
mathematics

Article

Computing the Matrix Exponential with an
Optimized Taylor Polynomial Approximation

Philipp Bader 1 , Sergio Blanes 2,* and Fernando Casas 3

1 Departament de Matemàtiques, Universitat Jaume I, 12071 Castellón, Spain; bader@uji.es
2 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia, Spain
3 IMAC and Departament de Matemàtiques, Universitat Jaume I, 12071 Castellón, Spain;

fernando.casas@uji.es
* Correspondence: serblaza@imm.upv.es

Received: 11 November 2019; Accepted: 21 November 2019; Published: 3 December 2019 ����������
�������

Abstract: A new way to compute the Taylor polynomial of a matrix exponential is presented
which reduces the number of matrix multiplications in comparison with the de-facto standard
Paterson-Stockmeyer method for polynomial evaluation. Combined with the scaling and squaring
procedure, this reduction is sufficient to make the Taylor method superior in performance to Padé
approximants over a range of values of the matrix norms. An efficient adjustment to make the method
robust against overscaling is also introduced. Numerical experiments show the superior performance
of our method to have a similar accuracy in comparison with state-of-the-art implementations,
and thus, it is especially recommended to be used in conjunction with Lie-group and exponential
integrators where preservation of geometric properties is at issue.

Keywords: exponential of a matrix; scaling and squaring; matrix polynomials

1. Introduction

Many differential equations arising in applications are most appropriately formulated as evolving
on Lie groups or on manifolds acted upon Lie groups. Examples include fields such as rigid mechanics,
Hamiltonian dynamics and quantum mechanics. In all these cases, it is of paramount importance that
the corresponding approximations obtained when discretizing the equation also belong to the same
Lie group. Only in this way are important qualitative properties of the continuous system inherited
by the numerical approximations. For instance, in quantum mechanics, any approximation to the
solution of the time-dependent Schrödinger equation has to evolve in the special unitary group, so as
to guarantee that the total transition probability is preserved.

Lie-group methods are a class of numerical integration schemes especially designed for this task,
since they render by construction numerical approximations evolving in the same Lie group as the
original differential equation [1,2]. In this sense, they belong to the domain of geometric numerical
integration [3,4]. Here one is not only concerned with the classical accuracy and stability of the
numerical algorithm, but in addition, the method must also incorporate into its very formulation
the geometric properties of the system. This gives the integrator not only an improved qualitative
behavior, but also allows for a significantly more accurate long-time integration than is the case with
general-purpose methods.

Geometric numerical integration has been an active area of research during the few last decades,
and in fact, very efficient geometric integrators have been designed and applied in a variety of contexts
where preserving qualitative characteristics is at issue. In the particular case of Lie-group methods,
some of the most widely used are the Runge–Kutta–Munthe-Kaas family of schemes [2], and, in the case
of explicitly time-dependent matrix linear ordinary differential equations, Y′ = A(t, Y)Y, integrators

Mathematics 2019, 7, 1174; doi:10.3390/math7121174 www.mdpi.com/journal/mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/288872961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-7090-7105
https://orcid.org/0000-0001-5819-8898
https://orcid.org/0000-0002-6445-279X
http://www.mdpi.com/2227-7390/7/12/1174?type=check_update&version=1
http://dx.doi.org/10.3390/math7121174
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 1174 2 of 19

based on the Magnus expansion [5,6]. In both instances, the discrete approximation is obtained as
the exponential of linear combination of nested commutators, and it is this feature which guarantees
that the approximation rests in the relevant Lie group. There are also other families of Lie-group
methods that do not involve commutators at the price of requiring more exponentials per step [7,8].
It is then, of prime importance to compute, numerically, the matrix exponential as accurately and as
fast as possible to render truly efficient integrators.

Another class of schemes that have received considerable attention in the literature, especially in
the context of stiff problems, is that formed by exponential integrators, both for ordinary differential
equations and for the time-integration of partial differential equations [9]. For them, the numerical
approximation also requires computing the exponential of matrices at every time step, and this
represents, sometimes, a major factor in the overall computational cost of the method.

One is thus led, when considering these types of methods, to the problem of computing the
matrix exponential in an efficient way, and this was precisely the goal of the present work. As a
matter of fact, the search for efficient algorithms to compute the exponential of a square matrix has
a long history in numerical mathematics, given the wide range of its applications in many branches
of science. Its importance is clearly showcased by the great impact achieved by various reviews
devoted to the subject, e.g., [10–13], and the variety of proposed techniques. Our approach here
consists of combining the scaling and squaring procedure with an optimized way of evaluating the
Taylor polynomial of the matrix exponential function. With the ensuing cost reduction, a method
for computing ehA, where h is the time step, is proposed using 2, 3, 4 and 5 matrix-matrix products
to reach accuracy up to hp for p = 4, 8, 12 and 18, respectively. In combination with the scaling and
squaring technique, this yields a procedure to compute the matrix exponential up to the desired
accuracy at lower computational cost than the standard Padé method for a wide range of matrices
hA. We also present a modification of the procedure designed to reduce overscaling that is still more
efficient than state-of-the-art implementations. The algorithm has been implemented in MATLAB

and is recommended to be used in conjunction with Lie-group and exponential integrators where
preservation of geometric properties is at issue. Moreover, although our original motivation for this
work comes from Lie-group methods, it turns out that the procedure we present here can also be used
in a more general setting where it is necessary to compute the exponential of an arbitrary matrix.

The plan of the paper is the following. In Section 2 we summarize the basic facts of the standard
procedure based on scaling and squaring with Padé approximants. In Section 3, we outline the new
procedure to compute matrix polynomials, reducing the number of matrix products, whereas in
Section 4 we apply it to the Taylor polynomial of the exponential and discuss maximal attainable
degrees at a given number of matrix multiplications. Numerical experiments in Section 5 show the
superior performance of the new scheme when compared to a standard Padé implementation using
scaling and squaring (cf. MATLAB Release R2013a) (The MathWorks, Inc., Natick, MA, USA). Section 6
is dedicated to error estimates and adaptations to reduce overscaling along the lines of the more recent
algorithms [14] (cf. MATLAB from Release R2016a), including execution times of several methods.
Finally, Section 7 contains some concluding remarks.

This work is an improved and expanded version of the preprint [15], where the ideas and
procedures developed here were presented for the first time.

2. Approximating the Exponential

Scaling and squaring is perhaps the most popular procedure to compute the exponential of a
square matrix when its dimensions runs well into the hundreds. As a matter of fact, this technique is
incorporated in popular computing packages such as MATLAB (expm) and MATHEMATICA (MatrixExp)
in combination with Padé approximants [10,14,16].

Specifically, for a given matrix A ∈ CN×N , the scaling and squaring technique is based on the
key property

eA =
(

eA/2s
)2s

, s ∈ N. (1)

Mathematics 2019, 7, 1174 3 of 19

The exponential eA/2s
is then replaced by a rational approximation rm(A/2s); namely, the [m/m]

diagonal Padé approximant to ex. The optimal choice of both parameters, s and m, is determined in
such a way that full machine accuracy is achieved with the minimal computational cost [14].

