48 research outputs found

    Near-Field Communications: A Tutorial Review

    Full text link
    Extremely large-scale antenna arrays, tremendously high frequencies, and new types of antennas are three clear trends in multi-antenna technology for supporting the sixth-generation (6G) networks. To properly account for the new characteristics introduced by these three trends in communication system design, the near-field spherical-wave propagation model needs to be used, which differs from the classical far-field planar-wave one. As such, near-field communication (NFC) will become essential in 6G networks. In this tutorial, we cover three key aspects of NFC. 1) Channel Modelling: We commence by reviewing near-field spherical-wave-based channel models for spatially-discrete (SPD) antennas. Then, uniform spherical wave (USW) and non-uniform spherical wave (NUSW) models are discussed. Subsequently, we introduce a general near-field channel model for SPD antennas and a Green's function-based channel model for continuous-aperture (CAP) antennas. 2) Beamfocusing and Antenna Architectures: We highlight the properties of near-field beamfocusing and discuss NFC antenna architectures for both SPD and CAP antennas. Moreover, the basic principles of near-field beam training are introduced. 3) Performance Analysis: Finally, we provide a comprehensive performance analysis framework for NFC. For near-field line-of-sight channels, the received signal-to-noise ratio and power-scaling law are derived. For statistical near-field multipath channels, a general analytical framework is proposed, based on which analytical expression for the outage probability, ergodic channel capacity, and ergodic mutual information are derived. Finally, for each aspect, the topics for future research are discussed.Comment: 45 pages, 35 figures; submitted to possible IEEE journa

    On Code Design for Interference Channels

    Get PDF
    abstract: There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed. Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Bit-Interleaved Coded Modulation

    Get PDF

    Dynamic information and constraints in source and channel coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 237-251).This thesis explore dynamics in source coding and channel coding. We begin by introducing the idea of distortion side information, which does not directly depend on the source but instead affects the distortion measure. Such distortion side information is not only useful at the encoder but under certain conditions knowing it at the encoder is optimal and knowing it at the decoder is useless. Thus distortion side information is a natural complement to Wyner-Ziv side information and may be useful in exploiting properties of the human perceptual system as well as in sensor or control applications. In addition to developing the theoretical limits of source coding with distortion side information, we also construct practical quantizers based on lattices and codes on graphs. Our use of codes on graphs is also of independent interest since it highlights some issues in translating the success of turbo and LDPC codes into the realm of source coding. Finally, to explore the dynamics of side information correlated with the source, we consider fixed lag side information at the decoder. We focus on the special case of perfect side information with unit lag corresponding to source coding with feedforward (the dual of channel coding with feedback).(cont.) Using duality, we develop a linear complexity algorithm which exploits the feedforward information to achieve the rate-distortion bound. The second part of the thesis focuses on channel dynamics in communication by introducing a new system model to study delay in streaming applications. We first consider an adversarial channel model where at any time the channel may suffer a burst of degraded performance (e.g., due to signal fading, interference, or congestion) and prove a coding theorem for the minimum decoding delay required to recover from such a burst. Our coding theorem illustrates the relationship between the structure of a code, the dynamics of the channel, and the resulting decoding delay. We also consider more general channel dynamics. Specifically, we prove a coding theorem establishing that, for certain collections of channel ensembles, delay-universal codes exist that simultaneously achieve the best delay for any channel in the collection. Practical constructions with low encoding and decoding complexity are described for both cases.(cont.) Finally, we also consider architectures consisting of both source and channel coding which deal with channel dynamics by spreading information over space, frequency, multiple antennas, or alternate transmission paths in a network to avoid coding delays. Specifically, we explore whether the inherent diversity in such parallel channels should be exploited at the application layer via multiple description source coding, at the physical layer via parallel channel coding, or through some combination of joint source-channel coding. For on-off channel models application layer diversity architectures achieve better performance while for channels with a continuous range of reception quality (e.g., additive Gaussian noise channels with Rayleigh fading), the reverse is true. Joint source-channel coding achieves the best of both by performing as well as application layer diversity for on-off channels and as well as physical layer diversity for continuous channels.by Emin Martinian.Ph.D

    Bit-interleaved coded modulation

    Full text link

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Dynamic reconstruction of sea clutter

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore