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Abstract—To deploy a wireless sensor network for the purpose of large-scale monitoring, in this paper, we propose a heterogeneous

and hierarchical wireless sensor network architecture. The architecture consists of sensor nodes, gateway nodes, and mobile sinks.

The sensors transmit their sensing data to the gateway nodes for temporary storage through multihop relays, while the mobile sinks

travel along predetermined trajectories to collect data from nearby gateway nodes. Under this paradigm of data gathering, we

formulate a novel constrained optimization problem, namely, the capacitated minimum forest (CMF) problem, for the decision version

of which we first show NP-completeness. We then devise approximation algorithms and provide upper bounds for their approximation

ratios. We finally evaluate the performance of the proposed algorithms through experimental simulation. In our experiments, the

approximation ratio delivered by the proposed algorithms is always less than 2. In the case of arbitrary gateway capacities, this

contrasts our theoretical results which show that the approximation ratio is at most linear in the number of gateways. Our experiments

thus indicate that for realistic inputs, our worst case analysis of the approximation ratio is very conservative. The proposed algorithms

are the first approximation algorithms for the CMF problem, and our techniques may be applicable to other constrained optimization

problems beyond wireless sensor networks.

Index Terms—Wireless sensor networks, sink mobility, data gathering, constrained optimization problem, capacitated minimum forest

problem

Ç

1 INTRODUCTION

THE application of wireless sensor networks has emerged
as a promising solution to large-scale tracking and

monitoring tasks [1]. Due to their low-data rate, low-energy
consumption, and short-range communication, wireless
sensor networks present the great opportunity to instru-
ment and monitor the physical world at unprecedented
scale and resolution. In conventional sensor networks, there
is a single stationary sink (a base station), that has unlimited
power supply serving as a gateway between sensors and
users. This stationary sink data gathering paradigm how-
ever suffers from the following two major drawbacks. The
first drawback arises from unbalanced energy consumption
among the sensors. Since the sensors that are close to the
sink have to relay data for other, more remote sensors, they
usually bear disproportionate amounts of traffic, and thus
deplete their energy much faster than others. The resulting
unbalanced energy consumption shortens the network
operational time and thereby affects data delivery reliability
and other network performance aspects. The second draw-
back is the required network connectivity. It is necessary
that a network consisting of a stationary sink and sensors is

connected; otherwise, the data generated by the sensors that
lie in a component of the network not containing the sink
cannot be transferred to the sink and is ultimately lost. In
some deployments of sparse sensor networks, it is very
difficult to ensure network connectivity due to the restric-
tion of physical obstacles or other geographic constraints
(e.g., water ponds, rocks, etc.). To balance the energy
consumption among sensors and reduce the dependence of
network connectivity, the concept of mobile sinks has been
exploited. Recent studies show that the use of mobile sinks
can significantly improve various performance aspects of a
wireless sensor network including network lifetime, con-
nectivity, data delivery reliability, throughput, and so on
[3], [18], [20], [25], [29], [28], [34].

Deploying a wireless sensor network with mobile sinks
for large-scale monitoring while minimizing its critical
network resource consumptions is equivalent to solving
constrained optimization problems with one or multiple
constraints [15]. Previous research on these optimization
problems mainly focuses on developing exact and heuristic
algorithms [3], [17], [20], [21], [26], [27], [29]. However,
since most of these problems are NP-hard, exact proce-
dures are limited to solving small-size instances and not
applicable to large-scale networks due to exponential
running time. Although heuristics can sometimes yield
adequate solutions, they do not provide any guarantee on
how far the solutions are from being optimal. Thus,
developing fast approximate solutions with guaranteed
approximation ratios becomes an important research issue
for large-scale wireless sensor networks.

Several approximation algorithms for various optimiza-
tion problems in wireless sensor networks with fixed sinks,
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have been proposed in the past few years [14], [23], [30],
[31]. In contrast to this, developing approximate solutions
for optimization problems in sensor networks with mobile
sinks is largely unexplored, and there are only very few
results available [19], [25]. In this paper, we focus on
developing approximation algorithms for an important
constrained optimization problem in wireless sensor net-
works with a mobile sink, namely, the capacitated mini-
mum forest (CMF) problem: given m gateway nodes with
each gateway g having an integer capacity cðgÞ � 0, the
problem is to find a minimum cost forest consisting of
routing trees rooted at gateways and spanning sensor
nodes, subject to the constraint that each tree rooted at a
gateway g spans exactly cðgÞ sensor nodes.

The main contributions of this paper are as follows: We
first consider the deployment of wireless sensor networks
with a mobile sink for large-scale monitoring, by propos-
ing a heterogeneous and hierarchical architecture, where
the mobile sink travels along a predetermined trajectory
for data collection. Under this paradigm of data gathering,
we then formulate a novel, constrained optimization
problem, namely, the CMF problem, for which we devise
approximation algorithms with guaranteed approximation
ratios. Finally, we evaluate the performance of the
proposed algorithms through experimental simulation. In
our experiments, the approximation ratio delivered by the
proposed algorithms is always less than 2. In the case of
arbitrary gateway capacities, this contrasts our theoretical
results which show that the approximation ratio is at most
linear in the number of gateways. The proposed algo-
rithms are the first approximation algorithms for this
fundamental problem, and our techniques may be applic-
able to other constrained optimization problems beyond
wireless sensor networks.

The remainder of the paper is organized as follows: We
first introduce the related work in Section 2, followed by
introducing the system model and problem definition
in Section 3. We then show that the CMF problem is
NP-complete in Section 4. We third devise approximation
algorithms for the CMF problem and analyze the approx-
imation ratios of the proposed algorithms in Sections 5, 6,
and 7. We finally conduct experiments through simulation
to evaluate the performance of the proposed algorithms in
Section 8, and we conclude our discussion in Section 9.

2 RELATED WORK

Extensive studies on optimizing critical network resources
in wireless sensor networks with mobile sinks, such as
maximizing the network lifetime and/or minimizing the
number of mobile sinks employed, have been conducted in
the past few years. For example, the studies in [3], [18], [19],
[20], [25], [29], [31], and [35] focus on the network lifetime
maximization, while other studies focus on minimizing the
travel distance of mobile sinks [21]. Very few take both of the
aspects into consideration [16], [17]. Most of these studies
are based on homogeneous sensor networks that consist
only of one type of sensor. Although the homogeneous
architecture works very well for small to medium-size
networks, it may not be appropriate for large-scale
monitoring due to poor scalability, long data delivery delay,

and so on. With the increase of network size, the average
length of routing paths from remote sensors to the mobile
sink(s) (in terms of the number of hops) is longer, and the
chance of link failures increases, leading to a much longer
data delivery delay.

When deploying wireless sensor networks for large-scale
monitoring to mitigate the drawbacks of homogeneous
architectures, heterogeneous sensor networks with mobile
sinks have been introduced and studied [7], [13], [26], [31],
[32], [33]. In [13] and [26], it is assumed that the speed of
each mobile sink is controllable. This implies that the
amount of data collected by each mobile sink from a
gateway is controllable through adjusting the speed of the
mobile sink. In [31], Xing et al. consider the network lifetime
maximization problem by devising an approximation
algorithm for finding an optimal trajectory for the mobile
sink, subject to the trajectory length constraint. The
approximate solution obtained is based on a tree routing
structure with the assumption that the forwarding load of
each relay node is identical, independent of the number of
descendants the relay node has. In contrast to this, by
assuming that the mobile sink travels along a predeter-
mined trajectory with constant speed, Gao et al. [7] develop
a genetic algorithm for allocating sensor nodes to different
gateway nodes to form a forest that minimizes the total
energy consumption of sensors when routing sensing data.
Based on assumptions similar to those in [7], Xu et al. [32]
and [33] propose several heuristics for finding a forest of
routing trees that minimizes the routing cost, by incorpor-
ating data correlation among sensors. However, there is no
guaranteed bound on how far the solutions obtained are
from being optimal.

Developing approximation algorithms with adequate
bounds on the approximation ratios for the CMF problem is
challenging due to the stringent constraint on gateway
capacities. There are two classical optimization problems
closely related to the CMF problem: the capacitated minimum
spanning tree (CMST) problem [24]; and the capacitated
minimum Steiner tree problem (CMStT) in wired networks,
which are defined as follows. Given an edge-weighted
graph, a root node, a set of source nodes, and a capacity c, the
problem is to construct a minimum-cost spanning or Steiner
tree rooted at the root node, spanning all source nodes,
subject to the number of nodes in the subtree of each child
of the root being no more than c. CMST is a network design
problem that has been extensively studied in computer
science and operation research over the past 40 years [2],
[12]. At first sight, it may seem that CMF with uniform
capacities can be reduced to CMST by adding a virtual “root
node,” connecting all gateway nodes to the root node, and
then solving CMST. However, there are essential differ-
ences between CMF and CMST (or CMStT). In particular,
the addition of a root node connected to all gateways in a
CMF instance may change the cost of an optimal solution by
more than a constant factor. Also, the number of children of
the root in a CMST solution is not predetermined. The root
can have an arbitrary number of children as long as the sum
of source nodes in the subtree rooted at each child is no
more than the specified capacity c. Contrarily to this, the
number of gateway nodes in CMF is given beforehand.
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Also, in a CMST solution different children of the root may
have different capacities, whereas the CMF problem
requires that the number of source nodes routed to a
gateway must be equal to the capacity of the gateway. Thus
it seems, that the state-of-the-art approximation technique
for CMST or CMStT [12] cannot directly be applied to solve
the CMF problem, and a different algorithm design and
analysis technique is required.

3 PRELIMINARIES

3.1 System Model

Suppose a stationary sensor network that consists of a
large number of low-cost sensor nodes for sensing and a
few powerful, large-storage gateway nodes has been
deployed for the purpose of monitoring a region of
interest. The sensing data generated by the sensors will
be immediately relayed to their nearby gateways. The
gateways are used to store the sensing data temporarily,
perform data aggregation if needed, and eventually
transmit the stored data to mobile sinks when the mobile
sinks are within their transmission range. There is no
energy constraint on the gateways, assuming that they can
be recharged either by mobile sinks or renewable energy
sources such as solar energy.

We assume that there are a number of mobile sinks that
travel along predetermined trajectories (tours) to collect
data from the gateways on the trajectories. We further
assume that the speed at which a mobile sink traverses
along its trajectory is fixed and does not vary from tour to
tour. The data collected by the mobile sinks is finally
uploaded to a mainframe computer for further processing.
In other words, this heterogeneous and hierarchical
wireless sensor network architecture consists of three-tiers:
the top tier, consisting of a mobile sink (or a set of mobile
sinks) used to collect data directly from the gateways; the
bottom tier, consisting of many sensors that sense and
transmit data to the gateways; and the middle tier,
consisting of gateway nodes storing sensing data tempora-
rily and transmitting the stored data to mobile sinks. The
advantage of this heterogeneous and hierarchical wireless
sensor network architecture is its capability to deliver a
desired tradeoff between the energy consumption of
sensors and the data delivery latency, making it appro-
priate for large-scale monitoring.

For simplicity, in the remainder of this paper, we
assume that there is only one mobile sink. However, our
discussion and the presented approximation algorithms
can be adapted to networks with multiple mobile sinks.

3.2 Motivations

Suppose a wireless sensor network has been deployed and
a mobile sink traveling along a predetermined trajectory
collects data from the gateways that are located near the
trajectory. We assume that the trajectory of the mobile
sink is fixed, so is its speed. This implies that the time
spent by the mobile sink per tour � is constant. It is equal
to the length of the trajectory divided by the speed of the
mobile sink. As the mobile sink moves along the
predetermined trajectory, a gateway can transmit its
stored data to the sink whenever the sink is within its

transmission range. Since the duration of the sink within a
gateway’s vicinity is limited, the amount of data collected
by the mobile sink from the gateway per tour is limited as
well. Here we assume that the data transmission rate �g of
each gateway g is fixed. Let tg be the duration of the sink
within the transmission range of gateway g. Then, the
amount of data collected by the mobile sink from gateway
g per tour is bounded by DoutðgÞ ¼ �g � tg. Meanwhile, the
amount of data received by a gateway g during a time
interval of length � is DinðgÞ ¼ � � �s � ng, where �s is the
data generation rate of sensors and ng is the number of
sensors routing their data to gateway g. If the volume of
the data stored at gateway g is larger than the amount the
mobile sink can collect per tour, i.e., if DinðgÞ > DoutðgÞ,
then data loss is ultimately unavoidable. The data loss
may compromise the quality of monitoring of the net-
work, since not all sensing data is collected by the mobile
sink. To maintain high-quality monitoring using the
sensor network, the problem we face is to decide that
which portion of the sensing data should be transmitted to
the mobile sink. A naive approach to deal with this issue
is to pick a portion of the data stored in gateway g at
random and transmit only this portion of data when the
mobile sink passes by. However, this can result in very
poor data quality. Indeed, since usually the sensors in
wireless sensor networks are randomly and densely
deployed, the data generated by the sensors is spatially
and temporally correlated. A smarter way to ensure high-
quality monitoring is to make use of data correlation by
choosing a subset of sensors and routing their sensing
data to gateways such that all the data stored at the
gateways will be collected by the mobile sink at its next
tour. The collected data (from these chosen sensors) in the
time duration � will be used to approximate the sensing
data of all sensors in the network. The problem of
choosing such a subset of sensors has been extensively
studied in the past several years, using different data
quality metrics such as the mean of the squared prediction
error. As argued by Golovin et al. [10], in practical
applications the objective function (i.e., the mean of the
squared prediction error) is submodular and thus, as a
consequence of a theoretical analysis by Nemhauser et al.
[22], a simple greedy strategy yields a solution that is a
ð1� 1=eÞ � 0:632-approximation of the optimum.

In this paper, we assume that the subset of sensors has
been identified, and we focus on assigning the chosen
sensors to different gateways such that the total routing cost
is minimized, subject to following gateway capacity con-
straints. Denote by cðgÞ the capacity of a gateway g, which is
the number of sensors that can continuously transmit their
data to g within the duration of � . The value of cðgÞ is
determined by the transmission rate �g of gateway g and the
time duration tg of the mobile sink within the transmission
range of gateway g, i.e., cðgÞ ¼ bDoutðgÞ=�c ¼ btg � �gc. Here
we assume without loss of generality that a single reading
(i.e., one unit of sensing data) is generated per time unit at
every sensor.

To route the sensing data from the chosen sensors to the
gateways, we will adopt routing tree structures. Assuming
that there are m gateway nodes, a collection of m routing
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trees needs to be found. Each tree contains exactly one
gateway node, which is its root, and together the trees span
the gateways and the set of chosen sensors. To minimize
the cost of routing the sensing data generated by the
chosen sensors to the gateway nodes, extra relay nodes that
are not among the chosen sensors may be employed. This
enables the communication of chosen sensors and with
gateways that are not within the transmission range and
also allows us to minimize the number of relay nodes that
are needed. We will use the Euclidean distance between
two nodes (chosen sensor nodes or gateway nodes) to
approximate the number of relay nodes needed. This
approximation has been justified in densely deployed
sensor networks (see [31]).