Diagonal [m/m] Padé approximants have the form (see, e.g., [17] and references therein)

rm(A) =
[
pm(−A)

]−1 pm(A), (2)

where the polynomial pm(x) is given by

pm(x) =
m

∑
j=0

(2m− j)!m!
(2m)!(m− j)!

xj

j!
, (3)

so that rm(A) = eA +O(A2m+1). In practice, the evaluation of pm(A), pm(−A) is carried out trying to
minimize the number of matrix products. For estimating the computational effort required, the cost of
the inverse is taken as 4/3 the cost of one matrix product. For illustration, the computation procedure
for r5(A) is given by [10]

u5 = A
(
b5 A4 + b3 A2 + b1 I

)
,

v5 = b4 A4 + b2 A2 + b0 I,

(−u5 + v5) r5(A) = u5 + v5

(4)

with appropriate coefficients bj, whereas for r13(A), one has

u13 = A
(

A6
(
b13 A6 + b11 A4 + b9 A2

)
+ b7 A6 + b5 A4 + b3 A2 + b1 I

)
,

v13 = A6
(
b12 A6 + b10 A4 + b8 A2

)
+ b6 A6 + b4 A4 + b2 A2 + b0 I,

(−u13 + v13)r13(A) = u13 + v13.

(5)

Here A2 = A2, A4 = A2
2 and A6 = A2 A4. Written in this form, it is clear that only three and six

matrix multiplications and one inversion are required to obtain approximations of order 10 and 26 to
the exponential, respectively. Diagonal Padé approximants rm(A) with m = 3, 5, 7, 9 and 13 are used,
in fact, by the function expm in MATLAB.

In the implementation of the scaling and squaring algorithm, the choice of the optimal order
of the approximation and the scaling parameter for a given matrix A are based on the control of
the backward error [10]. More specifically, given an approximation tn(A) to the exponential of
order n, i.e., tn(A) = eA + O(An+1), if one defines the function hn+1(x) = log(e−xtn(x)), then
tn(2−s A) = e2−s A+hn+1(2−s A) and(

tn(2−s A)
)2s

= eA+2shn+1(2−s A) ≡ eA+∆A,

where ∆A = 2shn+1(2−s A) is the backward error originating in the approximation of eA. If in addition
hn+1 has a power series expansion

hn+1(x) =
∞

∑
k=n+1

ckxk

with radius of convergence ω, then it is clear that ‖hn+1(A)‖ ≤ h̃n+1(‖A‖), where

h̃n+1(x) =
∞

∑
k=n+1

|ck|xk,

and thus
‖∆A‖
‖A‖ =

‖hn+1(2−s A)‖
‖2−s A‖ ≤ h̃n+1(‖2−s A‖)

‖2−s A‖ . (6)

Mathematics 2019, 7, 1174 4 of 19

Given a prescribed accuracy u (for instance, u = 2−53 ' 1.1× 10−16, the unit roundoff in double
precision), one computes

θn = max{θ : h̃n+1(θ)/θ ≤ u}. (7)

Then, ‖∆A‖ ≤ u‖A‖ if s is chosen so that ‖2−s A‖ ≤ θn and (tn(2−s A))
2s

is used to
approximate eA.

In the particular case that tn is the [m/m] diagonal Padé approximant rm, then n = 2m, and the
values of θ2m are collected in Table 1 when u is the unit roundoff in single and double precision for
m = 1, 2, 3, 5, 7, 9, 13. According to Higham [10], m = 13 and therefore r13, is the optimal choice in
double precision when scaling is required. When ‖A‖ ≤ θ26, the algorithm in [10] takes the first
m ∈ {3, 5, 7, 9, 13} such that ‖A‖ ≤ θ2m. This algorithm is later referred to as expm2005.

Table 1. Values of θ2m for the diagonal Padé approximant rm of order 2m with the minimum number
of products π for single and double precision. In bold, we have highlighted the asymptotically optimal
order at which it is advantageous to apply scaling and squaring since the increase of θ per extra
product is smaller than the factor 2 from squaring. The values for double precision are taken from
([16], Table A.1).

π : 0 1 2 3 4 5 6
2m : 2 4 6 10 14 18 26

u ≤ 2−24 8.46× 10−4 8.09× 10−2 4.26× 10−1 1.88 3.93 6.25 11.2
u ≤ 2−53 3.65× 10−8 5.32× 10−4 1.50× 10−2 2.54× 10−1 9.50× 10−1 2.10 5.37

Padé approximants of the form (2) are not, of course, the only option one has in this setting.
Another approach to the problem consists of using the Taylor polynomial of degree m as the underlying
approximation Tn to the exponential; i.e., taking Tm(A) = ∑m

k=0 Ak/k! computed in an efficient way.
Early attempts for efficiently evaluating matrix Taylor polynomials trace back to the work by

Paterson and Stockmeyer [18]. When Tm(A) is computed according to the Paterson-Stockmeyer (P-S)
procedure, the number of matrix products is reduced and the overall performance is improved for
matrices of small norm, although it is less efficient for matrices with large norms [16,19–22].

In more detail, if the P–S technique is carried out in a Horner-like fashion; the maximal attainable
degree is m = (k+ 1)2 by using 2k matrix products. The optimal choices for most cases then correspond
to k = 2 (four products) and k = 3 (six products); i.e., to degree m = 9 and m = 16, respectively.
The corresponding polynomials are then computed as

T9(A) =
9

∑
i=0

ci Ai = f0 +
(

f1 + (f2 + c9 A3)A3
)

A3,

T16(A) =
16

∑
i=0

ci Ai = g0 +
(

g1 + (g2 + (g3 + c16 A4)A4)A4
)

A4,

(8)

where ci = 1/i! and

fi =
2

∑
k=0

c3i+k Ak, i = 0, 1, 2,

gi =
3

∑
k=0

c4i+k Ak, i = 0, 1, 2, 3,

respectively. Here, A0 = I, A1 = A, and, as before, A2 = A2, A3 = A2 A, A4 = A2 A2. In Table 2,
we collect the values for the corresponding thresholds θm in (7) needed to select the best scheme for a
given accuracy. They are computed by truncating the series of the corresponding functions h̃m+1(θ)

after 150 terms.

Mathematics 2019, 7, 1174 5 of 19

Table 2. Values of θm in (7) for the Taylor polynomial Tm of degree m with the minimum number of
products π for single and double precision. In bold, we have highlighted the asymptotically optimal
order at which it is advantageous to apply scaling and squaring, since the increase of θ per extra
product is smaller than the factor 2 from squaring. We have included degree 24 to illustrate that the
gain is marginal over scaling and squaring for double precision (θ24 − 2θ18 = 0.04) and negative for
single precision.

π 0 1 2 3 4 5 6
m 1 2 4 8 12 18 24

u ≤ 2−24 1.19× 10−7 5.98 × 10−4 5.12× 10−2 5.80× 10−1 1.46 3.01 4.65
u ≤ 2−53 2.22× 10−16 2.58× 10−8 3.40× 10−4 4.99× 10−2 2.99× 10−1 1.09 2.22

In this work we show that it is indeed possible to organize the computation of the Taylor
polynomial of the matrix exponential function in a more efficient way than the Paterson-Stockmeyer
technique, so that with the same number of matrix products one can construct a polynomial of higher
degree. When combined with scaling and squaring, this procedure allows us to construct a more
efficient scheme than with Padé approximants.

3. A Generalized Recursive Algorithm

Clearly, the most economic way to construct polynomials of degree 2k is by applying the following
sequence, which involves only k products:

A1 = A,

A2 = (x1 I + x2 A1)(x3 I + x4 A1),

A4 = (x5 I + x6 A1 + x7 A2)(x8 I + x9 A1 + x10 A2), (9)

A8 = (x11 I + x12 A1 + x13 A2 + x14 A4)(x15 I + x16 A1 + x17 A2 + x18 A4),
...

