correlation accurately after a while. The second 

one is that the loss becomes smaller with a greater R within any single tour. 

Taking the 4th tour as an example, the loss is over 12 with R = 2.5% while 

the loss is lowered to about 7 when R increases to 7.5%. The reason behind is 

that a longer initial training phase leads to more accurate and stable estima­

tion model, which is valid for a larger number of tours. From another point 

of view, estimation model with a smaller R is required to be updated more 
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frequently. 
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Figure 3.7: Monitoring quality loss over each tour with different values of T2 

We then evaluate the impact of the length of training and operation phases 

by varying T2 from 2 times, 4 times, and 8 times of tour duration L~) , while 

fixing Dmax = 200m and R = 10%. Fig. 3.7 shows that with T2 = 2 x L~) , the 

quality loss could be controlled below 40 over tours whereas with the growth 

in T2, the highest loss increases. However, with a larger value of T2, the loss 

over the first few tours becomes smaller. Taking the first two tours as an ex­

amp le, the loss with T2 = 8 x L~) is the lowest compared with those with 

T2 = 2 x L~) and T2 = 4 x L~P) , and within the first four tours, the loss with 

T2 = 8 x L~) is lower than that with T2 = 4 x L~) . The results verify that 

re-building the data estimation model is essential to control the monitoring 

quality loss. Also it indicates that with the same ratio of R = T1 / T2, the larger 

the T2, the more accurate the data estimation at the beginning in the following 

operation phase, yet potentially the greater the quality loss in a later stage of 

the operation phase. 

We finally investigate the number of common node classes K by varying 

K from 1 to 9 with the increment of 2. From Fig. 3.8, we observe that the 

monitoring quality loss is relatively small when K = l and it goes up as K 

increases. The result verifies that when the value of K is small, data correlation 

of nodes is high and data estimation of inactive nodes is accurate. When K is 
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large, sensed data among nodes are not highly correlated and data estimation 

causes a relative greater loss. 
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Figure 3.8: Monitoring quality loss over each tour with different values of K 

Impact of gateway deployment on network performance. The network 

performance is influenced by the deployment of gateways. On the one hand, 

the number of gateways and their distribution are significant for efficient data 

collection. In practice, the gateways are allocated along the roads in the road­

map with uniform distance, e.g., every l meters, which is referred to as the 

gap of gateways. The gap of two gateways is the distance between them along 

a road in the map. On the other hand, the deployment affects the individual 

quotas of gateways and determine their data relay capabilities. As mentioned 

before, the quota of a gateway gi E GW depends on its transmission range 

arid path intersection length li, which is dependent on the vertical distance 

between gateway gi and its deployed road. 

We first evaluate monitoring qualify and network lifetime by setting Z to 

10m, 20m, 25m, 40m, and 50m respectively, while fixing n = 200 and D max = 

200m. The quota of each gateway is assigned to the maximum 10 by Eq. (3.2), 

when li = 2r for each gateway gi E GW. In Fig. 3.9(a), the curve with n = 

200 shows the monitoring quality loss with different values of l. It indicates 

that the more densely deployed the gateways (the smaller the Z), the smaller 

the monitoring quality loss. This is because more gateways will be able to 
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relay data from more sensors to the mobile sink. For example, when l = 10m, 

there is no monitoring quality loss, since the mobile sink can visit 20 gateways 

(200m / 10m = 20) and thus collect data from 200 active nodes (20 x 10), which 

is the complete set of common nodes. Keeping n unchanged, when we set l 

to be 20m and 25m respectively, the mobile sink can only visit 10 (200m / 20m) 

and 8 (200m / 25m) gateways respectively, and the corresponding numbers of 

active nodes are 100 (10 x 10) and 80 (8 x 10). With data loss unavoidable in 

both cases, 100 active nodes cause less monitoring quality loss than 80 ones. 

The curve with n = 200 in Fig. 3.9(b) demonstrates that with a smaller l, more 

gateways are able to distribute the data relay load more evenly among sensors, 

resulting in a longer network lifetime. 
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Figure 3.9: Performance evaluation of algorithm MQM with different gaps of gateways 

The value of l is determined by both the user requirement on the moni­

toring quality and the application budget. The number of gateways is lL/Z J 
and the gateway quota is ~--;~ = f;; referring to Eq.(3.2) when li = 2r. If the 
data transmission rates of all gateways are identical, the total number of active 
nodes is 1

1 
· 

2Lr-r, = 2
1r·r, . That is, the number of active nodes only depends on •rg •rg 

l. If quality loss is not acceptable, gateways should be deployed every ~;; 

meters on roads. If 0-e application budget is limited for a large number of 

gateways, we should increase l at the cost of lower monitoring quality. Also 
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note that when the network size n increases from 200 to 500 while l keeps a 

constant, the quality loss increases and the network lifetime decreases, shown 

in Fig. 3.9. This is because the same number of active nodes can better repre­

sent the other nodes when the network size is smaller. With the increase in the 

network size n, more energy is consumed on the data collection, resulting in a 

shorter network lifetime. 

We now study the impact of gateway quota on network performance. In 

practical network deployment, it is difficult to ensure li = 2r for each gateway. 

For a gateway gi E GW with li < 2r, its quota is smaller than 10. Under the 

deployment with Dmax = 200m, l = 20m, n = 200, we vary the total gateway 

quota from 60 to 100 with the increment of 10 and evaluate the network perfor­

mance. We analyze both equal quota and unequal quota scenarios. In the equal 

scenario, quotas of the 10 gateways are assigned equally, while in the unequal 

scenario, quotas are randomly generated with their sum fixed as a given total 

quota and then assigned to the 10 gateways. For example, with a total quota 

of 60, the quota of every gateway is 6 in the equal quota scenario, whereas the 

value varies from each other in the unequal quota scenario with the sum fixed 

as 60. 

= 200~~-~~-~~-~~~~ 
B 
" "' 0 

t 150 
;, 
0 

"' "' 0 

~ 100 
-;;; 
:, 
O"' 

.s 50 
i5 
·a 
0 

GB equal quotas 
G El unequal quotas 

::8 ~LO -~----,7,L-0-~------=1,80,--~----390~==-fbl 0 

The total quota 

(a) Impact of the gateway quota on the 
monitoring quality loss 

= GB equal quotas 
B -3 GEl unequal quotas 
t 1.0 10 

_u--
0, 

§ ,fY 

·g_9_5 104 
,, 

~ , -, , _,,,,,,0"- ✓-
8 9.0 104 

__ --
>. 
f:,O 

" ~ 8.5 10
4 

60 70 80 90 100 
The total quota 

(b) Impact of the gateway quota on the en­
ergy consumption 

Figure 3.10: Impact of the gateway quota on the network performance 

Fig. 3.l0(a) shows monitoring quality loss over each tour with different to-
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tal quotas. It is observed that the larger the total quota, the smaller the loss 

delivered because more active nodes are chosen. Also, with the same total 

quota, the monitoring quality loss in the two scenarios is almost identical, in­

dicating that the loss does not depend on the individual quota assignment but 

the total quota value. Fig. 3.l0(b) plots energy consumption on data collec­

tion per tour with different total quotas. The consumed energy goes up with 

the increase of the total quota since data from more common nodes needs to 

be transmitted. We also notice that the unequal quota distribution results in 

higher energy consumption because data from active nodes has to be relayed 

to distant nodes to reach the corresponding gateways. The two curves in­

tersect at total quota=l00, since all common nodes are active nodes and the 

routing structures are the same. And the gap becomes larger as the total quota 

decreases. 

Impact of road-map on network performance. We then evaluate various 

road-maps on the network performance. We adopt the road-map shown in 

Fig. 3.5 and vary the distance constraint Dmax from 200m to 400m with the 

increment of 50 while fixing l = 25m and n = 200. Fig. 3.11 shows that a 

larger Dmax results in better network performance. 

As discussed above, the number of active nodes is irrelevant to D max · How­

ever, different settings of D max do impact the network performance in the fol­

lowing two aspects. First, in terms of data freshness, a larger D max causes a 

longer data delivery latency. For example, with D max = 200m, the mobile 

sink is able to collect data generated during the last 100s (~~;'.: ) while with 

D max = 400m, the sink can collect data generated within the last 200s (~~;'.: ). 

Second, from the respect of the solution domain, a larger D max enlarges the 

domain for a better solution with smaller monitoring quality loss and more 

energy-efficient data collection. With l = 25m, the number of active nodes is 

80 regardless of the value of D max · Setting D max to be 200m and 400m, e.g., the 

numbers of gateways the mobile sink can visit are 8 and 16, with quotas 10 and 
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5 respectively (8 x 10 = 16 x 5 = 80). However, compared with Dmax = 200m, 

in the scenario with Dmax = 400m we find path Pin the road-map with relax­

ing length constraint. Accordingly, edges with higher monitoring quality are 

more likely to be involved in P and the data relay load is distributed more 

evenly among nodes. 
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Figure 3.11: Performance evaluation of algorithm MQM and GTF with different distance 

constraints 

3.4.3 · Performance Comparison 

We finally compare the performance of algorithm MQM against that of another 

heurisfic which differs from MQM only in the closed path finding stage. In this 

heuristic, the path finding process is as follows. Let P = (po, p1, ... , PI, po ) 

be the tour generated so far. The next vertex added to P will be determined 

as follows. The algorithm first checks all un-visited neighboring vertices of p1 

in GM and adds a node Pk between pz and po in P if it meets: (i) Pk (/:. P; (ii) 

q( (l, k)) = max{ q( (l, i)) I (Z, i) E EM}; and (iii) 1D(pk, po) I+ d(p1, Pk)+ L(P) -

d(pz, po) < Dmax• If no such a vertex is found, the algorithm checks all vis­

ited neighboring vertices of Pl, finds Pk E P with the minimum ID(pkt po) I + 

d(pz, pk) + L(P) - d(p1, po) ( < Dmax), and adds it between Pl and po in P. The 
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algorithm terminates if the D max constraint is no longer met. We refer to this 

heuristic as algorithm Greedy _Tour _Finding, or GTF for short. 

We evaluate the network performance delivered by algorithms MQM and 

GTF through fixing n = 200, l = 25m, and varying D max from 200 to 400 with 

the increment of 50. The monitoring quality loss and the network lifetime 

delivered by two algorithms are shown in Fig. 3.ll(a) and Fig. 3.ll(b) respec­

tively, from which we observe that algorithm MQM always outperforms GTF, 

and the superiority becomes more evident with the increase of D max• 

3.5 Conclusions 

In this chapter, we have studied the communication time constrained monitor­

ing quality maximization problem in a WSN with a mobile sink which moves 

in a given road-map. We formulated the problem as a joint optimization prob­

lem consisting of identifying the set of active nodes, finding a closed distance­

constrained path, and devising an energy-efficient routing protocol, such that 

the mobile sink can efficiently collect data from active nodes by moving along 

the path with monitoring quality maximized. We proved its NP-hardness and 

provided a heuristic instead. We finally conducted extensive experiments by 

simulation to evaluate the effectiveness of the proposed algorithms. Through 

the experiments, we studied the impacts of training data set, gateway deploy­

ment, and road-map shape on the network performance. The experimental 

results also showed the superiority of the proposed algorithms to a greedy 

heuristic algorithm. 



Optimization of Network 

Throughput and Service Cost 

4.1 Introduction 

Chapter 4 

Data transfer in remote monitoring is evaluated by two metrics: network through­

put and service cost. Network throughput is defined as the volume of data re­

ceived by the monitoring center from the WSN within a specified period. Data 

transfer from each individual sensor node to the remote monitoring center 

undergoes unreliable wireless transmission in the WSN, and the paid reliable 

transmission through the third party network. Thus throughput depends on 

data loss during transmission within the WSN. Service cost is the payment 

charged for the third party communication service. It is determined by the 

amount of data carried by the third party network, as well as the charging 

strategy of the service provider, such as charging rate, charging period. In this 

chapter, we formulate the network throughput and model the service cost, 

based on which we study the optimization of these two performance metrics. 

Maximizing network throughput and minimizing service cost at the same 

time is desirable, however, can not be achieved simultaneously. Network 

throughput is the profit gained from remote monitoring whereas service cost is 

the expense for the operation of remote monitoring, and intuitively, the more 

the profit, the higher the expense. For example, if no data is sent through 

95 
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the third party network, the service cost is zero (at its minimum) yet with 

nil network throughput. Or, when the network throughput is at its maxi­

mum (all sensed data is received at the monitoring center), the incurred ser­

vice cost would be very high. The trade-off between the two metrics can be 

found with specified objectives and constraints. Budgeting-oriented applica­

tions are with the objective of minimizing service cost provided a required 

amount of data can be received. Whereas throughput-targeting applications 

aim at maximizing network throughput with relative relaxing restriction on 

the service cost. We define optimization problems under these two scenarios, 

namely service cost minimization with guaranteed network throughput, and 

network throughput maximization with minimal service cost. We then prove 

that they are NP-complete and develop algorithms for them separately. We fi­

nally provide analytical and experimental results to validate the performance 

of the proposed algorithms. 

The problem of finding a trade-off between the network throughput and 

the service cost is related to the load-balanced routing problem [24, 42, 57, 78] 

in that data received at sinks should be balanced to avoid heavy penalty or 

much waste of pre-paid fixed cost. Hsiao et al. [42] introduced dynamic load­

balanced tree for grid-topology wireless access networks and proposed a dis­

tributed algorithm for it. Dai et al. [24] developed a hierarchy-balanced tree 

and utilized the Chebyshev sum as a metric for evaluating top-level load­

balanced trees. Liang et al. [57] proposed an algorithm which dynamically 

builds a spanning tree to balance the data transmission load among nodes 

and prolong network lifetime. Shan et al. [78] studied the load-balanced tree 

problem by incorporating data delivery delay, and provided a novel top-down 

heuristic for it. Different from these studies, we consider both service cost 

and network throughput and aim to design a routing protocol to maximize or 

maintain the network throughput with the minimal service cost. 

