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SUMMARY 

This thesis explores issues related to the modelling of sea clutter data using Radial 

Basis Function (RBF) networks and variants. Previous work had shown that sea 

clutter may be chaotic, and thus amenable to nonlinear time series analysis. Because 

RBF networks possess the property of universal approximation, it is possible to use 

them to model sea clutter data. This is a noisy, nonlinear problem; a large RBF 

network is usually required.  

 

The prescriptions for choosing embedding delay are put on a sound theoretical basis. 

The standard procedure for estimating embedding dimension is improved. Clipping is 

introduced, as a simple, yet effective way to stabilize iterated predictions. A method is 

devised to speed up cross validation, which applies to variants of the Radial Basis 

Function (RBF) utilizing clustering techniques. Error variance is used for selecting 

models, rather than mean squared error. The RBF architecture is revised to account 

for empty clusters. A possible explanation is found for the puzzling phenomenon of 

empty clusters. It is suggested that non-deterministic behaviour of the clustering stage 

could affect RBF performance. Several types of data driven, non-radial basis 

functions are introduced, which may require less centers, thereby alleviating the curse 

of dimensionality. This stemmed from a desire to find a compromise between coping 

with high dimensionality, and yet using all available information as effectively as 

possible. Regularization is extended to non-radial basis functions.  

 

The improved understanding and procedures were applied to model sea clutter using 

iterated prediction. One spin-off is that the significant computational savings from 

speeding up cross validation may tip the balance and encourage more applications to 
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employ the RBF, rather than the Multilayer Perceptron (MLP). It may also discourage 

certain regularization techniques which cannot be accelerated. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

Radar echo from the surface of sea is called sea clutter. The detection of small surface 

maritime targets by radar is limited by the presence of sea clutter. At low grazing 

angles (angle between sea surface and radar signal, see Figure 1.1.) and close to shore, 

large amplitude echoes (sea spikes) may cause increased false alarm rates. This 

requires the detection threshold to be raised and thus limits the size of detectable 

targets. 

 

So far, it had been difficult to establish reliable relationships between sea clutter 

measurements and the environmental factors that determine the sea conditions  

[1]. It is apparent that improved understanding of sea clutter would result in improved 

radar detection. According to Haykin [2], a nonlinear predictive model could be used 

to cancel out sea clutter. Cancelling out the clutter helps to improve detection of small 

targets on the surface of the sea. 

 

Figure 1.1 Illustration of beamwidth and grazing angle. 
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1.2 Literature Review 

A model that is used to describe sea clutter at long radar wavelengths (High 

Frequency (HF) and Very High Frequency (VHF)) is Bragg scatter [1]. This is similar 

to the Bragg scattering observed in X-ray diffraction of crystals. A rough sea surface 

can be described by its vertical displacement from the mean, with a corresponding 

Fourier spectrum. Scattering from the sea surface can be characterized as scattering 

from a particular component of the surface spectrum resonant with radar frequency, 

resulting in constructive interference. The major scattering effect is due to the 

resonant component, and the other components of the spectrum can be neglected. 

 

At higher frequencies, such as X-band (wavelength ≈ 3cm), the sea surface is often 

modelled as a composite surface with two scales of roughness (composite surface 

model). The resonant water waves of the classical Bragg model that might contribute 

to radar scatter have wavelengths of the order of centimetres. These short water waves 

(capillary waves) are said to ride on the higher amplitude long waves (gravity waves). 

Gravity waves are so named because their velocity of propagation is determined 

primarily by gravity. Capillary waves are small waves (less than about 1.73cm); their 

velocity is determined mainly by the surface tension of water [1], the velocity of 

which is determined mainly by the surface tension of water. Wetzel [3] noted that 

there are unresolved issues with the composite surface model, such as the assumption 

that sea surface displacements are small compared to the radar wavelength. 

 

Because of the highly variable nature of clutter echoes, it is often described by 

probability distributions. Except for the Rayleigh distribution, there is no physical 

basis for the use of these distributions [1]. The most general clutter model at this time 
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is the Rayleigh mixture model (see Appendix A); it includes the K-distribution and 

Weibull distribution as special cases [4].  

 

Note that the K-distribution and other compound distributions assume that there exists 

a large number of independent scatterers (see Appendix A). Despite the algebraic 

virtuosity of the derivations, this assumption may be questioned, considering that 

factors like wind velocity, temperature, etc, are approximately constant in a patch of 

sea surface. Furthermore, waves typically do not travel over the sea surface in 

completely random directions.  

 

Also, there is the problem that the various statistical models are used because they fit 

some experimental data, and so they are not necessarily based on physical 

mechanisms [4]. Another problem is that a lot of data is required for calculating the 

higher moments because the long tails are problematic [5, 6]. This encourages one to 

consider possible alternatives. In the past decade, Haykin et al. had published a stream 

of research findings indicating that sea clutter may be chaotic [7-13]. Furthermore, 

this had also spawned a stream of research which applied chaos theory to sea clutter, 

of which [2, 14-25] are representative.  

 

Besides the work in Ref. [13], there are also some independent results and theory, 

which may support the hypothesis that sea clutter may be chaotic: 

• In Ref. [26, 27], it was shown that ocean waves exhibit some chaotic properties. 

• At low grazing angle, sea clutter is dominated by sea spikes [1]. Churyumov and 

Kravtsov [28] showed that breaking waves are responsible for sea spikes. Jessup 

et al. [29] showed that the frequency of sea spikes was related to the Reynolds 
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number (an important quantity associated with turbulence in fluid dynamics). 

Hence, there may be a relationship between sea clutter and turbulence. 

• Researchers [30-32] have shown that it is possible to model two dimensional fluid 

flows with chaos theory. The problem is that they have not extended their models 

to higher dimensions. 

• A 5 degree of freedom chaotic model had been suggested by Lorenz [33, 34] for 

modelling large scale ocean models. This may possibly be useful for modelling 

the ocean, because Abarbanel et al. [35] had shown that some ocean 

measurements have an observed embedding dimension of 5. 

 

On the other hand, in recent years, there had been some dissenting voices [36-38]. 

Gao and Yao [39] suggest that sea clutter is multifractal (see Glossary), but not 

chaotic. It may be reasonable to enquire if the chaotic hypothesis is also another curve 

fitting exercise, this time with respect to multi-dimensional manifolds.  

 

Hence, it would be interesting to see if it is possible to model the dynamics of the sea 

clutter with a neural network. If iterated prediction of the network produces a 

sequence with similar properties as compared to the original data, then dynamic 

reconstruction has succeeded. Previous research, as in Ref. [40], had only examined 

the chaotic properties of successful reconstructions. Examining the failed 

reconstructions, instead of ignoring them, may yield some insights. 

 

1.3 Contributions of this Thesis 

This work may be of interest to researchers who are working in the areas of chaos 

and/or neural networks. The following contributions are briefly listed:  
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• A sound theoretical basis had been put forward to explain the rules for choosing 

embedding delay, which had previously been prescriptive (Section 2.2). 

• Instead of using one algorithm for estimating embedding dimension, 2 algorithms 

are used; this is useful for double checking (Section 2.3).  

• A method to speed up k-fold cross validation is proposed (Section 3.6.5).  

• The standard architecture of the RBF is revised to include the possibility that the 

number of centers may be unequal to the number of weights in the linear layer, 

due to empty clusters (Section 3.2).  

• A possible explanation is found for the puzzling phenomenon of empty clusters, 

which occasionally occur (Section 3.3.2). It is suggested that the non-deterministic 

behaviour of the clustering stage could sometimes affect the RBF (Section 3.3.1). 

• Several types of data driven, non-radial basis functions are introduced (Section 

3.4.2). Regularization is extended to non-radial basis functions (Section 3.6.4). 

• It was suggested that instead of dealing with both real and complex components of 

the sea clutter signal, it may be sufficient to choose one, if they are related by the 

Hilbert transform (Section 4.2). 

• It is suggested that sacrificing the bias in resolving the bias-variance dilemma may 

be useful in the context of dynamic reconstruction (Section 5.2). 

• Alternative formulations of Generalization Error (GE) are given, i.e. voting 

instead of averaging (Section 5.1.2) and the use of variance instead of mean 

squared error for model selection (Section 5.2).   

• It is demonstrated that sequences generated by kRBF models selected using error 

variance (Figure 5.17) can result in better dynamic reconstructions than kRBF 

models selected using mean squared error (Figure 5.12).  
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• Iterated prediction is performed using many different unique candidate starting 

points, unlike existing literature. Initializing iterated prediction with estimated 

values instead of the test set is suggested (Section 5.4.1). Clipping is introduced, 

as a simple, yet effective way to stabilize iterated predictions (Section 5.4.2). 

 

1.4 Overview of the Thesis 

Chapter 2 introduces some methods used in experimental chaos; Chapter 3 introduces 

the theory of RBF networks and variants. Chapter 4 outlines attempts to characterize 

the data, prior to running the simulations; the simulations results are recorded in 

Chapter 5. Conclusions and future work are discussed in Chapter 6. The appendices 

are provided for the convenience of the readers; some derivations may take a long 

time to produce without mathematical handbooks. The Glossary enables readers to 

check up technical terms; it owes much to Ref. [41] and also the glossaries of Ref.  

[42, 43]. 
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CHAPTER 2 

Phase Space Reconstruction 

The set of all possible states of a system is called the phase space or state space of the 

system. Phase space reconstruction is defined as the identification of a mapping that 

provides a model for an unknown dynamical system. It provides a practical means for 

making physical sense of an experimental time series without knowledge of the 

underlying dynamics of the system. The workhorse of phase space reconstruction is 

Taken's Delay Embedding Theorem. Concepts relevant to phase space reconstruction 

are introduced in this chapter. Modifications to existing concepts and procedures are 

also discussed. 

 

2.1 Taken's Delay Embedding Theorem 

Essentially, the main idea behind Taken's Delay Embedding Theorem is that it is 

possible to reconstruct state space from a time series consisting of measurements of a 

chaotic system. Consider a time series with Ntotal samples; each n-th measurement is 

given as y(n) (sampling rate is typically fixed). The delayed samples of the time series 

{ } 1
( )

totalN

n
y n

=
 are formed into the embedding vector ( )nΨ : 

 ( )( )( ), ( ), , ( 1)( ) Ey n n n dn yτ τ− − −Ψ "� y , (2.1) 

where the embedding dimension is Ed +∈]  and the embedding delay is τ +∈] . From 

a time series with Ntotal samples, ( 1)total
EN N d τ− −Ψ �  embedding vectors (each of 

dimension dE) can be formed. These embedding vectors form a reconstructed attractor. 
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The reconstructed attractor preserves the topological properties of the original 

attractor, and hence the chaotic invariants (see Glossary or Section 2.4) estimated 

from the reconstructed attractor are equivalent to the chaotic invariants of the attractor 

itself. Note that normalizing the time series only scales the attractor, which does not 

affect the chaotic invariants. 

 

Consider the Lorenz system [44] as the archetypical chaotic system; it is described by 

a set of differential equations: 

 
( )

,

x y x
y xz rx y
z xy bz

σ= −
= − + −
= −

�
�
�

 (2.2) 

where σ = 16, r = 45.92, b = 4. The initial conditions x = 1, y = 1, z = 1 are fed into the 

Runge-Kutta ODE solver in MATLAB© to produce a time series for each component 

(x, y and z). Unless otherwise stated, the Lorenz data used throughout this work refers 

to the x-component of the Lorenz system (see Figure 2.1). The first 20,000 points are 

discarded to remove the transients. Then the data is pre-processed to have 0 mean and 

variance 1.  

100 200 300 400 500 600 700 800
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x(
n)

n  
Figure 2.1 Plot of x-component of Lorenz time series. 
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Figure 2.2 illustrates the famous Lorenz attractor plotted from the x, y and z 

components of the Lorenz ODE defined by Eq. (2.2) and numerically solved using the 

Runge-Kutta method of order 4. Typically, ergodicity is assumed [45], i.e. time 

averages are the same as state space averages. In such a case, transients can be 

ignored, and it is only necessary to consider the long term behaviour of the system, i.e. 

the attractors. Observe that the Lorenz attractor is symmetrical, with 2 "lobes", and 

has a "fractal" structure. 
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Figure 2.2 Three-dimensional plot of Lorenz attractor. 

 

Figure 2.3 illustrates an attractor reconstructed from the x-component of the data, 

using Taken's Embedding Theorem. The reconstructed attractor looks like a warped 

version of Figure 2.2. One way to verify that the reconstruction is successful is to 

check that chaotic invariants (see Glossary or Section 2.4) of the reconstructed 

attractor match those of the original attractor.  



 10

-3

-2

-1

0

1

2

3 -3 -2 -1 0 1 2 3

-5

0

5

x(n - τ)

x(n)

x(
n 

- 2
τ)

 

Figure 2.3 Three-dimensional plot of Lorenz attractor reconstructed from 

x-component of the data using Taken's Embedding Theorem. 

 

It should be noted that Taken's Embedding Theorem only gives sufficient conditions, 

not necessary ones [46]. It applies only to generic systems, and there are examples 

where measuring a variable from a dynamical system will lead to a distorted phase 

space reconstruction [47]. For example, the z-component of the Lorenz system does 

not distinguish the 2 unstable foci associated with the 2 "lobes" of the attractor, due to 

the underlying symmetries of the Lorenz model [48]. The phase space reconstruction 

in Figure 2.4 is topologically different from that in Figure 2.2, since there is only one 

"lobe", rather than two. 
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Figure 2.4 Three-dimensional plot of Lorenz attractor reconstructed from  

z-component of the data using Taken's Embedding Theorem. 

 

2.2 Embedding Delay 

Theoretically, for an infinite amount of infinitely accurate data, the choice of the lag, τ, 

is unimportant [43]. However, in practice, the quality of phase space reconstruction 

depends on the choice of τ. The prescription of Ref. [49] is to choose τ such that it 

corresponds to the first minimum of the of the mutual information between a time 

series { } 1
( )

totalN

n
Y y n τ−

=
=  and a delayed version { } 1

( )
totalN

n
Y y nτ τ= +

= . 

 

Treating Y as a discrete random variable, its entropy is defined as: 

 ( )( ) ( ) log ( )
y

H Y p y p y
∈

−∑�
Y

, (2.3) 
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where Y  is the alphabet (the set of possible symbols) of Y and ( ) { }p y p Y y= = ,  

[50]. Mutual information between Y and Yτ can be defined as 

 ( ; ) ( ) ( ) ( , )I Y Y H Y H Y H Y Yτ τ τ+ −� , (2.4) 

and the discrete joint entropy, ( , )H Y Yτ , is defined as 

 ( )( , ) ( , ) log ( , )
y y

H Y Y p y y p y y
τ

τ τ τ
∈ ∈

−∑∑�
Y Y

, (2.5) 

where τY  is the alphabet of Yτ.  

 

The discrete formulation is used in the chaos literature; Fraser and Swinney [49] 

argue that the continuous case results in entropies which are coordinate dependent. 

Note that ( ; )I Y Yτ  is often called the Average Mutual Information in the chaos 

literature, as in Ref. [43]. 

 

It should be noted that if the time series is ergodic, and sufficiently long, then it is safe 

to assume that 

 ( ) ( )H Y H Yτ≈ , (2.6) 

and hence ( )H Yτ  is essentially independent of the choice of τ. Finding the value of τ 

which results in the minimum value of ( ; )I Y Yτ  can be expressed as arg min ( ; )I Y Yττ
. 

Substituting the approximation of (2.6) into Eq. (2.4), we get 

 ( ) ( )arg min ( ) ( ) ( , ) arg min ( , )H Y H Y H Y Y H Y Yτ τ ττ τ
+ − ≈ − , (2.7) 

which implies that rather than finding the first minimum of the mutual information, it 

is sufficient to find the first minimum of ( , )H Y Yτ− . This is in turn equivalent to 

searching for the first maximum of the joint entropy. This means that it is not 

necessary to calculate ( )H Y  or ( )H Yτ  for any value of τ. However, the 
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computational savings induced are relatively insignificant, since the computational 

complexity of ( ; )I Y Yτ  is dominated by the computational complexity of ( , )H Y Yτ . 

Rather, the point is theoretical; finding the maximum of the joint entropy corresponds 

to the maximum entropy method (MEM) [51]. Essentially, MEM states that from a 

family of probability distributions, the probability distribution with the maximum 

entropy should be chosen, subject to the given constraints. MEM can be seen as a 

smoothness criterion [51]. 

 

For a concrete example, consider the Lorenz system. Figure 2.5 is a plot of the mutual 

information vs lag computed using mutual.exe from TISEAN [52]. The first local 

minima suggests that the embedding delay should be τ = 4. 
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Figure 2.5 Plot of ( ; )I Y Yτ  vs τ for Lorenz system. 
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Figure 2.6 Reconstructed phase portraits of Lorenz data at varying time lags. 
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Figure 2.6 shows reconstructed phase portraits (plots of x(n) vs x(n - τ) for various 

values of τ; it provides visual confirmation that near the first local minima of Figure 

2.5, the attractor seems to be well unfolded. Hence, MEM provides a justification for 

the prescription to choose τ such that it corresponds to the first minimum of the plot 

of mutual information vs lag. 

 

However, chaotic maps require a different way of choosing the embedding delay. As τ 

increases, the joint entropy increases and the reconstructed phase portrait 

progressively appears more "random". It had been suggested by Kalman in 1956 [53, 

54], that chaotic maps are related to Markov chains. In such a case, it may be possible 

to model the relationship between Y, Yτ  and 
2

Yτ  using a Markov chain, where 2τ  is a 

time lag which is greater than τ. The data processing inequality [50] states that if 

2
Y Y Yτ τ→ →  forms a Markov chain, then 

2
( ; ) ( ; )I Y Y I Y Yτ τ≥ . This implies that the 

plot of mutual information (and also the plot of joint entropy) should be 

monotonically decreasing if the Markov chain model applies.  