Notice the obvious redundancies in the coefficients since some can be absorbed by others through
factoring them out from the sums. These polynomials are then linearly combined to form

T2k = y0 I + y1 A1 + y2 A2 + y3 A4 + y4 A8 + · · ·+ yk+1 A2k .

Here the indices in A, A2k , are chosen to indicate the highest attainable power; i.e., A2k =

O(A2k
). A simple counting tells us that with k products one has (k + 1)2 + 1 parameters to construct a

polynomial of degree 2k containing 2k + 1 coefficients. It is then clear that the number of coefficients
grows faster than the number of parameters, so that this procedure cannot be used to obtain high degree
polynomials, as already noticed in [18]. Even worse, in general, not all parameters are independent
and this simple estimate does not suffice to guarantee the existence of solutions with real coefficients.

Nevertheless, this procedure can be modified in such a way that additional parameters are
introduced, at the price, of course, of including some extra products. In particular, we could include
new terms of the form

(γ1 I + z1 A1)(γ2 I + z2 A1 + z3 A2),

not only in the previous Ak, k > 2, but also in T2k , which would allow us to introduce a cubic term and
an additional parameter.

Although the Paterson-Stockmeyer technique is arguably the most efficient procedure to evaluate
a general polynomial, there are relevant classes of polynomials for which the P–S rule involves more
products than strictly necessary. To illustrate this feature, let us consider the evaluation of

Ψ(k, A) = I + A + · · ·+ Ak−1, (10)

Mathematics 2019, 7, 1174 6 of 19

a problem addressed in [23]. Polynomial (10) appears in connection with the integral of the state
transition matrix and the analysis of multirate sampled data systems. In [23] it is shown that with
three matrix products one can evaluate Ψ(7, A) (as with the P–S rule), whereas with four products it
is possible to compute Ψ(11, A) (one degree higher than using the P–S rule). In general, the savings
with respect to the P–S technique grow with the degree k. The procedure was further improved and
analyzed in [24], where the following conjecture was posed: the minimum number of products to
evaluate Ψ(k, A) is 2 blog2 kc − 2 + ij−1, where N = (ij, ij−1, . . . , i1, i0)2 (written in binary); i.e., ij−1 is
the second most significant bit.

This conjecture is not true in general, as is illustrated by the following algorithm of type (9), that
allows one to compute Ψ(9, A) by using only three matrix products:

A2 = A2, B = x1 I + x2 A + x3 A2,

A4 = x4 I + x5 A + B2, (11)

A8 = (x6 A2 + A4)A4,

Ψ(9, A) = x7 I + x8 A + x9 A2 + A8,

with

x1 =
−5 + 6

√
7

32
, x2 = −1

4
, x3 = −1, x4 =

3(169 + 20
√

7)
1024

,

x5 =
3(5 + 2

√
7)

64
, x6 =

3
√

7
4

, x7 =
1695
4096

, x8 =
267
512

, x9 =
21
64

.

These coefficients are obtained by equating the expression for Ψ(9, A) in (11) with the
corresponding polynomial (10) with k = 9 and solving the resulting nine equations in xi, i = 1, . . . 9.
Notice that, since these equations are nonlinear, the coefficients are irrational numbers.

Although by following this approach it is not possible to achieve degree 16 with four products,
there are other polynomials of degree 16 that can indeed be computed with only four products. This is
the case, in particular, of the truncated Taylor expansion of the function cos(A):

T16 =
8

∑
i=0

(−1)i A2i

(2i)!
= cos(A) +O(A17).

Taking B = A2 we obtain a polynomial of degree 8 in B that can be evaluated with three additional
products in a similar way as in the computation of Ψ(9, A), but with different coefficients.

4. An Efficient Procedure to Evaluate the Taylor Polynomial Approximation Tn(A)

Algorithm (9) can be conveniently modified along the lines exposed in the previous section to
compute the truncated Taylor expansion of the matrix exponential function

Tn(A) =
n

∑
i=0

Ai

i!
= eA +O(An+1), (12)

for different values of n using the minimum number of products. In practice, we proceed in the reverse
order: given a number k, we find a convenient (modified) sequence of type (9) that allows one to
construct the highest degree polynomial Tn(A) using only k matrix products. The coefficients in the
sequence satisfy a relatively large system of algebraic nonlinear equations. Here, several possibilities
may occur: (i) the system has no solution; (ii) there is a finite number of real and/or complex solutions,
or (iii) there are families of solutions depending on parameters. In addition, if there are several
solutions we take a solution with small coefficients to avoid large round off errors due to products of
large and small numbers.

Mathematics 2019, 7, 1174 7 of 19

Remark 1. Notice that in general, there are a multitude of ways to decompose a given polynomial but for our
purposes, we only need one solution with real coefficients. Furthermore, the procedure described in (9) is modified
below using an additional product A3 = A2 A to reach degrees higher than eight.

With k = 0, 1, 2 products we can evaluate Tn for n = 1, 2, 4, in a similar way as the P–S rule,
whereas for k = 3, 4, 5 and six products, the situation is detailed next.

k = 3 products

In this case, only T6 can be determined with the P–S rule, whereas the following algorithm allows
one to evaluate T8:

A2 = A2,

A4 = A2(x1 A + x2 A2),

A8 = (x3 A2 + A4)(x4 I + x5 A + x6 A2 + x7 A4),

T8(A) = y0 I + y1 A + y2 A2 + A8.

(13)

Algorithm (13) is a particular example of the sequence (9) with some of the coefficients fixed
to zero to avoid unnecessary redundancies. The parameters xi, yi are then determined of course by
requiring that T8(A) = ∑8

i=0 Ai/i! and solving the corresponding nonlinear equations.
With this sequence we get two families of solutions depending on a free parameter, x3, which is

chosen to (approximately) minimize the 1-norm of the vector of parameters. The reasoning behind this
approach is to avoid multiplications of high powers of A by large coefficients, in a similar vein as in
the Horner procedure. The coefficients in (13) are given by

x1 = x3
1 +
√

177
88

, x2 =
1 +
√

177
352

x3, x4 =
−271 + 29

√
177

315x3
,

x5 =
11(−1 +

√
177)

1260x3
, x6 =

11(−9 +
√

177)
5040x3

, x7 =
89−

√
177

5040x2
3

,

y0 = 1, y1 = 1, y2 =
857− 58

√
177

630
,

x3 = 2/3.

Perhaps surprisingly, T7(A) requires at least four products, so T8 may be considered a
singular polynomial.

k = 4 products

Although polynomials up to degree 16 can in principle be constructed by applying the
sequence (9), our analysis suggests that the Taylor polynomial (12) corresponding to eA does not
belong to that family. The reason can be traced back to the fact that our procedure with four products
to build polynomials only provides up to five independent parameters into the coefficients in T16

multiplying the matrices A11, A12, . . . , A16. In other words, we have to solve a system of six equations
with five independent variables, which have no solution in general, and this is precisely what happens
for this particular problem. In consequence, as pointed out previously, some variations in our strategy
have to be introduced. More specifically, we take Tn(A) for a given value of n and decompose it as
a product of two polynomials of lower degrees plus a lower degree polynomial (that will be used
to evaluate the higher degree polynomials). The highest value we have managed to reach is n = 12.
It is important to note that this ansatz gives many different ways to write the sought polynomial.
The following sequence, in particular, is comparable to Padé and Horner methods with respect to
relative errors.