Other related problems include the Capacitated Minimum Spanning Tree prob-
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lem (CMST) [45, 71], the K-Rooted Min-max Spanning Forest problem [104], and 

the Maximum Concurrent Flow problem [34], which are separately defined as fol­

lows. Given an edge-weighted graph, a root node, a set of source nodes, and a 

given demand Q > 2, the CMST problem is to construct a minimum-cost span­

ning or steiner tree rooted at the root node spanning all source nodes subject to 

the sum of the demands in the subtree of each child of the root being no more 

than Q. The K-Rooted Min-max Spanning Forest problem is to find a spanning 

forest with K given root nodes in an undirected graph such that the maximum 

tree cost is minimized. The Maximum Concurrent Flow problem is defined 

in a directed graph, where there are multiple pairs of source and destination 

nodes with each source having a given demand to be sent to its destination. It 

is to route the same fractional of the demand of each source to its destination 

such that the proportion is as large as possible. Intuitively, the problem of con­

cern can be reduced to one of the above mentioned problems. For example, 

we may reduce the problem to the CMST problem or the K-Rooted Min-max 

Spanning Forest problem, where the data quota at each~sink is treated as the 

capacity, and a routing tree rooted at the sink subject to its capacity constraint 

is then built, or a forest is found such that the cost of the maximum cost tree is 

minimized. Alternatively, we may reduce the problem to the Maximum Con­

current Flow problem, where the volume of data generated by each node for a 

specified period is treated as the demand of the node and the destinations of 

all nodes are sinks. However, the problem studied in this chapter is essentially 

different from these mentioned problems: (i) In the CMST problem, the load 

allocated to each sink is no more than its capacity, while in our problem the 

load of some sinks is allowed to exceed the data quotas (capacities). (ii) The 

K-Rooted Min-max Spanning Forest problem only aims to minimize the maxi­

mum cost of trees in a forest, which is not equivalent to our problem where the 

load of each tree root is determined by not only its edge weights (link reliabil­

ity) but also the distance of each node in the tree to the tree root (end-to-end 
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reliability). (iii) We here consider a link-unreliable wireless sensor network 

where data loss is unavoidable during data transfer, which means that the 

volume of data collected at each destination node is usually less than the vol­

ume of data sent at its source node. Thus, the traditional multi-commodity 

flow technique is not applicable as the flow conservation property does not 

hold any more. Overall, existing algorithms are not applicable to our problem, 

and new algorithms need to be developed. 

The remainder of this chapter is organized as follows. Section 4.2 models 

the unreliable sensor network and formulates the network throughput and 

service cost. It also proposes two novel optimization problems and proves 

their NP-hardness. Section 4.3 and 4.4 develop approximation algorithms for 

service cost minimization and network throughput maximization. Section 4.5 

includes experimental results to evaluate the proposed algorithms. Section 4.6 

concludes this chapter. 

4.2 System Model and Problem Definition 

We consider a link-unreliable wireless sensor network G = (V, E), where Vis 

the set of sensor nodes and Eis the set of unreliable links, n = I VI. Each sensor 

node is equipped with at least a low-power radio and there is a link between 

two sensor nodes if they are within the low-power radio transmission range 

of each other. We have the following assumptions on the network model. (1) 

Sensor nodes have identical data generation rates r g and their locations are sta­

tionary and known a priori. (2) We consider a periodic environmental monitor­

ing application scenario, in which nodes have low data generation rates and 

thus data burst and bandwidth capacity constraint are not considered in this 

chapter. (3) The link reliability of a link e E E, denoted by Pe with O < Pe < 1, 

is determined by the path loss, concurrent transmission interference, and am­

bient noise on wireless channels. We assume that the successful probabilities 
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of any two data transmissions over the same link e are independent, either of 

which only depends on Pe· (4) Denote by S the set of sinks with m = I SI, and 

each sink has a high-bandwidth radio onboard to transfer data to the third 

party network. (5) We adopt the tree-based routing structure for data trans­

mission. Let Ti be the tree rooted at sink si E S and V (Ti) be the set of nodes 

in tree Ti, l < i < m. 

The volume of data received by the monitoring center within a specified 

period Tis defined as the network throughput . Sensed data from a source node 

must undergo three stages to reach the remote monitoring center. It is first 

transmitted from its source node to a sink (omitted if it is generated by the 

sink itself) along a path in the routing tree rooted at the sink, then sent out of 

the sensor network by the sink, and finally forwarded to the monitoring center 

by the third party network. The data transmission over wireless links in the 

WSN is unreliable while the data forwarding over the third party network 

is considered reliable (paid service and beyond the control of the application 

user). Thus, the network throughput is the sum volume of data received by 

all sinks during the period T. The volume of data received at a sink si via Ti 

within Tis denoted by o (T) (i), and the network throughput is Lt~l o (T) (i). 

Let e1, e2, ... , eh be the link sequence in the path of Ti from a sensor node v E 

V.(Ti) to sink Si. Denote by Pv,si the end-to-end reliability between v and si, thus 

Pv,si = TI7=1 p(ei)- We treat each attempt of node v sending its data to Si as one 

trial and each trial as an independent and identically distributed (i.i.d) event. 

Denote by D ( v, si) a 0-1 variable to represent whether one trial is successful, 

_ { 1 successful, 
D(v, si) - . 

0 otherwise. 
(4.1) 

Then, Pr [D(v,si) = 1] = Pv,si · The expectation of D(v,si) is E[D(v,si)] 

Pr [D(v,si) = 1] · 1 + Pr [D(v,si) = O] · 0 = Pv,si · Let E[D(T)(i )] be the expected 
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volume of data received by sink si within a charging period T. Following the 

definition of Poisson trials [67], the expected volume of data collected by sink 

si in Ti within Tis 

L(si) = E[D(T)(i)] = E[ [ (rg · T · D(v, si))] 
vE V (Ti) 

= rg ·T· [ E[D (v, si)]= rg · T · [ Pv,si · 
vE V (Ti) vEV(Ti) 

(4.2) 

Network throughput [ ~ 1 D(T) (i) is not deterministic too, and its expecta­
tion denoted by D(T) is 

m m 
D(T) = [ E(D(T) (i)) = [ rg · T · [ Pv,si = rg · T · [ Pv,si · (4.3) 

i= l i= l vE V(Ti) vE V 

The remote communication service leased from the third party telecommu­

nication company is charged at each individual sink according to the volume 

of data it receives and sends. For each sink, the cost within a regular charging 

period T is fixed Cf if the amount of data sent via it is no greater than a spec­

ified quota Q, otherwise, extra cost is applied with a penalty rate Cp for every 

MB data usage exceeding Q during T. Let Cp be the penalty cost of a data 

quota Q, i.e., Cp = Cp · Q. The combinations of different c1, Q, and cp com­

prise optional charging plans, and in most plans, the penalty rate is higher 

than the rate for data quota, i.e., cp > C1/Q, and Cp > Cf . Thus, if a sink 
cannot consume the data quota of its current plan within the charging period, 

it is under-utilizing the current plan and wasting money in some sense, and it 

should choose another plan with a lower fixed cost for a smaller data quota. 

On the contrary, if a sink always exceeds the quota, it is wise to choose a plan 

with a higher fixed cost for a larger data quota to reduce prohibitive penalty. 

The service cost of remote monitoring is determined by the number of sinks 

and the volume of data exceeding the data quota at each sink. In this chapter, 
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we assume that all the sinks are applied with the same data plan and investi­

gate the total costs of all the sinks within T. Therefore, we yield the formulated 

expression for the service cost, denoted by C, as follows. 

m 

C = m · c1 + L max{O, (E [D (-r) (i) ] - Q) • cp}, 
i= l 

(4.4) 

On the right hand side of Eq. (4.4), the first term is the fixed cost of them sinks, 

the second term is the total penalties incurred, either O or ( E [ D (-r) (i) ] - Q) · c P 

at sink si depending on whether the quota is overused at Si. From Eq. (4.4), 

the service cost is determined by the number of sinks, the data plan adopted 

at individual sinks, and the volume of data sent through each sink. 

Given a link-unreliable sensor network G(V, E) for remote monitoring with 

a specified data plan adopted by each sink for a charging period of T, the trade­

off between network throughput and service cost is considered in the follow­

ing two scenarios. (1) Budget-oriented remote monitoring applications with 
-

homogeneous cheap nodes deployed in the WSN have service cost as their 

top concern, while still requirin·g a certain amount of data to be received by 

the monitoring center. In these applications, the service cost is to be minimized 

while the specified network throughput requirement has to be met. We define 

the network throughput requi;ement as D~;J =a • n • rg • T, where O < a < l is 

a pre-defined parameter, referred to as the network throughput threshold, a lower 

bound on the percentage of all sensed data that must be received by the mon-
. . 

itoring center during a chargi!ig period T. To meet the specified throughput 

requirement, o (-r) > D~;J should hold. (2) High-precision applications aim to 

acquire detailed information of the monitoring region thus require to receive 

as much real-time data as possible from the monitoring region. Clearly, the 

network throughput is the first objective of these applications, which would 

not spare to deploy a number of resource-unconstrained sinks at pre-defined 

locations in the monitoring region with the hope that they can be more capable 
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to undertake crucial role in remote data transfer to improve network through­

put. Under this circumstance, the service cost is not the foremost concern yet 

is desirable to be as low as possible provided the throughput is the maximum. 

Two performance optimization problems are defined accordingly as fol­

lows: (1) In homogeneous dual-radio WSNs which require the monitoring cen­

ter to receive at least a percentage of all sensed data within T, the throughput 

guaranteed service cost minimization problem is to identify a set of sinks for each 

period of T and find a forest of routing trees to transmit the data generated 

within T to the sinks, such that the incurred service cost is minimized, subject 

to the throughput requirement. (2) In heterogeneous WSNs with a given set 

of dual-radio sinks S with m = IS I, the network throughput maximization with 

minimal service cost problem is to design a data routing strategy such that the 

accumulative volume of data received by them sinks is maximized while the 

service cost of transferring this amount of data to the remote monitoring cen­

ter is minimized. Different from the first problem, where the throughput is a 

constraint imposed on the objective of minimizing the service cost, the second 

problem has throughput maximization as the foremost aim, a precondition for 

minimizing service cost. 

Providing efficient solutions to the above constrained optimization prob­

lems is challenging. The core difficulty lies in jointly determining the set of 

sinks and find a routing forest consisting of trees rooted at the chosen or pre­

identified sinks, via which (i) the total volume of data received at all roots is 

maximized or meets the throughput requirement (ii) the volumes received at 

roots are balanced to eliminate penalty due to quota exceeding, or minimize 

penalty at any sink if the quota exceeding occurs. (iii) adequate data can be 

received at each root to avoid the waste of pre-paid fixed cost, which happens 

if the received volume is always below the quota. 

Theorem 4.1. The decision versions of the two performance optimization problems in 

network G(V, E) are NP-complete. 
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Proof We first prove that the throughput guaranteed service cost minimiza­

tion problem is NP-complete. We show a_ special case of the problem is NP­

complete through a reduction from a NP-complete problem, the subset sum 

problem [22]. Given a set of positive integers U = { a1, a2 , ... , an}, the sub­

set sum problem is to partition the set into two disjoint subsets U1 and U2 

such that LaiEUi ai = L ajE u 2 aj- The decision version of an instance of the 

subset sum problem is to determine whether there is a set partition U' and 

U" = U - U' such that LaiE U' ai = LajE U" ai = A, where A = LaiEU aif 2. 

Given an instance of the subset sum problem, we now construct an instance 

of a special maximizing network throughput with minimal remote data trans­

fer cost problem in a sensor network G(V U { s1 , s2 }, E) with two sinks s1 and s2 

as follows. V is the set of sensors and each sensor vi E V corresponds to an ele­

ment in U, and sinks s1 and s2 correspond to sets U' and U" respectively. There 

is an edge in E between each sensor node and either sink or between two sen­

sors if they are within the transmission range of each other. Assume that the 
-

link reliability of a link between a sensor Vi and either sink is Pi = ai / T, where 

T = max{ ai [ 1 < i < n} + 1 is the duration of a monitoring period, while the 

link reliability between any two sensors is 1. We further assume that the data 

generation rate is r = l. The amount of data from a sensor vi E V to either 

sink during this period is Pi · T · r. Clearly, the maximum network through­

put of this network is L v1EV1 (Pi · T · r) + L vjEV2 (p i · T · r) = L a1EU ai = 2A. 

Let t~e data quota Q be A, i.e., Q = A, and the fixed cost is Cf . The deci­

sion version of this special case of the problem is to determine whether there 

are two routing trees rooted at the sinks such that the network throughput is 

maximized while the remote data transfer cost is minimized, i.e., 2c1. Note 

that only when the volume of data received at each root of the two trees is 

A, the remote data transfer cost is 2C f , otherwise, the cost will be larger than 

2Cf. Obviously, if there is a solution to the problem, there is a corresponding 

solution to the subset sum problem. Since the subset sum problem is NP-
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complete and this reduction is in polynomial time, the problem of concern 

thus is NP-hard. Meanwhile, it is easy to verify whether a given solution has 

the the maximum network throughput 2A with remote data transfer cost 2Cf 

in polynomial time, thus the problem is in NP class. As one of its special case 

is NP-complete, the problem is NP-complete. 

The NP-completeness proof of the network throughput maximization with 

minimal service cost problem is similar to that of the throughput guaranteed 

service cost minimization problem, omitted. □ 

4.3 Service Cost Minimization 

We first deal with the throughput guaranteed service cost minimization prob­

lem. Due to its NP-completeness, we propose a heuristic instead. Given a 

specific data plan for sinks, the service cost in a charging period is determined 

by the number of sinks, and penalties for quota exceeding at individual sinks. 

Intuitively, if there is a solution to the problem, the minimum service cost can 

be achieved when no fixed cost is wasted and no penalty is applied. That is, 

the amount of data relayed by each sink within the charging period is exactly 

equal to its data quota. However, in reality, the volumes of data relayed by 

sinks may not be balanced, which will result in money waste at some sinks 

that relay data less than their quotas, and penalties at some others that relay 

data more than their quotas. In order to minimize the service cost while main­

taining the throughput requirement, the proposed heuristic needs to identify 

an appropriate number of sinks, and design routing trees rooted at these sinks 

spanning the rest of nodes such that the sum of costs for relaying data col­

lected from individual trees is minimized while the expected total volume of 

data collected from all these trees meets the throughput requirement. 

The number of sinks has a great impact on service cost, and we aim to 

find the one corresponding with the minimum cost. On the one hand, a small 
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number of sinks means the total fixed cost is relatively low, however, the quo­

tas might be severely overused at some sinks and expensive penalties will be 

applied. If the penalty at a sink is greater than the fixed cost, it is worth em­

ploying another one or more sinks to share the workload, thereby reducing 

the chance of quota exceeding at sinks and decreasing the service cost. On the 

other hand, a large number of sinks means that each sink has less data to relay 

and small penalties or no penalty will be applied. However, the data quotas at 

some sinks may be severely underutilized, and a large fraction of the fixed cost 

charged at these sinks will be wasted. If the volume of data relayed by a sink 

can be redistributed to some other sinks without causing any quota exceeding 

among the involved sinks, this sink can be removed and the fixed cost will be 

saved accordingly. Therefore, an appropriate number of sinks is to be found 

to fully utilize data quotas at sinks and avoid penalties to the largest extent. 

When a profitable number of sinks is determined, we need to address which 

nodes should become the sinks. The choice of sinks is guided by the follow­

ing rationale. Sinks should have relatively high residuafenergy, because they 

relay data over the high-bandwidth radios and thus consume much more en­

ergy than the other nodes. If a node with low residual energy serves as a sink, 

the energy imbalance will be aggravated and the network lifetime will be sig­

nificantly shortened. Once the sinks are identified, we construct routing trees 

ro-oted at the sinks spanning all the other nodes in the network to balance the 

energy consumption overall the network. 

4.3.1 Routing Trees Establishment 

For the purpose of convenience, we now assume that the number of sinks is 

given as m with 1 < m < n, and deaL with the problem of identifying m sinks 

from all sensor nodes and finding them routing trees rooted at the identified 

sinks. We will remove this assumption later. 
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To select m sinks from n nodes in V, we first sort the n nodes by their 

residual energy in non-increasing order. Denote by er( v) the current resid­

ual energy of node v. Let v~, v;, ... v~ be the sorted node sequence, where 

er( v;) > er( v1 ), 1 < i < j < n. Instead of directly choosing the first m nodes 

from the sequence, we select the first m' = In · /31 > m nodes and then ran­

domly pick up m nodes from the m' ones to form the set of sinks S, where 

0 < f3 < l is a pre-defined parameter referred to as the search space percentage. 

The rationale behind is that choosing sinks only according to the residual en­

ergy regardless of their locations in the monitoring region may result in poor 

network throughput no matter how data routing is designed. For example, 

if the first m nodes in the sequence are all located close to each other in the 

corner in the monitoring region (which is likely to happen in a WSN), the data 

generated from nodes in the diagonal corner, no matter how to be routed, have 

to go through a long distance wireless transmission, causing high probability 

of data loss, compromising the network throughput. A greater value of f3 in­

creases the probability of a better distribution yet increases the possibility of 

choosing a node with less residual energy as a sink too. 

What follows is to find a forest that consists of routing trees rooted at them 

sinks in S, spanning all the other nodes in V \ S. To this end, we first construct 

a weighted, directed graph Gd = (V', E', w ), where V' = V U {sv} and node 

Sv is a virtual super sink, E' = {(v,u ), (u,v ) I (v,u) E E} U {(sv,si) Is ES} . 

That is, the virtual super sink Sv is only connected to the m sinks and each 

of such links is assigned a weight of w( (sv , si)) = 0 for any Si E S. For the 

weights of other edges in E', we incorporate both the link reliability and the 

residual energy of sensor nodes into consideration. Specifically, for a directed 

edge (v,u ), 

w( (v, u)) =IE· al -er(v) / IE / p(v, u) [57], (4.5) 
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where IE is the initial energy of each node, p(u, v) is the link probability of its 

corresponding edge ( v, u ) E E, and a > l is a positive constant determining 

the impact of residual energy on the weight, referred to as the weight adjustment 

parameter. Note that all outgoing edges from a node v have identical weights, 

and for each edge (v,u) E E,therearetwodirectededges (v,u) and (u,v) inE' 

with asymmetric weights. Initially er( v) = IE at each node v E V. As nodes 

consume their energy the residual energy of each node becomes smaller and 

the weights of outgoing edges from the node increase. The less the energy left 

at node v, the higher the weights of its outgoing edges. Having the auxiliary 

graph Gd, we now describe the construction of routing trees in Gd. 

A single-source shortest path tree Fin Gd rooted at Sv is constructed, using 

Dijkstra's algorithm [22]. Let L( v, u ) be the shortest path from node v to node u 

in graph Gd. In path L(sv, v) from the virtual super sink Sv to any node v E V, 

the first and second vertex are respectively Sv and a sink in S. That is because 

the super sink can only access to sinks thus the path from Sv to any other node 

must be via a sink in s. After the removal of Sv and its~ incident edges from 

tree F, a forest F = {Ti I 1 < i < m} consisting of routing trees rooted at 

them sinks then follows. For any node v E V(Ti), it sends its sensed data to 

sink Si along the reverse path L(si, v) in Ti. The expected network throughput 

is calculated by Eq. (4.3) and the service cost is calculated by Eq. (4.4). The 

algorithm is referred to as Iden_Sink and its detailed description is given in 

Algorithm 5. 

4.3.2 Determination of the Optimal Number of Sinks 

So far we have assumed that the number of sinks m is given, we now remove 

this assumption and propose an algorithm for the problem of concern as fol­

lows. We focus on finding an appropriate value of m to minimize the service 

cost. Consider a scenario in which the total volume of generated data is evenly 
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Algorithm 5: Iden_Sink 

Input : G(V, E), m, --r, (3, rg, CJ, cp, Q 
Output: The network throughput, the routing forest F, and the service 

cost C 

/ * Stage 1: identify m sinks* / 
Let v~, v;, ... v~ be the sorted node sequence in Vin non-increasing 
order of residual energy; 
m' +-- In · /31 (> m); 
Select m nodes from the first m' nodes randomly as the sinks in S; 
/ * Stage 2: building routing trees rooted at them sinks*/ 
Construct a weighted directed graph Gd(V', E', w), with V' =V U {sv} 
and E' = {(v,u), (u,v )l (v,u) E E} U {(sv,s ) Is E S}; 
Find a single-source shortest path tree Fin Gd rooted at sv; 
Remove node Sv and all edges incident to it from F and obtain m routing 
trees rooted at the sinks in S, Ti with 1 < i < m; 
Calculate the network throughput I:~ 1 E[D (T) (i)] according to Eq.(4.3); 
Calculate the service cost C according to Eq.(4.4); 
return I:~ 1 E[D (T) (i)], F = {Ti I 1 < i < m }, and C. 

distributed to (and relayed by) mo sinks, where mo = l a ·n;·rg J, and the ex­

pected volume of data collected by the m0 sinks meets the throughput require­

ment. This will lead to the minimum service cost Capt = mo · C f because the 

data quota at every sink is fully utilized and no data exceeding occurs. How­

ever, such a solution may never exist in real remote monitoring applications 

because the volume of data relayed by the m0 sinks may never be balanced 

due to the network topology and link reliability. Thus, a larger or smaller 

number of sinks than m0 may result in a lower service cost. In the following, 

we develop a greedy heuristic to deliver a solution such that its corresponding 

service cost is the minimum among the found solutions while the throughput 

requirement is met. 

The proposed heuristic proceeds iteratively in the two intervals [1, mo] and 

[mo+ 1, n] separately. We first search the appropriate value of min the inter­

val [1, mo] by setting m = m0 and decreasing its value by one in each iteration. 

Within each iteration, the algorithm Iden_Sink is first called with the current 
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value of mas the input, and a solution with a corresponding service cost will 

be obtained. Then the cost will be checked to see whether it is the minimum 

one among all found solutions so far. If not, the procedure terminates and a 

solution is found, otherwise, the value of m is decreased by 1 and the proce­

dure continues. We then start from m =mo+ l, increase the value of m by one 

in each iteration, and repeat the above process. In the end, a feasible solution 

to the problem with a service cost will be delivered. The detailed description 

of algorithm Min_Cost is in Algorithm 6. 

Theorem 4.2. Given a homogeneous dual-radio sensor network G(V, E) with unre­

liable link reliability, algorithm Min_Cost solves the throughput guaranteed service 

cost minimization problem with complexity O(n3 ), where n = !VI is the number of 

nodes in G. 

Proof With a given number of sinks, identifying them from the n nodes takes 

O( IEI) time [37], while finding routing trees rooted at the sinks takes O(IE I + 

!VI log !VI) = O(n2 ) time [22]. The number of iterations for searching the 

appropriate number of sinks is no more than n. Thus, the computational com­

plexity of algorithm Min_Cost is O(n3). □ 

4.3.3 Theoretical Analysis 

Since wireless communications in the sensor network are unreliable, the actual 

volu~e of data received by each_sink may not always be equal to its expected 

data volume. And this would cause the actual network throughput below the 

requirement, or the actual service cost beyond the one delivered by algorithm 

Min_Cost . In the following we analyze the probabilities that such events hap­

pen in the solution delivered by the proposed algorithm. 

We first analyze the probability that the actual volume of data received 

by all sinks in the forest F, E?:1 D (T) (i), is less than the throughput require­

ment D~;J = a · r g · T · n. We refer to this probability as the throughput failure 
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Algorithm 6: Min_Cost 

G( ) C Q D(T) Input : V, E , T , (3, r g, J, Cp, , req 
Output: Routing forest and service cost 

m0 +-- l ct·n;r·rg J; C +-- oo /* the initial service cost*/ ; 
/* search the interval [1, mo] *I; 
m +-- mo; loop +-- ' true'; 
while (m > 1 and loop) do 

call algorithm I den_Sink (G, m, T, (3, rg, CJ, Cp, Q); 
E(D (m)) +-- E(D(T)); F (m) +-- F; C(m) +-- C; 
if E(D (m) ) > D};4 then 

if C(m) < C then 
L C +-- C(m); F +-- F (m); 

else 
L loop +-- ' false'; 

m +-- m - 1; 

/* search the interval [mo+ 1, n] * /; 
m +-- mo + 1; loop +--' true'; 
while (m < n and loop) do 

call algorithm Iden_Sink (G, m, T, (3, rg, CJ, Cp, Q); 
E(D(m)) +-- E(D(T)); F (m) +-- F; C(m) +-- C; 
if E(D (m)) > D};4 then 

if C(m) < C then · 
L C +-- C(m); F +-- F (m); 

else 
L loop +--' false'; 

m +-- m + l; 
return F and C. 

probability, denoted by Pr[I:7:1 D(T) (i) < D};4] . We assume that the expected 

volume of data received by all sinks in Fis greater than the network through­

put requirement, i.e., E [I:;1:1 D(T) (i)] > D};J. This assumption indicates that 

the network throughput requirement is met most of the time, and we have the 

following lemma. 

Lemma 4.3. Given the network throughput requirement D,~;J in any period of T , the 
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probability that the volume of data collected by all sinks within T, E~ 1 D ( T) ( i), is less 

than D~;J is no more than e- µF(l - o}:J/µF)2! 2 , where µF = E[I:~ 1 D(T)(i)]. 

o(-r) 

Proof. Let f> = l - ~. We have ')· µF 

m m 

Pr [[ D(T)(i) < D~;J J = Pr [[ D(T)(i) < (1 - f>)µF] 
i = l i = l 

< ( e- £5( £5) ) µF (by the Chenorff bound [ 67]) 
(1 - f>) l -

- µ F/52 

< e 2 • 

By substituting 8 in Eq.(4.6) with 1 - D;eq , we have µF 

Pr [[ D(T)(i) < D~;J J < e- µF(l-D}:J / µF)2 / 2_ 

i = l 

--

(4.6) 

□ 

Note that the throughput failure probability only depends on the value of 

D~;J, because once the routing trees are identified, the end-to-end reliability 

betwe~n any node to its sink is determined. The larger the value of D~;J , the 

greater the throughput failure probability. 

We then analyze the probability that the actual service cost is greater than 

the service cost in the solution delivered by algorithm Min _Cost . We refer to 

this probability as the cost exceeding probability, denoted by Pr[C(T) > (1 + 8)C] 

where e > 0 and c (T) is the actual service cost, c (T) = m. cf + L~ 1 max{O, 

(D (T) (i) - Q) · cp}- The actual service cost c (T) depends on the value of D(T) (i), 

the actual volume of data received by each sink si E S within a period of T, 

while the value of D(T) (i) depends o~ly on the structure of the tree Ti E F. 

Any two values of D(T) (i) and D(T) (j) are independent of each other when 

i i=- j. Therefore, the actual service cost of each sink can be considered as 

an i.i.d random variable. Following the Chenorff bound [67], the probabil-
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ity that the actual service cost c (T) is greater than the service cost C is no 

more than ( (l +;;(1+eJ )c, and two special cases of this general setting can be 
derived: (i) when O < e < l, Pr [C(T) > (1 + 8) • CJ < e-C-e

2
f3; (ii)when e > 5, 

Pr [C(T) > (1 + 8) • CJ < 2-( i +e)- c _ We therefore conclude that a large value of 

e will lead to a relatively small cost exceeding probability, which is consistent 

with the intuition. 

From the above analysis, we have shown that with the solution delivered 

by algorithm Min _Cost , both the throughput failure probability and cost ex­

ceeding probability are bounded. 

4.4 Network Throughput Maximization 

We now solve the network throughput maximization with minimal service 

cost problem. Specifically, we first consider a special case of networks with 

uniform link reliability and devise an algorithm to achieve the maximum net­

work throughput with bounded service cost. We then remove the uniform 

reliability assumption and deal with the general WSNs with non-uniform link 

reliability by revising and expanding the algorithm for the special case. 

4.4.1 Algorithm for Special Networks with Uniform Link Re­

liability 

In a special network with uniform reliability on links, every link has identical 

reliability p with O < p < l, for which we devise a novel approximation 

algorithm that can maximize the network throughput with bounded service 

cost. 

We start w ith some notations. Given the network G(V U S, E), we construct 

another network G' . (V U S U { Sv}, E' ) as follows. A virtual super sink Sv 

and an edge between Sv and each sink s E S are added to G', i.e., E' = E U 
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{ (s i, sv) I si E S}. Let TBFS be a Breadth-First Search tree in G' rooted at the 

super sink Sv with the depth h, where the virtual sink Sv is in layer O and all 

sinks are in layer 1 of yBFS. Let V1 be the set of nodes of TBFS in layer l for 

all l with O < l < h. Then, the nodes in VU S are partitioned into h disjoint 

subsets V1, V2, ... , Vh such that V1 = S, u7=2 Vz = V, and Vi n Vj = 0 if i -1- j 

and 1 < i, j < h. Note that l - 1 is the minimum number of hops in G from 

v E Vz to its nearest sink in S, with 2 < l < h. 

Lemma 4.4. Given an unreliable sensor network G(V U S, E) with identical link 

reliability p, 0 < p < 1, (i) for each node v E V, let h( v) - 1 be the minimum 

number of hops from v to its nearest sink in G, then the end-to-end reliability of the 

most reliable path in G from v to a sink is equal to ph (v) - l _ (ii) The maximum network 

throughput is Dmax = I:?=2 LvEVi pl - l · (T · rg) = I:?=2(1Vz l · pl - l · T · rg)-

Proof (i) Since the reliability of each link is p, let Pv be the most reliable path 

from a sensor v E V to a sink and I Pv I = l - 1, then, the reliability of path Pv 

is p1- 1. Maximizing the end-to-end reliability of path Pv,--p1- 1, is equivalent to 

minimizing the value of l, while the length of a shortest path from v to any sink 

is no less than h(v) - 1, following the definition of h(v). Thus the end-to-end 

reliability of the most reliable path in G from v to a sink is ph(v)- l _ 

(ii) For each node v E V with h( v) = l, its contribution to the maximum 

network throughput for a period of Tis identical, which is d1 = d'/rzax = p1- 1 · 

(T · rg)- Maximizing d1 is equivalent to minimizing l, while l > h(v), l is equal 

to h(v). Thus Dmax = LvEV d'/rzax . I:?=2 (IVz j · p1
-

1 · T · rg ). □ 

From Lemma 4.4, it can be seen that the forest consisting of routing trees 

rooted at the sinks, derived by the removal of the virtual sink Sv and its adja­

cent edges from T 8 F5, can deliver the maximum network throughput. How­

ever, the service cost for this amount of network throughput may not be the 

minimum. To minimize the service cost, the sinks should fully utilize their 

data quotas to avoid data exceeding penalties, while keeping the maximum 
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throughput unchanged. To this end, we first construct a forest consisting of 

load-balanced shortest path trees by employing the maximum flow technique, 

where the length of a 'shortest' path is the minimum number of hops from a 

source node to its the sink. We then readjust the load among the sinks through 

modifying the routing trees to further reduce the service cost. 

Load-balanced forest establishment. We first construct a forest F consist­

ing of m routing trees rooted at m sinks such that load of sinks is well balanced 

while the maximum network throughput is maintained. 

The proposed algorithm proceeds the forest construction iteratively. Within 

each iteration, a level expansion of each tree is conducted. Let F1 be the forest 

which spans the nodes in the first Z layers. Initially, F 1 spans all sinks s1, s2, ... , 

Sm E S and the load of each sink L(si) is 0, for all i with 1 < i < m. Assum­

ing that the forest Fi containing the nodes in the first Z layers has been built, 

we now expand the forest from Fi to F 1+1 by including the nodes in V1+1 

with the objective that the maximum load among the m sinks in the result­

ing forest F z+i is minimized. To this end, we adopt the maximum flow tech­

nique as follows. We construct a flow network GJ = (VJ, E J, c), where VJ = 
{ V s, Vt} U { s1, s2, ... , sm} U V1 +1, V s and Vt are the source node and the destina­

tion node, and c is the link capacity function. Let V1 +1 = { x1, x2, ... , x !V,+il }. 

There is a directed edge in E J from V s to each node xi E Vi+1 with capacity of 

1, and there is a directed edge from each sink Si to the destination node Vt with 

capacity of non-negative integer Bi = B - l ~;:i; J, where d1+1 = p1 · T · r g is the 

amount of data that can be collected at a sink from any node in V1 +1 and B will 

be defined later. If a node x1 E V1+1 has at least one edge with the nodes in the 

tree rooted at si, there is an edge in E J from node xi to sink Si with capacity of 

1. Fig. 4.1 illustrates the construction of GJ through an example. 

Minimizing the maximum load among the sinks is equal to minimizing the 

value of B for a maximum flow in G J from Vs to Vt with value of I V1 +1 I (i.e., 
each node in V1+1 will be attached to one of the m routing trees), where the 
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S3 Layer 1 

Vs Layer 2 

Layer 3 

(a) A forest containing nodes in the first two 
layers, and edges in G between nodes in layer 
2 and3 

V; s 

(b) A flow network G f is constructed to include the 

nodes in layer 3 

Figure 4.1: The construction of G1(V1, Er,_c) 
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value of B 1s m the b tw l max{L(si)l l < i<m}J and range e een di+i - -

l
max{L (si)l lsis m}+ IV1+1l·d1+1J = l max{L(si) ll s is m}J + IV1 11- The smallest B can 

d1 +1 d1 +1 + 

be found by algorithm Srnallest_Load, detailed in Algorithm 7. 

With the smallest value of B, a flow f of value lf l = IV1+ 1I from Vs to Vt is 

obtained. Let lfil = L xiE Vi +1 f (xj, gi) be the total amount of flow entering sink 

si, then the corresponding nodes in V1+1 will join tree Ti and the load L(si) of Ti 

is upd<;1-ted to L(gi) + lf il · d1+1 for all i with 1 < i < m. Forest F 1 now has been 

expanded to F 1+l· The algorithm Load_Balanced_Forest for constructing 

a forest consisting of load-balanced routing trees is described in Algorithm 8. 

Lemma 4.5. Given an unreliable sensor network G(V U S, E), the layer expansion 

from forest F i to forest F 1+1 by algorithm Load_Balanced_Forest is optimal in 
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Algorithm 7: Smallest_Load 

Input : Flow graph G1(VJ, E J, c), the current load of sink L(si) for all i 
with 1 < i < m, di +i = p1 

· T · rg 
Output: The smallest value of B and the flow f 
l b d lmax{L(s·) 11 <i<m} J ower _ oun f--- 1 

- - • 
d1 +1 I 

upper_bound f--- l max{L (sd) I l <i<m} J + IV1 +1I; 
l+ l 

while (lower _bound # upper _bound) do 
B f--- l lower _bound:;_u pper JJound J; 
Assign each edge (si, V t) in Gf with the capacity of Bi = B - l Ld(si) J; 

l+ l 
Find a max flow f in G f from V s to V t ; 

if If I = I V1+1 I then 

l 
upper _bound f--- B; 
else 
L lower _bound f--- B + l; 

B f--- upper _bound; 
return B and f. 

terms of minimizing the maximum data load among them sinks, l < l < h - L i.e. , 

the maximum flow f with /f l = I Vi+i I in the auxiliary graph Gf from Vs to V t with 
the minimum B is an optimal solution. 

Proof It is obvious that the new maximum load among the m sinks is between 

max{L (si) 11 < i < m} and max{L (si) / 1 < i < m} + d1 +1 · /V1+1I- As each 
sensor node v E V1+1 will contribute exactly the same volume of data d1+1 to a 

sink, finding a maximum flow with value di+i · I V1+1 I is equivalent to finding a 

maximum flow in G1 from Vs to V t with value /Vi+i I under the capacity B. □ 

Dynamic load readjustment. The constructed forest consisting of load­

balanced trees by algorithm Load_Balanced_Forest can be improved in 

terms of the cost, through further balancing the load among the routing trees. 

Fig. 4.2 shows an example of load-unbalanced trees constructed by algorithm 

Load_Balanced_Forest . There are two sinks s1 and s2, and each of the nodes 

v1, v2 , v3, v4 in the second layer is within the transmission ranges of s1 and s2. 
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Algorithm 8: Load_Balanced_Forest 

Input : G(V U S, E), h disjoint subsets of nodes V1 , V2, ... , Vh, the link 

reliability p 
Output: The load L(si) of sink si and the routing tree Ti rooted at si for 

all i with 1 < i < m 

L(si) f-- 0 for all i with 1 < i < m; 
F1 f- { Ti = {Si} I 1 < i < m}; 
for l f-- 1 to h - l do 
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Calculate the network throughput contribution of each node in layer 

l + l, d1+1 f- p1 · (T · rg) ; 
Construct a flow network Gf = (VJ, E J, c); 
call algorithm Srnallest_Load, / * Let f be the maximum flow in 

G f from Vs to Vt *I ; 
Update the load of sink si, L(si) f- L(si) + lfi l · d1+1 for each 

1 < i < m,where lfil = L xjE Vi+if(xj,si) ; 

Expand F i to F 1+1; 

return Fh and L(si) for all i with l < i < m . 

Fig. 4.2(b) shows the load is balanced among the sinks when the forest spans 

the nodes in the first two layers. However, when it further expands t~ include 

nodes Vs, v6, V7, vs in the third layer, all of these nodes are in\luded in the tree 

rooted at sink s1 by algorithm Load_Balanced_Forest . This causes severe 

load imbalance between sinks s1 and s2, where L(s 1 ) = (2 · p + 4 · p2 ) · 'T · rg 

while L(s 2 ) = 2 · p · 'T · rg. The reason behind is that no more information 

below the current layer is available when expanding a new layer. 

Having the forest delivered by algorithm Load_Balanced_Forest, we 

then readjust the load among the sinks dynamically to further reduce the ser­

vice cost. To this end, we consider the following cases. If the load of each sink 

is no greater than or no less than the data quota Q, we do nothing because the 

service cost is already the minimum one. Otherwise, the cost can be improved 

through readjusting the load among the m sinks through a series of edge swap­

ping that replaces a tree edge by a non-tree edge while the network throughput 

is still unchanged. To this end, not all but only certain types of non-tree edges 
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(a) The original network (b) The constructed forest up to layer 2 

(c) The found forest consists of nodes in 3 lay­
ers 

Figure 4.2: An example of a forest to be improved in terms of the service cost 

can be swapped with the tree edges, which is stated by the following lemma. 

Lemma 4.6. Given an unreliable sensor network G(V U S, E) with uniform link re­
liability panda forest consisting of load-balanced routing trees rooted at the sinks, the 
load adjustment among the sinks can be achieved through a series of edge swapping 
between tree edges and non-tree edges . Specifically, for all l with l < l < h - 1, 

the use of any edge in G between V1 and V1+1 will not change the network through­
put obtained by the current forest; otherwise the use of any other edge will reduce the 
obtained network throughput. 

Proof Let (u,v ) be a tree edge with v E Vz and u E Vz+l· Let L(u) be the 
volume of data collected at node u from all its descendant nodes in the subtree 

rooted at u, and this volume of data is then forwarded to the sink that u is 

attached, the resulting volume of collected data at the sink derived from node 

u is p1 • L ( u). Now, if we remove this tree edge ( u, v) from the tree and instead 
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add another non-tree edge ( u, v') to form a new tree edge where v' E V1, then 

the volume of collected data of a sink derived from the nodes in the subtree 

rooted at u is still p1 · L(u), which implies that the accumulative volume of 

collected data at all sinks does not change through this type of edge swapping. 

Now, consider a non-neighboring non-tree edge (u, v") with v" (j:. V1 if it 

does exist, then the depth h ( v") of node v" must be equal to or greater than Z + 

1 because its depth is obtained through the BPS traversal, i.e., either h( v") = 

l + l or h(v" ) > l + l, and the amount of data collected by a reachable sink 

from u is ph(v") · L(u) < p1+1 • L(u) < p1 · L(u) because p < l. This implies 

that the network throughout will be reduced if performing the edge swapping 

between the tree edge (u,v ) and the non-tree edge (u,v" ). The lemma then 

follows. □ 

To maintain the maximum network throughput, following Lemma 4.6, we 

only make use of the non-tree edges between neighboring layers to adjust the 

load among the sinks. 

Given the load-balanced trees in forest F, the dynamic load readjustment 

algorithm examines the tree edges in the forest from the lower layer to the 

higher layer. Let E1,1+1 = (V1 x V1+1) n Ebe the edge set between two neigh­

boring layers l and l + l for all Z with 1 < l < h - l. Let e1 = ( u, v) E E1,z+1 

be a tree edge considered at this moment and nodes v and u are in layers l 

and Z + 1, respectively. Let L(u) be the volume of data collected at node u in 

Ti from all its descendant nodes in the subtree rooted at u, and the volume 

of data received at the sink derived from node u is p1 • L(u). We will remove 

this tree edge and add another non-tree edge e2 = (u, v') E E1,z+1 to form a 

new forest if this leads to a lower service cost. Assume v and v' are in trees 

Ti and Ti rooted at sinks si and s J- Perform the swapping only if all the fol­

lowing conditions are met: (i) Ti and Ti are not the same tree, (ii) L(si) > Q 

while L(si) < Q, and (iii) L(si) - p1 • L(u) > L(si) . This procedure continues 
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until all tree edges have been examined. It can be shown that after a series 

of swapping, the network throughput has not been changed but the service 

cost will be reduced. We refer to this dynamic load readjustment procedure as 

algorithm Ref ine_Cost and detail its description in Algorithm 9. 

Algorithm 9: Ref ine_Cost 

Input : G(V U S, E), The routing forest F, data quota Q 
Output: The refined cost C, the updated routing forest F 
Calculate the cost of the forest F: 
C = m ·Cf+ I:?:1 max{0, (L (si) - Q) · cp}; 
if L(si) < Q or L(si) > Qfor all i with l < i < m then 

/ * the load of each sink is either greater or smaller than the quota Q 
* I EXIT; 
else 

for l f--- h - l downto l do 
E 1,1+ 1 f--- (Vi x V1+1) n E; 
while all tree edges have not been examined do 

Foranytwoedgese1 = (u,v) (atreeedge)ande2 = (u,v' ) 
(an non-tree edge) in Ei,1+1, where nodes v and v' in layer l 
and v -1- v', and node u in layer l + l, perform swapping if 
e1 and e2 are in two different trees T (e1) and T (e2 ) in F, 
L(T (e1)) > Q and L(T(e2)) < Q, and 
L(T (e1) ) - p1 · L(u) > L(T(e2 )); 
Update the related trees in the forest and their load; 

Recalculate the cost C of the resulting forest F according to 
Eq. (4.4); 

return F and C. 

An example. Fig. 4.3 uses an example to illustrate the dynamic load read­

justment to the trees in the forest shown in Fig. 4.2. Assume that the uniform 

link reliability p is 0.7 and Q = 2 · T · rg. The load of the two sinks s1 and 

s2 is L(s1 ) = 3.36 · T · rg > Q and L(s2) = 1.4 · T · rg < Q, respectively. 

And the service cost before the readjustment is 2 · Cf+ (3.36 - 2) · T · rg · Cp = 
2 ·Cf+ 1.36 · T · rg · cp. Now, consider node v3 with L(v3) = 2.4 · T · rg in layer 

2. As L(s1 ) - 0.7 · L(v3) > L(s2), we remove v3 from T1 and add it into T2 by 
connecting v3 and s2 . Consequently, the load of the two sinks is updated to 
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(a) The load-balanced routing trees 
rooted at s1 and s2 with L(s1 ) = 3.36 · 

T · rg, L(s2) = 1.42 · T · rg and C = 
2 ·Cf+ 1.36 · T · rg · Cp. 
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(b) After a pair of edge swapping: L(s1 ) = 1.68 · T · rg, L(s2 ) = 3.08 · T · rg, 

and C = 2 ·cf+ 1.08 · T · rg · Cp . 
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(c) After the second pair of edge swapping: L(s1) = 2.38 · T · rg, L(s2) = 
2.38 · T · rg, and C = 2 ·cf+ 0.76 · T · rg · Cp. 

Figure 4.3: An example of refinement for further cost reduction 
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L(s1 ) = 1.68 · 'T · rg < Q and L(s2 ) = 3.08 · 'T · rg > Q, and the service cost is 

reduced to 2 ·Cf+ (3.08 - 2) · 'T · rg · Cp = 2 ·Cf+ 1.08 · 'T · rg · cp. We then con­

sider node v2 in layer 2 with L(v2) = 'T · rg. Since L(s2) - 0.7 · L(v2) > L(s1), 

we remove V2 from T2 and add it to T1 by removing edge ( v2, s2 ) and connect­

ing v2 and s1. The load of the two sinks is updated to L(s 1 ) = 2.38 · 'T · rg > Q 

and L(s2) = 2.38 · 'T · rg > Q. The routing trees in the updated forest now 

are perfectly balanced, and the service cost is 2 ·Cf+ 2 · 0.38 · 'T · rg · cp = 

2 ·Cf+ 0.76 · 'T · rg · cp, which is reduced by 0.6 · 'T · rg · cp after a series of 
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dynamic load readjustments. 

Algorithm. The proposed algorithm Uni f orm_Link for the network through­

put maximization with minimal service cost problem in a WSN with uniform 

link reliability is described in Algorithm 10. 

Algorithm 10: Uniform_Link 

Input : G(V U S, E), monitoring period of T 

Output: The network throughput D (T) and the cost C 

F f- 0; 
Partition the nodes in V U S into h disjoint subsets V1, V2, ... , Vh; 
Construct Fh by calling algorithm Load_Ba l anced_Forest . Let D (T) 
be the network throughput; 
Readjust the load among the sinks in F1i by calling algorithm 
Ref ine_Cost . Let C be the cost; 
return o (T) and C. 

Theorem 4.7. Given a link-unreliable heterogeneous sensor network G(V U S, E) 
with uniform link reliability p with O < p < l , there is an approximation algorithm 
Uniform_Link which can achieve the maximum network throughput with at most 
(1 + ~P) times of the minimal service cost, where Cp = Q · Cp. The time complexity I 
of the proposed algorithm is O (I V 11 E 12 ), assuming that IS I < < IV 1-

Proof Following our analysis, if each node sends its data along a shortest path 

(in terms of the number of hops) to a sink, it makes the maximum contribution 

to the network throughput. In algorithm Uni f orm_Link, each node routes its 

data to a sink along a shortest path, thus, the accumulative volume of data 

received by all sinks is the maximum one. 

We then show that the service cost of the solution is no more than (1 + ~;) 
times of the minimal one. Assuming that in the optimal solution, the minimum 

and m aximum loads among sinks are L min and L max, respectively, with the 

minimal service cost C min · Let L ~in and L ;nax b~ the minimum and maximum 
loads among the sinks in the forest F delivered by algorithm Uniform_Link, 



§4.4 Network Throughput Maximization 123 

with service cost C. We analyze the relationship between C and C min by the 

following three cases. 

Case one: L min < Q, L max < Q, and C min = m · C f . If L ~iax < Q, then 

C = C min · Otherwise (L~ax > Q), this implies that the below-quota load of 

some sinks in the optimal solution now is reallocated to the other above-quota 

sinks in F. Since the load of each sink is less than Qin the optimal solution, 

the maximum amount of shifted load is no more than (m - 1) · Q. Thus, C < 

(m -1) . Q. Cp + C min < m . Q. Cp + C min < cc7 . Q. Cp + C min = C min . (1 + 

~cp ) = C min · (1 + ~P). 
f f 

Case two: L min > Q, Lmax > Q, and C min > m · C f . If L ~in > Q, then 

C = C min · Otherwise (L~in < Q), load of some sinks in Fis less than the data 

quota Q while the load of the rest of sinks is far more than data quota. For 

each below-data quota sinks, the amount of its data load is shifted to others 

that cause a higher penalty cost. In the worst case there are ( m - l ) sinks 

whose load is below the data quota, and there is only one sink whose load 

is above the data quota, then the service cost is C < ( m - l ) · Q + C min < 

m · Q · Cp + C min < C min · (1 + ~ P ) , following the similar discussion in Case 
f 

one, omitted. 

Case three: Lmin < Q, Lmax > Q, and C min > m · C f . If L~in < L min and 

L ~nax > Q, then C < C min · ( 1 + ~; ), following the similar arguments as for 

cases one and two, omitted. Otherwise, it can be shown that C < C min · (1 + 

~P) as well. 
f 

Thus, the service cost of the delivered solution is no more than (1 + ~P) 
• f 

times of the minimal cost. 

The time complexity of algorithm Uniform_Link is analyzed as follows. 

Partitioning the nodes into layers by the BFS transversal to graph G takes 

O(I VI + IEI) time. In the construction of the forest of load-balanced routing 

trees, the main routine is the layer expansion by invoking a maximum flow 

algorithm, taking O(I Ez,z+1 1 · (1 Vz+1 + K)) = O(I Ez,1+1 1 · IVI) time. Since it 
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takes O (log IV1+11) time to find the minimum value of the maximum capac­

ity B for the flow network, the time spent on layer expansion is O (I E1,1 +il · 

IVI log IV1+11) , and finding the forest takes 'f):;; O (I E1,1 +1l · IVI log IV1 +1I) = 
O (I EI · IVI log IV\) . The time complexity of dynamic load readjustment is ana­
lyzed as follows. Routine Ref i ne _Cost proceeds layer by layer. The number 

of pairs of edge swapping between layers land l + l is no more than IE1,1+1\2, 

while each edge swapping takes O( \V\) time by updating at most two rout­

ing trees in the forest. Thus, the time spent on dynamic load readjustment 

is Ei1
:;; O (I E1,1 +1\2 

· \V\) = O (\Vl(r,7:;; IE1,1 +1l)2) = O (IV\ · \El 2
) . The time 

complexity of Uniform_Link therefore is r,7:;; O( IE1,1+1I · IVI log IV1+1I ) + 
Li1::; O (\E1,1+112 

· IVI) = O( IV \\ El 2
). 0 

4.4.2 Algorithm for General Networks with Non-uniform Link 

Reliability 

We now remove the assumption of uniform link reliability and consider the 

problem of maximizing network throughput with minimal service cost in the 

general network with non-uniform link reliability. We first propose a simple 

heuristic that maximizes the network throughput without optimizing the ser­

vice cost. We then provide improved heuristics that trade off between the 

network throughput and the service cost effectively. 

A simple heuristic 

Recall that T1 , T2 , . . . , Tm are them routing trees rooted at them sinks. We 

now construct them routing trees such that the network throughput is maxi­

mized. Initially, each tree T i contains only sink Si E 5 for each i with 1 < i < m. 

Let V' C V be the set of nodes that are not included in these trees but one 

hop neighbors of the_nodes in the trees U~1V(Ti) , i.e., V' = {v \ (u,v) E 

E, u E u;: 1 V (Ti) , v (j_ U~1 V(Ti) }. The proposed algorithm proceeds itera-
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tively. Within each iteration, only one node in V' is added to one of the m 

trees. Consider a node v E V' . If there are multiple edges between v and 

the nodes in Ti, we choose one endpoint u E V (Ti) such that the reliability 

of the unique path from v to Si, Pv,si = Pv,u · Pu,si , is maximized. Thus, the 

contribution of node v to the network throughput via sink si within a period 

of T is dtl = Pv,si · ( T · r g) . If there are multiple trees in which v has edges 

connected to the nodes, the maximum contribution made by v to the network 

throughput is d'fnax = max { dtl 11 < i < m}. Having calculated the maximum 

contribution of each node v E V', we add a node v' E V' to a tree T1 in the 

current iteration if the maximum contribution made by v' via sink s j is the 

maximum one among the nodes in V', i.e., d~ax = max{ d'fnaxl v E V'}. Node v' 

is then removed from V' . This procedure continues until V' = 0. The service 

cost then can be calculated by Eq. (4.4) . We refer to this iterative algorithm as 

Simpl e_Alg. 

Theorem 4.8. Given a link-unreliable heterogeneous sensor_ network G(V U S, E) 

with link reliability Pe for link e E E, algorithm Simple_Alg delivers a solution 

with the maximum network throughput but the service cost is not optimized. 

Proof Let P~rnx be the end-to-end reliability of the most reliable routing path 

from v to one of its reachable sinks, i.e., P'fnax = max {P v,si I Si is a reachable 

sink from v in G}. The maximum network throughput contribution by node v 

is d~rnx = P~rnx · T · rg, and the maximum network throughput contributed by 

all nodes during the period of Tis D1~Tdx = LvEv(P'fnax · T · rg) -

In the following we show that the accumulative volume of data collected 

by all sinks in the solution delivered by algorithm s imple_Alg is exactly Di~Jx 
by contradiction. Let v1, v2, . .. , vi be the node sequence added to them routing 

trees, where node vi is added to the forest prior to Vj+l for all j with 1 < j < 

i - 1 < IV!. Assume that vi is added at iteration i. Let N (vi) be the set of one 

hop neighbors of vi in the network G and N y(vi) a subset of N (vi) in which 
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all nodes have been included in the forest. We claim that connecting vi to one 

of its neighbors u E Ny(vi ) will result in the maximum network throughput 

contribution by Vi. That is, p~~ax = max{pvi,u · P~axl u E Ny(vi) }. Otherwise, 

assume that the most reliable routing path from Vi to a sink is first via its neigh­

bor u tj. Ui~ l V(Ti), and then via a node v' E N y(vi) which is connected to u, 

i.e., P~ax = max {Pvi,u · Pu,v' · P~ax I u E N(vi) \ Ny(vi) = v' E U1J!=1 V (Tj)} . In 

that case, the maximum network throughput contributions made by nodes u 

d du _ v' ( ) d dvi _ v' ( ) _ an Vi are max - Pu,v' · Pmax · 'T · r g an max - Pvi,u · Pu,v' · Pmax · 'T · r g -

Pvi,u · d~iax < d~ax, respectively. Following the forest construction, u should 

have already been added to the forest prior to vi, which contradicts the as­

sumption that u E N(vi) \ Ny(vi) is not yet in the forest when adding Vi to 

the forest. Thus, every node v E V is added to the forest via the most reliable 

path and has the maximum network throughput contribution P~ax · T · r g · The 

volume of data collected by all sinks is D1(;{Jx . 
Since the service cost is not taken into account in algorithm Simple_Alg, 

it has not been optimized. □ 

Approximation algorithms 

Although the network throughput delivered by algorithm Simple_Alg is 

the maximum one, the service cost is not optimized. We now take into account 

service cost in the design of approximation algorithms to strive for a non­

trivial trade-off between network throughput and service cost. For the conve­

nience of discussion, we assume that the reliability of each link in G(V U 5, E) 

is within the range of [p, (1 + b)p], where p > 0 and (1 + b)p < l. We start 

with a basic algorithm and then make a further improvement based on it. 

The basic heuristic is extended by algorithm Uniform_Link and proceeds 

as follows. It first calls algorithm Load_Balanced_Forest by assuming that 

the link reliability of each link is O < p < l. Let F = {T1, T2, .. . , Tm} be 

the forest obtained, which is a feasible solution to the problem. It then per-
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forms dynamic load readjustment on the trees in F to further improve the net­

work throughput while optimizing the service cost too. Note that the dynamic 

load readjustment algorithm for uniform link reliability in the previous section 

cannot be applicable anymore since that edge swapping between neighboring 

layers may reduce the network throughput as each link has a different link 

reliability, we thus need to modify algorithm Re f ine _Cost for dynamic load 

readjustment before applying it to the general case. Similar to the discussions 

in the previous section, we only consider edge swapping in the same neigh­

boring layers, otherwise it will make the problem much more complicated and 

intractable. Consider swapping a pair of edges: a tree edge e1 = ( u, v) and a 

non-tree edge e2 = (u, v' ), where node u is in layer Z + 1 and nodes v, v' are in 

layer l of trees Ti and Ti rooted at sink si, s i respectively. There are five cases 

to be considered. 

Case one: Ti = Ti and L(si) > Q. Perform the swapping only if !1d = 

(Pu,v' · Pv',si - Pu,v · Pv,sJ · L(u) > 0. The swapping increases the network 

throughput and the corresponding cost throughput increment will be paid. 

Case two: Ti = Ti and L(si) < Q. Perform the swapping only if !1d = 

(Pu,v' · Pv',si - Pu,v · Pv,sJ · L( u) > 0. Although the net increase in the network 

throughput is !1d, the extra charge for the amount of data !1d - (Q - L(si)) is 

paid only if !1d - ( Q - L(si)) > 0. 

Case three: Ti -I Ti, L(si) > Q and L(si) < Q. Perform the swapping 

only if both of the following conditions are met: (i) !1d = (Pu,v' · Pv',sj - Pu,v · 

Pv,sJ ·L(u) > 0;and(ii)eitherL' (si) = L(si) -pu,v ·Pv,si ·L(u) > QorQ ­

L(si) > Q - L' (si) - We now analyze condition (ii) . Assume that we perform 

the swapping. As a result, the loads at sink Si and s i become L' ( si) = L( si) -

Pu,v · Pv,si · L(u) and L' (si) = L(si) + Pu,v' · Pv',sj · L(u) respectively. Now, if 

L' (si) > Q, the extra increase on the network throughput is at the expense 

of less data transfer cost, because only the amount of data Pu,v' · Pv',sj · L(u) -

( Q - L(s i)) does incur any extra charges if Pu,v' · Pv',sj · L( u) - ( Q - L(s i)) > 0, 
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as L(sj) < Q by our assumption. Otherwise (L' (si) < Q), the amount of data 

quota at sink si, Q - L' (si) , will not be used (wasting the paid money), while 

the unused data quota at sink sj is Q - L(s j) - In this case, only if Q - L(s j) > 

Q - L' (si) , the swapping can proceed and the result is economical. 

Case four: Ti -::/ Ti, L ( si) < Q and L ( s j) < Q . The discussion is similar 

to Case three. Perform the swapping only if the following conditions are met: 

(i) ~d = (Pu,v' · Pv' ,si - Pu,v · Pv,sJ · L(u) > O; and (ii) either L'(s j) < Q or 

Q - L(s j) > Pu,v · Pv,si · L(u). 

Case five: Ti -::/ Tj, L(si) > Q and L(s j) > Q. The discussion is similar 

to Case three. Perform the swapping only if ~d = (Pu,v' · Pv',si - Pu,v · Pv,sJ · 
L(u) > 0 and L'(si) = L(si) - Pu,v · Pv,si · L(u) > Qare met. 

We refer to this basic algorithm as Appro. It can be shown that after a series 

of edge swapping, the network throughput is increased while the service cost 

is also further optimized. We have the following theorem. 

Theorem 4.9. Given a link-unreliable heterogeneous wireless sensor network G(V U 

S, E) with link reliability in [p, (1 + 8)p] and O < 8 < ~ - l, there is an algorithm 
Appro for the maximizing network throughput with minimal service cost problem, 
which delivers a solution with no less than (1 )

6
)11 times of the maximum network 

throughput while the service cost is no more than (1 + ~P) times of the minimal one, 
f 

where h is the maximum number of hops from any node to its nearest sink. The algo-

rithm takes O(IVI · jEj2 ) time. 

Proof Let Pv,si be the most reliable path consisting of l links in G(V US, E) from 

node v E V to one of the m sinks, e.g., sink si, then the maximum volume of 

data can be collected at Si for a period of 'Tis d~ax = lleEP(v,s;) Pe · ( 'T · r g ), with 
l > h ( v) where h ( v) is the height of node v in the BFS tree in G' ( G' is defined in 

Section 4.4.1). Assume that there is another shortest path Pv from v to another 

sink, if each link in Pv _is the most reliable one with reliability (1 + 8)p, then the 
volume of received data at the sink is du = ph(v) (1 + 8)h(v) · ( T · r g ), which is 
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an upper bound on the maximum network throughput contribution of v . It is 

easy to see that d u > d ~ax because h( v) < l. On the other hand, if all links in Pv 

are the least reliable, then the amount of data received at the sink is no less than 

d '£ = p h(v) · ( T · rg) , Let node v be in a tree rooted at sink si and d ~i the volume 

of data generated from v and received at si , following the proposed algorithm, 

h d~i > ar > ar _ 1 L t _ 1 th d si > d v _ h( v) d v 
we ave d~ax - d~ax - du - (1+ 5)h(v) . e -y - 1+ 5' en, v - L - -y . u · 

Let dh = L vEV1 d u be the upper bound on the accumulative volume of data 

collected by all sinks from nodes in V1. Then, if the shortest routing path from 

each node to sinks is used to route its sensed data to a sink, the amount of data 

collected at the sink is no less than -yh(v) times the maximum volume of data 

from node v to any sink in the network. 

Let X1 and Y1 be the sums of data received by the sinks from the nodes in V1, 

using the most reliable path and the least reliable shortest path, respectively, 

then X1 = L vEVi TTeEP(v,si) Pe · (T · rg) and Y1 = L vEVi p
1 · (T · rg) - The approx­

imation ratio of the network throughput Approx by the algorithm Appro to 

the optimal one OPT, E,, is 

E, 

(4.7) 

The upper bound on the service cost has been proven in Theorem 4.7, omit­

ted. The analysis of time complexity is almost identical to the one in Theo-

rem 4.7, omitted. □ 

Note that the analytical estimation on the approximation ratio is very con­

servative, which yet has been confirmed from the later empirical results that 

the actual network throughout is no less than 78% of the maximum through­

put, while the service cost is no more than 116% of the minimal cost. 

In algorithm Appro, its analytical ratio (I ~£5)h is determined by parameters 
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h and f>. If link reliability vary significantly, the value off> becomes large, and 

the approximation ratio on the network throughput will be small. We now 

further improve the network throughput while minimizing the service cost by 

proposing an improved approximate algorithm. 

Assume that each link reliability is in range [Pmin, Pmax] , with O < Pmin < 
Pmax < 1. We classify the links in G(V U S, E) into 1log Ppmax l different groups 

nun 

according to their reliability. Note that a link can join multiple groups. Then, 

a subgraph Gi = (VU S, Ei) of G can be induced from the network G for each 

group i, where Ei = {e I e EE and Pe > pi} and Pi= min{i · Pmin, Pmaxl O < 
i < 1log PP111ax l}. The algorithm proceeds as follows. Starting from i = pog Pmax l, 111w P111111 
for each i, a graph Gsv,i =(VU SU {sv}, Ei U {(sv,s j) I Sj ES}) is constructed 
by adding a virtual sink Sv and the edges between Sv and every sink in S. If 

Gsv,i is disconnected, there is no solution for the problem, which is shown by 

Lemma 4.10. The value of i is decreased by one and the procedure continues 

until Gsv,i is connected. It then applies algorithm Appro on graph Gsv,i to find 

a solution. We refer to this improved algorithm as Impro_Appro, described in 

Algorithm 11. 

Lemma 4.10. In algorithm Impr o_Appro, if Gsv,i is disconnected, there is no so­

lution for graph Gsv,1·, with O < i < j < pog Ppmaxl . Algorithm Impro_Appro 111111 
can deliver an approximate solution to the concerned problem with the complexity of 

O( IVI · IEl 2 + !El · 1log ;::;:l ). 
Proof As the set of links in Gsv,J is a subset of the set of links in Gsv,i when 

j > i, graph Gsv,J is a subgraph of Gsv,i· If Gsv,i is not connected, graph Gsv,J 

is not connected either, with O < i < ;· < 1log Pmax l - For any disconnected I P,mn 

graph Gsv,i' performing a BFS traversal on it will not obtain a tree since at 
least one node v E V is not in the connected component that virtual sink Sv 
and the sinks belong to, which implies that there is not any routing path from 

node v to any sink. Thus, there is not a forest in Gsv,J spanning all nodes in 
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Algorithm 11: Impro_Appro 

Input : G(V U S, E), the data quota Q, the link reliability range 

[Pmin , Pmax] 

131 

Output: The network throughput D (T), the forest F, and the service cost 

C 

o (T) ~ O; c ~ m · Cf F ~ 0; 
i ~ flog Pmax l; 

Pmm 
while i > 0 do 

Pi = min{i · Pmin, Pmax }; 
Construct a sub-network Gi = (VU S, Ei) , where Ei = { e I e E E and 

Pe > Pi}; 
Construct a graph Gsv,i = (VU S U {sv}, Ei U { (sv,sj) I Sj E S} ) by 
adding a virtual sink Sv and connecting Sv to all sinks in S; 

if graph Gsv,i is disconnected then 
L i ~ i - l; 

else 
Perform a BFS traversal on Gsv,i starting from Sv to obtain a tree 
y_BFS with depth h· 

l I 

Partition the nodes in Gsv,i into h layers; 
Call algorithm Appro which consists of applying Algorithm 8 to 

the layered nodes with uniform link reliability Pi, followed by 

calling the dynamic load readjustment procedure; 

Obtain the network throughput D (T), the service cost C, and the 

routing forest F; 
EXIT; 

return v (T) / F , C. 

V and no solution can be obtained. There is an i with O < i < flog Ppmaxl 
mm 

such that Gsv,i is connected, as G is connected. And an approximate solution 

is obtained whose throughput is with the approximation ratio (i +\) 11 , where 

bi = f max _ l < b = Pmax _ l : 
2 ·Pmin Pmzn 

It takes O (IE I + IV I) time to check the connectivity of a graph, and the num­

ber of connectivity check is no greater than flog Pmax l It takes O(I VI · 1£12 ) to 
Pmm 

deliver a solution by calling algorithm Appro, referring to Theorem 4.9. Thus, 

algorithm Impro_Appro takes O(I VI · 1£12 + IEI · flog Pmax l) time. 
P,nin 

It can be seen that although the running time of algorithm Impro_Appro is 
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longer than that of algorithm Appro, the throughput delivered by it is much 

higher in comparison with that by algorithm Appro in most cases. □ 

4.5 Performance Evaluation 

In this section we evaluate the performance of proposed algorithms, including 

investigating the impact of constraint parameters on their performance, and 

comparing their performance with those of other algorithms. 

4.5.1 Experiment Settings 

We consider a sensor network consisting of 100 to 300 sensors randomly de­

ployed in a 1000m x 1000m square region. The transmission range of sensors 

is 120 meters, and the data generation rate is r = l00Bytes / s. The initial energy 

capacity of each sensor IE is 1,000 Joules. The energy consumption parame­

ters of IEEE 802.15.4 and 3G radios are referred to [2] and [5] . In our experi­

ments, the following three different data plans provided by Vodafone [7] for 

one month monitoring period (i.e., T = 30days x 24hours x 3, 600seconds) will 

be examined: (I) Q = 2GB and Cf = $19; (II) Q = 4GB and Cf = $29; and 

(III) Q = 10GB and Cf = $39. Each of these three data plans has the same 

penalty rate Cp = $0.02/ MB. and the link reliability is a random value within 

the interval [0.1, 1.0] . Each value in the figures is the mean of the results by 

applying the mentioned algorithm to 50 different network topologies of the 

same size. 

4.5.2 Evaluation of Service Cost Minimization Algorithm 

We first evaluate the performance of algorithm Min_Cost for service cost min­

imization with guaranteed network throughput. In the default setting, the net­

work throughput threshold ex = 0.7, the search space percentage /3 = 0.1, the 
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weight adjustment parameter ;\ = 2, and data Plan (II) is adopted. 

We study the performance of algorithm Min_Cost against that of the other 

two algorithms. The only difference between these algorithms is in sink iden­

tification. The number of sinks m is delivered by algorithm Min_Cost . One 

algorithm randomly selects m from all nodes as the sinks. We refer to this 

algorithm as Random_Sink . The other is a variant of algorithm LEACH [40] 

which selects P percentage of nodes as the sinks, where P = m/n is the ratio 

of the number of sinks to the total number of nodes. Nodes serving as sinks 

in the current charging period cannot be selected as sinks for the next 1 / P pe­

riods. This algorithm is referred to as LEACH_Sink. The rest of these three 

algorithms is identicat that is, the routing forest is built by adopting the forest 

establishment in algorithm Iden_Sink. We compare the performance of these 

three algorithms in terms of the service cost and network lifetime by varying 

n from 100 to 300 while fixing a = 0.7 and rg = 100 Bytes /s . 

Fig. 4.4 shows that algorithm Mi n _Cost outperforms the other two in both 
--

the service cost and the network lifetime. On average, the service cost deliv-

ered by algorithn1 Min _Cost is 22% and 16% less, and the network lifetime is 

45% and 33% longer than that of algorithms Random_Sink and LEACH_Sink, 

respectively. From Fig. 4.4(at it is observed that with the increase inn, the ser­

vice cost of the solution delivered by each algorithm goes up, because larger 

volume of data is required to be sent to the remote monitoring center and a 

higher cost is incurred. With the growth of n, the gap between the three service 

cost curves is further enlarged. Fig. 4.4(b) illustrates that the curves of network 

lifetime drop with the growth of n. The superiority of algorithm Min_Cost lies 

in a more efficient sink identification strategy to better balance the energy con­

sumption among the sensor nodes. We also note that in terms of network life­

time, algorithm LEACH _Sink outperforms algorithm Random_Sink in most 

cases. The reason behind is that the nodes in algorithm LEACH_Sink cannot 

be repeatedly selected as the sinks in a number of consecutive rounds, while 
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algorithm Random_Sink does not pose such a restriction, which potentially 

increases the chances for more balanced energy distribution and a longer net­

work lifetime. 
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Figure 4.4: Performance comparison of three algorithms when ex = 0.7, rg =100 
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Figure 4.5: The performance of algorithm Min_Co st with different throughput 
thresholds ex when rg = 100 Bytes / s, A= 2, and Plan (II) is adopted 

We now investigate the impact of different constraint parameters on the 

performance of algorithm Min_Cost in terms of the service cost and network 

lifetime. 

We start with the impact of the network throughput threshold ex on the 

network performance by varying ex from 0.5 to 1.0. As shown in Fig. 4.5, the 
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service cost increases while the network lifetime decreases as the value of a 

goes up. This is because the higher the throughput requirement, the larger the 

volume of sensed data collected from the sensor network, thereby resulting 

in a higher service cost and more energy consumption among sensors, thus a 

shorter network lifetime. However, note that when prior to a = 0.8, the ser­

vice cost and network lifetime vary slowly, while with a increasing from 0.8, 

both of them change dramatically. The rationale behind is that a larger a does 

not necessarily mean that the amount of data relayed by each sink increases ac­

cordingly. With the growth of a from 0.5 to 0.8, the forest of routing trees may 

not experience many changes, resulting in slight changes in the service cost 

and network lifetime. However, with further increase in a, a large number of 

sinks is expected to be used in order to meet the network throughput require­

ment, resulting in a greater service cost. The similar explanation applies to the 

trend of network lifetime. 
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Figure 4.6: The performance of algorithm Min_C o st with different weight adjustment 

parameter;\ when rg =100 Bytes / s, a= 0.7, and Plan (II) is adopted 

We then investigate the impact of weight adjustment parameter i\ on the 

network performance by varying i\ from 2 to 10. Fig. 4.6 indicates that the in­

crease of i\ results in a higher service cost yet a longer network lifetime. Recall 

that the weight of a directed edge (v, u) is w(v, u) = IE. i\l -er(v) / IE / p(v, u). 



136 Optimization of Network Throughput and Service Cost 

The value of II affects weights of edges thus the routing forest construction. 

The larger the value of 11, the greater the impact of the residual energy on the 

edge weight, and the more balanced energy consumption. However, a larger 

11 leads to a higher service cost, as shown in Fig. 4.6(a). In each iteration of 

searching the optimal number of sinks m, the routing forest algorithm with a 

larger II delivers a forest with a lower throughput, compared with that deliv­

ered by the same algorithm with a smaller 11, which is very likely not to meet 

the specified throughput requirement. As a result, a larger number of sinks is 

required and a higher service cost is incurred. 
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Figure 4.7: The performance of algorithm Mi n_Cos t with different data generation 
rate rg when a= 0.7, i\ = 2, and Plan (II) is adopted 

We also address the impact of the data generation rate r g on the network 

performance by varying r g from 60 Bytes / s to 140 Bytes / s with the increment 

of 20 Bytes / s. Fig. 4.7 shows that with a fixed r g, the larger the network size n, 

the higher the service cost, and the shorter the network lifetime, because more 

data is required to be transmitted and a larger number of sinks is required. 

This can also explain that with the increase in the data generation rate r g, the 

service cost will go up while the network lifetime will drop. 

What follows is to investigate the impact of different data plans on the 

network performance. Fig. 4.8(a) indicates that adopting Plan (I) incurs the 
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Figure 4.8: The performance of algorithm Mi n_Cost with different data plans when 

a= 0.7, ;\ = 2, and rg =100 Bytes /s 

· highest service cost among the three plans. Adopting Plan (II) is the cheapest 

when n < 200, and when n > 200 Plan (III) leads to the smallest service cost. 

Recall that the number of sinks mis searched around mo= l a -n; •rg J. A smaller 

data quota Q indicates a larger number of sinks needed and a higher service 

cost incurred, it is because transmitting the same amount of data by adopting 

a data plan with a smaller data quota usually incurs a higher cost than that 

of adopting a plan with a larger data quota, as illustrated by the following 

example. Assume that there is 20GB collected data to be sent, and the amount 

of data sent through each sink is equal to the data quota. Corresponding to 

plans (I), (II), and (III), the numbers of sinks needed are 10 (2GB at each sink), 

5 (4GB at each sink), and 2 (10GB at each sink), and the corresponding service 

costs are $190, $145, $79 respectively. Though the penalty is not considered, the 

fixed cost is dominant in the service cost. This explains the higher cost caused 

by Plan (I) in comparison with the other two plans. It is also interesting to see 

that when n > 200, adopting Plan (III) results in a lower cost compared with 

Plan (II). It is because when Plan (II) is adopted, a higher penalty is incurred, 

with the amount depending on the quota usage on individual sinks. In other 

words, adopting a plan with a larger quota (e.g., Plan (III)) means a smaller 

fixed cost yet might be accompanied with an expensive penalty, and results in 
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a high service cost in the end. 

We finally evaluate the impact of charging period Ton the network lifetime 

by the proposed algorithm. Assume that two varieties of Plan (II) are adopted: 

one is with Q = 2GB, Cf = $14.5, and T = 2 weeks; another is with Q = 

1GB, Cf = $7.25, and T = 1 week. Both plans have the same penalty rate 

cp = $0.02/ MB. We evaluate the monthly service cost by adopting Plan (II) 

(T =4 weeks) and its two varieties. Fig. 4.9 shows that the shorter the charging 

period, the longer the network lifetime delivered by the proposed algorithm, 

as this results in more frequent changes of sinks, thus more balanced energy 

consumption among the sensors. 
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Figure 4.9: The performance of algorithm Min_Cost with different charging periods 
T when rg =100 Bytes/s, ex = 0.7, and i\ = 2 

4.5.3 Evaluation of Network Throughput Maximization Algo­

rithm 

We now evaluate the performance of the proposed algorithms for network 

throughput maximization with minimal service cost. In the default setting, 

the number of sinks m varies from 4 to 10, and they are deployed as follows . 

The monitoring region is divided into roughly equal-size m sub-regions, in 

each of which one sink is randomly deployed. 
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We first study the performance of algorithm Uniform_Link in a sensor 

network where each link has identical reliability. 
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Figure 4.10: Impact of m on the network performance when p = 0.8 and Plan (II) is 

adopted. 

We evaluate the impact of m on the network performance for different net­

work sizes n, by varying m from 4 to 10 while keeping p fixed at 0.8. From 

Fig. 4.l0(a) it can be seen that for a given network size, a larger m results in a 

higher network throughput. Fig. 4.l0(b) shows that with the fixed m, a larger 

network throughput does not necessarily incur a higher service cost, depend­

ing on whether there is any sink exceeding the data quota. Also, we observe 

that with the fixed n, the service cost is insensitive to the value of m. For exam­

ple, when n = 100, the service cost goes up when m increases as the network 

throughput is relatively low and penalties to individual sinks are unlikely to 

occur. The service cost essentially is the fixed cost of the m sinks. On the other 

hand, when n is large (e.g., n > 200), the network throughput becomes much 

higher, and the service cost is reduced with the growth of m as the penalties 

are reduced. 

What followed is to evaluate the impact of link reliability on the network 

performance for different network sizes by varying p from 0.6 to 1.0 while 

keeping m = 6 and adopting Plan (II). Fig. 4.11 shows that the higher the link 

reliability, the larger the network throughput, and the higher the service cost. 
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Figure 4.11: Impact of link reliability p on the network performance when m = 6 and 
Plan (II) is adopted. 

We also investigate the impact of different data plans on the network per­

formance while fixing p = 0.8 and m = 6. Fig. 4.12 shows the corresponding 

service costs for transferring the collected data when different data plans are 

adopted. It is observed that when n = 100, Plan (III) has a higher service 

cost than the other two plans due to its higher fixed cost. However, with the 

growth of n, Plan (III) outperforms the other two plans since the data quota 

Q = 10GB is sufficiently large and no sink exceeds the data quota, resulting in 

no penalties. 
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0.8 and 

We now evaluate the performance of algorithms Simple_Alg, App r o , and 
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Figure 4.13: Performance of different algorithms when m = 6, Pe E [0.1, 1] for each 

link e E E, and Plan (II) is adopted. 

Impro_Approwhenm = 6,pe E [0.1,1] foreachlinke E E,andadoptingPlan 

(II). Shown in Fig. 4.13(a), the network throughput by algorithm Appro and 

Impro_Appro are no less than 78% and 87% of the maximum one delivered 

by algorithm Simple_Alg. Algorithm Impro_Appro improves the through­

put delivered by algorithm Appro by 11 % with only 3% higher service cost 

incurred. Given an amount of network throughput D (T), the lower bound of 

the minimal cost is calculated as m · c1 + (D (T) - m · Q) · Cp, that is, data is 

allocated to them sinks such that the number of sinks whose load is above the 

data quotas is minimized while the other sinks are assigned the load equal to 

the data quota. Fig. 4.13(b) shows that the service cost delivered by algorithms 

Appro and Impro_Appro are no more than 106% and 103% of the minimal 

cost. It also verifies that algorithm Impro_Appro best approximates the mini­

mum service cost. 

We next investigate the impact of the number of sinks m on the network 

performance when n = 200, Pe E [o.·1, 1] for each link e E E, and Plan (II) 

is adopted. Fig. 4.14 indicates that a larger m will result in a higher network 

throughput but does not necessarily incur a higher service cost. As a larger 

number of sinks can reduce the average length of the routing path from a node 
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each link e E E, and Plan (II) is adopted. 

to a sink, this implies more reliable end-to-end data routing and a higher net­

work throughput then follows. 
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Figure 4.15: Impact of the range of link reliability on the network performance when 
m = 6, n = 200, and Plan (II) is adopted. 

We finally study the impact of the range of link reliability on the network 

performance. We examine the ranges of link reliability: [0.1, 0.2), [0.1, 0.4), 

[0.1, 0.6), [0.1, 0.8], and [0.1, 1.0) by fixing m = 6, n = 200, and adopting Plan 

(II). Accordingly, the values of f> are 1, 3, 5, 7, 9. Fig. 4.15 shows that with 

the growth of the link reliability range, the network throughput increases, 

so does the service cost. The network throughput delivered by Appro and 
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Impro_A_ppro nearly reach the maximum one delivered by S i mp l e_A_lg 

(around 96% of the optimal on average), especially when the range of link 

reliability is small. 

4.6 Conclusions 

In this chapter, we have studied two problems in link-unreliable WSNs under 

the remote monitoring scenario, both of which are proven to be NP-complete. 

We first devised algorithm Min_Cost for service cost minimization while main­

taining the required network throughput. The probabilities of throughput fail­

ure and cost exceeding are shown to be bounded. We then designed approx­

imation algorithms for network throughput maximization with minimal ser­

vice cost. Algorithm S i mp l e_A_l g was developed for the maximum through­

put without optimizing the cost. Approximation algorithms Appro and 

Impro_A_ppro were proposed, with delivered solutions fractional of the opti­

mum. The experimental results showed the superiority of the proposed algo­

rithms over others in terms of network throughput, service cost, and network 

lifetime. 
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Chapter 5 

Conclusions and Future Work 

This chapter summarizes the contributions we made in this thesis, followed 

by discussing potential research topics derived from this work. 

5.1 Summary of Contributions 

The use of wireless sensor networks for remote monitoring has been studied 

in this thesis. New concepts, models and optimization techniques were pro­

posed for achieving long-lasting, large-scale monitoring, ~nd reliable, econom­

ical remote data transfer. Approaches for multiple sink placement and assign­

ment were developed to prolong network lifetime significantly. A strategy 

for scheduling a motion-constrained sink was devised to improve monitor­

ing quality considerably. Approximation algorithms for balancing workload 

among sinks were designed. to achieve a fine trade-off between optimization 

of network throughput and service cost. The main contributions of this thesis 

are summarized as follows. 

• We proposed remote monitoring by deploying wireless sensor networks 

in remote regions to sense phenomena of interest and employing a third 

party network to transfer data from the WSNs to a monitoring center that 

is located distant from the monitored regions. We explored challenges 

of using WSNs for remote monitoring and addressed research aims of 

this thesis, including network lifetime prolongation, monitoring quality 

14~ 
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maximization, and network throughput optimization with minimal ser­

vice cost. 

• We investigated the longevity of the deployed WSN by exploring mul­

tiple sinks. We formulated energy cost models of sensor nodes working 

in different modes and studied their energy consumption components. 

Based on the models, we devised algorithm Dynamic__Alg which dy­

namically assigns nodes as sinks and rotates the assignment within net­

work lifetime to balance energy consumption in the WSN, while main­

taining a required network throughput. We also developed algorithm 

F ind_Opt imal_Sink to find a non-trivial trade-off between the number 

of sinks and network lifetime. Algorithm F ind_Opt imal_S ink identi­

fies the appropriate number of sinks and their preferable locations in the 

network, and routes data energy-efficiently to maximize network life­

time. 

• We dealt with the data loss issue that occurs in a WSN with a mobile sink. 

We explored sensed data correlation and identified a subset of nodes 

whose sensed data can be successfully sent to the sink, and thereby mon­

itoring quality is improved. We proposed algorithm MQM to find a trajec­

tory in the given road-map subject to constraints of travelling length and 

sojourn locations of the sink, so that the sink moving along the trajectory 

is able to energy-efficiently collect the most representative data for the 

maximum monitoring quality. 

• We addressed the optimization of network throughput the service cost in 

two application scenarios. We first studied the throughput guaranteed 

cost minimization problem in a budget-oriented scenario and proposed 

algorithm Min_Cost for the problem, which determines the proper num­

ber of sinks, identifies the set of sinks, and routes data strategically to the 

sinks. We also investigated the throughput maximization problem in a 
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throughput-targeting scenario and developed approximation algorithms 

with delivered solutions proven to be fractional of the optimum. 

• We conducted extensive experiments by simulation to evaluate all pro­

posed algorithms including investigating the impact of constraint pa­

rameters on their performance, and comparing their performance with 

that of comparable algorithms. Experimental results showed that the 

proposed algorithms outperform the existing ones significantly in as­

pects of network lifetime, monitoring quality, network throughput, and 

service cost. 

5.2 Future Work 

There are several potential research topics that can be explored based on the 

work in this thesis. 

Firstly, the use of multiple mobile sinks can be investlgated to further bal­

ance energy consumption among nodes for network lifetime prolongation. It 

is challenging to arrange the motion of multiple sinks jointly and more com­

plicated problems follow. For example, determining the minimum number 

of motion-constrained sinks and finding their trajectories to eliminate data 

loss. Or, with a given number of sinks, finding multiple closed paths in a 

pre-defined road-map to maximize the monitoring quality subject to the mo­

tion constraints. These problems need to be addressed for a better monitoring 

quality in a mobile-sink WSN. 

Se~ondly, the latency of delivering data from sinks to the monitoring center 

through the third party network can be considered as another metric to evalu­

ate the performance of remote monitoring. Such latency is an essential perfor­

mance metric for remote event detection applications, such as fire detecting or 

seismic sensing systems, in which real-time data delivery is required. This ad-
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ditional metric makes the performance optimization more difficult. Moreover, 

the third party communication service will be charged in relation to the data 

transmission rate provided, and the service cost, with both network through­

put and data delivery latency taken into account, should be re-formulated ac­

cordingly. 

Thirdly, light-weighted distributed implementation of the proposed tech­

niques is to be investigated to enable their applications in real networks. The 

proposed algorithms in this thesis are centralized and executed by a coordina­

tor, such as the energy-unconstrained sink or the monitoring center, and then 

corresponding operations are designated to nodes in the network. Devising 

simple distributed strategies that can be conducted by individual nodes will 

reduce the control message exchanges thereby conserving energy and decreas­

ing channel interference. The solutions delivered by centralized algorithm can 

be used as benchmarks to evaluate the distributed algorithms. 

Finally, to further improve the remote monitoring performance, the cross 

layer design should be researched in the future . Network lifetime prolonga­

tion, monitoring quality maximization, network throughput and service cost 

optimization considered in this thesis are in the routing layer. Taking into ac­

count the techniques in other layers, e.g., MAC layer, will generate algorithms 

more effective and efficient in improving the application performance. More­

over, combining approaches of multiple layers to form a joint optimization 

framework will eliminate any improper assumption raised by designing algo­

rithms from the aspect of a single layer. And this will enable the developed 

mechanisms much more practical in real world. 



Bibliography 

[1] 128m x 8 bit / 64m x 16 bit NAND flash memory. h t tp : //www . 

d a tas h eet c atal o g. o rg /dat a sheet s / 1150 /264846_ DS . pdf. 

[2] CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF transceiver. 

www.ti.com/lit/ ds/ symlink/ cc2420.pdf. 

[3] National renewable energy laboratory. ht t p: //www . n r e l. g ov/ . 

[4] The network simulator -ns-2. h ttp: // www . i si . edu/ n s n a m/n s / . 

[5] PCI express minicard and LGA modules high-speed multi-mode 3G. 

www.embeddedworks.net/ ewdatasheets/ option/EW-Gobi3000.pdf. 

[6] Sensor wikipedia. http : // e n. wikipe dia . org /wi ki / Se n sor. 

[7] Vodafone. http:/ /www.vodafone.com.au. 

[8] K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor 

networks. Ad Hoc Networks, 3:325-349, 2005. 

[9] A. Arun, R. Aditya, and B. Mani. Mobile element scheduling with dynamic 

deadlines. IEEE Transactions on Mobile Computing, 50:395-410, 2007. 

[10] A. Ayadi. Energy-efficient and reliable transport protocols for wireless sen­

~or networks: State-of-art. Wireless Sensor Network, 3:106-113, 2011. 

[11] A. Bagadi, S. Sarode, and J. Bakal. A survey of reliable transport layer pro­

tocols for wireless sensor network. International Journal of Computer Ap­

plications, 33:44-50, 2011. 

[12] A. Bakre and B. Badrinath. I-TCP: Indirect TCP for mobile hosts. In Proceed­

ings of ICDCS. IEEE, 1995. 

149 



150 Bibliography 

[13] C. Bas and S. Ergen. Spatio-temporal characteristics of link quality in wire­

less sensor networks. In Proceedings of WCNC. IEEE, 2012. 

[14] S. Basagn, A. Carosi, E. Melachrinoudis, C. Petrioli, and Z. M . Wang. A new 

milp formulation and distributed protocols for wireless sensor networks 

lifetime maximization. In Proceedings of ICC. IEEE, 2006. 

[15] S. Basagni. Controlled sink mobility for prolonging wireless sensor net­

works lifetime. Journal of Wireless Networks, 14:831-858, 2008. 

[16] A. Bogdanov, E. Maneva, and S. Riesenfeld. Power-aware base station posi­

tioning for sensor networks. In Proceedings of INFOCOM. IEEE, 2004. 

[17] K. Brown and S. Singh. M-TCP: TCP for mobile cellular networks. In Pro­

ceedings of SIGCOMM. ACM, 1997. 

[18] A. Cerpa, J. Wong, M. Potkonjak, and D. Estrin. Temporal properties of low 

power wireless links: modeling and implications on multi-hop routing. 

In Proceedings of MobiHoc . ACM, 2005. 

[19] J. Chang and L. Tassiulas. Energy conserving routing in wireless ad hoc 

networks. In Proceedings of INFOCOM. IEEE, 2000. 

[20] S. Chen. Routing support for providing guaranteed end-to-end quality-of­

service. PhD Thesis, 1999. 

[21] S. Chen, M. Song, and S. Sahni. Two techniques for fast computation of con­

strained shortest paths. IEEE/ACM Transactions on Networking, 167:105-

115, 2008. 

[22] T. Carmen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. 

MIT Press, 2009. 

[23] D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path met­

ric for multi-hop wireless routing. In Proceedings of Mobicom. ACM, 2003. 

[24] H. Dai and R. Han. A node-centric load balancing algorithm for wireless 

sensor networks. In Proceedings of Globecom. IEEE, 2003. 



Bibliography 151 

[25] K. Dasgupta, K. Kalpakis, and P. Namjoshi. An efficient clustering-based 

heuristic for data gathering and aggregation in sensor networks. In Pro­

ceedings of WCNC. IEEE, 2003. 

[26] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical in-network 

data aggregation with quality guarantees. In Proceedings of EDBT, 2004. 

[27] Q. Dong, S. Banerjee, M. Adler, and A. Misra. Minimum energy reliable 

paths using unreliable wireless links. In Proceedings of MobiHoc. ACM, 

2005. 

[28] G. Durgin, T. Rappaport, and D. Wolf. New analytical models and prob­

ability density functions for fading in wireless communications. IEEE 

Transactions on Communications, 50(6):1005-1015, 2002. 

[29] F. Fabbri, C. Buratti, and R. Verdone. A multi-sink multi-hop wireless sensor 

network over a square region: Connectivity and energy consumption 

issues. In Proceedings of Globecom Workshop. IEEE, 2008. 

[30] K. Farkas, T. Hossmann, L. Ruf, and B. Plattner. Pattern matching based link 

quality prediction in wireless mobile ad hoc networks. In Proceedings of 

MSWiM. ACM, 2006. 

[31] R. Fonseca, 0. Gnawali, K. Jamieson, and P. Levis. Four-bit wireless link 

estimation. In Proceedings of HotNets. ACM, 2007. 