 

Consider the Ikeda map [43, 55], which is an example of a discrete map, defined by 

 2( 1) ( ) expz n p Bz n i
z n
ακ

⎧ ⎫⎛ ⎞⎪ ⎪+ = + ⎜ − ⎟⎨ ⎬⎜ ⎟1+ ( )⎪ ⎪⎝ ⎠⎩ ⎭
, (2.8) 

where p = 1.0, B = 0.9, κ = 0.4, and α = 6.0. Figure 2.7 is the corresponding plot of 

mutual information vs lag. Note that the plot is approximately monotonic; the 

minimum in the plot at large values of τ may be due to long range correlations, which 

ensure that Yτ  and 
2

Yτ  are not perfectly independent. Thus, the Markov Chain model 

is only approximate, but it appears to be a good model to use for discrete maps. 

Alternatively, the minimum may be an artefact due to the inadequacies of using a 
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histogram to represent a probability density function (pdf) in 2 dimensions or higher 

[56].  
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Figure 2.7 Plot of ( ; )I Y Yτ  vs τ for real component of Ikeda Map. 

 

Figure 2.8 shows that when the lag is more than 1 or 2, the reconstructed phase 

portrait is too disordered. The prescription of Cao [57], which recommends a lag of 1 

for discrete maps, makes more sense now. If the plot of mutual information decreases 

more or less monotonically; the reconstructed phase portrait would be too disordered 

at the minimum, if it exists. 
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Figure 2.8 Reconstructed phase portraits of the real component of the Ikeda Map 

at varying time lags. 

 



 18

2.3 Embedding Dimension 

The embedding dimension dE determines the dimension of the reconstructed phase 

space that is required. In theory, the embedding dimension had been shown by Sauer 

et al. [58] to be 

 02Ed D> , (2.9) 

where D0 is the box-counting dimension (see Glossary or Section 2.4.1). However, 

note that inequality (2.9) provides a sufficient condition, but it may be possible to 

make do with a smaller dimension under particular circumstances. In fact, Ding et al. 

[59] showed that for the purpose of calculating correlation dimension (see Glossary or 

Section 2.4.2), 

 0int( ) 1Ed D= +  (2.10) 

suffices. 

 

A practical algorithm to estimate dE is the method of Global False Nearest Neighbours 

(GFNN) [60]. Essentially, the idea is that if the embedding dimension is too low, then 

the topology of the embedding may be distorted. An indication of the distortion is to 

estimate the number of points which are supposed to be far apart in phase space, and 

yet end up as neighbours because the embedding dimension is too low. 

 
( )

22

1 2

0

( , ) ( ) ( )

( (

d d d

d

k

R n n n n

y n k y n k

η η

ητ τ
−

=

= −

= − ) − − )∑

Ψ Ψ
 (2.11) 

where 2 ( , )dR n nη  is the squared Euclidean distance between ( )d nΨ , the embedding 

vector at dimension d, and ( )d nηΨ  is the nearest neighbour at dimension d ( nη  is the 

index of the nearest neighbour). Then, 
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 ( )22 2
1( , ) ( , ) ( (d dR n n R n n y n d y n dη η ητ τ+ − = − ) − − ) . (2.12) 

From Eq. (2.11) and Eq. (2.12), the following is obtained: 

 
2 2

1
2

( (( , ) ( , )
( , ) ( ) ( )

d d

d d d

y n d y n dR n n R n n
R n n n n

ηη η

η η

τ τ+ − ) − − )−
=

−Ψ Ψ
. (2.13) 

 

The first criterion to determine a false nearest neighbour is that the distance is large 

when going from dimension d to d + 1, i.e. 

 
( (

( ) ( ) tol
d d

y n d y n d
R

n n
η

η

τ τ− ) − − )
>

−Ψ Ψ
. (2.14) 

The threshold tolR  is a constant such that 10tolR ≥  [60] or 15tolR ≈  [43]. 

 

The second criterion is 

 1( , )d
tol

A

R n n
A

R
η+ >  (2.15) 

where 2
AR  is the sample variance of the time series and 2tolA ≈  is an arbitrary 

threshold. If either criterion is true, a false nearest neighbour is declared. The 

dimension dE is where the percentage of false nearest neighbours plateau off. 

 

As early as 1995, researchers had reported flaws in the original algorithm [61]. One 

problem is that the number of false neighbours is underestimated when Rtol is large. 

Hegger and Kantz [62] suggested that rather than using a fixed value, Rtol should be 

pegged to the maximal Lyapunov exponent, 1λ  (see Glossary or Section 2.4.3), and 

the time delay: 

 1
tolR eλ τ> . (2.16) 
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Also, pairs which are too far away are not really false neighbours, but are merely 

inappropriate candidates. Hence, points where 

 1( , ) 1d

A tol

R n n
R R

η+ >  (2.17) 

are disregarded.  

 

Another problem that Hegger and Kantz [62] mentioned, was that with insufficient 

data and large d, the first criterion, (2.14), introduces false neighbours even for 

deterministic systems. According to Aggarwal et al. [63], there is poor discrimination 

between different neighbouring points as dimension increases. Hence, this problem 

cannot be solved by any false nearest neighbour method. The best solution is to have 

sufficient data. 

 

The improved implementation of GFNN [52, 62] (false_nearest.exe in 

TISEAN) is used throughout this work. Additive White Gaussian Noise (AWGN) is 

added to Lorenz data, for various values of SNR. In this work, SNR refers to the ratio 

of signal power to noise power. Figure 2.9 shows that the performance of GFNN 

degrades gracefully as SNR decreases, except for low SNR (0dB and -10dB), where 

the GFNN curves are no longer monotonic. In fact, there is a sudden increase in the 

percent of false nearest neighbours at dimension 5. This sudden increase will not 

affect the algorithm adversely in practice, because at 0dB and -10dB, the noise level is 

so high that chaotic signal processing is meaningless anyway. Besides, it serves to 

differentiate low dimensional signals from high dimensional signals, such as noise. 
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Figure 2.9 Performance of GFNN with different SNR levels for Lorenz data. 

 

GFNN is further supplemented by Cao's method [57, 64]. Cao's method is similar to 

GFNN, except that it eliminates the use of arbitrary thresholds, and uses the 

maximum norm. Define a ratio 

 1 1( ) ( )
( )

( ) ( )
d d

d
d d

n n
a n

n n
η

η

+ +−

−

Ψ Ψ

Ψ Ψ
� , (2.18) 

where [1, ]n N dτ∈ − . The mean of this ratio is 

 
1

1 ( )
N d

d d
n

E a n
N d

τ

τ

−

=

=
− ∑ . (2.19) 

Based on Eq. (2.19), a ratio is defined: 

 11 d
d

d

EE
E

+� . (2.20) 

1dE  stops changing when Ed d≥ .  

 

Unlike GFNN, the embedding dimension for Cao's method is decided not by the 

presence of a plateau, but by saturation of the curve, e.g., Figure 2.10.  
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Figure 2.10 Plot of E1d with different SNR levels for Lorenz data. 

 

Again, AWGN is added to the signal for various values of SNR. For no noise, the 

embedding dimension is 4. At lower SNR, the embedding dimension is 6 or 7. It can 

be seen that the algorithm also degrades gracefully with decreasing SNR, even when 

SNR is negative. However, at 0dB and -10dB, it is hard to discern the embedding 

dimension. The problem with GFNN is that for low SNR, the plateau is not easy to 

discern. On the other hand, Cao's method tends to give higher estimates, but these 

estimates are acceptable, considering condition (2.9). Cao's method can be used to 

verify the results obtained by GFNN; this may help the researcher to determine if the 

embedding dimension is wrong.  

 

An interesting feature of Cao's method is that it also incorporates a test for 

determinism. Define 

 *

1

1 ( (
N d

d
n

E y n d y n d
N d

−

=

+ ) − + )
− ∑�

τ

ητ τ
τ

. (2.21) 

Another ratio is defined, based on Eq. (2.21): 
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*

1
*2 d

d
d

EE
E

+� . (2.22) 

It appears that Eq. (2.22) could distinguish between random coloured noise and chaos. 

A stochastic process would produce a plot of E2d which fluctuates about 1, because 

*
dE  should be independent of d. The implementation of Cao's method (cao.dll) in 

TSTOOL [64] is used throughout this work. 

 

2.4 Chaotic Invariants 

Chaotic invariants are statistical quantities which can be used to characterize chaotic 

systems. The box-counting dimension (Section 2.4.1), correlation dimension (Section 

2.4.2) and Kaplan-Yorke dimension (Section 2.4.4) quantify the dimensionality of the 

attractor. On the other hand, Lyapunov exponents (Section 2.4.3), Kolmogorov 

entropy (Section 2.4.5) and Horizon of Predictability (Section 2.4.6) quantify the 

dynamical aspects of the attractor. 

 

Chaotic invariants are unchanged under smooth nonlinear changes of coordinate 

system. This invariance is important, because when measuring a variable, the 

recorded signal is often not the actual dynamical variable being characterized. For 

example, it might be an electrical signal from a temperature probe, though the actual 

variable of interest might be temperature. It is permissible to use the recorded values 

of the electrical signal to directly compute the chaotic invariants as long as the 

relationship between the electrical signal and the actual variable is one-to-one  

[65]. 
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2.4.1 Box-counting Dimension 

The box-counting dimension D0 of a set U is defined as 

 0
0

log ( )lim sup
log(1/ )

ND
ε

ε
ε+→

� , (2.23) 

where ( )N ε  is the number of balls of diameter ε required to cover U, and the 

supremum (sup) is the least upper bound of a set. For sets such as points, line 

segments and surfaces, the box-counting dimension is 0, 1, and 2, respectively. 

Usually, D0 is not an integer for chaotic attractors. For example, D0 ≈ 2.06 for the 

Lorenz attractor [66]. 

 

2.4.2 Correlation Dimension 

Although the box-counting dimension is conceptually straight-forward, its application 

to actual data, especially for higher dimensional state spaces, is problematic [65]. The 

number of computations required for the box-counting procedure increases 

exponentially with the state space dimension. To provide a computationally simpler 

dimension, Grassberger and Procaccia [66] introduced a dimension based on the 

behaviour of the correlation sum. The correlation sum is defined as 

 ( )
2 2

2
1 1,

1( ) ( ) ( )
( 1)

N N

n n n n
C r u r n n

N N = = ≠

− −
− ∑ ∑

Ψ Ψ

Ψ Ψ Ψ Ψ� , (2.24) 

where r∈\ , n and n2 are dummy variables, NΨ  is the number of embedding vectors 

and ( )u i  is the step function. Essentially, ( )u i  contributes 1 to the sum for each 

2( ) ( )n n−Ψ Ψ less than r. The denominator is ( 1)N N −Ψ Ψ  rather than 2( )N Ψ , 

because of the restriction that 2n n≠ . 
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The correlation dimension is defined as: 

 ( )
2 0

log ( )
lim

log( )r

C r
D

r→
� . (2.25) 

Actually, 2 0D D≤ , but numerical evidence shows that D2 is very close to D0 [66].  

 

Note that any real data set has a finite number of points, and hence it is not possible to 

take the limit 0r → . Hence, there is some minimum distance between the points, and 

when r is less than that, D2 = 0. Also, enough data points should be available [67-69].  

 

Also, it is necessary to exclude temporally correlated points, since the correlation sum 

should cover a random sample of points drawn independently (successive elements of 

a time series are not usually independent). If indices between points differ by less than 

a quantity w, they are ignored. The quantity w is called the Theiler window [52]. Note 

that if N w� , the loss of O(wN) points is not significant, considering that that O( 2N ) 

points are used to compute Eq. (2.24). 

 

2.4.3 Lyapunov Exponents 

The Lyapunov exponent of a dynamic system is a quantity which specifies the 

sensitive dependence on initial conditions (see Glossary). For a one-dimensional 

nonlinear system, the separation of 2 adjacent points after ς  steps can be expressed as 

 0 0( ) ( )a f y f yς ςε ε= + − , (2.26) 

where ( )f ς i  is the mapping function ( )f i  iterated ς  times, 0y  is the initial point and 

0y ε+  is the adjacent point. The Gronwall inequality (see Glossary) states that the 

separation between 2 neighbouring solutions to the same differential equation can 
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separate from each other at a rate greater than exponential [70]. Hence, to relate aε  to 

the initial separation, an exponential scaling relation is introduced: 

 a eςλε ε� . (2.27) 

Hence, 

 
0 0

0 0

( ) ( )

( ) ( )1 ln .

e f y f y

f y f y

ςλ ς ς

ς ς

ε ε

ε
λ

ς ε

= + −

+ −
=

 (2.28) 

Exponential divergence only applies to small amplitudes of ε, due to finite attractor 

size [71]. For 0ε → :
 

 

0

0 0

0

( ) ( )1lim lim ln

1 ( )lim ln .
y y

f y f y

df y
dy

ς ς

ς ε

ς

ς

ελ
ς ε

ς

→∞ →

→∞
=

+ −
=

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (2.29) 

Furthermore, using the chain rule, given as 

 

( )
0

1

0 1
0

1

0

( )'( )

( ) ,
i

y y

i y y

d df yf y f y
dy dy

df y
dy

ς
ς

ς

ς

−

−
=

−

= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∏
 (2.30) 

where 0( )i
iy f y= . Thus, (2.29) may be written as 

 
1

0

1lim ln '( )i
i

f y
ς

ς
λ

ς

−

→∞
=

= ∑ . (2.31) 

This shows that the Lyapunov exponent λ gives the stretching rate per iteration, 

averaged over the trajectory. The dependence of λ on the choice of 0y  may be 

removed if the system is ergodic. Note that a chaotic system must have at least one 

positive Lyapunov exponent. 
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For the case of multiple dimensions, consider a chaotic dynamical system with dF 

degrees of freedom (see Glossary). It has the mapping F, such that  

 ( )( 1) ( )n n+ =Ψ F Ψ . (2.32) 

Define 

 ( ) ( 1) ( )n n n+ −∆ Ψ Ψ� . (2.33) 

Using Eq. (2.32) and (2.33), 

 
( )( 1) ( 2)

( 1) ( 1).
n n

n n
+ = +

= + + +

F Ψ Ψ
Ψ ∆

 (2.34) 

A Taylor series can be formed: 

 ( ) ( ) ( )( 1) ( ) ( ) ( )n n n n+ = + +F Ψ F Ψ DF Ψ ∆i " , (2.35) 

where DF is the F Fd d×  Jacobian matrix. Substituting Eq. (2.34) into Eq. (2.35), 

 
( )

( )
( 1) ( 1) ( 1) ( ) ( )

( 1) ( ) ( ),

n n n n n

n n n

+ + + = + + +

+ ≈

Ψ ∆ Ψ DF Ψ ∆

∆ DF Ψ ∆

i "

i
 (2.36) 

assuming ( )n∆  is small and ( 1)n +∆  stays small. Over multiple time steps ς , 

 
( ) ( ) ( )
( )

( ) ( 1) ( 2) ( ) ( )

( ) ( ).

n n n n n

n nς

ς ς ς+ = + − + −

=

∆ DF Ψ DF Ψ DF Ψ ∆

DF Ψ ∆

i " i

i
 (2.37) 

The square of the magnitude of the vector is given as: 

 ( ) ( )2( ) ( ) ( ) ( ) ( )
TTn n n n nς ςς ⎡ ⎤+ = ⎣ ⎦∆ ∆ DF Ψ DF Ψ ∆i i . (2.38) 

The essential quantity determining this is ( ) ( )( ) ( )
T

n nς ς⎡ ⎤⎣ ⎦DF Ψ DF Ψi . Let the 

Oseledec matrix be 

 ( ) ( ) ( ){ }(1 2)

, ( ) ( ) ( )
T

n n n
ς

ς ςς ⎡ ⎤⎣ ⎦OSL Ψ DF Ψ DF Ψ� i . (2.39) 

( ) ( )( ) ( )
T

n nς ς⎡ ⎤⎣ ⎦DF Ψ DF Ψi  is real and symmetric, and so the (1 2)ς  power is well 

defined. Oseledec's multiplicative ergodic theorem [72] states that as ς →∞ , the 
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matrix OSL is independent of ( )nΨ  for almost all ( )nΨ , well defined, and has 

eigenvalues 1eλ , 2eλ , …, dFeλ  for a system with dF degrees of freedom [43]. The 

Lyapunov exponents are none other than 1λ , 2λ , ..., 
Fdλ , which are the global 

Lyapunov exponents of the observed attractor of the dynamical system.  

 

The ς →∞  limit is the reason why the standard global Lyapunov exponents are 

indicative of long time phase space instability. Hence, they are relevant to the 

predictability of the system only on the average in the long time limit. To examine the 

finite time behaviour, the eigenvalues of the matrix ( ), ( )nςOSL Ψ , for finite ς , are 

examined. Each eigenvalue for the d-th degree of freedom is given as ( , )deλ ς Ψ , and 

each ( , )dλ ς Ψ  is the corresponding local Lyapunov exponent. 

 

Abarbanel et al. [73] states that the predictability on a strange attractor depends on the 

local magnitude of the instability at the phase space point associated with the next 

time step. If the attractor is homogeneous, in the sense that the local Lyapunov 

exponents are the same in all parts of it, then the global exponents would be adequate 

for prediction. In Ref. [73], numerical evidence is given that local exponents vary 

significantly over the attractor. After all, in practice, ς  cannot be infinite [74]. 

 

2.4.4 Kaplan-Yorke Dimension 

Kaplan and Yorke [71] conjectured that a relationship exists between the Lyapunov 

exponents and the dimension of a strange attractor. An intuitive demonstration of this 

conjecture in 2 dimensions is given as follows. 
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Assume that the attractor lies inside a square, whose sides are normalized to unity. A 

chaotic mapping stretches one side by L1 > 1, and the other by L2 < 1. Since the 

system is dissipative, L1L2 < 1, i.e. the state space is bounded. The mapped area fits 

back inside the unit square in the shape of a horseshoe; folding takes place, permitting 

the divergence of nearby orbits, given the constraint that the state space has to be 

bounded. The strange attractor must lie inside this horseshoe (see Figure 2.11).  

