127 research outputs found

    A saturated linear dynamical network for approximating maximum clique

    Get PDF
    Cataloged from PDF version of article.We use a saturated linear gradient dynamical network for finding an approximate solution to the maximum clique problem. We show that for almost all initial conditions, any solution of the network defined on a closed hypercube reaches one of the vertices of the hypercube, and any such vertex corresponds to a maximal clique. We examine the performance of the method on a set of random graphs and compare the results with those of some existing methods. The proposed model presents a simple continuous, yet powerful, solution in approximating maximum clique, which may outperform many relatively complex methods, e.g., Hopfield-type neural network based methods and conventional heuristics

    A saturated linear dynamical network for approximating maximum clique

    Get PDF
    We use a saturated linear gradient dynamical network for finding an approximate solution to the maximum clique problem. We show that for almost all initial conditions, any solution of the network defined on a closed hypercube reaches one of the vertices of the hypercube, and any such vertex corresponds to a maximal clique. We examine the performance of the method on a set of random graphs and compare the results with those of some existing methods. The proposed model presents a simple continuous, yet powerful, solution in approximating maximum clique, which may outperform many relatively complex methods, e.g., Hopfield-type neural network based methods and conventional heuristics. © 1999 IEEE

    Structural matching by discrete relaxation

    Get PDF
    This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we locus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations ai the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter

    Subpixel Target Enhancement in Hyperspectral Images

    Get PDF
    Hyperspectral images due to their higher spectral resolution are increasingly being used for various remote sensing applications including information extraction at subpixel level. Typically whenever an object gets spectrally resolved but not spatially, mixed pixels in the images result. Numerous man made and/or natural disparatetar gets may thus occur inside such mixed pixels giving rise to subpixel target detection problem. Various spectral unmixing models such as linear mixture modeling (LMM) are in vogue to recover components of a mixed pixel. Spectral unmixing outputs both the endmember spectrum and their corresponding a bundance fractions inside the pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based super-resolution mapping method has been presented. In this method, the subpixel target detection is performed by adjusting spatial distribution of abundance fraction within a pixel of an hyperspectral image. Results obtainedat different resolutions indicate that super-resolution mapping may effectively be utilized in enhancing the target detection at sub-pixel level.Defence Science Journal, 2013, 63(1), pp.63-68, DOI:http://dx.doi.org/10.14429/dsj.63.376

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page
    corecore