3.3 Problem Statement

Suppose G ¼ ðV [W;EÞ is a subnetwork, of a wireless
sensor network whose sensors are densely, randomly
deployed in a region of the plane, where V is the set of
chosen sensor nodes with n ¼ jV j and W ¼ fg1; . . . ; gmg is
the set of gateway nodes with m ¼ jW j. In practical
applications n will be orders of magnitude larger than m.
There is a link in E between any two sensor nodes and
between every gateway and every sensor node. The weight
(or the cost) dðu; vÞ associated with the link between u and v
is their Euclidean distance. Each gateway node g 2W has
an integer capacity cðgÞ and n ¼

Pm
i¼1 cðgÞ ¼ jV j. The CMF

problem in G is to find a minimum cost forest consisting of
routing trees rooted at the gateway nodes, subject to the
number of chosen sensors in the tree rooted at gi 2W being
equal to its capacity cðgiÞ for all i with 1 � i � m. We refer
to the case where all gateways have identical capacities as
the case of uniform capacities; otherwise, we say the
gateways have arbitrary capacities.

Given an optimization problem, denote by Approx and
OPT the costs of the approximate solution delivered by an
approximation algorithm A, and the optimal solution to the
problem respectively, we say that the approximation ratio
of algorithm A is � if Approx

OPT � � when the problem is a
minimization problem, or Approx

OPT � � when the problem is a
maximization problem. Throughout the paper, for any
subgraph H of G, we will denote by cðHÞ the cost of H,
which is the cost sum of all edges in H. Thus, the task is to
find a suitable forest F which minimizes cðF Þ.

4 NP-COMPLETENESS OF CMF

In this section, we show that the CMF problem in the
Euclidean plane is NP-complete. For this, we adopt an
approach taken by Papadimitriou [24] to show NP-com-
pleteness of the CMST problem. Following Papadimitriou,
we will assume that the distance between two sensors is
taken as the integral part of their distance in the Euclidean
plane.

Theorem 1. The decision version of the CMF problem in the
Euclidean plane (with integer part distances) is NP-complete.

Proof. We first show that the problem is in NP. Since we
assume that the distance between two sensor nodes is the
integral part of their Euclidean distance, the cost of a
given routing forest can be computed in polynomial

time. Thus, given the optimal routing structure, the cost
of the optimal solution can be verified in polynomial
time and the problem is in NP. tu

We now show that the problem is NP-hard by a reduction
from a special CMST problem in the Euclidean plane.

In general, the CMST problem is defined as follows:
Given a set of source nodes in the plane and a distinguished
root node, the problem is to construct a spanning tree
rooted at the root node, such that the sum of the costs of the
edges in the tree is minimized, subject to the requirement
that each component (tree) of the forest obtained by deleting
the root node contains at most c vertices.

In the decision version, an integer K is given and the
problem asks for the existence of a solution of cost at most
K. Papadimitriou [24] shows that this decision version of
the CMST problem in the Euclidean plane is NP-hard via a
reduction of the exact set cover problem. In fact his proof
shows the NP-hardness on a special type of instance. We
will use two properties of this special type of instance,
which are as follows:

1. In any solution of cost at most K the components of
the forest obtained by deleting the root node have
exactly c nodes (as opposed to having at most
c nodes). Consequently, there is an integer m such
that the input consists of mcþ 1 vertices, including
the root.

2. The root has coordinates ðx; 0Þ for some x 2 ZZ, no
other node has the same first coordinate as the root,
and for every nonroot node v the integer part of the
distances from v to position ðx; iÞ are equal for all
i 2 f0; . . . ;m� 1g.

We now reduce an instance of the CMST problem of this
special type to an instance of CMF. Suppose the instance of
CMST is given by a set of nodes V that excludes the root, a
root node s, and a capacity c. By the first property, there
must be an integer m such that mc ¼ jV j. We design a CMF
instance that consists of the set of sensor nodes V and
m gateways located at positions ðx; iÞ for i 2 f0; . . . ;m� 1g.
The capacity of each gateway is set to c.

We finish the proof by showing that the CMF instance
with uniform capacity c has a solution of cost K if and only if
the original instance of the CMST problem has a solution of
cost K. If F is a solution to the CMF problem, then we
obtain a solution to the CMST problem by moving all
gateways to position ðx; 0Þ. Since each component of the
forests F contains exactly one gateway, this turns the graph
into a tree. By Property 2, the cost of this tree is the same as
the cost of F . Conversely, let T be a solution to the CMST
problem. We remove the root s and replace it with
m gateways in positions ðx; iÞ for i 2 f0; . . . ;m� 1g. Every
vertex that used to be adjacent to the root is assigned to one
of the gateways and we add an edge between each such
vertex and its assigned gateway. We obtain a forest that is a
valid solution to the CMF problem whose cost is equal to
the cost of T . tu

We remark that taking the integer parts of actual
Euclidean distances is not only applied in theory, but is
also common in practice when evaluating algorithms (see
[6], [11]).
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5 APPROXIMATION ALGORITHMS FOR CMF WITH

THE MST COST ASSUMPTION

In the previous section, we have shown that the CMF
problem is NP-complete. We now develop approximation
algorithms for this problem. We assume that the set of chosen
sensors V is given, and we treat the wireless sensor network
as an undirected graph G ¼ ðV [W;EÞ in the Euclidean
plane, where W is the set of gateway nodes. The edge set
E ¼ ðV � V Þ [ ðV �W Þ contains the edges between all
sensors nodes and gateways. The weight dðu; vÞ associated
with every edge ðu; vÞ is equal to the Euclidean distance
between the two endpoints u and v. We are also given a
capacity function c : W ! IN that assigns every gateway g 2
W a capacity cðgÞ such that

P
g2W cðgÞ ¼ jV j ¼ n.

Throughout this section we assume that for G there is a
minimum spanning tree (MST) T of the graph induced by
the set of chosen sensors V such that the cost cðT Þ of T is no
greater than the cost OPT of the optimal solution to the
problem (CMF), i.e., cðT Þ � OPT . We refer to this assump-
tion as the MST cost assumption. Although in practice this
assumption is reasonable in many densely deployed net-
works, we will show in Section 6 how to extend the
approximation algorithm to work on arbitrary networks not
necessarily fulfilling the MST cost assumption.

In the following, we first provide an overview of our
approximation algorithms for CMF. We then devise an
approximation algorithm for CMF and analyze its approx-
imation ratio. In the analysis of the approximation ratio,
we distinguish two cases: the case where all gateways have
the same capacity and the case where the capacities may
be arbitrary.

5.1 An Overview of our Approximation Algorithms

Before providing details, we first describe the strategy
behind the approximation algorithm for graphs with the
MST cost assumption. Following the MST cost assumption,
there is an MST T in the complete graph induced by the
chosen sensors with cðT Þ � OPT . A traveling salesman tour
(TSP tour) L based on T can be found by visiting the nodes
in T in a preorder tree walk. The cost cðLÞ of L is no more
than 2cðT Þ, due to the triangle inequality (see [5]).

To route the sensing data from the chosen sensors to the
m gateway nodes, the TSP tour L, consisting of all chosen
sensors, is partitioned into m segments such that the
number of sensors contained in each segment equals the
capacity of a corresponding gateway node, i.e., if Q ¼
fQ1; Q2; . . . ; Qmg is the segment partition of L, then for all
1 � i � m we have jQij ¼ cðgiÞ. A feasible routing structure
is then obtained by routing all sensing data from the sensors
in Qi to gateway gi for all i 2 f1; . . . ;mg. For each such i, a
possible tree consists of the edges in the segment Qi

together with an edge joining an arbitrary sensor in Qi with
gi. In the following, we propose algorithms that improve
over this strategy by choosing a favorable perfect matching
between the segments in Q and the gateways in W .

5.2 CMF with Uniform Capacities

For instances with uniform capacity, let c 2 IN be the
capacity of every gateway. Algorithm 1 first checks whether
the input is feasible, i.e., whether jV j 6¼ m � c, if not, reject

infeasible inputs immediately. For feasible inputs the
algorithm computes an MST T of the complete graph
induced by the set of sensors V . A TSP tour L based on T is
then found such that the cost cðLÞ of L is no more than
2cðT Þ. A partition Q of the tour L into segments is
computed such that all segments contain exactly c sensors.
The algorithm then constructs a weighted, complete
bipartite graph GQ ¼ ðW;Q; E0; wÞ, where W is the set of
gateways andQ ¼ fQ1; Q2; . . . ; Qmg is the segment partition
of L. The weight associated with the edge wðqi; gjÞ is
dðQi; gjÞ ¼ minfdðv; gjÞ j v 2 Qig, which is the minimum
distance from gj to a sensor in Qi. The algorithm finally
computes a minimum weight maximum matching MQ of
GQ, i.e., a matching that minimizes the weighted sum of all
matched edges. The solution delivered by the algorithm is
the forest consisting of trees T1; . . . ; Tm, where Tj is an MST
on the set Qi [ fgjg, and gateway gj is matched to Qi in MQ.
Details are given by Algorithm 1.

Algorithm 1. CMF with uniform capacities

Input: G ¼ ðV [W;EÞ and c 2 IN: A finite graph G in the
Euclidean plane consisting of a set of sensor nodes

V and a set of gateways W ¼ fg1; . . . gmg, and a

capacity c 2 IN.

Output: A forest of routing trees on V [W for which

every component contains exactly one gateway

and c sensor nodes.

1: if jV j 6¼
Pm

i¼1 cðgiÞ then declare the input as infeasible

and exit;
2: Compute an MST T of the graph induced by the nodes

in V ;

3: Compute a TSP tour L by performing a preorder tree

walk in T ;

4: Partition L into segments Q1; . . . ; Qm each containing c

nodes;

5: Construct the weighted, complete bipartite graph GQ ¼
ðW;Q; E0; wÞ with Q ¼ fQ1; . . . ; Qmg, where for gi 2W
and Qj 2 Q the weight of the edge ðQi; gjÞ is dðQi; gjÞ ¼
minfdðv; gjÞ j v 2 Qig;

6: Compute a minimum weight perfect matching MQ of

GQ;

7: return the forest F consisting of trees T1; . . . ; Tm, where

tree Tj is an MST of the complete graph induced by the

nodes in the set Qi [ fgjg and gj is the gateway matched

to Qi in MQ, 1 � i; j � m.

If m is the number of gateway nodes and n is the
number of chosen sensors, then the running time of
Algorithm 1 is Oðm3 þmnþ n lognÞ, since the graph GQ

can be computed in OðmnÞ, the perfect matching MQ in GQ

can be computed in Oðm3Þ, and all other tasks can be
performed in time Oðn lognÞ.

We now investigate the quality of the solution delivered
the algorithm. To analyze the costs of solutions delivered by
Algorithm 1 on instances for which all gateway nodes have
identical capacities, we will need the following lemma.

Lemma 1. Let Q ¼ fQ1; Q2; . . . ; Qmg be a partition of the
sensors in V such that Qi contains exactly cðgiÞ sensors. Let
P ¼ fP1; P2; . . . ; Pmg be a node partition in an optimal
solution of CMF such that Pi is the set of sensors assigned to

1936 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013



gi. If for all i 2 f1; . . . ;mg the set Pi \Qi is nonempty, thenPm
i¼1 dðQi; giÞ � OPT .

Proof. For all i 2 f1; . . . ;mg, let qi 2 Pi \Qi. Since in the
optimal solution each gateway gi is connected to qi and
the cost of this connection is at least dðqi; giÞ, we have
OPT �

Pm
i¼1 dðqi; giÞ �

Pm
i¼1 dðQi; giÞ. tu

Theorem 2. For input instances of the CMF problem that satisfy
the MST cost assumption and for which all gateways have the
same capacity, Algorithm 1 computes a solution of cost at most
3OPT , where OPT is the cost of the optimal solution.

Proof. We first show that there is a perfect matching M in
the bipartite graph GQ that has a cost of at most OPT .
Since MQ is a maximum matching of minimum weight
this implies cðMQÞ � cðMÞ � OPT .

Let fP1; . . . ; Pmg be the node partition of V corre-
sponding to an optimal solution, such that Pi is the set of
sensor nodes assigned to gateway gi. By Lemma 1, it
suffices to construct a perfect matching M such that for
each i there is a node pi 2 Q�ðiÞ \ Pi, where �ðiÞ ¼ j if M
matches gi to Qj. To this end, we construct a bipartite
multigraph G0 ¼ ðW;Q; E00Þ, where W is the set of
gateway nodes and Q is the set of segments. For every
p 2 Pi that is contained in Qj there is an edge in E00

between a gateway node gi 2W and a segment Qj 2 Q.
Note that the degree of each gateway node gi in G0 is
exactly c since Pi has size c. Similarly, the degree of each
segment Qj is c, since Qj has size c. We use a
consequence of the marriage theorem which says that
every regular bipartite graph has a perfect matching.
Thus, there is a perfect matching M in G0. Let �ðiÞ ¼ j if
M matches gateway gi with segment Qj. The matching
M is also a matching in GðW;Q; E0; wÞ and by construc-
tion it has the property that for each i there is a node
pi 2 Q�ðiÞ \ Pi.

The forest F returned by Algorithm 1 consists of
MSTs Tj on the sets Qi [ fgjg where gateway gj is
matched to Qi in MQ. Consider the set of edges EMQ

that
contains the edges in the TSP tour L and each edge
ðqi; gjÞ with qi 2 Qi that satisfies dðqi; gjÞ ¼ dðQi; gjÞ and
for which ðQi; gjÞ is in MQ. Note that this edge set EMQ

in particular contains spanning trees for all sets Qi [
fgjg whenever gateway gj is matched to Qi in MQ. The
total cost of all spanning trees in the returned solution is
thus bounded by the cost of EMQ

, i.e.,
Pm

i¼1 cðTiÞ �
cðEMQ

Þ. The cost of the solution of Algorithm 1 is thus
no more than

Pm
i¼1 cðTiÞ � cðEMQ

Þ ¼ cðMQÞ þ cðLÞ �
cðMÞ þ 2OPT � 3OPT . tu

5.3 CMF with Arbitrary Capacities

We now modify Algorithm 1 slightly so that it is applicable
to instances that do not necessarily have uniform capacities.
Instead of only one capacity c 2 IN, the new algorithm has
as input a capacity function c : W ! IN assigning a capacity
to each gateway. This modified algorithm first checks
whether the input is feasible, i.e., whether jV j 6¼

Pm
i¼1 cðgiÞ,

where fg1; . . . ; gmg is the set of gateways, rejecting infeasible
inputs immediately. When breaking the TSP tour into
segments, the size of each segment has to match the
capacity of a gateway. More specifically, a partition Q ¼
fQ1; Q2; . . . ; Qmg of the tour L into m segments is computed

such that for all 1 � i � m we have jQij ¼ cðgiÞ. For i; j 2
f1; . . . ;mg there is an edge between Qi 2 Q and gj 2W if

cðgjÞ ¼ jQij. As before, the weight of such an edge is

dðQi; gjÞ ¼ minfdðv; gjÞ j v 2 Qig. Details of Algorithm 2 are

as follows:

Algorithm 2. CMF with an arbitrary capacities
Input: G ¼ ðV [W;EÞ and c : W ! IN: A finite graph G

in the Euclidean plane consisting of a set of sensor

nodes V and a set of gateway nodes W ¼ fg1; . . . gmg,
and a capacity function c assigning to everygateway a

natural number.

Output: A forest of routing trees on the set V [W for

which every component contains exactly onegateway gi
and cðgiÞ sensor nodes.