 

Figure 2.11 Stretching and folding induced by chaotic mapping in 2 dimensions. 

 

The smallest number of squares that have sides L2, needed to cover the horseshoe is 

given by a function ( )N i of L2, where 

 2 1 2( ) int( ) 1N L L L= + . (2.40) 

Suppose the process is repeated k times. It is now possible to cover the attractor with 

smaller squares of size 2
kL . For the k-th map, this gives 

 2 1 2( ) ( / )k kN L L L≈ . (2.41) 

 

 

 

Unit square 

L2 

L1 
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The box counting dimension, D0, is defined by 

 0

0
lim ( ) DN
ε

ε ε −

→
= , (2.42) 

where N(ε) is the minimum number of ε squares which covers the set. For large k,  

 0
2 1 2 2( ) ( / ) ( ) Dk k kN L L L L −≈ = . (2.43) 

This gives 

 1
0

2

ln1
ln

LD
L

− = . (2.44) 

Since 2 21 0L λ< ⇒ < , substituting 1 1ln Lλ =  and 2 2ln Lλ− =  for the Lyapunov 

exponents results in 

 1
0

2

1D λ
λ

= + . (2.45) 

It is easy to generalize this demonstration to multiple dimensions. This time, the 

expansion is a hypervolume, rather than just a length L1: 

 
1

1
YK

i
i

L
=

≥∏ , (2.46) 

where YK  is the smallest integer such that the overall hypervolume is not contracting. 

Note that some of the dimensions can be contracting, as long as (2.46) is satisfied. 

The dimensions, Li are arranged, such that the associated exponents are ordered in 

descending order 1 2 Fdλ λ λ≥ ≥ ≥… . The tiny hypercube required to cover the attractor 

has a length of 1 1
YKL + <  and hypervolume 

 ( )1 1Y

Y

K

KL + < . (2.47) 

Dividing the expansion (2.46) by the hypervolume (2.47) and substituting into Eq. 

(2.43) gives 
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 01
1 1

1

( ) ( )

Y

Y YY

Y

kK

i
Dk ki

K KK
K

L
N L L

L
−=

+ +
+

⎛ ⎞
⎜ ⎟
⎜ ⎟≈ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

∏
. (2.48) 

This leads to 

 
( )

0
1

1

0 1
1

( )

ln ln( ).

Y
Y

Y

Y

Y

K
D K

i K
i

K

i Y K
i

L L

L D K L

− +
+

=

+
=

=

= − +

∏

∑
 (2.49) 

Since 1 11 0
Y YK KL λ+ +< ⇒ < , substituting i

iL eλ=  and 1 1ln
Y YK KLλ + +− = , we get 

 

1
0

1

1
0

1

,

Y

Y

Y

Y

K

i
i

Y
K

K

i
i

Y
K

D K

D K

λ

λ

λ

λ

=

+

=

+

− = − +

= +

∑

∑
 (2.50) 

where KY is the largest integer whereby the following is true: 
1

0
YK

i
i
λ

=

≥∑ . Essentially, 

the Kaplan-Yorke conjecture states the Kaplan-Yorke dimension, 

 1

1

Y

Y

K

i
i

KY Y
K

D K
λ

λ
=

+

+
∑

� , (2.51) 

gives a good estimate of D0. For physically realizable systems of dimension 3: 

 1

3

2 ,KYD λ
λ

= +  (2.52) 

where 1λ  is the largest positive Lyapunov exponent and 3λ  is the negative Lyapunov 

exponent. The middle Lyapunov exponent, 2λ , is theoretically 0, otherwise the 

attractor is unstable [75]. In practice, it is hardly possible for any computed Lyapunov 

exponent to be exactly 0, due to noise and computational errors. 
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One problem is that for dimensions greater than 2, there are situations whereby DKY 

overestimates D0 [71]. Nonetheless, the weight of numerical evidence [76] supports 

the Kaplan-Yorke conjecture, and it can give good estimates for the usual systems 

encountered, such as the Lorenz system. 

 

2.4.5 Kolmogorov Entropy 

Sensitive dependence on initial conditions results in entropy increase, due to the loss 

of positional information with time. The Kolmogorov entropy (KE) of an attractor can 

be considered as the rate of information loss along the attractor, or as a measure of the 

degree of predictability of points along the attractor, for an arbitrary initial point. It 

can be computed from Pesin's identity [45], i.e. KE is equivalent to the sum of the 

positive Lyapunov exponents. 

 

2.4.6 The Horizon of Predictability 

The Horizon of Predictability (HOP) [13] is estimated as the average time required for 

trajectories that are within 1% of root mean square attractor size, to separate to 50% 

of root mean square attractor size. From the definition of the Lyapunov exponents, 

this can be written as 

 1
0.50
0.01

teλ= , (2.53) 

where λ1 is the largest positive Lyapunov exponent. From Eq. (2.53), HOP can be 

estimated as  

 
1

ln(50)t
λ

= . (2.54) 
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2.5 Contributions of this Chapter 

• Finding the first minimum in the average mutual information is related to the 

maximum entropy method (Section 2.2).  

• The reason why a delay of 1 or 2 is prescribed for chaotic maps is explained. Thus, 

a sounder theoretical basis had been put forward to explain the rules for choosing 

embedding delay, which had previously been prescriptive (Section 2.2). 

• Since the use of Taken's Embedding Theorem is necessary for dynamic 

reconstruction, it is vital to have a reliable method of extracting the embedding 

dimension, even in the presence of high level of noise. Instead of using one 

algorithm for estimating embedding dimension, GFNN and Cao's method are used; 

this is useful for double checking (Section 2.3). If the estimated embedding 

dimension is too large, it may result in spurious Lyapunov exponents being 

computed.  

 

2.6 Summary 

A brief introduction to chaos theory was given. The main focus was to explain how 

embedding delay, embedding dimension and chaotic invariants are obtained. These 

quantities will be crucial in setting up a RBF network to model a chaotic system. 

Comparing the estimated chaotic invariants of the observed data, and the estimated 

chaotic invariants of the predicted time series also provides an indication of the 

performance of the predictor.  
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CHAPTER 3 

RBF Networks and Variants 

Prediction of a chaotic time series is a nonlinear problem which can be handled by 

RBFs, because of their universal approximation capabilities [77]. In the presence of 

noise, the problem becomes ill-posed, and regularization (Section 3.6.1) is required. 

In this chapter, the RBF network and variants are introduced, in the context of time 

series prediction. 

 

3.1 Predictive Modelling 

Consider prediction of a scalar time series with Ny samples, using delay coordinates, 

as in Ref. [78]: 

 ( )ˆˆ( ) ( ), ( ), , ( )Ey n T f y n y n y n dτ τ τ+ = − − +"  (3.1) 

where T +∈]  is the number of time steps ahead being predicted, y(n) is the actual 

data at sample n, ˆ ( )f i  is the estimated function of the actual system ( )f i , producing 

the estimate ˆ( )y n T+  at sample n T+ . The embedding dimension, Ed , is found using 

the method of Global False Nearest Neighbours (GFNN) [62] and Cao's method [57], 

while τ is the embedding time delay, which is found from the first minimum in the 

mutual information [49]. 

 

The training set and the test set are normalized by subtracting the mean of the training 

set (µtrain), and dividing by the standard deviation (σtrain) of the training set. This 

obviates the need for a bias, and also guards against numerical problems.  
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3.1.1 Information Preservation Rule 

Next, consider Eq. (3.1) recast in a different form as in Ref. [22] where 1T = : 

 ( )ˆˆ( 1) ( ), ( 1), , ( 1)Ey n f y n y n y n d τ+ = − − +" . (3.2) 

The rationale is the information preservation rule [79], i.e. all available information 

should be preserved optimally and used efficiently.  

 

The difference in using Eq. (3.2) is that all information between lags is utilized, right 

up to and excluding the predicted value. Eq. (3.2) may appear strange initially, 

because it is equivalent to having 1τ = , and with the embedding dimension 

 Ep d τ= , (3.3) 

which is too high. However, it is the length of the time window which is important 

[80, 81]. The length of the time window is defined by 

 ( 1)w Edτ τ= − . (3.4) 

 

3.1.2 Vector Notation 

It appears natural to group the time delay coordinates in a vector 

 ( )( ) ( ), ( 1), , ( ( 1))n y n y n y n p= − − −ψ " , (3.5) 

where p is also the number of nodes in the input layer of the predictor. 

 

Vector notation is much more concise and powerful; an Autoregressive (AR) model 

can be expressed by: 

 ( ) ( 1) ( )H
ly n n nη= − +a ψ , (3.6) 

where 1p−∈a ^  contains the coefficients of the AR model of order 1p − . H is the 



 36

Hermitian operator, ( )( ) ( ), ( 1), ( ( 2))l n y n y n y n p= − − −ψ "  and ( )nη  is a 

white noise process. The reason why AR processes are classified as linear stochastic 

processes now becomes clear: the Hermitian inner product is a linear operator.  

 

It also suggests that a nonlinear one-step predictor can perform the same job as the 

linear one: 

 ( )ˆˆ( ) ( 1) ( )ly n f n e n= − +ψ . (3.7) 

The predictor ˆ ( )f i  "predicts" a value ˆ( )y n  with ( )e n  as the model error. Here, ( )y n  

is the observed data, ( 1)l n −ψ  is the input vector. In fact, prediction of a chaotic 

system can be regarded as a nonlinear AR problem [82]. 

 

Embedding in phase space is a geometrical method, and the emphasis is on the 

manipulation of vectors and matrices. Depending on the context, yi, ˆiy  and iψ  are 

used, instead of y(n), ˆ( )y n  and ( )nψ , because the brackets can become unwieldy.  

 

The collection of all iψ  forms a matrix of dimension N pψ × , while the collection of 

all yi forms a vector of desired output y, of dimension Nψ , where yN N pψ = − . Note 

that Nψ  is the maximum number of iψ  and yi which can be formed from a single 

scalar time series with Ny samples. The use of different subscripts emphasises the 

difference between n and i, as [1, ]yn N∈  whilst [1, ]i Nψ∈ .  

 

In the context of neural networks, typically the data set is split into the training set 

(see Glossary) with trainNψ  training examples, or design sets (see Glossary) with 



 37

designNψ  training examples. In this work, N refers to the number of examples available 

for training, be it in the training set or design set. Where it is necessary to be explicit, 

trainNψ  or designNψ  will be used. 

 

3.2 RBF Architecture 

Typically, a RBF network has p input nodes, Mc centers, M linear weights, 1 bias, w0, 

and 1 output node, 1ˆiy + , connected as in Figure 3.1. Each j-th center is associated with 

a nonlinear function called a basis function, ( )jφ i . This work focuses on RBF 

networks which utilize clustering methods to organize the centers. The clustering 

procedures may produce empty clusters (Section 3.3.2), which are dropped. Hence, 

cM M≥ , with equality only when there are no empty clusters.  

       w1

w2

           wM

.

.

.

        w0

.

.

.

.

.

.

1( )φ i

2 ( )φ i

3( )Mφ i

( )
cMφ i

Σ
1ˆiy +

yi

yi-1

yi-p+1

 

Figure 3.1 Schematic of a RBF network for time series prediction. 
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A RBF network can also be seen as a weighted sum of nonlinear functions: 

 ( )1 0
1

ˆ
M

i j j ij
j

y w w φ ρ+
=

= +∑ , (3.8) 

where wj is the j-th weight, ijρ  is the norm (Euclidean norm, for ordinary RBFs) 

between the i-th point, iψ , and the j-th center, jµ , and ( )jφ i  is the j-th basis function. 

 

Typically, large numbers of basis functions may be required for real life problems, i.e. 

Haykin et al. used 1500 centers to model sea clutter data [22]. Another issue is that 

the standard deviations of the basis functions are usually chosen in an ad-hoc manner. 

Orr [83] showed that better performance was achieved by having a single adjustable 

basis function width, rather than a similar RBF, where the number of centers, Mc, is 

adjustable, but with only one fixed width. 

  

In a multi-dimensional setting, the most general way to adjust the width of a basis 

function is to modify its associated covariance matrix. This naturally results in 

Elliptical Basis Functions (EBFs). By sacrificing radial symmetry, it may be possible 

to approximate a function using less basis functions, resulting in a simpler model. 

This may be useful for practical data sets which are large and multivariate. 

 

3.3 Clustering 

Clustering is the unsupervised process of partitioning N data points into Mc sets [84]. 

It is useful for organizing the centers in the hidden layer [85, 86]. Instead of using N 

centers for N data points, RBF with clustering uses M centers (after subtracting empty 

clusters, if any), which is faster when N M�  (Section 3.5).  
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A brief outline of the k-means clustering algorithm and its relatives: 

 

1. Randomly initialize the Mc groups, by selecting Mc data points and using them as 

the centers. 

2. At each iteration of the clustering process a distance matrix is formed: 

 ( )( )t

c

i
ij N M×

=D ρ , (3.9) 

where it is the iteration number and ijρ  is the distance between the i-th point and 

the j-th center. 

3. Each i-th point has a membership value, [ ]0,1ijb ∈ , with respect to each j-th center. 

The membership value is assigned based on the value of ijρ . The membership 

value is binary in the case of k-means clustering, and fuzzy for fuzzy c-means 

(FCM) [87] and Gustafson-Kessel (GK) clustering [88]. For k-means clustering, 

this means that the points which are nearest to the j-th center are assigned 1ijb = , 

and the other points are assigned 0ijb = . Expectation Maximization (EM) (see 

Appendix D or Ref. [89]) works with probabilities, so it can also be considered to 

be a soft clustering method [90]. 

4. The means are recalculated. 

5. Repeat steps 2 to 4, and terminate when memberships stop changing. Another 

possibility is to stop when the positions of centers stop changing. Alternatively, 

stop after a predetermined number of iterations. 

 

In general, clustering algorithms typically minimize a functional Jm: 
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 2

1 1

cMN
m

m ij ij
i j

J b ρ
= =

=∑∑ , (3.10) 

where [ ]0,1ijb ∈  is the membership of point i in cluster j, and ijρ  is the distance 

between iψ  at point i and jµ  (center of cluster j). The weighting exponent, m, has to 

be greater than 1 and is usually set as 2.  

 

The use of EBFs (Section 3.4.1) naturally suggests the use of GK clustering, which is 

essentially the generalized form of FCM. It uses the distance 

 ( )
1

1( ) ( )T p
ij i j j j j i jv −⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
ψ µ A A ψ µρ , (3.11) 

where vj is a constant usually set to 1, and the fuzzy covariance matrix Aj is defined as 

 1

1

( )( )
N

m T
ij i j i j

i
j N

m
ij

i

b

b

=

=

− −∑

∑

ψ µ ψ µ
A � . (3.12) 

 

The method of Babuska et al. [91] implements GK clustering with two modifications 

to avoid numerical problems:  

1. constraining the condition number (ratio of largest eigenvalue to smallest 

eigenvalue) of each covariance matrix. 

2. regularization of each covariance matrix by 

 ( )
1

0(1 ) p
j c j c− γ + γM A A I� , (3.13) 

where A0 is the covariance matrix of the whole data set, and [0,1]cγ ∈  is the 

regularization parameter. The value of γc determines the shape of the clusters, as 

the distance is now 
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 ( )
1

1( ) ( )T p
ij i j j j j i jv −⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
ψ µ M M ψ µρ , (3.14) 

which is similar to Eq. (3.11). When γc = 1, all the covariance matrices are equal, 

and the clusters are spherical. However, γc is effectively a hyperparameter, since it 

cannot be determined by training. Thus, one may have to perform cross validation 

in order to find the proper value of γc, but this would increase computational 

requirements.  

 

3.3.1 Erraticity 

Suppose some assumptions are made about the given data [87]: 

1. The samples come from a known number of classes, cM +∈] . 

2. The prior probabilities ( )jP ω for each class is known, where j = 1, ..., Mc.  

3. The forms for the class-conditional probability densities ( | , )j jp ωψ θ are known, 

where j = 1, ..., Mc.  

4. The values for each of parameter vector jθ  is unknown, where j = 1, ..., Mc.  

5. It is unknown which data point belongs to which class. 

 

With these assumptions, the pdf for the data samples can be given by a mixture 

density (sum of pdfs): 

 
2 2 2

2 1
( | ) ( | , ) ( )

cM

j j j
j

p p Pω ω
=

= ∑ψ θ ψ θ , (3.15) 

where 
1

cM

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

θ
θ

θ
#  and j2 is a dummy variable.  
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Consider a data set 1{ , }N= ψ ψ"D  of N samples drawn independently from the 

mixture density in Eq. (3.15), with θ fixed but unknown. The likelihood of the 

observed samples is defined by 

 
1

( | ) ( | )
N

k
k

p p
=
∏θ ψ θ�D . (3.16) 

The corresponding log-likelihood is 

 
1

( ) ln ( | )
N

i
i

l p
=

=∑θ ψ θ . (3.17) 

The maximum-likelihood estimate θ̂ is the value of θ which maximizes ( | )p θD . If 

( | )p θD  is assumed to be differentiable with respect to θ, then  

 [ ]
1

( ) 1 ( | )
( | )

N

i
ij i j

l p
p=

∂ ∂
=

∂ ∂∑θ ψ θ
θ ψ θ θ

. (3.18) 

Substituting Eq. (3.15) in Eq. (3.18) results in 

 
2 2 2

21 1

1

( ) 1 ( | , ) ( )
( | )

1 ( | , ) ( ) ,
( | )

cMN

i j j j
i jj i j

N

i j j j
i i j

l p P
p

p P
p

ω ω

ω ω

= =

=

⎡ ⎤∂ ∂
= ⎢ ⎥∂ ∂ ⎣ ⎦

∂ ⎡ ⎤= ⎣ ⎦∂

∑ ∑

∑

θ ψ θ
θ ψ θ θ

ψ θ
ψ θ θ

 (3.19) 

assuming the partial derivative vanishes if 2j j≠ . Introducing the posterior 

probability: 

 
( | , ) ( )

( | , )
( | )

i j j j
j i

i

p P
P

p
ω ω

ω =
ψ θ

ψ θ
ψ θ

, (3.20) 

and substituting Eq. (3.20), ( )

j

l∂
∂
θ
θ

 can be rewritten as: 
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1

1

1

( )( ) ( | , )
( | )

( | , )
( | , )

( | , )

( | , ) ln ( | , ) .

N
j

i j j
ij i j

N
j i

i j j
i i j j j

N

j i i j j
i j

Pl p
p

P
p

p

P p

ω
ω

ω
ω

ω

ω ω

=

=

=

∂ ∂ ⎡ ⎤= ⎣ ⎦∂ ∂

∂ ⎡ ⎤= ⎣ ⎦∂

∂ ⎡ ⎤= ⎣ ⎦∂

∑

∑

∑

θ ψ θ
θ ψ θ θ

ψ θ
ψ θ

ψ θ θ

ψ θ ψ θ
θ

 (3.21) 

The maximum likelihood solution occurs when ( )

j

l∂
=

∂
θ 0
θ

. Assuming mixture density 

is Gaussian with unknown mean vectors, j j=θ µ  and 
1

cM

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

µ
µ

µ
# . Then 

 
1 22 11ln ( | , ) ln (2 ) ( ) ( )

2
p T

i j j j i j j i jp ω π −⎡ ⎤⎡ ⎤ = − − − −⎣ ⎦ ⎢ ⎥⎣ ⎦
ψ µ Σ ψ µ Σ ψ µ , (3.22) 

where jΣ  is the covariance matrix, and 

 1ln ( | , ) ( )i j j j i j
j

p ω −∂ ⎡ ⎤ = −⎣ ⎦∂
ψ µ Σ ψ µ

µ
. (3.23) 

Substituting Eq. (3.23) into Eq. (3.21),  

 1

1
( | , ) ( ) 0

N

j i j i j
i

P ω −

=

− =∑ ψ µ Σ ψ µ  (3.24) 

is obtained. Multiplying Eq. (3.24) by jΣ  and rearranging terms, 

 1

1

( | , )

( | , )

N

j i i
i

j N

j i
i

P

P

ω

ω

=

=

=
∑

∑

ψ µ ψ
µ

ψ µ
. (3.25) 

Eq. (3.25) suggests an iterative scheme for improving estimates of the mean [87]: 

 1

1

ˆ( | , ( ))
ˆ ( 1)

ˆ( | , ( ))

N

j i t i
i

j t N

j i t
i

P i
i

P i

ω

ω

=

=

+ =
∑

∑

ψ µ ψ
µ

ψ µ
, (3.26) 
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where ˆ jµ  is the estimate of jµ , it is the iteration number and 
1ˆ

ˆ
ˆ

cM

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

µ
µ

µ
# . This can be 

viewed as hill climbing for maximizing the log-likelihood function l(µ) [87], and like 

all hill climbing procedures, there is no guarantee of reaching the global maximum.  

 

For example, consider a mixture model consisting of two univariate Gaussians as a 

function of their means, µ1 and µ2, as in Figure 3.2. Since the Gaussians are univariate, 

each jµ  is actually a scalar and 1

2

µ
µ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

µ . Suppose there are 2 clusters with means at 

a and b. There are 2 possibilities for µ: a

a
b
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

µ  and b

b
a
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

µ . This results in 2 local 

maxima for l(µ) (which is a function of µ1 and µ2) in Figure 3.3. 

 

 

Figure 3.2 Mixture model consisting of two univariate Gaussians as a function of 

their means, µa and µb [87]. 
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Figure 3.3 Trajectories on l(µ1, µ2) for estimation of means using k-means [87]. 

 

The ordinary k-means algorithm can be regarded as an unsupervised clustering 

technique that estimates the means of the 2 Gaussians. It is an iterative process, a 

form of stochastic hill climbing in the log-likelihood function l(µ). A brief summary 

of the k-means algorithm is given below. 

 

1. Randomly initialize the Mc centroids. 

2. Classify the samples according to the nearest jµ . 

3. Recompute jµ  

4. Repeat steps 2 & 3 until there is no change in jµ  
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Figure 3.4 Trajectories for k-means clustering, adapted from Ref. [87]. 

 

The contours in Figure 3.4 represent equal values of the log-likelihood function l(µ). 

The dots indicate parameter values after successive iterations of the k-means 

algorithm. The trajectories on l(µ) in Figure 3.3 and Figure 3.4 illustrate that the k-

means algorithm can be sensitive to initial starting conditions and converge to some 

local maxima [92]. Six of the starting points shown lead to local maxima, whereas 

two lead to a saddle point near µ = 0. In fact, it was shown by Selim and Ismail [93] 

that under certain conditions, the algorithm may fail to converge to a local optimum.  

 

Since the initial centers are randomly placed, the position of each center and the 

number of members in each cluster could be different each time clustering is 

2 1µ µ=  



 47

performed, which ultimately affect the regression results. This means that the 

generalization errors estimated by cross validation for same Mc, but different 

regularization parameter γ (Section 3.6.1), could become "erratic", depending on the 

initialization. It is highly tempting to use the word "inconsistent" to describe this 

phenomenon, but it is already used in statistics. Assume that one possesses data 

known to be generated by a bimodal process where each mode is generated by 

uniform noise, and there are no overlaps between the 2 sets (in contrast to the 

Gaussians in Figure 3.2). Hence, k-means is a consistent estimator of the position of 

the 2 means. On the other hand, it is possible to design situations whereby "erraticity" 

is possible, regardless of the number of data points in the groups. Thus, the 2 concepts 

are distinct. 

 

One way to deal with the problem of "erraticity" is to redo the clustering multiple 

times, but this increases computational complexity significantly, since clustering itself 

is time-consuming. It appears that caching the clustering results (Section 3.6.5) is the 

most practical solution. This not only sidesteps the "erraticity" problem, but also 

reduces the computational load.  

 

One may perhaps worry that the intermediate results that are cached may nevertheless 

be subject to the idiosyncrasies of that particular run of the clustering algorithm. 

However, cross validation will not be affected much; the values of Mc are located 

sparsely, since Mc is chosen from a logarithmic scale (Section 3.6.3). Hence, the 

clustering results for each value of Mc should be quite different from those produced 

using other values of Mc.  
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3.3.2 Empty Clusters 

Note that M and Mc may differ ( cM M≤ ); empty clusters may occur, especially when 

the number of members per cluster is low ( / 1cN M → ). Figure 3.4 illustrates the 

possibility of empty clusters occurring for k-means. Depending on the initial 

conditions, and how the clustering algorithm is initialized, it is possible to construct 

some examples whereby empty clusters may occur. If 2 centers are identical, 

members from both groups will be allocated to one cluster, and the other cluster will 

become empty.  

 

A partition matrix at the it-th iteration is defined by ( )( )t

c

i
ij N M

b
×

P � , where bij 

indicates membership of the i-th point (i-th row) with respect to the j-th center (j-th 

column). If the initialization begins with the partition matrix, it is possible to assign 

memberships in such a way that identical centers result. For example, consider a one-

dimensional data set [72 4, 5], to be clustered into 2 groups. Given 

 (1)

1 0
0 1
0 1
0 1
1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

P , (3.27) 

two centers are formed, each at 3. 

 

If the initialization begins with random, unique points selected as the centers, states 

with identical centers may appear to be unreachable. Consider an example: suppose it 

is necessary to cluster the set {3 - ε, 3, 3 + ε} into 2 groups. If ε is some arbitrary 

number, usually 2 groups will be formed. However, if ε is less than machine precision, 
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then 2 different centers would not be produced, and in fact an empty cluster occurs. 

As far as the machine is concerned, the 2 centers are at identical positions.  

 

It may appear that this example is merely an academic exercise, since the occurrence 

of empty clusters appears to be unlikely. However, if the data set is long enough, 

different points in an embedding can be arbitrarily close due to transitivity (See 

Glossary). Hence, 2 clusters which are very close together may result in empty 

clusters, due to finite precision. There is also the rare possibility whereby the data is 

perturbed by observational noise such that a few of the points may come close enough. 

 

In Figure 3.4, as long as any 2 centers, j1 and j2, coincide on the "critical line" 

1 2
( ) ( )j t j ti iµ µ=  at any iteration it, 2 identical centers will be formed. If there are Mc 

centers in the univariate problem, then the log-likelihood function becomes Mc-

dimensional. Figure 3.4 can be regarded as a plot of the "state space" of the clustering 

algorithm, because the "state" of the algorithm is determined by the location of the 

means. In a Mc-dimensional "state space" plot there can be 

1
2

2 1
c

c c c

M
M M Mlines

i
i

N C C
=

= = − −∑  "critical lines" which may result in empty clusters. 

Theoretically, the chance of any trajectory starting in these lines is of probability 

measure 0. However, the trajectory does not have to start on any of these lines; the 

trajectory just has to reach any of them. Besides the local maxima, the "critical lines" 

are also "attractors". It is not necessary for the trajectory to touch any of the lines; it is 

suffcient for any of the local maxima to attract the trajectory such that it touches a line. 

Furthermore, due to finite precision, the trajectory only needs to reach a distance of 

epsilon (limit of machine precision) away from the "critical line".  
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Symmetry of l(µ) in Figure 3.3 results from the fact that if a local maxima exists at 

a

b

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

µ
µ
µ

, then there should be another one near b

a

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

µ
µ
µ

. The two possibilities is a 

consequence of the fact that there are 2 different arrangements in the way the groups 

can be labelled, provided µa ≠ µb. The first cluster can have mean µa and the second 

cluster can have mean µb or vice versa. If there are Mc centers, symmetry implies that 

there can be Mc! local maxima. This also implies a lot of saddle points, and the 

possibility that clustering will not converge at any local maxima is relatively high. 

Nonetheless, the large number of local maxima means that there is a chance that one 

of them will be near enough to a "critical line" to attract a trajectory. 

 

Note that for the case whereby each jµ  is a p dimensional vector ( )1 Tp
j jµ µ" , it 

may be simpler to consider trajectories in each dimension. Since convergence is 

achieved only if the trajectories converge in each dimension, this means that 

convergence is achieved if the same trajectory converges in all of the p "state space" 

plots (each is Mc-dimensional).  

 

Once an empty cluster is encountered, it may be dropped, i.e. the number of centers is 

reduced by 1, and clustering resumes. Since this does not happen too frequently, 

usually cM M≈ . If Singular Value Decomposition (SVD) (Section 3.5.2) is used for 

solving the least squares stage, the issue of empty clusters can be side-stepped. 

 

Alternatively, another way to deal with the empty cluster is to find a point which is 

farthest from its centroid, and use it to form the nucleus of a new cluster and continue 
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clustering from there. Thus, the number of clusters will be conserved. This method is 

implemented in some commercial implementations, such as in MATLAB©. 

 

At first glance, it may seem that fuzzy clustering methods are immune to the 

occurrence of empty clusters. However, since it is simpler to have one covariance 

matrix associated with each point, the fuzzy partition matrix is usually converted into 

a hard partition matrix. The simplest way to do this is to assign each point to the 

group whereby the point has maximum membership. Unfortunately, this winner-

takes-all approach may also result in empty clusters, since there may be groups which 

do not "win" any point. A simple solution is to reallocate points which have the 

highest memberships for that empty cluster, away from their actual groups, provided 

they do not empty their group in the process. A different perspective is to tolerate 

empty clusters, and to remove them after clustering is completed.  

 

3.3.3 Hierarchical Clustering 

Hierarchical Clustering [94] is an alternative to k-means clustering and related 

approaches. For the agglomerative approach, each cluster attracts new members and 

snowballs until the algorithm halts. Conversely, for the divisive approach, the whole 

data is divided into separate groups, and these groups are further subdivided, a little 

like an amoeba which is splitting. In this work, only the agglomerative approach is 

studied. 

 

The criterion for deciding membership of points in any cluster is distance; it is 

possible to use the Euclidean norm and the Mahalanobis norm as before. For the 
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method of deciding membership called single linkage, the nearest neighbour between 

groups constitutes the distance between clusters.  

 

Consider the distance matrix ( )1 2

( )ti
i i N N×

D � ρ , where it is the iteration number and 

1 2i iρ  is the distance between the i1-th point and the i2-th point. For example, 

 (1)

1 0
2 2 0
3 6 5 0
4 10 9 4 0
5 9 8 5 3 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

D . (3.28) 

There are 5 data points (N = 5), with the corresponding labels at the left of the matrix. 

The smallest distance is that between points 1 and 2; hence these are joined to form a 

cluster. The distance between this cluster and point 3 is ( )(1) (1)
1,3 2,3min , 5=D D , where the 

subscripts of 
1 2

( )
,
ti

i iD  refer to the i1-th row and i2-th column of (1)D . Similarly, the 

distance from this cluster to point 4 is 9, and the distance to point 5 is 8. A new 

distance matrix D(2) is formed, consisting of distance between points and between 

point(s) and center(s): 

 (2)

{1,2} 0
3 5 0
4 9 4 0
5 8 5 3 0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

D . (3.29) 

The next iteration results in: 

 (3)

{1, 2} 0
3 5 0

{4,5} 8 4 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

D . (3.30) 

Note that entries of ( )tiD  consist of distance(s) between points, distance(s) between 

point(s) and center(s), and distance(s) between centers. Individual points or groups are 
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gradually grouped together. The process is repeated until all the groups are finally 

grouped together, in a tree structure called a dendrogram (See Figure 3.5). 

1 2 3 4 5
2

2.5

3
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4

4.5

5

D
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ce

 

Figure 3.5 Dendrogram of clustering using single linkage. 

 

Besides single linkage, another possibility of deciding membership is Ward's linkage, 

which is based on minimizing the increase in the total within cluster error sum of 

squares. Ward's method tends to find (or create) clusters of relatively equal sizes and 

shapes.  

 

The objective during each iteration is to minimize 
1

cM

j
j

ESS
=
∑ , the increase in total 

within-cluster error sum of squares [94]. For each cluster, 

 
2

1

jN

j i j
i

ESS
=

−∑ ψ� µ , (3.31) 

where Nj is the number of points in the j-th cluster, and jµ  is the centroid of the same 

cluster. Instead of Euclidean distance, the following quantity is used to indicate the 

distance between clusters:  

 1 2

1 2

1 2

2j j
j j

j j

N N
N N

−
+

µ µ , (3.32) 
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where the j1-th cluster has 
1j

N  points with 
1j

µ as the centroid and the j2-th cluster has 

2j
N  points with 

2j
µ as the centroid. 

 

Hierarchical clustering offers a deterministic outcome, and is thus not subject to the 

idiosyncrasies of erraticity. It is also immune to the problem of empty clusters. 

However, the problem is that it is irrevocable; it is not possible to merge clusters once 

they are split, or to divide clusters once they are formed. Consider a set {-2.2, -2, -1.8, 

-0.1, 0.1, 1.8, 2, 2.2}. The data contains 3 obvious clusters, but the first split would 

form 2 separate clusters, {-2.2, -2, -1.8, -0.1} and {0.1, 1.8, 2, 2.2}. There is no way 

to form the set {-0.1, 0.1}. Nonetheless, hierarchical clustering appears to offer an 

interesting alternative.  

 

3.3.4 Other Alternatives 

The Expectation Maximization (EM) algorithm may also be used as a clustering 

method [95]. Actually, the EM and FCM algorithms are related [96]. Since the  

k-means algorithm is often employed to initialize the EM algorithm (see Appendix D), 

the outcome of the EM algorithm can be non-deterministic. 

 

Yet another alternative is the Self Organizing Map (SOM) [97], which may also be 

used for the clustering stage. Since the SOM is usually initialized by the assignment 

of usually random weights, the outcome of the SOM can also be non-deterministic. 

Incidentally, an early version of k-means clustering is closely related to the SOM 

algorithm [98]. 
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3.4 Basis Functions 

Each center is assigned a basis function. Gaussian basis functions are used throughout 

the simulations: 

 ( ) 2NF
ijh

j ij e ρφ ρ −= , (3.33) 

where ρij  is the norm between the i-th point, iψ , and the j-th center, jµ , and hNF is a 

normalizing factor. Usually the normalizing factor for Gaussian kernels is 1
2

NFh = . In 

this work, the prescription suggested by Haykin [98] is followed: 

 2
max

NF Mh
d

= , (3.34) 

where dmax is the maximum Euclidean distance between the centers. Eq. (3.34) 

ensures that the individual basis functions are not too peaked or too flat. The choice of 

normalizing factor deserves some mention, because it cannot be simply assumed that 

the change in the normalizing factor will be absorbed by the weights. When there are 

multiple centers, approximation (3.35) holds only when all other centers and weights 

can be ignored, i.e. the other centers are very far away, and the weights are of 

reasonable size (i.e. true with weight regularization): 

 ( )2

1 0ˆ
NF

ij
h

i jy w w e ρ−
+ ≈ + . (3.35) 

 

3.4.1 Choice of Norm for Inputs 

Typically, the Euclidean norm is used for ordinary RBFs. Park and Sandberg [99] 

extended RBFs to the class of EBFs with diagonal norm-inducing matrices (called 

Diagonal norm-inducing matrix Basis Functions or DBFs in this work), and proved 

that they had universal approximation capabilities. The norm in this case is 
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 ( )2 2 2
1 2( ) diag ( )σ σ σρ − − −⎡ ⎤= − −⎣ ⎦ψ µ ψ µ"j j pj

T
ij i j i j , (3.36) 

where σpj is the "smoothing factor" in the p-th coordinate for the j-th kernel, and the 

diagonal matrix is p p× .  

 

A more general form of the norm ρij  would be  

 ( ) ( )T
ij i j j i jρ = − −ψ µ Λ ψ µ , (3.37) 

where jΛ  is the j-th norm-inducing matrix. According to Park [100], the issue of 

universal approximation for non-diagonal norm-inducing matrices appears to be an 

open problem. Nonetheless, it seems reasonable to conjecture that most of the 

theorems in Ref. [99] could be applied to positive definite norm-inducing matrices, 

especially since positive definite basis functions have been discussed in Ref. [101], 

for the interpolation problem. This suggests the Mahalanobis norm (Appendix C), 

where 1
j j

−=Λ M  and M is symmetric positive definite. The use of the Mahalanobis 

norm results in EBFs which are unconstrained in their orientations.  

 

3.4.2 Data Driven Basis Functions 

The universal approximation theorem [77, 99] states that a suitable RBF or DBF can 

approximate any function, but is silent about the methods required to find the 

parameters of the RBF or DBF. It is not feasible to tune all elements of all jΛ : 

{ }
1

M

j j=
Λ ; each jΛ  has ( 1)

2
p p +  unique elements, resulting in a total of ( 1)

2
Mp p +  

elements to tune. If each jΛ  is constrained to be diagonal, there would still be Mp 

elements. Computational complexity would still be a problem in the case of chaotic 
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time series prediction; usually 100M ≥  and 3p ≥ . Hence, some way to determine 

the elements of jΛ  cheaply is required.  

 

At each it-th iteration of the clustering process, an cN M×  partition matrix 

( )( )t

c

i
ij N M

b
×

P �  is available. Usually, the information in ( )tiP  is not used, because only 

the locations of the centers are of interest. Utilizing the information in ( )tiP  results in a 

"data-driven" approach, which allows one to estimate the statistical properties of each 

cluster, i.e. covariance and higher order statistics, and to use these properties to adjust 

the basis functions. It is very likely that the solution obtained by a data driven 

approach is sub-optimal. If data points are distributed randomly and uniformly, there 

is little advantage of clustering algorithms over mere random selection of centers for 

the RBF networks. However, this would not be true for a chaotic system; the presence 

of an attractor ensures that state space is not homogeneous. The clustering process 

would produce a variety of clusters of varying sizes. If 1 0i i+− →ψ ψ , this implies 

1 0i iy y +− → , since ( )f i  is continuous for chaotic systems. Small, concentrated 

clusters correspond to clusters with low variance. If these clusters are associated with 

basis functions which decay rapidly with distance, they may be useful for modelling 

fine details in the function being approximated. On the other hand, basis functions 

which decay slowly with distance would be useful for regions which do not require 

much detail; otherwise too many basis functions would be required. 

 

This suggests the use of basis functions with varying widths, by equating each Mj to a 

matrix Cj which is determined by the data. A possibility is to have 
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( )tr j

j p
=

S
C I , (3.38) 

where Sj is the sample covariance matrix of the j-th cluster. This produces "spherical" 

basis functions; each basis function is associated with a different width. In the one-

dimensional case, Eq. (3.38) reduces to a variance term. The networks which use 

(3.38) for the norm inducing matrix are called Trace Basis Functions (TBFs).  

 

A natural extension is to consider basis functions with varying orientations (each 

cluster is associated with a different covariance matrix). One possibility is to use the 

full sample covariance matrix: 

 j j=C S . (3.39) 

Another possibility is 

 ( )diagj j=C S . (3.40) 

The networks employing Eq. (3.40) result in DBFs.  

 

3.4.3 Regularized Covariance Matrices 

Positive definite matrices have positive determinants and are invertible; in contrast, 

each Sj is positive semidefinite (see Appendix B) and thereby possibly singular. If any 

resulting jΛ  is singular, it may confound the linear layer of the EBF. Hence, it is 

advisable to check if 1
j
−M  is singular. Since SVD can be used for checking the 

condition of a matrix and also for matrix inversion, one single call to SVD suffices for 

each 1
j
−M . Thus, checking for singularity is an extra burden which is negligible. 

Furthermore, there may be matrices where there are only a few points, which are 

automatically singular. If one simply substitutes an identity matrix, this obviates the 
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need for extra computations. Hence, there will be a combination of "hyperspheres" 

and "hyperellipsoids". 

 

Nonetheless, it is also possible to regularize Mj, similar to the way sample covariance 

matrices are regularized in regularized discriminant analysis by the addition of I 

multiplied by a constant [0,1]bγ ∈  [102]. Thus, Mj becomes: 

 (1 )j b j bγ γ= − +M C I . (3.41) 

Another way to regularize the matrices is suggested by the fact that since SVD can be 

used for inverting an ill-conditioned matrix, the inverted matrix is not necessary well 

conditioned. Thus it is also logical to regularize 1
j
−M , resulting in 

 1(1 )j a j a
−= − γ + γΛ M I , (3.42) 

where [0,1]aγ ∈ . The addition of aγ I  in Eq. (3.42) forces jΛ  to be positive definite 

(see Appendix B) and makes the "hyperellipsoids" more "spherical". Note that the 

combination 

 ( )( ) 1
1 (1 )j a b j b a

−
= − γ − γ + γ + γΛ C I I  (3.43) 

is excessive, since the inverse of a positive definite matrix is also a positive definite 

matrix (see Appendix B). 
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3.5 Linear Layer 

The linear layer of the RBF or the EBF refers to the layer which performs a weighted 

sum of the outputs from the various basis functions and the bias. One could use 

Gaussian elimination, SVD [103], or conjugate gradient method as applied to linear 

systems [104, 105] to find the weights in the linear layer, i.e. solve the linear system: 

 ( ) 1T T−
=w G G G y , (3.44) 

where w is the weight vector and ( )( )ij N M
φ ρ

×
G � . 

 

3.5.1 Computational Complexity 

For the interpolation case, i.e. N M= , the linear layer has computational complexity 

of O( 3N ). If N M� , clustering reduces the computational complexity of the linear 

layer to O( 3M ). The computational complexity required is only ( )3M N  of what it 

would be originally, provided the overhead induced by clustering is ignored. However, 

some clustering methods, such as hierarchical clustering, have computational 

complexity of O( 3N ), but state of the art modifications can reduce it to O( 2N ) [106]. 

Thus, it is not true that clustering always speeds up RBFs, since this is 

implementation specific.  

 

Also, it is not always true that clustering will solve the problem of the curse of 

dimensionality (see Glossary), because clustering algorithms are themselves prone to 

it. For example, each iteration of the k-means algorithm requires O(McNp) 

multiplications to evaluate the squared Euclidean distance. The square root is 

unnecessary; see Eq. (3.87). The curse of dimensionality means that the number of 
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centers required to model a function increases exponentially as p
cM m= , where 

m +∈\  is an arbitrary constant. The number of points required to sample the data also 

increases exponentially, pN n= , where n +∈\  is an arbitrary constant. Hence, the 

actual complexity of each iteration is O( ( ) pmn p ). Furthermore, the calculation of 

relative distances becomes error prone as dimensions increase, as there is poor 

discrimination between different neighbouring points [63].  

 

Assuming that the computational complexity of the hidden layer is 3O( )M , and since 

 3 3 2( 1) 3 3 1M M M M− = − + − , (3.45) 

this implies that removing one neuron lightens the computational burden of the hidden 

layer by a O( 2M ) term. This is overshadowed by the O( 3M ) term, but it does suggest 

that pre-processing the input signal so that it is zero mean, not only simplifies the 

architecture, but also lightens the computational burden of the hidden layer slightly. 

 

3.5.2 SVD 

The Singular Value Decomposition (SVD) of a rM M×  matrix A, with rank Mr, is 

 
( ) 1

1 2 ,

T

T

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

A UΣV
Σ

U U V
0  (3.46) 

where U is an M M×  orthogonal matrix, Σ is an rM M×  matrix, V is an r rM M×  

orthogonal matrix and U1 is rM M× , such that the diagonal matrix 

 
1

1

0

0
rM

r

r

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Σ %  (3.47) 
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is r rM M×  and non-singular. The nonnegative square roots of the eigenvalues of 

TA A  are the singular values. The singular values make up the diagonal entries of Σ1: 

r1 to 
rMr . The columns of U are the orthonormal eigenvectors of TAA  and the 

columns of V are the orthonormal eigenvectors of TA A . 

 

The solution to the linear system Aw = b is given by 

 1
1 1

T−=w VΣ U b . (3.48) 

Usually, SVD is computed by some variant of QR iteration, and hence has 3( )O M  

computational complexity [104]. Note that SVD was used by Broomhead and Lowe 

[107].  

 

In versions of MATLAB© 5, the implementation of SVD is less robust than in version 

6; on large data sets, SVD could fail for ill conditioned matrices. Thus, one possibility 

is to use conjugate gradient for linear systems.  

 

3.5.3 Conjugate Gradient for Linear Systems 

Define a quadratic function  

 1( )
2

T Tζ −w w Aw w b� , (3.49) 

where A is a M M×  symmetric positive definite matrix. Hence, 

 ( ) ( )ζ ζ∂
= ∇ = −

∂
w w Aw b

w
. (3.50) 

The quadratic function ( )ζ w attains a minimum precisely when ( ) 0ζ∂
=

∂
w

w
, resulting 

in Aw = b. It is possible to see ( )ζ w  as a scalar field, and thus the use of ∇  is natural. 
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Thus, it is possible to apply unconstrained optimization techniques to obtain a 

solution to the linear system Aw = b. Most multi-dimensional optimization methods 

progress from one iteration to the next by performing one-dimensional search along 

some search direction ks , so that 

 1k k kα+ = +w w s , (3.51) 

where α is a line search parameter that is chosen to minimize the objective function 

( )k kζ α+w s  along ks . 

 

Note some special features of such a quadratic optimization problem. Firstly, the 

negative gradient is just the residual vector: 

 ( )ζ−∇ = − =w b Aw r . (3.52) 

Secondly, for any search direction, ks , it is unnecessary to perform a line search, 

because the optimal choice for α can be determined analytically. Specifically, the 

minimum over α occurs when the new residual is orthogonal to the search direction: 

 

( ) ( )

1

1 1

1

1

0 ( )

( )

.

k

T
k k

T
k k k

T
k k

d
d

d
d

d
d

ζ
α

ζ
α

α
α

+

+ +

+

+

=

= ∇

= − +

= −

w

w w

Aw b w s

r s

 (3.53) 

Since the new residual can be expressed in terms of the old residual and the search 

direction,  

 

1 1

( )
( )

,

k k

k k

k k

k k

α
α

α

+ += −
= − +
= − −
= −

r b Aw
b A w s
b Aw As

r As

 (3.54) 
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and subsituting Eq. (3.53) into Eq. (3.54), it is possible to solve for 
T
k k

T
k k

α =
r s

s As
. 

 

If these properties are used in specializing the conjugate gradient method for 

unconstrained optimization, the conjugate gradient method for solving symmetric 

positive definite linear systems is obtained.  

 

It appears easy to apply the steepest descent method, using the negative gradient – in 

this case the residual – as search direction at each iteration. Unfortunately, the 

convergence rate of steepest descent is often very poor, due to repeated searches in 

the same directions. One possibility is to orthogonalize each new search direction 

against all of the previous ones (Gram Schmidt orthogonalization), leaving only 

components in "new" directions. However, this is prohibitively expensive 

computationally and also requires excessive storage to save all of the search directions. 

However, if the search directions are made mutually A-orthogonal (vectors y and z 

are A-orthogonal if 0T =y Az ), instead of using the standard inner product, then it can 

be shown that the successive A-orthogonal search directions satisfy a three-term 

recurrence (this is the role played by β, which is defined on the next page). This short 

recurrence makes the computation very cheap, and also makes it unnecessary to save 

all of the previous gradients, only the most recent two. The algorithm is given below: 
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Set maxit to predefined value, i.e. 10000 

Set tol to predefined value, i.e. limited by finite precision 

w0 = initial guess, perhaps b 

r0 = b – Aw0 

s0 = r0 

k = 0 

Repeat while k < maxit and 1k tol+ >r  

 
T
k k

T
k k

α =
r s

s As
 (compute search parameter) 

 1k k kα+ = +w w s  (update solution) 

 1k k kα+ = −r r As  

1 1
1

T
k k

k T
k k

β + +
+ =

r r
r r

 

1 1 1k k k kβ+ + += +s r s  (compute new search direction) 

Increment k by 1 

end 

 

 

Each iteration of the algorithm requires only a single matrix-vector multiplication, 

kAs  (which is of complexity O( 2M ); see Ref. [108]), plus a small number of inner 

products. The storage requirements are also very modest, since the vectors w, r, and s 

can be overwritten on successive iterations. 
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3.6 Bias Variance Dilemma 

What is the bias-variance dilemma? The famous paper by Geman et al. [109] offers a 

detailed explanation.  

 

Let Y be the random variable associated with the observed variable yi, and X be the 

random variable associated with the input iψ . For any iψ  drawn from the training set, 

[ ]| iE Y X = ψ  is the conditional expectation of Y given iψ , i.e. the average of Y taken 

with respect to the conditional distribution ( | )p Y X . Assume the observational noise 

i i iy yη = − �  is zero mean. Hence, define the true value iy�  as 

 [ ]|i iy E Y X = ψ� � . (3.55) 

Define the estimated value ˆiy  to be a function of iψ  and dependent upon the 

particular realization of the training set D : 

 ( )ˆˆ ;i iy f ψ� D . (3.56) 

The model error is given as ˆi i ie y y= − . The expectation of 2
ie  can be described as  

 

( ) ( )

( ) ( ) ( )( )

[ ] ( )

[ ] [ ] [ ]( )

2 2

2 2

2

2

ˆ ˆ

ˆ ˆ2

ˆvar

ˆ ˆ2 ,

i i i i i i

i i i i i i i i

i i i

i i i i i i i

E y y E y y y y

E y y E y y E y y y y

E y y

E y y E y E y y E y y

η

⎡ ⎤ ⎡ ⎤− = − + −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − + − + − −⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤= + −⎣ ⎦

⎡ ⎤+ − − +⎣ ⎦

� �

� � � �

�

� � �

D D

D D D

D D

D D D D

(3.57) 

where [ ]E iD represents expectation with respect to the training set D , and similarly, 

[ ]var iD  represents variance with respect to the training set D .  
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Note that [ ] [ ] [ ]( )2 ˆ ˆ2 0i i i i i i iE y y E y E y y E y y⎡ ⎤− − + =⎣ ⎦
� � �

D D D D , because the 1st and 2nd 

terms cancel each other out, and similarly for the 3rd and 4th terms.  

[ ] [ ] 2( )i i i i i iE y y E y y E yη ⎡ ⎤= + = ⎣ ⎦
� � � �

D D D , since iy�  should be independent of 

observational noise. Also, [ ] [ ] [ ] [ ]ˆ ˆ ˆ ˆ ˆ( )i i i i i i i i i i iE y y E y y E y y y E y yη η= + = + =� � �
D D D D . 

Note that since ˆiy  should be independent of observational noise, [ ]ˆ 0i iE yη =D . 

 

 

( ) [ ] [ ]( )

[ ]( ) [ ]( )
[ ]( ) [ ]( )

[ ]( ) [ ]

[ ] [ ] [ ]( ) [ ]( )

22

2 2

2

2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ2

ˆ ˆvar

ˆ ˆ ˆ ˆ ˆ2 .

i i i i i i

i i i i

i i i i

i i i

i i i i i i i

E y y E y E y E y y

E y E y E E y y

E y E y E y y

E y E y y

E y E y E y y E E y E y E y

⎡ ⎤⎡ ⎤− = − + −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= − + −
⎣ ⎦ ⎣ ⎦
⎡ ⎤+ − −⎣ ⎦

⎡ ⎤= − +
⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤+ − − +⎣ ⎦ ⎣ ⎦⎣ ⎦

� �

�

�

�

� �

D D D D

D D D D

D D D

D D D

D D D D D D D

(3.58) 

[ ] [ ] [ ]( ) [ ]( )2ˆ ˆ ˆ ˆ ˆ2 0i i i i i i iE y E y E y y E E y E y E y⎡ ⎤⎡ ⎤ ⎡ ⎤− − + =⎣ ⎦ ⎣ ⎦⎣ ⎦
� �

D D D D D D D , because the 1st 

and 2nd terms cancel each other out, and similarly for the 3rd and 4th terms.  

[ ] [ ]ˆ ˆi i i iE y E y y E y⎡ ⎤ =⎣ ⎦
� �

D D D  since iy�  is deterministic. 

[ ] [ ]ˆ ˆi i i iE y y y E y=� �
D D , since iy�  is deterministic. 

[ ]( ) [ ]( )2 2ˆ ˆi iE E y E y⎡ ⎤ =
⎣ ⎦D D D . 

[ ] [ ]( )2ˆ ˆ ˆi i iE y E y E y⎡ ⎤ =⎣ ⎦D D D . 

 

Thus, the model error can be decomposed into  

 [ ] [ ]2 2 ˆvar vari i iE e bias yη⎡ ⎤ = + +⎣ ⎦D D D , (3.59) 
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where [ ]ˆi ibias y E y= −� D . Note that the variance of the observational noise [ ]var iηD , 

cannot be minimized, as it is independent of the neural network. If the output ˆiy  was 

always a constant value, [ ]ˆvar 0iy =D , but the bias, i.e. the deviation from the ideal iy� , 

would be enormous. The bias error is the part of the model error that is due to the 

restricted flexibility of the model; in reality, most processes are quite complex, and 

the class of models typically applied are not capable of representing the process 

exactly. In contrast, if the model is unbiased, i.e. bias = 0, the variance term can be 

large if the model is complicated. Hence, there is a trade-off between bias and 

variance. 