Mathematics 2019, 7, 1174 8 of 19

A2 = A2,

A3 = A2 A,

B1 = a0,1 I + a1,1 A + a2,1 A2 + a3,1 A3,

B2 = a0,2 I + a1,2 A + a2,2 A2 + a3,2 A3,

B3 = a0,3 I + a1,3 A + a2,3 A2 + a3,3 A3,

B4 = a0,4 I + a1,4 A + a2,4 A2 + a3,4 A3,

A6 = B3 + B2
4

T12(A) = B1 + (B2 + A6)A6.

(14)

This ansatz has four families of solutions with three free parameters which can be obtained in
closed form with a symbolic algebra package. Using the free parameters, we have minimized the
1-norm of the coefficients ∑i,j |ai,j| and obtained

a0,1 = −0.01860232051462055322, a0,2 = 4.60000000000000000000,
a0,3 = 0.21169311829980944294, a0,4 = 0,
a1,1 = −0.00500702322573317730, a1,2 = 0.99287510353848683614,
a1,3 = 0.15822438471572672537, a1,4 = −0.13181061013830184015,
a2,1 = −0.57342012296052226390, a2,2 = −0.13244556105279963884,
a2,3 = 0.16563516943672741501, a2,4 = −0.02027855540589259079,
a3,1 = −0.13339969394389205970, a3,2 = 0.00172990000000000000,
a3,3 = 0.01078627793157924250, a3,4 = −0.00675951846863086359.

Although we report here 20 digits for the coefficients, they can be in fact determined with
arbitrary accuracy.

k = 5 products

With five products, n = 18 is the highest value we have been able to achieve. We write T18 as
the product of two polynomials of degree 9, that are further decomposed into polynomials of lower
degree. The polynomial is evaluated through the following sequence:

A2 = A2, A3 = A2 A, A6 = A2
3,

B1 = a0,1 I + a1,1 A + a2,1 A2 + a3,1 A3,

B2 = b0,1 I + b1,1 A + b2,1 A2 + b3,1 A3 + b6,1 A6,

B3 = b0,2 I + b1,2 A + b2,2 A2 + b3,2 A3 + b6,2 A6,

B4 = b0,3 I + b1,3 A + b2,3 A2 + b3,3 A3 + b6,3 A6,

B5 = b0,4 I + b1,4 A + b2,4 A2 + b3,4 A3 + b6,4 A6,

A9 = B1B5 + B4,

T18(A) = B2 + (B3 + A9)A9.

(15)

Proceeding in an analogous way, i.e., requiring that T18(A) in (15) agrees with the Taylor expansion
of the exponential, ∑18

i=0 Ai/i!, we get the coefficients

Mathematics 2019, 7, 1174 9 of 19

a0,1 = 0, a1,1 = −0.10036558103014462001,
a2,1 = −0.00802924648241156960, a3,1 = −0.00089213849804572995,
b0,1 = 0, b1,1 = 0.39784974949964507614,
b2,1 = 1.36783778460411719922, b3,1 = 0.49828962252538267755,
b6,1 = −0.00063789819459472330, b0,2 = −10.9676396052962062593,
b1,2 = 1.68015813878906197182, b2,2 = 0.05717798464788655127,
b3,2 = −0.00698210122488052084, b6,2 = 0.00003349750170860705,
b0,3 = −0.09043168323908105619, b1,3 = −0.06764045190713819075,
b2,3 = 0.06759613017704596460, b3,3 = 0.02955525704293155274,
b6,3 = −0.00001391802575160607, b0,4 = 0,
b1,4 = 0, b2,4 = −0.09233646193671185927,
b3,4 = −0.01693649390020817171, b6,4 = −0.00001400867981820361.

k = 6 products

With six products we can reconstruct the Taylor polynomial up to degree n = 22 by applying the
same strategy. We have also explored different alternatives, considering decompositions based on the
previous computation of low powers of the matrix— A2, A3, A4, A8, etc., to achieve degree n = 24,
but all our attempts have been in vain. Nevertheless, we should remark that even if one could construct
T24(A) with only six products, this would not lead to a significant advantage with respect to considering
one scaling and squaring (s = 1 in Equation (1)) applied to the previous decomposition for T18.

In Table 3 we show the number of products required to evaluate Tn by applying the P–S rule and
the new decomposition strategy. The improvement for k ≥ 3 products is apparent.

Remark 2. As it should be clear from Tables 1 and 2, T18 (for the Taylor method) and r13 (for the Padé scheme)
are the default choices when scaling and squaring is needed.

Remark 3. A seemingly obvious observation would be that the same optimization technique we have presented
here for polynomial evaluation could also be applied to the numerator and denominator of Padé approximants.
That this is not the case for the exponential can be grasped by noticing that the Padé scheme

rn(A) =
[
pn(−A)

]−1 pn(A)

requires the simultaneous evaluation of two polynomials for which better optimizations exist; cf. (4) (three
products), (5) (six products). Notice that if our improvements for polynomial evaluation start from degree 8,
then we could compute[

p17(−A)
]−1 p17(A) =

[
u8(B)− Av8(B)

]−1
[u8(B) + Av8(B)], B = A2,

for some polynomials of degree eight, u8, v8, which requires seven products (A2, Av8, three products for u8(B)
and only two for v8 since B2 is reused). At one extra product, we thus increase the threshold to θ17 = 9.44
which is less than 2θ13 = 10.74 at the same cost. The addition of this method to a scheme could, therefore, only
improve the stability because it would avoid scaling for θ13 < ‖A‖ ≤ θ17 but does not have an impact on the
computational cost and is, therefore, not examined further in this work. For completeness, using T12, r25 can
be computed using eight products, but again, θ25 = 18.7 < 2θ17 = 18.9 < 4θ13 = 21.5. With T18, we can
compute r37, but then θ37 = 33.7 < 22θ17 = 37.8 < 23θ13 = 41.3.

Remark 4. Concerning the effects of rounding errors on the evaluation of the Taylor polynomials for the
exponential with the new decomposition, it is not difficult to obtain error bounds similar to those existing when
applying the Horner and Paterson-Stockmeyer techniques ([25]; Theorem 4.5 of [19]). If we apply (13)–(15), then
we determine polynomials T̂m, m = 8, 12, 18, respectively, as Tm, but with the coefficients slightly perturbed

Mathematics 2019, 7, 1174 10 of 19

with a perturbation of size at most γ̃kN , k ≥ m, where k is the number of products, γ̃n ≡ cnu/(1− cnu) and c
is a small integer constant (whose concrete value is not relevant). More specifically,

‖Tm(A)− T̂m(A)‖1 ≤ γ̃kN T̃m(‖A‖1),

with

T̃m(x) =
m

∑
j=0

∣∣∣∣ xj

j!

∣∣∣∣ = m

∑
j=0

xj

j!
= Tm(x), for x ≥ 0.

Thus, if ‖A‖1 ≤ θm, then, proceeding as in [19], one gets

‖Tm(A)− T̂m(A)‖1 ≤ γ̃kNTm(‖A‖1) ≈ γ̃kN e‖A‖1 ≤ γ̃kN‖eA‖1 e2‖A‖1

≈ γ̃kN‖Tm(A)‖1 e2‖A‖1 ≤ γ̃kN‖Tm(A)‖1 e2θm ,

so that
‖Tm(A)− T̂m(A)‖1

‖Tm(A)‖1
≤ γ̃kN e2θm (16)

and the relative error is bounded approximately by γ̃kNe2θm . Notice that the bound (16) holds irrespective of the
sign of the coefficients in (13)–(15).

If one considers the important case of an essentially non-negative matrix A (i.e., A = (aij) is such that
aij ≥ 0 for all i 6= j), since Tm(2−s A) approximates e2−s A with a truncation error less than the machine
precision, we can suppose that Tm(2−s A) is a non-negative matrix, and thus will remain non-negative after
applying successive powers 2s. In this way, the presence of some negative coefficients in (14) and (15) should not
alter the stability of the method [26].

Table 3. Minimal number of products to evaluate the Taylor polynomial approximation to eA of a given
degree by applying the P–S technique and the new decomposition strategy.

Paterson-Stockmeyer
Products 1 2 3 4 5 6
Degree 2 4 6 9 12 16

New Decomposition
Products 1 2 3 4 5 6
Degree 2 4 8 12 18 22

5. Numerical Performance

We assess the performance of three approximations based on scaling and squaring for the matrix
exponential. Here, all methods first estimate the matrix norm ‖A‖. More precisely, the matrix 1-norm
has been used in all algorithms. This value is then used to choose the optimal order n of each
approximant using Tables 1 and 2, and if necessary, the scaling parameter s by applying the error
bound following (7). Specifically, s = dlog2(‖A‖1/θn)e, where d·e denotes the rounding-up operation.

In Figure 1, we compare methods using the Taylor polynomial based on the Paterson-Stockmeyer
(P-S) rule (with orders 2, 4, 6, 9, 16) and on the new decompositions from Section 3, which we call
expm2 (Algorithm 1, with orders 1, 2, 4, 8, 12, 18).

For reference, we also include the Padé approximants from [10] (with orders 6, 10, 14, 18, 26).
The procedure, which we call expm2005, is implemented as expm in MATLAB Release R2013a. We plot
‖A‖ versus the cost measured as the number of matrix products necessary to approximate eA, both in
double (top) and single precision (bottom). For small values of ‖A‖, the new approach to compute the
Taylor approximant shows the best performance, whereas for higher values it has similar performance
as the Padé method.

Mathematics 2019, 7, 1174 11 of 19

Algorithm 1: expm2
Input: square matrix A.

orders := {1, 2, 4, 8, 12}.
for k in orders:

if ‖A‖1 < θk: return Tk(A).

Apply scaling: s = d(log2(‖A‖1/θ18)e, As = 2−s A;

Compute exponential: E = T18(As);

Apply s squarings to E and return result.

−4 −3 −2 −1
1

2

3

4

5

6

4

6 8

129

18

6

10

18

26

log10(‖A‖)

C
om

pu
ta

tio
na

lc
os

t

Double precision

expm2005
P-S
expm2

−0.2 0 0.2 0.4 0.6 0.8 1

5

6

7

8

9

4

6 8

129

16

18

4

6

10

14

18

26

log10(‖A‖)

Scaling regime

−4 −3 −2 −1 0

1

2

3

4

6

10

14

18

26

2

4

6 8

12
9

18

log10(‖A‖)

C
om

pu
ta

tio
na

lc
os

t

Single precision

expm2005
P-S
expm2

0.2 0.4 0.6 0.8 1 1.2

4

5

6

7

2

4

6

10

14

8

12
9

18

log10(‖A‖)

Scaling regime

Figure 1. Optimal orders and their respective costs versus the norm of the matrix exponent.
The numbers indicate the order of the approximants. Thick lines (right panels) show the cost when
scaling and squaring is used and the corresponding orders are highlighted in bold-face.

The right panels shows the scaling regime. We conclude that expm2 is superior (by 1/3 matrix
products) for around 2/3 of the matrix norms considered in the graph and inferior (by 1/3) for the
remaining third. The percentage of the norm range where expm2 is cheaper can be computed by
determining the points where both methods transition into the scaling regime, for expm2 at order
18 from log10(‖A‖) > 0.037 and for expm2005 at order 26 for log10(‖A‖) > 0.732. The difference is
approximately 1/3 mod log10(2). For single precision, approximately the same conclusion holds.

Mathematics 2019, 7, 1174 12 of 19

The corresponding points are log10(‖A‖) > 0.479 for expm2 (order 18) and log10(‖A‖) > 0.594 for
expm2005 (order 14).

In Figure 1, we have limited ourselves to values of log10 ‖A‖ of the order of 1, since for larger
matrix norms, all the procedures require scaling and squaring.

In Figure 2, we compare expm2005 with our method expm2 for a range of test matrices. The color
coding indicates the set to which the test matrix belongs: we have used nine matrices of type (17)
where b = 1, 10, . . . , 108 (green); 46 different special matrices from the MATLAB matrix gallery, as has
been done in [10], sampled at different norms (blue); and randomly generated matrices.

−4 −2 0 2 4
−20

−18

−16

−14

−12

log10(exp. condition number)

lo
g 1

0
‖r

el
at

iv
e

er
ro

r‖
2

expm2005
expm2

0 2 4
0

2

4

6

8

10

12

log10(exp. condition number)

Sc
al

in
gs

−4 −2 0 2 4
−2

−1

0

1

2

log10(exp. condition number)

lo
g 1

0
re

l.
er

ro
r:

ex
pm

2/
ex

pm
20

05

−4 −2 0 2 4

0.6

0.8

1

1.2

1.4

log10(exp. condition number)

re
l.

co
st

:e
xp

m
2/

ex
pm

20
05

Figure 2. Comparison of expm2 and expm2005 for matrices of dimensions ≤ 16× 16. The color
coding corresponds to different test matrices: special matrices (17) (green), MATLAB matrix gallery
(blue), random matrices (red). Top left panel: The logarithmic relative errors of the two methods show
similar values around machine accuracy (solid horizontal line). Top right panel: Number of squarings
needed for each matrix. Bottom left: The relative cost of the method, counting matrix multiplications
and inversions only. Bottom right: The difference of accurate digits is shown.

Remark 5. In all experiments, we used the same procedure to generate test matrices; the only difference is the
dimensions of the matrices. The random number generator was seeded with 0 for reproducibility. We created
400 triangular matrices with elements from a uniform distribution (0, 1), 400 matrices taken from a standard
normal distribution, 500 matrices from (0, 1) and another 500 matrices from (−0.5, 0.5). These matrices where
rescaled by random numbers to yield norms in the interval (10−4, 104.1). MATLAB functions to reproduce the
results and generate the figures are available online [27].

Notice that the same experiment repeated with matrices of larger dimensions (up to 60× 60) or
from a larger matrix test set shows virtually identical results.

Mathematics 2019, 7, 1174 13 of 19

For each matrix, we computed the exponential condition number [14]

κexp(A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖eA+E − eA‖
ε‖eA‖ ,

and the reference solution eA was obtained using MATHEMATICA with 100 digits of precision. From
the top left panel, we see that both methods have relative errors ‖tn − eA‖/‖eA‖ close to machine
accuracy for a wide range of matrices. We appreciate that for some special matrices, both methods
have the potential to reach errors below machine accuracy. The same holds for slightly larger errors:
for some matrices, especially large ones, both methods produce relative errors above machine accuracy.
The top right panel confirms that due to smaller θ values of the Taylor polynomials, more scalings are
needed for expm2 due to the smaller θ values from Table 1 compared with Table 2—the crosses are
generally below the squares. The bottom left panel indicates that the new method expm2 is cheaper
for a wide range of matrices as expected from Figure 1. The bottom right panel illustrates that the
relative errors of the two methods lie within a range of two digits of each other. For the relative errors,
we have taken the maximum between the obtained value and the machine accuracy in order to avoid
misleading large differences at insignificant digits that can be appreciated in the top left panel.

1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

factor

products

−15 −14 −13

0.6

0.8

1

digits

pr
ob

ab
ili

ty

relative error

expm2005
expm2

1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

factor

comp. times

1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

factor

products

−15 −14 −13

0.6

0.8

1

digits

pr
ob

ab
ili

ty

relative error

expm2009[2]
expm3

1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

factor

comp. times

Figure 3. Performance profiles to compare expm2 and expm2005, and expm3 and expm2009 [14] for
matrices of dimensions ≤ 64× 64. The left panels show the percentage of matrices that have a relative
logarithmic error smaller than the abscissa. In the center panel, we see the percentage of matrices that
can be computed using f actor-times the number of products of the cheapest method for each problem.
The right panel is a repetition of this experiment but shows the computation times (averaged over
10 runs) instead of the number of products.

In Figure 3 (top row), we provide performance profiles for a larger test set comparing the
methods expm2 and expm2005. Specifically, we have used 2500 matrices of dimensions ≤ 64× 64
sampled as before (cf. Figure 2) from the MATLAB matrix gallery, special matrices that are prone
to overscaling, nilpotent matrices and random matrices. They have been scaled to cover a wide
range of condition numbers. The bottom row anticipates the results from the methods expm3 and

Mathematics 2019, 7, 1174 14 of 19

expm2009 [14] described below which incorporate norm estimators to avoid overscaling. From these
plots, we can observe a clear improvement over the reference methods in terms of computational cost
with only a minor impact on accuracy.

6. Refinement of Error Bounds to Avoid Overscaling

It has been noticed, in particular in [14,28,29], that the scaling and squaring technique based
on the Padé approximant suffers from a phenomenon called overscaling: in some cases a value of s
much larger than necessary is chosen, with the result of a loss of accuracy in floating point arithmetic.
This feature is well illustrated by the following simple matrix proposed in [14]:

A =

(
1 b
0 −1

)
, so that eA =

(
e b

2 (e− e−1)

0 e−1

)
. (17)

For |b| � 1, we have ‖A‖ ≈ ‖eA‖ � e‖A‖ and the error bound previously considered in Section 1;
namely,

‖h`(A)‖ ≤ h̃`(‖A‖),

leads to an unnecessarily large value of the scaling parameter s: the algorithm chooses a large value of
s in order to verify the condition ‖2−s A‖ < θ`.

Needless to say, exactly the same considerations apply if we use instead a Taylor polynomial as
the underlying approximation in the scaling and squaring algorithm.

This phenomenon can be alleviated by applying the strategy proposed in [14]. The idea consists
of using the backward error analysis that underlies the algorithm in terms of the sequence {‖Ak‖1/k}
instead of ‖A‖, the reasoning being that for certain classes of matrices (in particular, for matrices of
type (17)), ‖Ak‖1/k, k > 1 is in fact much smaller than ‖A‖.

If ρ(A) denotes the spectral radius of A, one has in general

ρ(A) ≤ ‖Ak‖1/k ≤ ‖A‖, k = 1, 2, 3, . . . ,

and moreover [14]
‖h`(A)‖ ≤ h̃`(‖At‖1/t),

where ‖At‖1/t = max{‖Ak‖1/k : k ≥ ` and c` 6= 0}. Since the value of t is not easy to determine, the
following results are more useful in practice.

Lemma 1 ([14]). For any k ≥ 1 such that k = pm1 + qm2 with p, q ∈ N and m1, m2 ∈ N∪ {0},

‖Ak‖1/k ≤ max
(
‖Ap‖1/p, ‖Aq‖1/q

)
.

Theorem 1 ([14]). Assuming that ρ(A) < ω and p ∈ N, then

(a) ‖h`(A)‖ ≤ h̃`(δp,p+1) if ` ≥ p(p− 1), with

δp,p+1 ≡ max
(
‖Ap‖1/p, ‖Ap+1‖1/(p+1)

)
;

(b) ‖h`(A)‖ ≤ h̃`(δ2p,2p+2) if ` ≥ 2p(p− 1) and h` is even, with

δ2p,2p+2 ≡ max
(
‖A2p‖1/(2p), ‖A2p+2‖1/(2p+2)

)
.

Mathematics 2019, 7, 1174 15 of 19

Denoting dk = ‖Ak‖1/k, δi,j = max(di, dj), and applying Theorem 1 to the analysis of Section 1
allows one to replace the previous condition ‖2−s A‖ < θn by

2−s min(δp,p+1 : p(p− 1) ≤ `) < θ`, (a)

or, if h` is an even function, as is the case with Padé approximants,

2−s min(δ2p,2p+2 : 2p(p− 1) ≤ `) < θ`. (b)

The algorithm proposed in [14], which is implemented from MATLAB R2016a onward,
incorporates the estimates from Theorem 1 (b) into the expm2005 (Padé) method; specifically, it
computes d4,6, d6,8 and d8,10.

This process requires computing ‖Ar‖ for some values of r for which Ar have not been previously
evaluated in the algorithm. In these cases, one may use the fast block 1-norm estimation algorithm of
Higham and Tisseur [30] to get norm estimates correct within a factor 3 for N × N matrices. In this
section, we consider the cost of these estimations to be scaling with O(N2), and therefore neglect their
contribution to the computational effort.

In order to reduce overscaling for the proposed algorithm expm2, we can only apply part (a)
of Theorem 1 since the error expansion h` for the Taylor method is not an even function. It is not
difficult to see, however, that the choices (a) and (b) in Theorem 1 are not the only options, and that
other alternatives might provide even sharper bounds. We have to find pairs (pi, qi) such that any
k ≥ m can be written as k = m1,i pi + m2,iqi for m1,i, m2,i ∈ N ∪ {0}. Then, for Taylor polynomials of
degree n we have the following possible choices, where obviously every pair also serves to decompose
higher degrees:

n = 2: we have the pair (2, 3).
n = 4: we have, additionally, the pair (2, 5).
n = 8: the following pairs are also valid: (2, 7), (2, 9), (3, 4), (3, 5).

n = 12: additionally, we obtain (2, 11), (2, 13), (3, 7), (4, 5).
n = 18: additionally, (2, 15), (2, 17), (2, 19), (3, 8), (3, 10), (4, 7).

To achieve a good compromise between extra computational cost from the norm estimations and
reduction of overscaling we propose the following adjustments to our algorithm (see Algorithm 2).

Algorithm 2: expm3

Same as Algorithm 1 (expm2) for ‖A‖ ≤ θ18. For larger norms, degree 18 is selected, which

requires the computation of these powers A2, A3, A6. Now, calculate the roots of the norms of

these products, d2, d3, d6. Set η = max(d2, d3). Heuristically, we say that there is a large decay

in the norms of powers when

min
(

d2

d1
,

d3

d1
,

d6

d1

)
≤ 1

24 . (18)

This means that we can save at least four squarings using the right estimate. (To be precise,

we need min(d3/d2, d9/d2) < 1/2k to reduce the required squarings by k. In practice,

however, the available fractions in (18) are sufficient to estimate the behavior at high powers.)

If this is the case, then, we also estimate d9 and update η = min(η, max(d2, d9)).

Finally, the number of scalings is given by s = dlog2(η/θ18)e and the order 18 decomposition

is applied.

Mathematics 2019, 7, 1174 16 of 19

Remark 6. For small matrix dimensions, it can be more efficient to explicitly compute matrix powers instead of
using a sophisticated norm estimation algorithm. This is implemented in MATLAB for dimensions smaller than
150× 150. We point out that the additional products that are computed in this case can be used to increase the
order of the Taylor methods following the procedures described in this work. The new problem formulation is
then: given a set of matrix powers, which is the largest degree (Taylor) polynomial which can be computed at a
given number of extra matrix products?

Algorithm expm3 is compared next with the refined method expm2009 [14], which is based on
Theorem 1 (b) for the Padé approximants and additionally implements further estimates to refine
the scaling parameter. The experimental setup is identical to the one of Figure 2. Recall that the
computational cost of matrix norm estimates is not taken into account for either algorithm. The results
are shown in Figure 4. The relative errors of the two methods are very similar. From the lower left
panel, a clear cost advantage over the algorithm based on Padé approximants is apparent.

−4 −2 0 2 4
−20

−18

−16

−14

−12

log10(exp. condition number)

lo
g 1

0
‖r

el
at

iv
e

er
ro

r‖
2

expm2009[2]
expm3

0 2 4
0

2

4

6

8

10

12

log10(exp. condition number)

Sc
al

in
gs

−4 −2 0 2 4
−2

−1

0

1

2

log10(exp. condition number)

lo
g 1

0
re

l.
er

ro
r:

ex
pm

3/
ex

pm
20

09

−4 −2 0 2 4

0.6

0.8

1

1.2

1.4

log10(exp. condition number)

re
l.

co
st

:e
xp

m
3/

ex
pm

20
09

Figure 4. Comparison of algorithms expm3 and expm2009 [14] for matrices of dimension ≤ 16× 16.
Cf. Figure 2.

Finally, we have made a more extensive comparison of a variety of implementations tabulated
in Table 4. The performance profiles of the stated methods on a larger test set of special and random
matrices predominantly of dimension n × n / 1024 × 1024 are displayed in Figure 5. Since the
computation of the exact solution for this large test set was too costly, we only illustrated the
performance plots for the number of required matrix products and the corresponding run times.
The gain in computational speed is evident but less pronounced for some matrices because of the
overhead from the norm estimations, which scale with O(n2). For example, we can deduce that for
50% of the test matrices, the Padé methods require at least 50% more computational time.

Mathematics 2019, 7, 1174 17 of 19

Table 4. Algorithms used for Figure 5 grouped as: simple algorithms without norm estimates of type
dk incorporated (expm2005, expm2); sophisticated algorithms to avoid overscaling (expm2009 [14],
expm3); and an optimized official implementation from MATLAB (expm2016), which contains several
additional tweaks and modifications for expm2009 [14].

expm2005 Padé algorithm [10] as expm in MATLAB Release R2013a.
expm2 Our Algorithm 1 using the decomposition of this work.

expm3 Our Algorithm 2 modified to avoid overscaling.
expm2009 [14] Algorithm 3.2 from [14], based on Padé approximants and

norm estimations through Theorem 1.

expm2016 Padé algorithm from [14] as expm in MATLAB Release
R2016a. This implementation contains special tweaks for small
matrices, symmetric matrices Schur-decompositions and block
structures.

A highly relevant application of the matrix exponential is the (numerical) solution of matrix
differential equations. Numerical methods such as exponential integrators, Magnus expansions or
splitting methods typically force small matrix norms due to the small time-step inherent to the methods.
In this case, the proposed algorithm expm2 should be highly advantageous.

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

factor

pr
ob

ab
ili

ty

products

expm2005
expm2
expm3
expm2009[2]
expm2016

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

factor

comput. time

Figure 5. Performance profiles for matrices of dimensions ≤ 1024× 1024. We have used 2500 matrices
from the MATLAB matrix gallery, special matrices that are prone to overscaling, nilpotent matrices and
random matrices, as indicated in Remark 5.

7. Concluding Remarks

We have presented a new way to construct the Taylor polynomial, approximating the matrix
exponential function up to degree 18, requiring less products than the Paterson-Stockmeyer technique.
This reduction of matrix products is due to a particular factorization of the polynomial in terms of
polynomials of lower degrees, where the coefficients of the factorization satisfy a system of algebraic
equations. The algorithm requires 2, 3, 4 and 5 matrix-matrix products to reach accuracy up to order
4, 8, 12 and 18, respectively, showing similar cost to 1–2.5 commutators.

In combination with scaling and squaring, this yields a procedure to compute the matrix
exponential up to the desired accuracy at lower computational cost than the standard Padé method for
a wide range of matrices. Based on estimates of the form ‖Ak‖1/k and the use of scaling and squaring,
we have presented a modification of our algorithm to reduce overscaling that is still more efficient than
state-of-the-art implementations with a slightly lower accuracy for some matrices but higher accuracy

Mathematics 2019, 7, 1174 18 of 19

for others. The loss in accuracy can be attributed to possible overscalings due to a reduced number of
norm estimations compared with Padé methods.

In practice, the maximal degree considered for the Taylor polynomial is 18 and the reduction in
the number of matrix products required is due to a particular factorization of the polynomial in terms
of polynomials of lower degrees whose coefficients satisfy an algebraic system of nonlinear equations.

The overall algorithm has been implemented as two different MATLAB codes, available at [27].
The function expm2 corresponds to the simplest implementation based on the previous factorizations
of the Taylor polynomials, whereas expm3 incorporates additional tools to deal with overscaling. Both
are designed to be used in all circumstances where the standard MATLAB function expm is called, and
should provide equivalent results but requiring less computation time.

Although the technique developed here, combined with scaling and squaring, can be applied in
principle to any matrix, it is clear that, in some cases, one can take advantage of the very particular
structure of the matrix A, and then design especially tailored (and very often more efficient) methods
for such problems [2,31,32]. For example, if one can find an additive decomposition A = B + C
such that ‖C‖ is small and B is easy to exponentiate, i.e., eB is sparse and exactly solvable (or can
be accurately and cheaply approximated numerically), and C is a dense matrix, then more efficient
methods can be found in [12,33]. Exponentials of upper or lower triangular matrices A have been
treated in [14], where it is shown that it is advantageous to exploit the fact that the diagonal elements
of the exponential are exactly known. It is then, more efficient to replace the diagonal elements
obtained numerically by the exact solution before squaring the matrix. This technique can also
be extended to the first super or sub-diagonal elements. We plan to adapt this technique to other
special classes of matrices appearing in physics, and in particular to compute in an efficient way the
exponential of skew-Hermitian matrices, of great relevance in the context of quantum physics and
chemistry problems.

For the convenience of the reader, we provide in [27], in addition to the MATLAB implementations
of the proposed schemes, the codes generating all the experiments and results reported here.

Author Contributions: All authors have contributed in the same proportion to this work.