1: if jV j 6¼
Pm

i¼1 cðgiÞ then declare the input as infeasible

and exit;

2: Compute an MST T of the graph induced by the nodes

in V ;

3: Compute a TSP tour L by performing a preorder tree

walk in T ;

4: Partition L into segments Q1; . . . ; Qm by breaking L into

parts such that jQij ¼ cðgiÞ;
5: Construct the weighted bipartite graph GQ ¼ ðW;Q;
E0; wÞ with Q ¼ fQ1; . . . ; Qmg, that has an edge of

weight dðQi; gjÞ ¼ minfdðv; gjÞ j v 2 Qig between gi 2
W and Qj 2 Q if cðgiÞ ¼ jQjj;

6: Compute a minimum weight perfect matching MQ in

GQ;

7: return the forest F consisting of trees T1; . . . ; Tm, where

for all j with 1 � j � m, tree Tj is an MST of the
complete graph that is induced by the nodes in the set

Qi [ fgjg, where gj is the gateway that is matched to Qi

in MQ.

By similar arguments as for Algorithm 1, it can be shown

that the running time of Algorithm 2 is Oðm3 þmn þ
n lognÞ. We now analyze its approximation ratio, which

depends on the number of gateways m.

Theorem 3. For instances of the CMF problem with arbitrary

capacities that satisfy the MST cost assumption, Algorithm 2

computes a solution of cost at most ðmþ 2ÞOPT , where m

is the number of gateways and OPT is the cost of the

optimal solution.

Proof. As in the proof of Theorem 2, the cost of the forest F
returned by Algorithm 2 can be bounded by the cost of

the set of edges EMQ
that contains the edges in the TSP

tour L and an edge of the form ðqi; gjÞ with qi 2 Qi that

satisfies dðqi; gjÞ ¼ dðQi; gjÞ for every edge ðQi; gjÞ in MQ.

Again cðEMQ
Þ � cðMQÞ þ cðLÞ, and since cðLÞ � 2OPT , it

thus suffices to bound the cost of cðMQÞ.
Let P ¼ fP1; P2; . . . ; Pmg be a node partition in an

optimal solution of CMF such that Pj is the set of sensors
assigned to gj. For every j 2 f1; . . . ;mg let vj be some
sensor in Pj. This implies

Pm
j¼1 dðvj; gjÞ � OPT . Also for

every j 2 f1; . . . ;mg let wj be a sensor in Qi, where Qi

and gj are matched by MQ, such that dðwj; gjÞ ¼ dðQi; gjÞ.
By the triangle inequality wðQi; gjÞ ¼ dðwj; gjÞ � dðwj;
vjÞ þ dðvj; gjÞ. Note that dðwj; vjÞ � OPT by the MST cost
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assumption. We can thus bound the cost of MQ

as follows:

cðMQÞ ¼
X

ðQi;gjÞ2MQ

wðQi; gjÞ ¼
Xm

j¼1

dðwj; gjÞ

�
Xm

j¼1

dðwj; vjÞ þ
Xm

j¼1

dðvj; gjÞ

� m �OPT þOPT ¼ ðmþ 1Þ �OPT:

Thus, in total, the cost of the approximate solution
computed by Algorithm 2 is at most cðMQÞ þ cðLÞ ¼
ðmþ 1ÞOPT þ 2OPT ¼ ðmþ 3Þ �OPT . tu

6 APPROXIMATION ALGORITHMS FOR CMF
wITHOUT THE MST COST ASSUMPTION

To obtain the results of the previous section, we assumed

that the cost cðT Þ of an MST T of the graph induced by the

chosen sensors satisfies cðT Þ � OPT . In this section, we

show how to extend our results to instances that do not

necessarily fulfill the MST cost assumption. We make use of

Goemans and Williamson’s [9] approximation technique for

constrained forest problems, and present an algorithm that

combines this technique with the techniques from the

previous section. We then analyze its approximation ratios

on CMF instances with uniform and arbitrary capacities.

6.1 Goemans and Williamson’s Approximation
Technique

We here recall the approximation technique of Goemans

and Williamson [9] which is used to solve the following

type of integer program (IP).
Given an edge-weighted graph G ¼ ðV ;EÞ, a function

f : 2V ! f0; 1g, and a nonnegative cost function c : E ! IRþ,

consider the following IP:

Minimize
X

e2E
cðeÞxe

subject to :

ðIPÞ xð�ðSÞÞ � fðSÞ; ; 6¼ S � V
xe 2 f0; 1g; e 2 E;

ð1Þ

where for any set S 	 V the expression �ðSÞ denotes the set

of edges with exactly one endpoint in S and xðFÞ ¼P
e2F xe for every set of edges F . The IP can be interpreted

as a special type of covering problem, in which the task is to

find a minimum-cost set of edges that intersects all cut sets

�ðSÞ of sets S with fðSÞ ¼ 1. Every minimal solution to such

an IP corresponds to a forest, therefore the type of problem

is called a constrained forest problem [9].
The technique of Goemans and Williamson provides an

approximation algorithm to any constrained forest problem.

Their algorithm takes as input an undirected graph

G ¼ ðV ;EÞ, edge costs cðeÞ > 0 for all e 2 E, and a proper

function f , where a function f is a proper if it is symmetric,

meets the disjointness property, and satisfies fðV Þ ¼ 0:

. A function f : 2V ! f0; 1g is symmetric if fðSÞ ¼
fðV n SÞ for all S 	 V .

. A function f : 2V ! f0; 1g has the disjointness prop-
erty if fðS1Þ ¼ fðS2Þ ¼ 0 implies fðS1 [ S2Þ ¼ 0 for all
disjoint subsets S1; S2 	 V .

The algorithm outputs a forest, which is a feasible
solution, and whose cost approximates the optimal cost
within a ratio of at most 2� 2=k, where k ¼ jfv 2 V j
fðfvgÞ ¼ 1gj.

On a high level, the algorithm maintains an initially
empty forest F and repeatedly adds an edge to the forest
merging two components (trees). During this process the
edge to be added is chosen as the one that minimizes a
certain continuously updated measure. The running time
of the algorithm is OðminfjV j2 log jV j; jV kEj�ðjEj; jV jÞgÞ,
where � is the inverse Ackermann function (see [9]).

6.2 An Approximation Algorithm for CMF

We now develop an algorithm for general CMF instances.
The general strategy for solving this problem is essentially to
use the technique by Goemans and Williamson to decom-
pose the problem into subproblems, such that we have a
bound on the MST of each subproblem, and then apply
Algorithm 2 described in the previous section. However,
instead of computing a perfect matching MQ in the call of
Algorithm 2 for each component, we compute one perfect
matching for the entire graph. This allows us to bound all of
the edges in the matching by the global optimum.

Let a graph G ¼ ðV [W;EÞ together with a capacity

function c : W ! IN be an input instance of the CMF

problem. To apply Goemans and Williamson’s algorithm,

we define f : 2V [W ! f0; 1g as follows: For each S 	
V [W , we set fðSÞ ¼ 1 if jSj 6¼

P
g2S\W ð1þ cðgÞÞ and

fðSÞ ¼ 0 otherwise. Note that fðfggÞ ¼ 1 for every g 2W
and fðfqgÞ ¼ 0 for every q 2 V . Thus, m ¼ jW j ¼ jfv 2
V [W j fðfvgÞ ¼ 1gj.
Lemma 2. For a feasible input (i.e., an input G ¼ ðV [W;EÞ

with jV j ¼
Pm

i¼1 cðgiÞ), the function f is proper.

Proof. Since the input is feasible, we have jV [W j ¼Pm
i¼1ð1þ cðgiÞÞ and thus fðV [WÞ ¼ 0.
Symmetry: It suffices to show that fðSÞ ¼ 0 implies

fððV [WÞ n SÞ ¼ 0. Suppose S 	 V [W is a set with
fðSÞ ¼ 0. Then,

jðV [WÞ n Sj ¼ jV [W j � jSj
¼
X

g2W
ð1þ cðgÞÞ �

X

g2S\W
ð1þ cðgÞÞ

¼
X

g2ððV [WÞnSÞ\W
ð1þ cðgÞÞ:

Thus, fððV [WÞ n SÞ ¼ 0.
Disjointness: Suppose S1; S2 	 V [W are disjoint

and fðS1Þ ¼ fðS2Þ ¼ 0. This implies

jS1 [ S2j ¼ jS1j þ jS2j ¼
X

g2S1\W
ð1þ cðgÞÞ

þ
X

g2S2\W
ð1þ cðgÞÞ

¼
X

g2ðS1[S2Þ\W
ð1þ cðgÞÞ:

Thus fðS1 [ S2Þ ¼ 0. tu
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Details of the approximation algorithm are given by
Algorithm 3.

Algorithm 3. CMF in general networks

Input: G ¼ ðV [W;EÞ and c : W ! IN: A finite graphG in

the Euclidean plane consisting of a set of sensor nodes

V and a set of gateway nodes W ¼ fg1; . . . ; gmg, and a
capacity function c assigning to every gateway a

natural number.

Output: A forest consisting of routing trees on the set V [
W for which every component contains exactly one

gateway gi and cðgiÞ sensor nodes.

1: if jV j 6¼
Pm

i¼1 cðgiÞ then declare the input as infeasible

and exit;

2: Let F be the forest obtained by applying Goemans and
Williamson’s algorithm to G with function f ;

3: For each component (each tree) T of F compute a tour

LT as preorder tree walk of T ;

4: For each T set L0T to be the tour obtained from LT by

omitting all gateways;

5: Partition V into segments Q1; . . . ; Qm by breaking all

tours L0T into parts such that the sizes of the parts of T

correspond to the capacities of the gateways in T ;
6: Form the weighted bipartite graph GQ ¼ ðW;Q; E0; wÞ

with Q ¼ fQ1; . . . ; Qmg, that has an edge of weight dðg;
QiÞ between gi 2W and Qj 2 Q if cðgiÞ ¼ jQjj;

7: Compute a minimum weight perfect matching MQ of

GQ;

8: return the forest consisting of trees T1; . . . ; Tm, where,

for all j with 1 � j � m, the tree Tj is an MST of the

complete graph that is induced by the set Qi [ fgjg, and
gj is the gateway that is matched to Qi by MQ.

The running time of Algorithm 3 differs from the
running time of Algorithm 2 only by the time required
for a call to the Goemans and Williamson algorithm and is
thus Oðn2 lognþmnþm3Þ. In our analysis of the approx-
imation ratio of Algorithm 3, we first deal with CMF with
uniform capacities first. We then consider CMF with
arbitrary capacities.

6.3 CMF with Uniform Capacities

Theorem 4. On CMF instances with m gateway nodes of equal
capacity, Algorithm 3 has an approximation ratio of
ð5� 4=mÞ.

Proof. Let a graph G ¼ ðV [W;EÞ together with a capacity
function c be an input instance of the CMF problem. We
first argue that any optimal solution to the CMF problem
is a solution to the IP using function f as defined earlier.
For this it suffices to observe that every tree T 0 whose
vertex set V ðT 0Þ consists of a gateway g and cðgÞ sensor
nodes fulfills fðV ðT 0ÞÞ ¼ 0. This implies that in particular
every tree in a solution to the CMF problem has this
property. Thus, on instances that are not immediately
declared as infeasible, Algorithm 3 first computes a
forest F with cost at most 2� 2=m times the cost of an
optimal solution to the CMF instance, where m ¼
jfg j fðfggÞ ¼ 1; g 2 V [Wgj ¼ jW j is the number of
gateways. The algorithm then computes a perfect
matching MQ and TSP tours L0T obtained from the TSP

tours LT on the components (trees) of F . Analogous to
the proofs of theorems 2 and 3, the cost of the output of
Algorithm 3 is bounded by cðMQÞ þ

P
T2F cðL0T Þ �

cðMQÞ þ
P

T2F cðLT Þ. Furthermore, with the same argu-
ments as used in the proof of Theorem 2, we can
conclude that there is a perfect matching M of cost
at most OPT in the bipartite graph MQ implying
cðMQÞ � cðMÞ � OPT . Thus, the cost of the approximate
solution is at most

cðMQÞ þ
X

T2F
cðLðT ÞÞ � OPT þ

X

T2F
ð2 � cðT ÞÞ

¼ OPT þ 2 �
X

T2F
cðT Þ � OPT þ 2 � ð2� 2=mÞ �OPT

¼ ð5� 4=mÞ �OPT:
ut

6.4 CMF with Arbitrary Capacities

Analogously to our analysis of Algorithm 2, we now
analyze the approximation ratio of Algorithm 3 on CMF-
instances in general. The strategy for this case is similar to
the one for the uniform capacity case and we have the
following theorem.

Theorem 5. On CMF instances with m gateway nodes of
arbitrary capacity, Algorithm 3 has an approximation ratio of
ðmþ 2Þð2� 2=mÞ.

Proof. By the same arguments as used in the previous proof,
the forest F has cost at most ð2� 2=mÞ �OPT and the cost
of the solution delivered by Algorithm 3 is bounded by
cðMQÞ þ

P
T2F cðL0T Þ � cðMQÞ þ

P
T2F cðLT Þ. The cost of

cðMQÞ is bounded as follows: By the construction of GQ,
there exists a perfect matching M which, for j 2
f1; . . . ;mg, matches gateway gj with a segment Qi such
that gj and the nodes of Qi are contained in the same tree
T of F . This implies that wðQi; gjÞ � cðT Þ � cðFÞ �
ð2� 2=mÞOPT . In total, the cost of the solution is
bounded as follows:

cðMQÞ þ
X

T2F
cðLðT ÞÞ

�
X

ðQi;gjÞ2MQ

wðQi; gjÞ þ
X

T2F
ð2 � cðT ÞÞ

� m � cðFÞ þ 2 �
X

T2F
cðT Þ

� mð2� 2=mÞ þ 2 � ð2� 2=mÞ �OPT

¼ ðmþ 2Þð2� 2=mÞ �OPT:
ut

7 CMF wITH COMPARABLE CAPACITIES

In this section, we consider a special type of CMF instance
which has not necessarily uniform capacities, but has
capacities that are small multiples of some integer. The
motivation of this type of instance comes from the fact that
in practice, one might have for example two types of
gateways, where the capacity of the one type is twice as

LIANG ET AL.: APPROXIMATION ALGORITHMS FOR CAPACITATED MINIMUM FOREST PROBLEMS IN WIRELESS SENSOR NETWORKS... 1939



large as the capacity of the other type. To describe our
instances more formally, let Cmax ¼ maxfcðg1Þ; . . . ; cðgmÞg be
the maximum capacity among all gateways and cgcd ¼
gcdfcðg1Þ; cðg2Þ; . . . ; cðgmÞg the greatest common divisor of
all capacities. We provide an algorithm with an approxima-
tion ratio that depends on the ratio r ¼ Cmax=cgcd. For
brevity, we say that these instances have comparable
capacities. In our example above, the ratio r is 2. For
convenience, we define li ¼ cðgiÞ=cgcd for each gateway.
Note that 1 � li � r.