 

It is interesting to note that a somewhat similar relationship exists in statistics, with 

respect to measurement error [110]. From the definition of variance: 

 [ ] [ ]( )22 varE Y Y E Y⎡ ⎤ = +⎣ ⎦ . (3.60) 

Hence,  

 ( ) [ ] [ ]( )22
0 0 0varE Y y Y y E Y y⎡ ⎤− = − + −⎣ ⎦ . (3.61) 

where y0 is the actual value of the point being measured. Using the property: 

 [ ] [ ]2var varaY b a Y+ = , (3.62) 

where a and b are arbitrary constants, the following result is obtained: 

 ( ) [ ] [ ]( )22
0 0varE Y y Y E Y y⎡ ⎤− = + −⎣ ⎦ . (3.63) 

This is similar to Eq. (3.59). 
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3.6.1 Regularization 

Regularization can be used to deal with the bias-variance dilemma in the presence of 

noise. Essentially, a compromise is sought between model error and a constraint based 

on prior information. The resultant error functional 2ζ γ  is given by: 

 ( )
222

1

1 ˆˆ
2 2

N

i i
i

y y fζ γ
=

γ
= − +∑ D , (3.64) 

where D is a linear differential operator [98], f̂  is the approximating function and γ is 

the regularization parameter. The term 
2ˆ

2
f1 D  is the regularizing term which takes 

into account prior information about the form of the solution by penalizing model 

complexity. Choose 
2ˆ Tf γ=D w G w , where ( )1 2

( )j j M M
φ ργ ×

G �  and 
1 2j jρ  is the 

distance between the j1-th center and the j2-th center. Thus, the linear system in (3.44) 

becomes 

 ( ) 1T T−

γ= + γw G G G G y . (3.65) 

Note that if the minimum distance between non-identical centers, 
1 2

1 2

min( )j jj j
ρ

≠
→∞ , 

then γ →G I  for Gaussian basis functions. More generally, if the magnitude of the 

basis function decays with distance (e.g. L1 functions), then cγ →G I , where c is an 

arbitrary constant, which means that T Tcγ →w G w w w , which is just weight decay. 

This approximation could be made, especially when M is small.  

 

However, γG  could be recycled for each value of γ, as it is independent of γ. Also, in 

the process of forming γG , the value of dmax can be recovered as a by-product of 

calculating each 
1 2j jρ , so there seems little to gain from this approximation. 
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Nonetheless, note that T c+ γG G I  is positive definite and invertible because γcI is 

positive definite (see Appendix B). There is no such guarantee for T
γ+ γG G G , as 

both TG G and γγG  might be positive semidefinite. Thus, the advantage of using 

weight decay is that it is numerically more robust. 

 

It is possible to estimate the value of γ [98]. Define the average squared error over a 

given data set as 

 ( )2

1

1( ) ( ) ( )
N

i i
i

R f F
N γ

=

γ = −∑ ψ ψ , (3.66) 

where 

 
1

( ) ( )
N

i il l
l

F a yγ
=

= γ∑ψ . (3.67) 

Here, ( )iFγ ψ  is a linear combination of the set of observables, and a function of γ; 

each ( )ila γ  is a coefficient. This can be expressed in matrix notation as: 

 ( )γ = γF Γ y , (3.68) 

where 

1

2

( )
( )

( )N

F
F

F

γ

γ
γ

γ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ψ
ψ

F

ψ
#

 and the matrix

11 12 1

21 22 2

1 2

( )

N

N

N N NN

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥γ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

Γ

"
"

# # % #
"

 is called the 

influence matrix. It is possible to estimate E[R(γ)], using 

 ( ) [ ] ( ) [ ] ( )2 2 2var var1ˆ( ) ( ) trace ( ) trace ( )R
N N N

γ = − γ + γ − − γ
η η

I Γ y Γ I Γ , (3.69) 

where A is the influence matrix [98] and η  is the observational noise of y. Assume  

A = I, for the case where the data solely consists of white noise, and substitute into Eq. 

(3.69):  
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 [ ] [ ]varˆ( ) var
N

R
N

γ = =
η

η . (3.70) 

Eq. (3.70) suggests that for negative SNR, error variance should be close to 1. This is 

borne out by observation in reality (Section 5.3.2), as the error variance for signals 

with negative SNR is found to be close to the variance of the noise. 

 

Note that for ˆ( )R γ  to be unbiased, the denominator should be N - NEF [111, 112], 

where 

 trace( )EFN N= − P . (3.71) 

P is the projection matrix defined by: 

 − =Py y Gw e� . (3.72) 

Define 

 T
γ+ γA G G G� . (3.73) 

Substituting Eq. (3.73) into Eq. (3.65), 

 1 T−=w A G y  (3.74) 

Substituting Eq. (3.74) into Eq. (3.72), 

 
1

1 ,

T

T
N

−

−

= −

= −

Py y GA G y
P I GA G

 (3.75) 

where IN is the identity matrix of size N N× . Substituting Eq. (3.75) into Eq. (3.71), 

 

( )
( )
( )

1

1

1

trace

trace

trace .

EF T
N

T

T

N N −

−

−

= − −

=

=

I GA G

GA G

G GA

 (3.76) 

Substituting Eq. (3.73) into Eq. (3.76) gives 
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( )( )
( )

( )

1

1

1

trace

trace

trace ,

EF

M

N

M

−
γ

−
γ

−
γ

= − γ

= − γ

= − γ

A G A

I G A

G A

 (3.77) 

where IM is the identity matrix of size M M× . In the absence of regularization,  

NEF = M.  
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3.6.2 Cross Validation 

One way to select the hyperparameters, Mc and γ, is to perform k-fold cross validation: 

 

1. Split the data set (size Ntotal) into the training set (D  of size Ntrain) and final test 

set (T of size Ntest), i.e. total train testN N N= + . Typically, 2
3

train totalN N= . 

2. Split D  into k equal parts: { }
1L

L

k

k k =
D , where 1, ,Lk k= "  (see Figure 3.6). 

3. Train k sub-RBFs using the data other than those in the current 
LkD . 

LkD  serves as 

the test set, while the rest of the data is the training set. According to [113], the 

training set of each sub-RBF can also be called the design set. Each design set has 

kNψ  training examples: 

 1k trainkN N
kψ ψ
−

= , (3.78) 

where train trainN N pψ = − . 

4. Evaluate the error 
L

val
kGE  of the kL-th sub-RBF on the validation set 

LkD ; typically 

L

val
kGE  is the mean squared error of the estimated function on 

LkD . 

5. Repeat steps 2-4 for all kL = 1, …, k, and compute the estimate of the 

generalization error as:  

 
1

1
L

L

k
val
k

k

GE GE
k =

≈ ∑ . (3.79) 

6. The optimal hyperparameters are chosen according to 
( , 1

1arg min
L

c
L

k
val
kM k

GE
kγ)

=
∑ . 
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In this work, k = 5, unless stated otherwise. Note that Leave One Out (LOO) can be 

considered to be a type of k-fold cross validation, as it entails traink N= ψ , i.e. a 

validation set of just 1 element.  

 

 

Figure 3.6 Illustration of k-fold cross validation where k = 3. 

 

3.6.3 Choice of Hyperparameters 

This section describes a rationale to choose hyperparameters from a logarithmic scale; 

typically, only prescriptions exist in the neural network literature. Some chaotic 

signals exhibit 1/f spectra. For example, a signal extracted from a Lorenz system 

demonstrates 1/f behaviour, as seen from Figure 3.7. AWGN is added to the same 

Lorenz signal at 25dB SNR, resulting in the spectrum in Figure 3.8. It is possible to 

apply the principle of superposition and to consider this as the addition of the 1/f 

spectrum and the noise spectrum. Thus, the spectrum slopes down to the noise floor, 

where the higher frequencies are dominated by noise. The 1/f spectrum is due to the 

presence of fractal structure in the attractor, where finer structure contributes to the 

higher frequencies, but at a lower magnitude. 

 

 
design 

set 
 

validation 
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validation 
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part of design 
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part of design 
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set 
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Figure 3.7 Power spectrum of noiseless Lorenz signal demonstrates 1/f behaviour. 
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Figure 3.8 Power spectrum of Lorenz signal at 25dB SNR. 

 

Thus, it appears that a principled way to determine the regularization parameter γ, is 

to choose it from a logarithmic scale. The right value of γ will help to suppress the 

noise and prevent overfitting, at the expense of recovering the finer details of the 

attractor. In any case, the fine structure is likely to be dominated by the noise anyway. 
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The fractal structure of the attractor also suggests that the number of centers, Mc, 

should be chosen from a logarithmic scale as well. Intuitively, as with the box-

counting dimension, an exponentially increasing number of spheres of diameter ε are 

required to cover all the points in the data set, as 0ε → . 

 

RBF networks suffer from the curse of dimensionality [114]. This means that if the 

dimension of underlying data increases, the corresponding number of basis functions 

required also increase exponentially. The exact dimensionality of the problem is 

unknown, as some inputs may be correlated. Indeed, if Eq. (3.2) is used, then many of 

the inputs would be highly correlated. Ironically, the curse of dimensionality also 

provides the crucial insight that the candidates for Mc should be chosen from a 

logarithmic scale. After all, if this was an exact interpolation network, then Mc = N 

would be increasing exponentially with increasing dimension. 

 

3.6.4 Modification of Norm for Regularization 

Calculating ( )1 2
( )j j M M

φ ργ ×
=G  means that it is necessary to find the distance between 

each center: 

 
1 2 1 2 1 2 1 2

( ) ( )T
j j j j j j j jρ = − −µ µ Λ µ µ , (3.80) 

where 
1 2j jΛ  is the norm-inducing matrix with respect to centers j1 and j2.  

 

For the case of the EBF, the distance between a center and a point ρij , is a function of 

Sj. However, when finding the distance between 2 centers, how should information 

from each covariance matrix be incorporated? 
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One possibility is 
1 2 3

1
j j j

−=Λ S , where 
3j

S is the sample covariance of the combined 

cluster formed from clusters j1 and j2. Since γG  is a symmetric M M×  matrix and all 

the elements on the main diagonal are equal to 1 when Gaussian basis functions are 

used, it is only necessary to form { }3
3

( 1)
2

1

M M

j j

−

=
S  sample covariance matrices and to 

compute their corresponding inverses { }3
3

( 1)
1 2

1

M M

j j

−
−

=
S . Assuming matrix inversion to be 

O( 3p ), this means that the complexity of computing γG  is effectively O( 3 2p M ), and 

represents a moderately significant computational load. If the covariance matrices are 

cached, then this also requires a significant amount of storage. 

 

A natural alternative is 
1 2 1 2

1
j j j j

−=Λ S : 

 
1 2 1 2 1 2 1 2

1( ) ( )P T
j j j j j j j jρ −− −µ µ S µ µ� , (3.81) 

where 
1 2j jS  is the pooled sample covariance matrix defined as 

 1 1 2 2

1 2

1 2

( 1) ( 1)
2

j j j j
j j

j j

N N
N N

− + −

+ −

S S
S � . (3.82) 

1 2j jS  is an unbiased estimator of the common covariance of 2 populations of clusters j1 

and j2 [115]. 
1j

N is the number of elements in cluster j1, and 
2j

N  is the number of 

elements in cluster j2. For those who are well versed in pattern recognition, the 

Bhattacharyya distance, given as 

 

1 2

1 2

1 2 1 2 1 2

1 2

1
21( ) ( ) ln

2 2

j j

j jBD T
j j j j j j

j j

ρ
−

+
+⎛ ⎞

− − +⎜ ⎟
⎝ ⎠

S S
S S

µ µ µ µ
S S

�  (3.83) 

may come to mind (Ref. [116], Chapter 3). If 
1 2j j=S S , 

1 2 1 2

BD
j j j jρ ρ= . 
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Using 
1 2 1 2

1
j j j j

−=Λ S  still requires computational complexity of O( 3 2p M ) for 

computing γG . However, it is no longer necessary to form ( 1)
2

M M −  covariance 

matrices, provided the sample covariance matrices { }
1

M

j j=
S  are cached (see  

Section 3.6.5). This results in some computational and storage savings.  

 

There is a problem; the results in Appendix B show that 
1 2j jS  is positive definite if 

either 
1j

S  or 
2j

S  is positive definite. 
1 2j jS  may be positive semidefinite (implying that 

1 2

1
j j
−S  may not exist) if both 

1j
S  and 

2j
S  are positive semidefinite. Also, the results in 

Appendix C require 
1 2j jS  to be positive definite if 

1 2j jρ  is to be a valid metric. If 
1 2j jρ  

is not a valid metric, it could vary in an irregular fashion from center to center, and 

regularization might fail. 

 

On the other hand, a weighted sum (positive weights) of 2 valid norms is still a valid 

norm, suggesting: 

 

1

1 2

1 2

1 2 1 2 1 1 2

1 2 2 1 2

2

1

1

( 1)

2

( 1)

2

( ) ( )

( ) ( ).

j

j j

j

j j

N T
j j j j j j j

T
j j j j j

N

N N

N

N N

ρ −

−

−

+ −

−

+ −

− −

+ − −

µ µ S µ µ

µ µ S µ µ

�
 (3.84) 

 

The advantage is that if the M inverse matrices { }1
1

M

j j

−

=
S  are cached, then it is 

unnecessary to compute any matrix inverse. The disadvantage is that 
1 2j jρ , as defined 

using Eq. (3.84), is not guaranteed to be a valid norm, if either 
1j

S  or 
2j

S  is positive 
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semidefinite (implying that 
1

1
j
−S  or 

2

1
j
−S  may not exist). Thus, it might be more prone 

than to problems than Eq. (3.81). 

 

Generalizing these results to regularized non-radial basis functions (Section 3.4.3), the 

two possibilities being advocated in this section are: 

 1 1 2 2

1 2 1 2 1 2

1 2

1
( 1) ( 1)

( ) ( )
2

j j j jP T
j j j j j j

j j

N N
N N

−
⎛ ⎞− + −

− −⎜ ⎟⎜ ⎟+ −⎝ ⎠

M M
µ µ µ µ�ρ , (3.85) 

and 

 

1

1 2

1 2

1 2 1 2 1 1 2

1 2 2 1 2

2

( 1)

2

( 1)

2

( ) ( )

( ) ( ),

j

j j

j

j j

N T
j j j j j j j

T
j j j j j

N

N N

N

N N

ρ
−

+ −

−

+ −

− −

+ − −

µ µ Λ µ µ

µ µ Λ µ µ

�

 (3.86) 

where 
1j

M  is the Mj matrix and 
1j

Λ  is the jΛ  matrix associated with cluster j1; 
2j

M  

is the Mj matrix and 
2j

Λ  is the jΛ  matrix associated with cluster j2. Mj is possibly 

regularized as in Eq. (3.41) and jΛ  is possibly regularized as in Eq. (3.42). 

 

3.6.5 Speeding Up Cross Validation 

It is observed that clustering is responsible for most of the running time, when the 

data set is high dimensional, provided N M� . Thus, clustering results are reused 

whenever possible, i.e. caching. Different algorithms are simulated, which differ only 

in the ways they utilize the information from the clustering stage. Thus, clustering 

results could be safely stored on disk, and reused whenever needed. On the other hand, 

if the order of M is close to that of N, then solving the least squares problem is also 
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very time consuming. This is because the computational complexity of matrix 

inversion is O( 3M ) for SVD (Section 3.5.2) and for Gaussian elimination [117]. 

 

For regularized networks, a brute-force search is conducted in a two-dimensional 

space, for the optimal values of (Mc, γ). The search takes place in a ML Lγ×  grid, 

where LM is the number of values of Mc (and also M) explored, and Lγ is the number 

of values of γ explored. In principle, it is possible to optimize other hyper-parameters, 

such as dE, but it is necessary to consider the computational cost. Some calculations, 

such as those for finding τ and dE are cached, so as to save computation time. 

 

Observe that the value of Mc affects the clustering stage, but the value of γ only 

affects Eq. (3.65). Thus, the computational running time used by the clustering during 

k-fold cross validation can be reduced from O(LM Lγ) to O(LM) by having an inner 

loop vary γ for Eq. (3.65) Lγ times. Note that the computational complexity of the 

least squares stage remains as O(LM Lγ). 

 

In fact, the simulations are arranged such that loops which generate information 

which can be cached are in the outer layers. The innermost loop is the one which 

varies γ; only Eq. (3.65) is solved in the innermost loop. The algorithm for the 

simulations is described below:  
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Calculate τ and dE based on data in training set 

Form data into design sets and validation sets in preparation for k-fold cross 

validation 

 

Repeat for kL = 1:k 

Repeat for jL = 1:LM 

 Perform clustering 

 Calculate covariance matrices and their inverses 

Repeat for aL = 1: LA 

Form G and γG  

Repeat for γL = 1: Lγ 

Solve Eq. (3.65) 

end 

end 

end 

end 

 

Note that kL, jL, aL, and γL are dummy variables; LA is the number of variants of RBF 

being tested, e.g. RBF, TBF, DBF, etc. 

 

Another trick is to use the Euclidean norm squared instead of the Euclidean norm 

when performing clustering: 

 2a x b a x b< < ⇒ < < . (3.87) 
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By omitting the square root, many clock cycles are saved, because the square root 

operation takes up many clock cycles on most computers. For any clustering 

algorithm, N M×  norms need to be computed per iteration. 

 

3.7 Contributions of this Chapter 

• Research in neural networks had largely been about devising new algorithms and 

showing that they are superior in some sense. This had spawned a large variety of 

neural networks, with minor variants. However, no algorithm may be universally 

superior, due to the No Free Lunch Theorem [87]. Thus, rather than suggest an 

algorithm and claim that it is the best, the achievement here is to employ a trick to 

speed up k-fold cross validation (Section 3.6.5). It applies to both classification 

and regression, and to various variants of the Radial Basis Function (RBF), which 

may employ clustering techniques. This same trick could be employed for the 

Leave-One-Out (LOO) method as well. Currently, most neural network 

applications employ Multi Layer Perceptrons (MLPs). The computational savings 

introduced could tip the balance and encourage more applications to employ the 

RBF or its variants. Another implication is that it may discourage certain ways of 

regularizing RBFs, such as regularization by training with noise [118]. 

Unfortunately, the regularization parameter cannot be varied within the innermost 

loop, because the data is affected, and not just the least squares equations. Hence, 

training with noise cannot be accelerated using caching. 

• The standard architecture of the RBF is revised (Section 3.2) to include the 

possibility that the number of centers may be unequal to the number of weights in 

the linear layer, due to empty clusters.  
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• Non-radial basis functions are introduced (Section 3.4.1) these may require less 

centers, thereby alleviating the curse of dimensionality. Numerical techniques and 

computational tricks are discussed.  

• A possible explanation is found for the puzzling phenomenon of empty clusters, 

which occasionally occur (Section 3.3.2).  

• It is suggested that the non-deterministic outcome of the clustering stage could 

sometimes affect the RBF. Since there are Mc centers, symmetry implies that there 

can be Mc! local maxima the k-means algorithm can converge onto (Section 3.3.2). 

This can be a very large number in the context of time series prediction, because 

hundreds of centers may be used, not to mention the 1500 centers used to model 

sea clutter data in Ref. [22]. It appears that caching, i.e. the trick to speed up k-

fold cross validation, is the most practical solution. 

• The large number of parameters required to tune an EBF network suggested the 

concept of a data driven neural network (Section 3.4.2), whereby parameters are 

derived from the data, rather than adjusted during training. It is to be 

acknowledged that Roderick Murray-Smith [119] had a similar concept, except 

that each covariance matrix was estimated from a group of neighbouring clusters, 

rather than estimated from the cluster itself. In this work (conceived independently 

of Ref. [119]), regularized covariance matrices are suggested as a way of dealing 

with numerical issues (Section 3.4.3). 

• The formulation of ( )1 2
( )j j M M

φ ργ ×
=G  is extended to non-radial basis functions 

(Section 3.6.4). The derivation for the effective number of parameters of ridge 

regression by Orr [112] is extended (Section 3.6.1). 

• A rationale for choosing the hyperparameters from a logarithmic scale is given 

(Section 3.6.3). 
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3.8  Summary 

A review of RBF networks and variants are given in this chapter. It is hoped that the 

use of generalized versions of RBF networks may require less centers, thereby 

alleviating the curse of dimensionality. This stemmed from a desire to find a 

compromise between coping with the curse of dimensionality, and yet using all 

available information as effectively as possible. Elliptical Basis Function (EBF) 

networks and other methods are discussed as ways of coping with the curse of 

dimensionality. Using these tools, it may be possible perform time series prediction 

more effectively. 
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CHAPTER 4 

Data Characteristics 

It is necessary to understand the data thoroughly before modelling it; throwing data 

into the neural network blindly only results in garbage in and garbage out. This 

chapter discusses how the data was obtained, and examines the data from different 

perspectives. 

 

4.1 IPIX Radar 

The data comes from a transportable radar called the Intelligent Pixel Processing 

(IPIX) radar [120]. The radar was situated on a cliff-top at a height of 30m above 

mean sea level at Osborne Head Gunnery Range, Dartmouth, Nova Scotia on the east 

coast of Canada (latitude 44°36.72'N and longitude 63°25.41'W). The radar was 

operated in dwelling mode, so that the dynamics of the sea clutter recorded by the 

radar would be entirely due to the motion of the ocean waves and the natural motion 

of the sea itself. 

  

IPIX is an instrument quality X-band radar system. The actual operating frequency is 

9.39 GHz, i.e. wavelength is approximately 3cm. It has 2 identical receivers, one 

connected to the vertically polarized antenna feed, and the other is connected to the 

horizontal antenna feed. 

 

The data was downloaded from the McMaster IPIX website: 

http://soma.ece.mcmaster.ca/ipix/. Each data file consists of 131072 samples (vertical 
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polarization). The real and imaginary components of the data correspond to the in-

phase and quadrature phase channels, respectively, because the radar is coherent. 

 

The illuminated area of sea surface is influenced by the antenna beamwidth, antenna 

height above the sea surface and the grazing angle (see Figure 1.1). Air-sea 

interactions have an important impact on sea clutter [1]. Hence, it is necessary to 

record wind and wave observations. A common measure is significant wave height, 

which is defined as the average peak-to-trough height of the one-third highest waves. 

Table 4.1 describes the conditions under which the sea clutter data is collected.  

 

Table 4.1 Details of sea clutter data files 
Filename lo.dat hi.dat 
Date 18 /11/1993 17/11/1993 
Time 13:13:53 20:49:23 
Pulse Repetition Frequency (PRF) 2000Hz 1000Hz 
Pulse duration 200ns 200ns 
Beamwidth 0.9° 0.9° 
Antenna height 30m 30m 
Grazing angle 1.4° 1.9° 
Range resolution 30.0m 30.0m 
Significant wave height 0.8 m  1.8m 
Maximum wave height 1.3m 2.9m 
Wind velocity 25km/h from 340° 22km/h from 218° 
 

Note that the file lo.dat contains sea clutter data in low sea state, whilst the file 

hi.dat contains sea clutter data in high sea state. Sea state is a term used by 

mariners as a measure of wave height. Low sea state means that the sea surface is 

calm and the wave height is low; high sea state means that wave height is high [1]. 

Detailed discussions about the various parameters in Table 4.1 can be found in  

Ref. [13, 38]. 
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4.2 Hilbert Transform 

Takens' theorem applies to complex measurements in the trivial sense, by considering 

a complex embedding of dimension dE to be equivalent to a real embedding of 

dimension 2dE, if no use is made of the complex structure [47]. Besides, there is the 

possibility of non-generic variables leading to distorted phase space reconstructions 

(see Figure 2.4 for an example of a distorted phase space reconstruction). Hence, it is 

good practice to examine the relationship between the real component and imaginary 

component.  

 

By inspection, it appears that Re(z(n)), the real component of sea clutter in low sea 

state (file lo.dat) is related to Im(z(n)), the imaginary component via the Hilbert 

Transform (see Figure 4.1): 

 ( )Re( ) Im( )=z zH , (4.1) 

where ( )iH  is the Hilbert Transform and z is the vector containing { }131072

1
( )

n
z n

=
.  
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Figure 4.1 Plot of in-phase component (solid line) vs Hilbert Transform of 

quadrature component (dashed line) for sea clutter in low sea state. 
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Define the Normalized Error Variance as 

 
( )( )2

2

s Re( ) - Im( )
NEVH1

s (Re( ))
z z

z
�

H
, (4.2) 

where the sample variance is formulated in vector notation as 

 2 ( )( )( )
1 ( 1)

H H T

s
N N N

−
− −x x x

x x x h h xx � , (4.3) 

and where the vector N∈ xx ^  has N +∈x ]  elements and 
1

1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

h � #  is a constant vector 

with Nx  elements. NEVH1 is found to be 0.0293 over the entire data set of 131072 

samples, which is very low, thereby verifying that Eq. (4.1) is true. 

 

For sea clutter in high sea state (file hi.dat), the imaginary component also seems 

to be related to the real component via the Hilbert Transform (see Figure 4.2): 

 ( )Re( ) Im( )= −z zH . (4.4) 
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Figure 4.2 Plot of in-phase component (solid line) vs negative of Hilbert 

Transform of quadrature component (dashed line) for sea clutter in 

high sea state. 
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Define the Normalized Error Variance as 

 
( )( )2

2

s Re( ) + Im( )
NEVH2

s (Re( ))
z z

z
�

H
. (4.5) 

NEVH2 is found to be 0.00347 over the entire data set of 131072 samples, which is 

very low, thereby verifying that Eq. (4.4) is true. 

 

Hence, it turns out that for the data sets studied, the real and imaginary components 

are not independent, since they are related via the Hilbert transform. This is possibly 

due to the action of quadrature modulators, which may be seen as phase shifters. Thus, 

instead of processing both components of the complex signal, it is sufficient to deal 

with either component. 

 

4.3 Stationarity 

If the data is non-stationary, it is meaningless to apply typical methods used in chaotic 

time series analysis, since the assumption of ergodicity is violated [121]. On the other 

hand, Ruelle [122] suggested that some of the nonlinear time series methods remain 

useful when the time dependence is assumed to be adiabatic (slow compared to the 

characteristic times of the other parameters of the system).  

 

Hence, it is advisable to check if the data is stationary. This can be done via 

recurrence plots [13]. Consider ( )nΨ  in phase space. The recurrence plot is an array 

of points in a N N×Ψ Ψ  grid (where NΨ  is the number of embedding vectors), where 

a dot is placed at (m, n) whenever ( )mΨ  is sufficiently close to ( )nΨ . 
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Figure 4.3 Recurrence plot for in-phase component of sea clutter in low sea state. 

 

 
Figure 4.4 Recurrence plot for in-phase component of sea clutter in high sea state. 
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According to Haykin and Puthusserypady [13], nonstationarity can be detected from 

fading in the recurrence plot away from the main diagonal. Since no fading is 

discernable, stationarity is implied in Figure 4.3 and Figure 4.4.  

 

4.4 Frequency Spectrum 

One of the first things to do when analyzing time series data, is to examine its 

frequency spectrum. Figure 4.5 illustrates the frequency spectrum of the in-phase 

component of lo.dat. The frequency spectrum could perhaps be decomposed into a 

portion with white noise and a portion with 1/f noise, as with Figure 3.8. 1/f noise 

could be generated by dissipative dynamical systems in the transition to turbulence 

[65]. On the other hand, it should be stressed that even if 1/f noise is present, it could 

be caused by other mechanisms besides chaos. 
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Figure 4.5 Power spectrum of in-phase component of sea clutter in low sea state. 
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The frequency spectrum of sea clutter in high sea state is similar (see Figure 4.6), 

except that more of the power is in the higher frequencies. Also, the lower frequencies 

are attenuated, resulting in a peak in the spectrum at about 0.2π rad/sample. 
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Figure 4.6 Power spectrum of in-phase component of sea clutter in high sea state. 

 

4.5 Chaotic Invariants 

The techniques of Chapter 2 can be used to determine the chaotic invariants of sea 

clutter data. However, it is good practice to determine the results for known chaotic 

systems, as a way of checking that the algorithms are properly implemented. 

 

4.5.1 Chaotic Invariants of Known Systems 

Experiments were carried out on the x-component of the Lorenz system as a 

benchmark. The time series has 2000 samples and is corrupted with AWGN for 

various values of SNR. In Table 4.2, HOP stands for Horizon of Predictability, KE 

stands for Kolmogorov Entropy and NaN means Not a Number. The correlation 
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dimension D2 is computed using takens_estimator.dll, as implemented in 

TSTOOL [64]. The Lyapunov exponents are calculated using lyap_spec.exe, as 

implemented in TISEAN [52]. Both HOP and KE are estimated from the Lyapunov 

exponents.  

 

Table 4.2 Computed chaotic invariants of Lorenz data at varying SNR 

SNR (dB) dE τ D2 DKY HOP KE Lyapunov exponents 
-5 5 5 4.78 NaN NaN NaN no positive exponents 
10 4 5 4.26 1.74 187 2.09E-02 2.09E-02, -2.83E-02, -6.88E-02, -1.46E-01 
20 4 5 3.64 2.01 113 3.47E-02 3.47E-02, -3.38E-02, -7.21E-02, -1.69E-01 
25 3 4 2.47 2.03 69.6 5.62E-02 5.62E-02, -4.77E-02, -2.92E-01 
30 3 4 2.22 2.06 61.6 6.35E-02 6.35E-02, -4.45E-02, -3.19E-01 
∞ 3 4 1.98 2.3 41.1 1.06E-01 9.51E-02, 1.13E-02, -3.49E-01 

 

The estimates of D2 and DKY appear to be satisfactory, because the theoretical value 

of the Lorenz system is about 2.06 [123]. It is expected that both D2 and DKY should 

become more unreliable as SNR is increased. In this respect, DKY appears to be a 

more robust estimate in the presence of AWGN. It appears that the values of HOP and 

KE are unreliable, because HOP and KE should not be increasing as SNR decreases. 

This is caused by underestimation of the positive Lyapunov exponents as SNR is 

decreased. 

 

For a benchmark derived from experimental data, rather than differential equations, 

the data set used is the laser time series (Figure 4.7), data set A from the Santa Fe 

Time Series Competition [123]. Hereafter, the data set would be referred to as SFA. 

SFA can be modelled by the same equations as the Lorenz system, using the Haken-

Lorenz model [123]; hence the chaotic invariants computed for SFA should be similar 

to those for the Lorenz system. Indeed, the results in Table 4.3 are similar to those for 

the row of Table 4.2 corresponding to SNR of ∞dB.  
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Table 4.3 also indicates that the computed chaotic invariants did not vary much as the 

number of samples were increased. During the Santa Fe Time Series Competition, a 

data set of 1100 samples was made available to the contestants; this corresponds to a 

training set of 730 samples. After the contest, the full data set of 10093 samples was 

made available. In the rest of this work, SFA refers to the original data set of 1100 

samples unless otherwise specified.  

 

Table 4.3 Computed chaotic invariants of SFA 

samples dE τ D2 DKY HOP KE Lyapunov exponents 
730 3 2 1.96 2.14 31.9 1.23E-01 1.23E-01, -6.09E-02, -4.29E-01 

10093 3 2 2.13 2.21 42.7 9.17E-02 9.17E-02, -2.91E-02, -2.73E-01 
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Figure 4.7 Time series of data set A from Santa Fe Time Series Competition 

(SFA). 

 

Incidentally, the phase space reconstruction for SFA in Figure 4.8 looks similar to 

Figure 2.4. 
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Figure 4.8 Phase space reconstruction for SFA. 

 

4.5.2 Chaotic Invariants of Sea Clutter Data 

Chaotic invariants were also computed for sea clutter data in low sea state and high 

sea state; the results are recorded in Table 4.4 and Table 4.5. The embedding 

dimension dE, was found to be about 5 for both low sea state and high sea state. This 

tallies with the results in Ref. [13]. For sea clutter in low sea state, it is estimated to 

have a fractal dimension between 4 and 5.  

 

Table 4.4 Chaotic invariants calculated for in-phase component of sea clutter 

data (low sea state)  

samples dE τ D2 DKY HOP KE Lyapunov exponents 
5460 5 12 4.88 4.02 206 2.92E-02 1.90E-02, 1.03E-02, -3.99E-03, -2.03E-02, -5.99E-02

131072 5 11 4.9 4.18 130 4.25E-02 3.00E-02, 1.24E-02, -2.98E-03, -1.96E-02, -6.07E-02
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Table 4.5 Chaotic invariants calculated for in-phase component of sea clutter 

data (high sea state) 

samples dE τ D2 DKY HOP KE Lyapunov exponents 
5460 5 3 4.87 2.01 153 2.56E-02 2.56E-02, -9.24E-03, -4.49E-02, -1.05E-01, -2.61E-01

131072 5 3 4.66 3.72 80.2 6.46E-02 4.88E-02, 1.59E-02, -2.34E-02, -8.27E-02, -2.24E-01
 

Unfortunately, the full data set of 131072 samples requires a very long time to train, 

despite caching. Also, there is the possibility that a long training sequence may induce 

oscillations in network training [82]. Hence the training set is much shorter than the 

full data set and has only 5460 samples. Nonetheless, the chaotic invariants for sea 

clutter in low sea state remained approximately the same, despite data size. Thus, the 

training set is reasonably reflective of the full data set. This seems to confirm that sea 

clutter in low sea state is stationary, for lo.dat.  

 

On the other hand, DKY varied somewhat for sea clutter in high sea state as data size 

was changed. Besides, DKY is significantly lower than D2 in high sea state, suggesting 

that the Lyapunov exponents could not be accurately measured. This could be due to 

the effect of noise. Since the largest Lyapunov exponent 1λ , is larger for sea clutter 

data in high sea state, HOP is lower, suggesting that prediction would be tougher. 

This also suggests that modelling of sea clutter data in high sea state is likely to be 

problematic, because the training set is not entirely reflective of the full data set. This 

also implies that there is some degree of non-stationarity in sea clutter in high sea 

state; increasing the size of the training set is insufficient to deal with non-stationarity.  
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4.6  Contributions of this Chapter 

• It was suggested that instead of dealing with both real and complex components of 

the sea clutter signal, it may be sufficient to choose one. This is because for the 

available data sets, the in-phase and quadrature phase components are not 

independent, as they are related by the Hilbert transform. Thus, it is not necessary 

to consider phase space reconstructions of dimension 2dE. 
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CHAPTER 5 

Results and Discussions 

The ideas discussed in the preceding chapters are tested in this chapter. A suitable 

algorithm is chosen for modelling sea clutter. 

 

5.1 Caching the Loops 

5.1.1 Timing Results 

The first test is to verify that caching the loops result in significant computational 

savings. Thus it is necessary to compare the performance of an algorithm which is 

cached with the performance of the same algorithm which is not cached. 

 

The x-component of Lorenz data is generated as in Section 2.1 using Eq. (2.2); 

AWGN is added at 25dB SNR. An ordinary RBF was used, coupled with k-means for 

the clustering stage; this combination of k-means and RBF will be called the kRBF. 

The embedding dimension, Ed , is found using the method of Global False Nearest 

Neighbours (GFNN) [62], while τ is the embedding time delay, which is found from 

the first minimum in the mutual information [49]. 

 

Conjugate gradient method for linear systems is used to solve the least squares system 

in the linear layer, because MATLAB© 5 has a less stable implementation of SVD. 

MATLAB© 6 has a more stable implementation of SVD, but it does not have a 

command to count the number of FLOPS required to perform the simulations (i.e. the 
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flops command). Note that in subsequent simulations throughout this work, SVD is 

used, since the rest of the simulations use compiled code developed on MATLAB© 6. 
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Figure 5.1 FLOPS required by kRBFs to model Lorenz datasets of different sizes. 

 

Figure 5.1 shows the FLOPS required by simulations performed on Lorenz data (data 

sets of varying sizes), with caching and without caching. It appears that the cached 

algorithm is about twice as fast as the uncached version. This could be because the 

clustering stage is almost Lγ times faster, but the linear layer, i.e. solving Eq. (3.65), 

cannot be speeded up. However, caching is helpful for larger data sets, because the 

clustering stage is prone to the curse of dimensionality (See Section 3.5.1). Note that 

the FLOPS count included FLOPS spent on cross validation, and on the final training 

set, because both sets of algorithms would eventually need to spend time on the final 

training set, which cannot be cached. Actually, it is possible to use the cached 

clustering results to initialize the clustering stage of the final training set, in order to 
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achieve some computational savings. However, the results may differ somewhat, due 

to erraticity.  Note that the optimum number of hidden units is given as 

 1 3M N∝ , (5.1) 

according to Ref. [98]. On the other hand, the computational complexity of Gaussian 

Elimination or SVD is O( 3M ). This implies that the computational complexity of the 

linear layer is effectively O(N), and seems to suggest that RBF networks are 

potentially scalable with respect to N, provided the clustering stage has negligible 

computational complexity, and cross validation is unnecessary. However, caching the 

clustering results does allow one to approach these two assumptions more closely. 