[32] S. Gandham, M. Dawande, R. Prakask, and S. Venkatesan. Energy efficient 

schemes for wireless sensor networks with multiple mobile base sta­

tions. In Proceedings of Globecom. IEEE, 2003. 

[33] M. Garey, D. Johnson, and L. Stocki-neyer. Some simplified NP-complete 

graph problems. Theoretical ~omputer Science, 1:237-267, 1976. 

' 

[34] N. Garg and J. Konemann. Faster and simpler algorithms for multicommod-

ity flow and other fractional packing problems. In Proceedings of Founda­

tions of Computer Science. IEEE, 1998. 



152 Bibliography 

[35] V. Gungor and P. Haneke. Industrial wireless sensor networks: Challenges, 

design principles, and technical approaches. IEEE Transactions on Indus­

trial Electronics, 56:4258-4265, 2009. 

[36] G. Gupta and M. Younis. Load-balanced clustering of wireless sensor net­

works. In Proceedings of ICC. IEEE, 2003. 

[37] M. Halldorsson and J. Radhakrishnan. Greed is good: Approximating 

independent sets in sparse and bounded-degree graphs. Algorithmica, 

18:145-163, 1997. 

[38] M. Handy, M. Haase, and D. Timmermann. Low energy adaptive cluster­

ing hierarchy with deterministic cluster-head selection. In Proceedings 

of International Workshop on Mobile and Wireless Communications Network. 

IEEE, 2002. 

[39] R. Hassin. Approximation schemes for the restricted shortest path problem. 

Mathematics of Operations Research, 17:36-42, 1992. 

[40] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient 

communication protocol for wireless microsensor networks . In Proceed­

ings of HICSS. IEEE, 2000. 

[41] W. Heinzelman, J. Kulik, and H. Balakrishna. Negotiation-based protocols 

for disseminating information in wireless sensor networks. In Proceed­

ings of Mobicom. ACM, 1999. 

[42] P. Hsiao, A. Hwang,_H. Kung, and D. Vlah. Load-balancing routing for wire­

less access networks. In Proceedings of INFOCOM. IEEE, 2001. 

[43] S. Hussain and 0. Islam. An energy efficient spanning tree based multi-hop 

routing in wireless sensor networks. In Proceedings of WCNC. IEEE, 2007. 

[44] D. Johnson. Approximation algorithms for combinatorial problems. In Pro­

ceedings of the ACM Symposium on Theory of Computing. ACM, 1973. 



Bibliography 153 

[45] R. Jothi and B. Raghavachari. Approximation algorithms for the capacitated 

minimum spanning tree problem and its variants in network design. 

ACM Transactions on Algorithms, 1:265-282, 2005. 

[46] D. Karger and C. Stein. A new approach to the minimum cut problem. Jour­

nal of the ACM, 43:601-640, 1996. 

[47] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks. 

WILEY, 2005. 

[ 48] S. Keshav and S. Morgan. Smart retransmission: Performance with overload 

and random losses. In Proceedings of INFOCOM. IEEE, 1997. 

[49] H. Kim, T. Abdelzaher, and W. Kwon. Minimum energy asynchronous dis­

semination to mobile sinks in wireless sensor networks. In Proceedings of 

SenSys. ACM, 2003. 

[50] H. Kim, T. Kwon, and P. Mah. Multiple sink positioning and routing to 

maximize the lifetime of sensor networks. Institute of Electronics, Infor­

mation and Communication J:;,ngineers Transactions on Communications, E91-

B:3499-3506, 2008. 

[51] H. Kim, Y. Seok, N. Choi, Y. Choi, and T. Kwon. Optimal multi-sink posi­

tioning and energy-efficient routing in wireless sensor networks. In Pro­

ceedings of International Conference on Information Networking: Convergence 

in Broadband and Mobile Networking. LNCS, 2005. 

[52] Y. K_otidis. Snapshot queries: towards data-centric sensor networks. In Pro­

ceedings of ICDE. IEEE, 2005. 

[53] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees. 

Acta Informatica, 15:141-145, 1981. 

[54] H. Kuhn and B. Yaw. The hungarian method for the assignment problem. 

Naval Research Logistics Quart, 2:83-97, 1955. 



154 Bibliography 

[55] Q. Li and D. Rus. Sending messages to mobile users in disconnected ad-hoc 

wireless networks. In Proceedings of Mobicom . ACM, 2000. 

[56] J. Lian, K. Naik, and G. Agnew. Data capacity improvement of wireless sen­

sor networks using non-uniform sensor distribution. International Jour­

nal of Distributed Sensor Networks, 2:121-145, 2006. 

[57] W. Liang and Y. Liu. On-line data gathering for maximinizing network life­

time in sensor networks. IEEE Transactions on Mobile Computing, 6:2-11, 

2007. 

[58] W. Liang, J. Luo, and X. Xu. Prolonging network lifetime via a controlled 

mobile sink in wireless sensor networks. In Proceedings of Globecom. IEEE, 

2010. 

[59] W. Liang, J. Luo, and X. Xu. Network lifetime maximization for time­

sensitive data gathering in wireless sensor networks with a mobile sink. 

Journal of Wireless Communications and Mobile Computing, 2011. 

[60] S. Lindsey and C. Raghavendra. PEGASIS: Power-efficient gathering in sen­

sor information systems. In Proceedings of Aerospace Conference. IEEE, 

2002. 

[61] Y. Liu, H . gan, and L. i. Power-aware node deployment in wireless sen­

sor networks. In Proceedings of the International Conference on Sensor Net­

works, Ubiquitous, and Trustworthy Computing. IEEE, 2006. 

[62] P. Loh. A scalable, efficient and reliable routing protocol for wireless sensor 

networks. In Proceedings of International Conference on Ubiquitous Intelli­

gence and Computing. Springer, 2006. 

[63] J. Luo and J. Hubaux. Joint mobility and routing for lifetime elongation in 

wireless sensor networks. In Proceedings of INFOCOM. IEEE, 2005. 

[64] J. Luo, J. Panchard, M. Piorkowski, M. Grossblauser, and J. Hubaux. Mo­

biroute: routing towards a mobile sink for improving lifetime in sensor 



Bibliography 155 

networks. In Proceedings of DCOSS. IEEE, 2006. 

[65] A. Manjeshwar and D. Agrawal. TEEN: a routing protocol for enhanced ef­

ficiency in wireless sensor networks. In Proceedings of IPDPS. IEEE, 2000. 

[66] A. Meier, T. Rein, J. Beutel, and L. Thiele. Coping with unreliable channels: 

Efficient link estimation for low-power wireless sensor networks. In Pro­

ceedings of International Conference Networked Sensing Systems. IEEE, 2008. 

[ 67] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo­

rithms and Probabilistic Analysis. Cambridge University Press, 2005. 

[68] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries 

over distributed data streams. In Proceedings of SIGMOD. ACM, 2003. 

[69] E. Oyman and C. Ersoy. Multiple sink network design problem in large scale 

wireless sensor networks. In Proceedings of ICC. IEEE, 2004. 

[70] J. Pan, L. Cai, Y. Hou, Y. Shi, and S. Shen. Optimal base-station locations 

in two-tiered wireless sensor networks. IEEE Transactions on Mobile Com­

puting, 4:458-473, 2005. 

[71] C. Papadimitriou. The complexity of the capacitated tree problem. Networks, 

8:217-230, 1978. 

[72] W. Poe and J. Schmitt. Placing multiple sinks in time-sensitive wireless sen­

sor networks using a genetic algorithm. In Measuring, Modelling and Eval­

uation of Computer and Communication Systems. IEEE, 2008. 

[73] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wire­

less sensor networks. In Proceedings of Sensys. ACM, 2004. 

[74] G. Pattie. Wireless sensor networks. In Proceedings of Information Theory 

Workshop. IEEE, 1998. 

[75] L. Qiu, R. Chandra, K. Jian, and M. Mahdian. Optimizing the placement of 

integration points in multi-hop wireless sensor networks. In Proceedings 

of ICNP. IEEE, 2004. 



156 Bibliography 

[76] F. Ren, J. Zhang, C. L. T. He, and S. Ren. EBRP: Energy-balanced routing 

protocol for data gathering in wireless sensor networks. IEEE Transac­
tions on Parallel and Distributed Systems, 22:2108-2125, 2011. 

[77] R. Shah, S. Jain, and W. Brunette. Data mules: Modeling a three-tier architec­

ture for sparse sensor networks. In Proceedings of International Workshop 

on Sensor Network Protocols and Applications. IEEE, 2003. 

[78] F. Shan, W. Liang, J. Luo, and X. Shen. Network lifetime maximization for 

time-sensitive data gathering in wireless sensor networks. Computer Net­

works, 57:1063-1077, 2013. 

[79] K. Sharma, R. Patel, and H. Singh. A reliable and energy efficient transport 

protocol for wireless sensor networks. International Journal of Computer 

Networks & Communications, 2:92-103, 2010. 

[80] Y. Shi and Y. Hou. Theoretical results on base station movement problem 

for sensor network. In Proceedings of INFOCOM. IEEE, 2008. 

[81] A. Somasundara, A. Ramamoorthy, and M. Srivastava. Mobile element 

scheduling for efficient data collection in wireless sensor networks with 

dynamic deadlines. In Proceedings of RTSS. IEEE, 2004. 

[82] A. Srinivas and E. Modiano. Minimum energy disjoint path routing in wire­

less ad-hoc networks. In Proceedings of Mobicom. ACM, 2003. 

[83] F. Stann and J. Heidemann. RMST: reliable data transport in sensor net­

works. In Proceedings of International Workshop on Sensor Network Protocols 

and Applications. IEEE, 2003. 

[84] R. Sugihara and R. Gupta. Optimizing energy-latency trade-off in sensor 

networks with controlled mobility. In Proceedings of INFOCOM. IEEE, 

2009. 

[85] R. Tan, G. Xing, J. Chen, W. Song, and R. Huang. Quality-driven volcanic 

earthquake detection using wireless sensor networks. In Proceedings of 



Bibliography 157 

RTSS. IEEE, 2007. 

[86] M. Vuran, 0. B. Akan, and I. Akyildiz. Spatio-temporal correlation: the­

ory and applications for wireless sensor networks. Computer Networks, 

45:245-259, 2002. 

[87] C. Wan, A. Campbell, and L. Krisnamurthy. Pump-slowly, fetch-quickly 

(PSFQ): A reliable transport protocol for wireless sensor networks. In 

Proceedings of WSNA. IEEE, 2002. 

[88] Q. Wang, G. Takahara, H. Hassanein, and K. Xu. On relay node placement 

and locally optimal traffic allocation in heterogeneous wireless sensor 

networks. In Proceedings of LCN. IEEE, 2005. 

[89] Q. Wang, K. Xu, G. Takahara, and H. Hassanein. Locally optimal relay node 

placement in heterogeneous wireless sensor networks. In Proceedings of 

Globecom. IEEE, 2005. 

[90] Z. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli. Exploiting sink mo­

bility for maximizing sensor networks lifetime. In Proceedings of HICSS. 

IEEE, 2005. 

[91] T. Wark, C. Crossman, W. Hu, Y. Guo, P. Valencia, P. Sikka, P. Corke, C. Lee, 

J. Henshall, K. Prayaga, J. O'Grady, M. Reed, and A. Fisher. The design 

and evaluation of a mobile sensor/ actuator network for autonomous 

animal control. In Proceedings of IPSN. IEEE, 2007. 

[92] X. Wu, G. Chen, and S. Das. Avoiding energy holes in wireless sensor net­

works with nonuniform node distribution. IEEE Transactions on Parallel 

and Distributed Systems, 19:710-720, 2008. 

[93] G. Xing, T. Wang, W. Jia, and M. Li. Rendezvous design algorithms for wire­

less sensor networks with a mobile base station. In Proceedings of Mobi­

Hoc. ACM, 2008. 

[94] K. Xu, H. Hassanein, G. Takahara, and Q. Wang. Relay node deployment 



158 Bibliography 

strategies in heterogeneous wireless sensor networks. IEEE Transactions 

on Mobile Computing, 9:145-159, 2010. 

[95] K. Xu, Q. Wang, H. Hassanein, and G. Takahara. Optimal wireless sensor 

networks (WSNs) deployment: minimum cost with lifetime constraint. 

In IEEE International Conference on Wireless And Mobile Computing, Net­

working And Communications. IEEE, 2005. 

[96] N. Xu, S. Ranngwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, 

and D. Estrin. A wireless sensor networks for structural monitoring. In 

Proceedings of SenSys. ACM, 2004. 

[97] X. Xu, Y. Hu, J. Bi, and W. Liu. Adaptive nodes scheduling approach for 

clustered sensor networks. In IEEE Symposium on Computers and Commu­

nications. IEEE, 2009. 

[98] X. Xu and W. Liang. Monitoring quality optimization in wireless sensor net­

works with a mobile sink. In Proceedings of MSWiM. ACM, 2011. 

[99] X. Xu and W. Liang. Placing optimal number of sinks in sensor networks 

for network lifetime maximization. In Proceedings of ICC. IEEE, 2011. 

[100] X. Xu, W. Liang, X. Jia, and W. Xu. Maximizing network throughput with 

minimal remote data transfer cost in unreliable wireless sensor net­

works. In Proceedings of MobiHoc. ACM, 2013. 

[101] X. Xu, W. Liang, and T. Wark. Data quality maximization in sensor networks 

with a mobile sink. In Proceedings of DCOSS. IEEE, 2011. 

[102] X. Xu, W. Liang, and Z. Xu. Minimizing remote monitoring cost of wireless 

sensor networks. In Proceedings of WCNC. IEEE, 2013. 

[103] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conserva­

tion for ad hoc routing. In Proceedings of Mobicom. ACM, 2001. 

[104] T. Yamada, H. Takahashi, and S. Kataoka. A heuristic algorithm for the mini­

max spanning forest problem. European Journal of Operational Research, 



Bibliography 159 

91:565-572, 1996. 

[105] F. Ye, G. Zhong, S. Lu, and L. Zhang. A robust data delivery protocol for 

large scale sensor networks. In Proceedings of IPSN. ACM, 2003. 

[106] M. Younis and K. Akkaya. Strategies and techniques for node placement in 

wireless sensor networks: A survey. Ad Hoc Networks, 6:621-655, 2008. 

[107] M. Younis, M. Youssef, and K. Arisha. Energy-aware management for 

cluster-based sensor networks. Computer Networks, 43:649-668, 2003. 

[108] W. Youssef and M. Younis. Intelligent gateways placement for reduced data 

latency in wireless sensor networks. In Proceedings of ICC. IEEE, 2007. 

[109] Y. Zhang and M. Fromherz. Constrained flooding: a robust and efficient 

routing framework for wireless sensor networks. In Proceedings of Inter­

national Conference on Advanced Information Networking and Applications. 

IEEE, 2006. 

[110] M. Zhao, M. Ma, and Y. Yang. Efficient data gathering with mobile collec­

tors and space-division multiple access technique in wireless sensor net­

works. IEEE Transactions on Computers, 60:400-415, 2010. 




