10,279 research outputs found

    Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation

    Get PDF
    [EN] A new way to compute the Taylor polynomial of a matrix exponential is presented which reduces the number of matrix multiplications in comparison with the de-facto standard Paterson-Stockmeyer method for polynomial evaluation. Combined with the scaling and squaring procedure, this reduction is sufficient to make the Taylor method superior in performance to Pade approximants over a range of values of the matrix norms. An efficient adjustment to make the method robust against overscaling is also introduced. Numerical experiments show the superior performance of our method to have a similar accuracy in comparison with state-of-the-art implementations, and thus, it is especially recommended to be used in conjunction with Lie-group and exponential integrators where preservation of geometric properties is at issue.This work was funded by Ministerio de Economia, Industria y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE). P.B. was additionally supported by a contract within the Program Juan de la Cierva Formacion (Spain).Bader, P.; Blanes Zamora, S.; Casas, F. (2019). Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation. Mathematics. 7(12):1-19. https://doi.org/10.3390/math7121174S119712Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P., & Zanna, A. (2000). Lie-group methods. Acta Numerica, 9, 215-365. doi:10.1017/s0962492900002154Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5-6), 151-238. doi:10.1016/j.physrep.2008.11.001Casas, F., & Iserles, A. (2006). Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General, 39(19), 5445-5461. doi:10.1088/0305-4470/39/19/s07Celledoni, E., Marthinsen, A., & Owren, B. (2003). Commutator-free Lie group methods. Future Generation Computer Systems, 19(3), 341-352. doi:10.1016/s0167-739x(02)00161-9Crouch, P. E., & Grossman, R. (1993). Numerical integration of ordinary differential equations on manifolds. Journal of Nonlinear Science, 3(1), 1-33. doi:10.1007/bf02429858Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048Najfeld, I., & Havel, T. F. (1995). Derivatives of the Matrix Exponential and Their Computation. Advances in Applied Mathematics, 16(3), 321-375. doi:10.1006/aama.1995.1017Sidje, R. B. (1998). Expokit. ACM Transactions on Mathematical Software, 24(1), 130-156. doi:10.1145/285861.285868Higham, N. J., & Al-Mohy, A. H. (2010). Computing matrix functions. Acta Numerica, 19, 159-208. doi:10.1017/s0962492910000036Paterson, M. S., & Stockmeyer, L. J. (1973). On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing, 2(1), 60-66. doi:10.1137/0202007Ruiz, P., Sastre, J., Ibáñez, J., & Defez, E. (2016). High performance computing of the matrix exponential. Journal of Computational and Applied Mathematics, 291, 370-379. doi:10.1016/j.cam.2015.04.001Sastre, J., Ibán͂ez, J., Defez, E., & Ruiz, P. (2015). New Scaling-Squaring Taylor Algorithms for Computing the Matrix Exponential. SIAM Journal on Scientific Computing, 37(1), A439-A455. doi:10.1137/090763202Sastre, J. (2018). Efficient evaluation of matrix polynomials. Linear Algebra and its Applications, 539, 229-250. doi:10.1016/j.laa.2017.11.010Westreich, D. (1989). Evaluating the matrix polynomial I+A+. . .+A/sup N-1/. IEEE Transactions on Circuits and Systems, 36(1), 162-164. doi:10.1109/31.16591An Efficient Alternative to the Function Expm of Matlab for the Computation of the Exponential of a Matrix http://www.gicas.uji.es/Research/MatrixExp.htmlKenney, C. S., & Laub, A. J. (1998). A Schur--Fréchet Algorithm for Computing the Logarithm and Exponential of a Matrix. SIAM Journal on Matrix Analysis and Applications, 19(3), 640-663. doi:10.1137/s0895479896300334Dieci, L., & Papini, A. (2000). Padé approximation for the exponential of a block triangular matrix. Linear Algebra and its Applications, 308(1-3), 183-202. doi:10.1016/s0024-3795(00)00042-2Higham, N. J., & Tisseur, F. (2000). A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra. SIAM Journal on Matrix Analysis and Applications, 21(4), 1185-1201. doi:10.1137/s0895479899356080Celledoni, E., & Iserles, A. (2000). Approximating the exponential from a Lie algebra to a Lie group. Mathematics of Computation, 69(232), 1457-1481. doi:10.1090/s0025-5718-00-01223-

    A most compendious and facile quantum de Finetti theorem

    Get PDF
    In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's “exponential” approximation by “almost-product” states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choice of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems

    Applications of the group SU(1,1) for quantum computation and tomography

    Get PDF
    This paper collects miscellaneous results about the group SU(1,1) that are helpful in applications in quantum optics. Moreover, we derive two new results, the first is about the approximability of SU(1,1) elements by a finite set of elementary gates, and the second is about the regularization of group identities for tomographic purposes.Comment: 11 pages, no figure

    The Regularity Problem for Lie Groups with Asymptotic Estimate Lie Algebras

    Full text link
    We solve the regularity problem for Milnor's infinite dimensional Lie groups in the asymptotic estimate context. Specifically, let GG be a Lie group with asymptotic estimate Lie algebra g\mathfrak{g}, and denote its evolution map by evol ⁣:Ddom[evol]G\mathrm{evol}\colon \mathrm{D}\equiv \mathrm{dom}[\mathrm{evol}]\rightarrow G, i.e., DC0([0,1],g)\mathrm{D}\subseteq C^0([0,1],\mathfrak{g}). We show that evol\mathrm{evol} is CC^\infty-continuous on DC([0,1],g)\mathrm{D}\cap C^\infty([0,1],\mathfrak{g}) if and only if evol\mathrm{evol} is C0C^0-continuous on DC0([0,1],g)\mathrm{D}\cap C^0([0,1],\mathfrak{g}). We furthermore show that GG is k-confined for kN{lip,}k\in \mathbb{N}\sqcup\{\mathrm{lip},\infty\} if GG is constricted. (The latter condition is slightly less restrictive than to be asymptotic estimate.) Results obtained in a previous paper then imply that an asymptotic estimate Lie group GG is CC^\infty-regular if and only if it is Mackey complete, locally μ\mu-convex, and has Mackey complete Lie algebra - In this case, GG is CkC^k-regular for each kN1{lip,}k\in \mathbb{N}_{\geq 1}\sqcup\{\mathrm{lip},\infty\} (with ``smoothness restrictions'' for klipk\equiv\mathrm{lip}), as well as C0C^0-regular if GG is even sequentially complete with integral complete Lie algebra.Comment: 27 pages. Version as published at Indagationes Mathematicae (title refined; presentation improved; proof of Lemma 9 revised

    On the Lie enveloping algebra of a post-Lie algebra

    Full text link
    We consider pairs of Lie algebras gg and gˉ\bar{g}, defined over a common vector space, where the Lie brackets of gg and gˉ\bar{g} are related via a post-Lie algebra structure. The latter can be extended to the Lie enveloping algebra U(g)U(g). This permits us to define another associative product on U(g)U(g), which gives rise to a Hopf algebra isomorphism between U(gˉ)U(\bar{g}) and a new Hopf algebra assembled from U(g)U(g) with the new product. For the free post-Lie algebra these constructions provide a refined understanding of a fundamental Hopf algebra appearing in the theory of numerical integration methods for differential equations on manifolds. In the pre-Lie setting, the algebraic point of view developed here also provides a concise way to develop Butcher's order theory for Runge--Kutta methods.Comment: 25 page
    corecore