Funding: This work was funded by Ministerio de Economía, Industria y Competitividad (Spain) through project
MTM2016-77660-P (AEI/FEDER, UE). P.B. was additionally supported by a contract within the Program Juan de
la Cierva Formación (Spain).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Celledoni, E.; Marthinsen, H.; Owren, B. An introduction to Lie group integrators: Basics, new developments
and applications. J. Comput. Phys. 2014, 257 Pt B, 1040–1061. [CrossRef]

2. Iserles, A.; Munthe-Kaas, H.Z.; Nørsett, S.P.; Zanna, A. Lie group methods. Acta Numer. 2000, 9, 215–365.
[CrossRef]

3. Blanes, S.; Casas, F. A Concise Introduction to Geometric Numerical Integration; CRC Press: Boca Raton, FL,
USA, 2016.

4. Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary
Differential Equations, 2nd ed.; Springer: Berlin, Germany, 2006.

5. Blanes, S.; Casas, F.; Oteo, J.A.; Ros, J. The Magnus expansion and some of its applications. Phys. Rep. 2009,
470, 151–238. [CrossRef]

6. Casas, F.; Iserles, A. Explicit Magnus expansions for nonlinear equations. J. Phys. A Math. Gen. 2006, 39,
5445–5461. [CrossRef]

7. Celledoni, E.; Marthinsen, A.; Owren, B. Commutator-free Lie group methods. Future Gener. Comput. Syst.
2003, 19, 341–352. [CrossRef]

8. Crouch, P.E.; Grossman, R. Numerical integration of ordinary differential equations on manifolds.
J. Nonlinear Sci. 1993, 3, 1–33. [CrossRef]

9. Hochbruck, M.; Ostermann, A. Exponential integrators. Acta Numer. 2010, 19, 209–286. [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2012.12.031
http://dx.doi.org/10.1017/S0962492900002154
http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1088/0305-4470/39/19/S07
http://dx.doi.org/10.1016/S0167-739X(02)00161-9
http://dx.doi.org/10.1007/BF02429858
http://dx.doi.org/10.1017/S0962492910000048

Mathematics 2019, 7, 1174 19 of 19

10. Higham, N.J. The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl.
2005, 26, 1179–1193. [CrossRef]

11. Moler, C.B.; Van Loan, C.F. Nineteen dubious ways to compute the exponential of a matrix, twenty-five
years later. SIAM Rev. 2003, 45, 3–49. [CrossRef]

12. Najfeld, I.; Havel, T.F. Derivatives of the matrix exponential and their computation. Adv. Appl. Math. 1995,
16, 321–375. [CrossRef]

13. Sidje, R.B. Expokit: A software package for computing matrix exponentials. ACM Trans. Math. Softw. 1998,
24, 130–156. [CrossRef]

14. Al-Mohy, A.H.; Higham, N.J. A new scaling and squaring algorithm for the matrix exponential. SIAM J.
Matrix Anal. Appl. 2009, 31, 970–989. [CrossRef]

15. Bader, P.; Blanes, S.; Casas, F. An improved algorithm to compute the exponential of a matrix. arXiv 2017,
arXiv:1710.10989.

16. Higham, N.J.; Al-Mohy, A.H. Computing matrix functions. Acta Numer. 2010, 19, 159–208. [CrossRef]
17. Baker, G.A., Jr.; Graves-Morris, P. Padé Approximants, 2nd ed.; Cambridge University Press: Cambridge,

UK, 1996.
18. Paterson, M.S.; Stockmeyer, L.J. On the number of nonscalar multiplications necessary to evaluate

polynomials. SIAM J. Comput. 1973, 2, 60–66. [CrossRef]
19. Higham, N.J. Functions of Matrices: Theory and Computation; Society for Industrial and Applied Mathematics:

Philadelphia, PA, USA, 2008.
20. Ruiz, P.; Sastre, J.; Ibáñez, J.; Defez, E. High perfomance computing of the matrix exponential. J. Comput.

Appl. Math. 2016, 291, 370–379. [CrossRef]
21. Sastre, J.; Ibáñez, J.; Ruiz, P.; Defez, E. New scaling-squaring Taylor algorithms for computing the matrix

exponential. SIAM J. Sci. Comput. 2015, 37, A439–A455. [CrossRef]
22. Sastre, J. Efficient evaluation of matrix polynomials. Linear Algebra Its Appl. 2018, 539, 229–250. [CrossRef]
23. Westreich, D. Evaluating the matrix polynomial I + A + · · ·+ AN−1. IEEE Trans. Circuits Sys. 1989, 36,

162–164. [CrossRef]
24. Lei, L.; Nakamura, T. A fast algorithm for evaluating the matrix polynomial I + A + · · ·+ AN−1. IEEE Trans.

Circuits Sys. I Fundam. Theory Appl. 1992, 39, 299–300. [CrossRef]
25. Higham, N.J. Accuracy and Stability of Numerical Algorithms; Society for Industrial and Applied Mathematics:

Philadelphia, PA, USA, 1996.
26. Arioli, M.; Codenotti, B.; Fassino, C. The Padé method for computing the matrix exponential. Linear Algebra

Its Appl. 1996, 240, 111–130. [CrossRef]
27. Bader, P.; Blanes, S.; Casas, F. An Efficient Alternative to the Function Expm of Matlab for the Computation of

the Exponential of a Matrix. Available online: http://www.gicas.uji.es/Research/MatrixExp.html (accessed
on 1 November 2019).

28. Kenney, C.S.; Laub, A.J. A Schur-Fréchet algorithm for computing the logarithm and the exponential of a
matrix. SIAM J. Matrix. Anal. Appl. 1998, 19, 640–663. [CrossRef]

29. Dieci, L.; Papini, A. Padé approximation for the exponential of a block triangular matrix. Linear Algebra
Its Appl. 2000, 308, 183–202. [CrossRef]

30. Higham, N.J.; Tisseur, F. A block algorithm for matrix 1-norm estimation, with an application to 1-norm
pseudospectra. SIAM J. Matrix Anal. Appl. 2000, 21, 1185–1201. [CrossRef]

31. Celledoni, E.; Iserles, A. Approximating the exponential from a Lie algebra to a Lie group. Math. Comput.
2000, 69, 1457–1480. [CrossRef]

32. Celledoni, E.; Iserles, A. Methods for the approximation of the matrix exponential in a Lie-algebraic setting.
IMA J. Numer. Anal. 2001, 21, 463–488. [CrossRef]

33. Bader, P.; Blanes, S.; Seydaoğlu, M. The scaling, splitting and squaring method for the exponential of
perturbed matrices. SIAM J. Matrix Anal. Appl. 2015, 36, 594–614. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1006/aama.1995.1017
http://dx.doi.org/10.1145/285861.285868
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1017/S0962492910000036
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1016/j.cam.2015.04.001
http://dx.doi.org/10.1137/090763202
http://dx.doi.org/10.1016/j.laa.2017.11.010
http://dx.doi.org/10.1109/31.16591
http://dx.doi.org/10.1109/81.129458
http://dx.doi.org/10.1016/0024-3795(94)00190-1
http://www.gicas.uji.es/Research/MatrixExp.html
http://dx.doi.org/10.1137/S0895479896300334
http://dx.doi.org/10.1016/S0024-3795(00)00042-2
http://dx.doi.org/10.1137/S0895479899356080
http://dx.doi.org/10.1090/S0025-5718-00-01223-0
http://dx.doi.org/10.1093/imanum/21.2.463
http://dx.doi.org/10.1137/14098003X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Approximating the Exponential
	A Generalized Recursive Algorithm
	An Efficient Procedure to Evaluate the Taylor Polynomial Approximation Tn(A)
	Numerical Performance
	Refinement of Error Bounds to Avoid Overscaling
	Concluding Remarks
	References