To solve instances with comparable capacities, we devise
a reduction to CMF with uniform capacities. To reduce the
original instance to a uniform capacity instance, we replace
every gateway gi by li “virtual gateways” of capacity cgcd

colocated at the original position of gateway gi. We use
Algorithm 3 to find a solution of the modified instance. Any
solution to the uniform capacity instance can be trans-
formed into solution to the original instance with at most
the same cost as follows: First, for each gateway gi we
assign all sensor nodes that have previously been assigned
to one of the virtual replacement gateways of gi. We then
compute an MST for the set of sensors assigned to gi.
Details of Algorithm 4 are as follows:

Algorithm 4. CMF with comparable capacities

Input: G ¼ ðV [W;EÞ and c : W ! IN: A finite graph G

in the Euclidean plane consisting of a set of sensor

nodes V and a set of gateway nodes W , and a capacity

function c assigning to each gateway node a natural

number.

Output: A forest consisting of routing trees on the set V [
W for which every component contains exactly one
gateway gi and cðgiÞ sensor nodes.

1: if jV j 6¼
Pm

i¼1 cðgiÞ then declare the input as infeasible

and exit;

2: Compute cgcd ¼ gcdðcðg1Þ; cðg2Þ; . . . ; cðgmÞÞ;
3: Construct a new graph Geq ¼ ðV [W 0; E0Þ, where W 0 ¼
fgki j gi 2W; k 2 f1; . . . ; ligg;

4: Solve the CMF with equal capacity cgcd in Geq with

Algorithm 3. Let F eq be the solution, where F eq ¼ fTkj j
Tkj is a tree rooted at a virtual gateway node gkj 2
W 0 for all k 2 f1; . . . ; ljgg;

5: return the forest consisting of the trees T1; . . . ; Tm. Here,

for all j 2 f1; . . . ;mg, tree Tj is an MST on
Slj
k¼1 V ðTkj Þ [

fgjg, where V ðTkj Þ is the set of sensor nodes in Tkj .

The running time of Algorithm 4 is Oðn2 lognþ rmnþ
ðrmÞ3Þ since every gateway is replaced by at most r virtual
gateways before Algorithm 3 is called. Note that this is
polynomial in the input, since the capacity constraints
force rm � n.

To analyze the approximation ratio of the algorithm, we
employ the concept of the Steiner ratio.

Definition 1. The Steiner ratio � is defined to be � ¼
inf {jMST ðV Þj=jMST ðUÞj j U 	 V finite sets of points in
the Euclidean plane}, where for a set of points in the plane S,
jMST ðSÞj is the cost of an MST connecting all points in S.

The Steiner ratio is known to lie in the interval
½�0;

ffiffiffi
3
p

=2
 � ½0:82416; 0:86602
 (see [4]) and has been con-
jectured to be

ffiffiffi
3
p

=2 by Gilbert and Pollak [8].

The following theorem solves the special case of the CMF
with comparable capacities.

Theorem 6. Algorithm 4 solves the CMF problem with an
approximation ratio of 5=� � r < 6:07 � r, where � is the Steiner
ratio and r ¼ cmax=cgcd is the ratio of the largest capacity to
the greatest common divisor of all capacities.

Proof. Given an instance I of the CMF problem, denote by
cgcd ¼ gcdfcðg1Þ; cðg2Þ; . . . ; cðgmÞg the greatest common
divisor of all capacities. Algorithm 4 first transforms
the instance I into an instance I 0 of CMF with uniform
capacities and virtual gateways. This instance is solved
by Algorithm 3. Using the obtained solution of instance
I 0, a solution for I is computed that has a cost which is no
larger than the solution to instance I 0. Algorithm 3 is a
5-approximation on instances with uniform capacity, by
Theorem 4. To finish the proof, it therefore suffices to
show that the cost OPT 0 of an optimal solution of the
modified instance I 0 is at most by a factor of r=� larger
than the cost OPT of the optimal solution to the original
instance I.

Consider an optimal solution of the original instance
and suppose for all i 2 f1; . . . ;mg, set Vi is the set of
sensors assigned to a gateway gi via a routing tree Ti. By
the definition of the reduction, each gateway gi is
replaced by at most r gateways g1

i ; . . . ; glii . Consider a
solution to the modified instance obtained by arbitrarily
partitioning the nodes in set Vi into li subsets V 1

i ; . . . ; V li
i of

equal size and assigning each node in V k
i to the virtual

gateway gki . Let Tki be an MST of the complete graph
induced by the node set V k

i [ fgki g. By the definition of the
Steiner ratio, cðTki Þ � ð1=�Þ � cðTiÞ. Thus,

OPT 0 �
Xm

i¼1

Xli

k¼1

cðTki Þ �
Xm

i¼1

Xli

k¼1

1

�
� cðTiÞ

¼ 1

�

Xm

i¼1

li � cðTiÞ �
1

�

Xm

i¼1

r � cðTiÞ since li � r;

� 1

�
� r
Xm

i¼1

cðTiÞ ¼
1

�
� r �OPT:

Thus, the solution provided by Algorithm 4 is by at most
a factor of ð1=�Þ � r � ð5� 4=m0Þ < ð5=�Þ � r larger than the
optimum, where m0 is the number of virtual gateways in
instance I 0. tu

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
approximation algorithms for the CMF problem through
experimental simulations. We in particular investigate the
impact of parameters: the number of chosen sensors jV j and
gateways m on the performance of the algorithms.

We consider a wireless sensor network consisting of 600
to 1,000 sensors randomly deployed in a 200� 200 square
meters region. The transmission range of each sensor is
15 meters. The m gateway nodes are also randomly
deployed in the monitoring region. The value in each figure
is the mean of the results delivered by each mentioned
algorithm applied to 20 different topologies. To improve

1940 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 10, OCTOBER 2013



readability, in the figures, we refer to Algorithms 1 and 2 as
CMF-Uniform and CMF-Arbitrary, respectively. We
refer to Algorithm 3 as GW-Uniform and GW-Arbitrary,
depending whether the algorithm is applied to instances in
which all gateways have uniform capacities. We refer to
Algorithm 4 as GW-Comparable. To evaluate the proposed
algorithms, we use the following greedy heuristic for the
CMF problem as the benchmark. We refer to this heuristic as
Nearest-First.

Algorithm Nearest-First iteratively constructs the
forest of routing trees. Initially, the forest consists of m trees
with each containing only a gateway node as the root. In
each iteration, the algorithm adds a sensor node v to a tree T
in which the number of sensor nodes is less than the
capacity of its gateway. An edge e between the new sensor
node and a closet node in T is also added to T . The sensor
node v that is added is chosen so that the length of e is
minimal. This procedure is repeated until the capacity
constraints of all gateways in the forest are met. We refer to
Algorithm Nearest-First as NF-Uniform and NF-

Arbitrary when it is applied to instances with uniform
and arbitrary capacity constraints, respectively.

In accordance with the NP-completeness of the CMF
problem, it is unlikely that there is an efficient exact
algorithm to find an optimal solution to the problem. To
analyze the approximation ratio of the solution delivered
by Algorithm 1 or 2 to the optimal cost OPT , following our
assumption that the cost of an MST of the graph induced by
all chosen sensors is no greater than the OPT of the CMF
problem, we use the cost of the MST as an estimation of
OPT for Algorithms 1 and 2. To calculate the approxima-
tion ratio of Algorithms 3 or 4 to the optimal cost OPT
without the MST cost assumption, we use a lower bound
on OPT—the cost of a minimum spanning forest cðMSF Þ
of graph GðV [W;EÞ as an estimation of OPT . Within the
minimum spanning forest, each tree is a tree rooted at a
gateway node, and there are not any capacity constraints
on gateway nodes. It must be emphasized that this estimate
is very conservative, and the optimal cost OPT can be
much higher than this estimated cost cðMSF Þ. Conse-
quently, the approximation ratios of our algorithms are
lower than the ratios we reported, which are calculated
based on the lower bound of OPT . We refer to algorithms

for finding MSTs and minimum spanning forests as
Algorithm MST and Algorithm MSF, respectively.

8.1 Impact of the Number of Chosen Sensors on the
Performance of Proposed Approximation
Algorithms

We first investigate the performance of approximation
Algorithms 1, 2, and 3 with uniform and arbitrary capacity
constraints, and compare them with the performance of
Algorithm NF-Uniform and Algorithm NF-Arbitrary.
For this purpose, we vary the number of chosen sensors
from 600 to 1,000 with an increment of 100 while the number
of gateways m is fixed at 20. More specifically, we evaluate
the performance of Algorithm 1 CMF-Uniform, Algorithm 2
CMF-Arbitrary, Algorithm 3 GW-Uniform with uniform
gateway capacities, Algorithm 3 GW-Arbitrary with
arbitrary gateway capacities, Algorithm NF-Uniform

with uniform gateway capacities, and Algorithm NF-

Arbitrary with arbitrary gateway capacities.
Fig. 1a depicts the approximation ratios of Algorithm 1

CMF-Uniform and Algorithm 2 CMF-Arbitrary and
compares them with the approximation ratios of algorithms
NF-Uniform and NF-Arbitrary. The figure shows that
both Algorithms 1 and 2 outperform algorithms NF-

Uniform and NF-Arbitrary significantly. The approx-
imation ratios obtained by our approximation algorithms
are no more than 1.5. Fig. 1b illustrates the actual cost of
solutions delivered by Algorithms 1, 2, NF-Uniform, NF-
Arbitrary, and MST. We conclude that the cost of the
heuristic solution is significantly higher than the cost of the
solutions provided by our approximation algorithms.

Fig. 2a depicts the approximation ratios of Algorithm 3
GW-Uniform and Algorithm 3 GW-Arbitrary and com-
pares them with those of Algorithm NF-Uniform and
Algorithm NF-Arbitrary. It can be seen from Fig. 2a that
Algorithm 3 outperforms Algorithm Nearest-First

significantly. The figure also shows that, in our experi-
ments, the approximation ratio of the proposed approxima-
tion algorithm is no more than 1.65 for all different network
sizes and network topologies. This is consistent with our
theoretical analysis that the approximation ratio is inde-
pendent of the number of chosen sensors. We emphasize
again, that the approximation ratio obtained are only an
upper bound on the actual approximation ratio, since we do
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Fig. 1. The performance of Algorithm 1 CMF-Uniform, Algorithm 2 CMF-Arbitrary, Algorithm NF-Uniform, Algorithm NF-Arbitrary, and
Algorithm MST, by varying the number of chosen sensors while the number of gateways is fixed at 20.



not know OPT and can only compare the solutions with the
lower bound cðMSF Þ. Fig. 2b depicts the cost of the
solutions delivered by the mentioned algorithms.

The approximation ratios obtained by the heuristic
algorithm are no smaller than 2.45 and 2.5 in Figs. 1a and
2a, respectively. We, thus, conclude that the multiplicative
gap between the approximation ratios of our approxima-
tion algorithms and the heuristic is significant. Note that
the multiplicative gap will increase if a larger lower bound
for OPT is used, in particular, if the real value of OPT
itself is used.

8.2 Impact of the Number of Gateways on the
Performance of the Proposed Approximation
Algorithms

We then study the impact of the number of gateways on the
performance of the proposed algorithms with uniform and
arbitrary capacity constraints. We vary the number of
gateways from 20 to 40 with an increment of 5 while the
number of chosen sensors is fixed at 1,000.

Fig. 3a depicts the approximation ratios of Algorithm 1
CMF-Uniform, Algorithm 2 CMF-Arbitrary, Algorithm
NF-Uniform, and Algorithm NF-Arbitrary. It can be
seen that the approximation ratio of Algorithm 1 CMF-

Uniform is independent of the number of gateways. This is
consistent with our analytical result. For the arbitrary
capacity case, it can be seen from Fig. 3a that the larger

the number of gateways, the higher the approximation ratio

of Algorithm 2 CMF-Arbitrary. However, the approxima-

tion ratio of Algorithm 2 CMF-Arbitrary is no more than

1.65, this contrasts our analytical result which says that the

approximation ratio is linear in the number of gateways. As

expected this indicates that on realistic inputs the proposed

algorithm performs better than what our worst case analysis

shows. Fig. 3a clearly demonstrates that both Algorithm 1

CMF-Uniform and Algorithm 2 CMF-Arbitrary outper-

form Algorithm Nearest-First, and the approximation

ratios of the approximation algorithms are at most a fraction

of the approximation ratios of the heuristic. Fig. 3b depicts

the costs of the solutions of the mentioned algorithms.
Fig. 4a plots the curves of approximation ratios of

Algorithm GW-Uniform and Algorithm GW-Arbitrary.

The figure shows that as the number of gateways

increases, the approximation ratio increases as well.

However, the approximation ratio in our experiments is

at most 1.83. This contrasts the conservative analytical

result that the approximation ratio of Algorithm 3 GW-

Arbitrary is proportional to the number of gateways,

which means that the proposed algorithm is efficient in

practice. Fig. 4b depicts the cost of the solutions delivered

by the mentioned algorithms for uniform and arbitrary

capacity cases.
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Fig. 3. The performance of Algorithm 1 CMF-Uniform, Algorithm 2 CMF-Arbitrary, Algorithm MST, and Algorithm Nearest-First by varying
the number of gateways from 20 to 40 while the number of chosen sensors is fixed 1,000.

Fig. 2. The performance of Algorithm 3 and Algorithm MSF against Algorithm Nearest-First with uniform and arbitrary capacity constraints, by
varying the number of chosen sensors from 600 to 1,000 while the number of gateways is fixed at 20.



8.3 Performance Evaluation of the Proposed
Algorithm with Comparable Capacities

We finally evaluate the performance of Algorithm 4 GW-

Comparable against that of Algorithm 3 GW-Arbitrary

for a special case of CMF with comparable capacities. We
vary the ratio r ¼ Cmax=cgcd from 2 to 5 while fixing the
number of chosen sensors to be jV j ¼ 600 and the number
of gateways m ¼ 20, assuming that cgcd ¼ 20. Fig. 5 depicts
the performance curves of the two mentioned algorithms,
from which it can be seen that Algorithm 4 GW-

Comparable outperforms Algorithm 3 GW-Arbitrary

in all cases. With the growth of the ratio r, the
approximation ratio increases as well. This is consistent
with our analytical result. However, Fig. 5a also clearly
indicates that the actual approximation ratio in our
experiments is between 1.475 and 1.515, which is
significantly lower than the theoretical bound.

9 CONCLUSION

In this paper, we have studied the deployment of wireless
sensor networks with mobile sinks for large-scale monitor-
ing. We proposed a heterogeneous and hierarchical
architecture that consists of sensors, gateways, and mobile
sinks, where the mobile sinks travel along predetermined
trajectories to collect data from the gateways, while the
sensors send their sensing data to gateways for temporary
storage through multiple-hop relays. Under this new
paradigm of data gathering, we first formulated a novel

constrained optimization problem, namely the CMF pro-
blem and showed its NP-completeness. We then devised
approximation algorithms for instances where all gateways
have uniform capacities and arbitrary capacities. Their
approximation ratios are bounded by a constant and by
ðmþ 2Þð2� 2=mÞ respectively, where m is the number of
gateway nodes. We also showed a reduction from a special
case of CMF, where the capacities are small multiples of
some common number, to the case of CMF with uniform
capacities, obtaining an improved approximation ratio. We
finally evaluated the performance of the proposed algo-
rithms through experimental simulation. The experimental
results demonstrate that the proposed algorithms are very
efficient, and on realistic inputs the actual approximation
ratios are less than 2. This clearly contrasts the conservative
theoretical results for the case of arbitrary capacities, which
show that the approximation ratio is linear in the number
of gateways.
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