 

5.1.2 Empty Clusters 

To illustrate the phenomenon of empty clusters, a kRBF with no caching was used on 

SFA (Ntrain = 730), and dE = 3 was found using GFNN.  

 

Table 5.1 Centers remaining after clustering, M, for kRBF on SFA {Mc = 10, 25} 

Mc γ M (kL = 1) M (kL = 2) M (kL = 3) M (kL = 4) M (kL = 5) 
10 0.0E+00 10 10 10 10 10 
10 1.0E-04 10 10 10 10 10 
10 3.0E-04 10 10 10 10 10 
10 1.0E-03 10 10 10 10 10 
10 3.0E-03 10 10 10 10 10 
10 1.0E-02 10 10 10 10 10 
10 3.0E-02 10 10 10 10 10 
10 1.0E-01 10 10 10 10 10 
10 3.0E-01 10 10 10 10 10 
25 0.0E+00 25 25 25 25 25 
25 1.0E-04 25 25 25 25 25 
25 3.0E-04 25 25 25 25 25 
25 1.0E-03 25 25 25 25 25 
25 3.0E-03 25 25 25 25 25 
25 1.0E-02 25 25 25 25 25 
25 3.0E-02 25 25 25 25 25 
25 1.0E-01 25 25 25 25 25 
25 3.0E-01 25 25 25 25 25 
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Table 5.2 Centers remaining after clustering, M, for kRBF on SFA {Mc = 50, 100, 

200, 400, 500}  

Mc γ M (kL = 1) M (kL = 2) M (kL = 3) M (kL = 4) M (kL = 5) 
50 0.0E+00 50 50 50 50 50 
50 1.0E-04 50 50 50 50 50 
50 3.0E-04 50 50 50 50 50 
50 1.0E-03 50 50 50 50 50 
50 3.0E-03 50 50 50 50 50 
50 1.0E-02 50 50 50 50 50 
50 3.0E-02 50 50 50 50 50 
50 1.0E-01 50 50 50 50 50 
50 3.0E-01 50 50 50 50 50 

100 0.0E+00 100 100 100 100 100 
100 1.0E-04 100 100 100 100 100 
100 3.0E-04 100 100 100 100 100 
100 1.0E-03 100 100 100 100 100 
100 3.0E-03 100 100 100 100 100 
100 1.0E-02 100 100 100 100 100 
100 3.0E-02 100 100 100 100 100 
100 1.0E-01 100 100 100 100 100 
100 3.0E-01 100 99 100 100 100 
200 0.0E+00 200 200 200 200 200 
200 1.0E-04 200 200 200 200 200 
200 3.0E-04 200 200 200 200 200 
200 1.0E-03 200 199 200 200 200 
200 3.0E-03 200 200 200 200 200 
200 1.0E-02 200 200 200 200 200 
200 3.0E-02 200 200 200 200 200 
200 1.0E-01 200 200 200 199 200 
200 3.0E-01 200 200 200 200 200 
400 0.0E+00 400 400 400 399 399 
400 1.0E-04 400 400 400 400 400 
400 3.0E-04 400 400 400 400 400 
400 1.0E-03 400 400 400 400 400 
400 3.0E-03 400 400 400 400 400 
400 1.0E-02 400 400 400 400 400 
400 3.0E-02 400 400 400 400 400 
400 1.0E-01 400 400 400 400 400 
400 3.0E-01 400 400 400 400 400 
500 0.0E+00 500 500 500 500 500 
500 1.0E-04 500 500 500 500 500 
500 3.0E-04 500 500 500 500 500 
500 1.0E-03 500 500 500 500 500 
500 3.0E-03 500 500 500 500 500 
500 1.0E-02 500 500 500 500 500 
500 3.0E-02 500 500 500 500 500 
500 1.0E-01 500 500 500 500 500 
500 3.0E-01 500 500 500 500 500 
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The results in Table 5.1 and Table 5.2 show that M can vary with γ and k, except 

when {Mc = 10, 25, 50, 500}. It seems that when the number of clusters is very small, 

or when the number of points per cluster is very small, the issue of empty clusters is 

usually minor. Nonetheless, the problem of having M which varies with γ and k may 

affect the cross validation results, since the RBF models being compared have 

different M when they should have had the same M, i.e. erraticity. In any case, there is 

no reason for M to vary with γ, since γ is independent of the data. Thus, caching the 

clustering result should alleviate the problem of erraticity. 

 

Consider the case of Lorenz data of 10dB SNR (Ntrain = 2000). The clustering method 

used was Babuska's method (Section 3.3) with γc = 0.1; ordinary RBF was used. The 

outcome of the clustering stage was cached, and hence the value of γ is irrelevant. 

Table 5.3 illustrates a particularly severe case of empty clusters. For Mc = 1200, and 

{k = 1,2,4,5}, more than half the centers were dropped. The problem of M varying 

with k persists, but at least it is reasonable that clustering results should vary with k, 

since the design sets (see Glossary) involved are different. 

 

Table 5.3 Centers remaining after clustering, M, for Babuska's method of 

clustering (γc = 0.1) on Lorenz data at 10dB SNR  

Mc M (kL = 1) M (kL = 2) M (kL = 3) M (kL = 4) M (kL = 5) 
10 10 10 10 10 10 
25 25 25 25 25 25 
50 50 50 50 50 50 
100 98 100 98 99 100 
200 193 194 190 187 184 
400 315 323 319 324 322 
800 484 488 473 485 480 

1200 580 598 620 576 598 
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Perhaps one possibility is to change the criterion for choosing the optimal 

hyperparameters from 
( , 1

1arg min
L

c
L

k
val
kM k

GE
kγ)

=
∑  to { }( , 1

mode arg min
L

c
L

k
val
kM k

GE
γ) =
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⎜ ⎟
⎝ ⎠

, which is 

essentially a voting criterion to choose the set of hyperparameters which occur most 

frequently over the k design sets. These two criteria are equivalent when the optimal 

set of hyperparameters do not change as kL changes. 

 

5.2 Error Criteria for Cross Validation 

Typically, the error criterion for selecting models MSE
L L

val val
k kGE = , where  

 
( )

MSE L L

L

L

val H val
k kval

k val
kN

e e
� , (5.2) 

and 
L

val
ke  is the vector containing the estimation error ˆi i ie y y= −  on the kL-th 

validation set with 
L

val
kN  elements. This work explores the alternative of 

2s ( )
L L

val val
k kGE = e , where 2s ( )i  is the sample variance defined in Eq. (4.3). Since the 

bias does not affect the chaotic invariants of the estimated sequence, sacrificing the 

bias may enable one to obtain a more favourable resolution of the bias-variance 

dilemma (Section 3.6). Note that only the cross validation criterion is changed, and 

the bias neuron of the RBF is not removed. 

 

Define Normalized Mean Squared Error (NMSE) [124] as 

 2

( )NMSE
s ( )

test H test

test testN
e e

y
� , (5.3) 

where etest is the vector containing the error on test set and ytest is the vector containing 

the test set with Ntest elements. Define the Normalized Error Variance (NEV) as 
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2

2

s ( )NEV
s ( )

test

test

e
y

� . (5.4) 

Note that s2(ytest) is a normalizing factor in both Eq. (5.3) and Eq. (5.4); NEV = 1 

corresponds to predicting the average; typically this happens when the data set is 

white noise. Similarly, NMSE = 1 corresponds to predicting the average of white 

noise, provided the noise is zero mean. The presence of the normalizing factor s2(ytest) 

makes human interpretation more convenient, since NMSE and NEV are used to 

gauge performance on the test set. 

 

Incidentally, 2s ( )teste  is bounded below by the Cramer Rao Lower Bound (CRLB) 

[125] and bounded above by s2(ytest).  

 

Table 5.4 Performance of kRBF using different error criteria. 

Error criterion dE Mc γ NEV NMSE 

MSE
L

val

k  3 100 1.0E-04 1.63E-02 1.63E-02 

MSE
L

val

k  4 100 3.0E-04 5.25E-03 5.33E-03 

MSE
L

val

k  5 100 0.0E+00 9.15E-03 9.20E-03 
2s ( )

L

val
ke  3 100 1.0E-04 1.64E-02 1.65E-02 

2s ( )
L

val
ke  4 100 3.0E-04 5.13E-03 5.19E-03 

2s ( )
L

val
ke  5 100 0.0E+00 6.24E-03 6.23E-03 

 

Table 5.4 shows the performance of kRBF on one-step prediction using MSE
L

val
k  or 

2s ( )
L

val
ke  for model selection. The values of Mc and γ were found using k-fold cross 

validation. Caching was used and there were no empty clusters generated. It appears 

that despite sacrificing bias, the use of 2s ( )
L

val
ke  for model selection does not affect 

NMSE and NEV much. In fact, NEV is only higher for the case of dE = 3, and is 
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significantly lower for the case of dE = 5. Thus, 2s ( )
L

val
ke , rather than MSE

L

val
k , will be 

used for model selection in cross validation in this work. 

 

Note that the embedding dimension dE is varied in Table 5.4, although dE = 3 for SFA 

was found using GFNN in Table 4.3. The reason is that the choice of dE can be 

ambiguous in the presence of high levels of noise (see Figure 2.9 and Figure 2.10). 

From the practical point of view, the choice of dE should be one which gives the best 

results for one's application [126]. Thus, the result of varying dE from 3 to 5 was 

tested. Note that dE = 5 corresponds to the requirement that 02Ed D>  (Section 2.3). 

 

5.3 Choosing the Algorithm 

In Chapter 3, many variants of the basis function networks were discussed. So, which 

should be used for modelling sea clutter? This choice should be made after 

understanding the behaviour of the various networks. For the sake of computational 

tractability, the various networks are tested on SFA (Ntrain = 730), in order to find a 

candidate which can model data satisfactorily with a moderate number of centers. 

Nonetheless, modelling data using a small training set can be a challenging problem.  

 

In Table 5.5, two clustering methods were used: k stands for k-means, f stands for 

FCM. RBF stands for the ordinary RBF algorithm. TBF, DBF and EBF are data 

driven basis functions, and had been explained in Section 3.4.2. The suffix P indicates 

the use of Eq. (3.85), whilst the suffix N indicates the use of Eq. (3.86); for example, 

TBFP stands for TBF using Eq. (3.85). Thus, there are 14 combinations of algorithms: 

2 kinds of clustering algorithms {k, f} and 7 kinds of basis functions {RBF, TBFP, 
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DBFP, EBFP, TBFN, DBFN, EBFN} were used. The error criterion used was 2s ( )
L

val
ke , 

and GE is defined as in Eq. (3.79). The values of Mc and γ were found using k-fold 

cross validation; no empty clusters generated.  

 

However, it can be intimidating to look at the tables. An alternative is to obtain a 

scatter-plot of Mc, γ and NEV (Figure 5.2). Note that NMSE is tabulated for reference, 

and it is not necessary to include it in the scatter-plot, because NEV and NMSE are 

usually highly correlated. In this work, at least 7 variants of clustering and 7 kinds of 

basis functions are discussed. Together, this implies at least 49 combinations. Thus, a 

systematic way of labelling the algorithms is required. In the following figures, the 

string indicating the clustering method (lower case), and the string indicating the 

variant of RBF used (upper case) are concatenated to form the text label describing 

the point. A subscript (optional) is added to indicate the embedding dimension dE 

used for training the RBF or variant. For example, "kRBF3" indicates k-means 

clustering combined with the standard RBF algorithm, using dE = 3. 

 

The clustering of points makes the plot hard to see in two dimensions. In front of a 

computer, it is possible to use a mouse to rotate the plot to help to discern the three- 

dimensional structure of the plot. Note that because points with lower NEV are of 

higher interest, NEV is plotted on a logarithmic scale. Otherwise, it is very hard to 

resolve those clusters with low NEV. It is apparent that there are several clusters of 

points in Figure 5.2. One way to understand the figure is to split up the plot into 2 

plots, as in Figure 5.3. For Mc ≥ 200, it appears to be necessary to subdivide the plot 

as in Figure 5.4, in order to discern the various clusters more effectively. 
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Table 5.5 Simulation results using k-means and FCM 

clustering stage basis function dE Mc γ GE NEV NMSE 
f DBFP 5 50 0.0E+00 3.74E-02 1.36E-02 1.39E-02
k DBFP 5 50 0.0E+00 4.95E-02 1.89E-02 1.89E-02
f DBFP 3 50 0.0E+00 4.28E-02 1.95E-02 1.97E-02
k DBFP 3 50 0.0E+00 4.45E-02 2.00E-02 2.01E-02
k RBF 4 100 1.0E-04 2.73E-02 5.99E-03 6.00E-03
f RBF 4 100 1.0E-04 2.91E-02 7.06E-03 7.06E-03
k RBF 5 100 1.0E-03 5.22E-02 9.50E-03 9.61E-03
f RBF 5 100 1.0E-04 4.14E-02 1.01E-02 1.03E-02
k RBF 3 100 1.0E-04 4.08E-02 1.64E-02 1.65E-02
f RBF 3 100 1.0E-03 4.22E-02 1.99E-02 2.00E-02
f TBFP 3 100 0.0E+00 4.76E-02 2.49E-02 2.50E-02
f EBFP 3 100 0.0E+00 4.76E-02 3.32E-02 3.31E-02
f DBFP 4 400 3.0E-03 3.62E-02 2.98E-03 2.97E-03
f TBFN 4 400 3.0E-03 3.62E-02 3.03E-03 3.02E-03
f TBFP 4 400 3.0E-03 3.62E-02 3.05E-03 3.05E-03
f DBFN 4 400 3.0E-03 3.62E-02 3.14E-03 3.14E-03
k TBFN 4 400 0.0E+00 3.23E-02 4.61E-03 4.79E-03
k DBFP 4 400 0.0E+00 3.23E-02 4.73E-03 4.83E-03
k TBFP 4 400 0.0E+00 3.23E-02 4.99E-03 5.13E-03
k DBFN 4 400 0.0E+00 3.23E-02 5.13E-03 5.32E-03
k TBFN 5 400 1.0E-02 5.29E-02 5.45E-03 5.52E-03
k EBFN 5 400 1.0E-02 5.29E-02 5.61E-03 5.68E-03
k EBFP 4 400 0.0E+00 3.23E-02 5.73E-03 5.83E-03
k DBFN 5 400 1.0E-02 5.29E-02 5.77E-03 5.84E-03
k TBFP 5 400 1.0E-02 5.29E-02 6.09E-03 6.15E-03
k EBFP 5 400 1.0E-02 5.29E-02 6.10E-03 6.19E-03
k EBFN 4 400 0.0E+00 3.23E-02 6.40E-03 6.57E-03
f EBFN 5 400 3.0E-02 6.10E-02 9.74E-03 9.94E-03
f TBFN 5 400 3.0E-02 6.10E-02 9.80E-03 9.99E-03
f DBFN 5 400 3.0E-02 6.10E-02 9.97E-03 1.02E-02
f TBFP 5 400 3.0E-02 6.10E-02 1.00E-02 1.02E-02
f EBFP 5 400 3.0E-02 6.10E-02 1.00E-02 1.02E-02
f TBFN 3 400 1.0E-02 4.75E-02 1.61E-02 1.61E-02
k TBFP 3 400 1.0E-02 4.70E-02 1.62E-02 1.62E-02
k EBFP 3 400 1.0E-02 4.70E-02 1.63E-02 1.63E-02
k TBFN 3 400 1.0E-02 4.70E-02 1.63E-02 1.63E-02
k EBFN 3 400 1.0E-02 4.70E-02 1.64E-02 1.64E-02
f EBFP 4 400 3.0E-03 3.62E-02 6.50E-02 6.50E-02
k DBFN 3 400 1.0E-02 4.70E-02 9.35E-01 9.32E-01
f EBFN 3 400 1.0E-02 4.75E-02 1.00E+00 9.97E-01
f EBFN 4 400 3.0E-03 3.62E-02 1.00E+00 9.97E-01
f DBFN 3 500 3.0E-02 4.96E-02 1.79E-02 1.79E-02
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Figure 5.2 Scatter-plot of results using k-means clustering and FCM. 
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Figure 5.3 Plots of results in Figure 5.2 for Mc ≤ 100, and Mc ≥ 200, respectively. 
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Figure 5.4 Plots of results in Figure 5.2 for Mc ≥ 200 for different range of values 

of NEV. 

 

It seems that for any given value of Mc, RBF and DBF seem to do well. If the 

criterion for deciding on the most suitable candidate to use is a good compromise 

between the number of centers used and the NEV, then it turns out that the best 

candidate is kRBF or fRBF. The use of non radial basis functions may result in 

smaller errors, but this is at the cost of using more centers. This is not a big problem 

here. However, the running time can be prohibitive if Mc is large (i.e. on large data 

sets), since the complexity of the linear layer is O( 3M ). 

 

On the other hand, the use of non-radial basis functions may occasionally result in 

very few centers required. This would result in little or no regularization required by 

the data driven algorithms. However, NEV would often be much higher. This 

suggests that when computing resources are scarce, using the data driven algorithms 

may occasionally result in the use of less centers, which makes the least squares stage 
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cheaper. Furthermore, since little or no regularization was required at times, further 

savings may result by omitting regularization altogether. The savings from this step 

can be quite significant for large matrices, as the complexity of matrix inversion is 

O( 3M ), and thus it scales quite rapidly with size of the data set. However, it has to be 

noted that the error is much larger, which makes it unsuitable for iterated prediction, 

because the errors will grow exponentially. Note also that the TBF, DBF and EBF 

often perform worse when paired with k-means clustering. This is understandable, 

since it is more natural to pair them with clustering methods which utilize the 

Mahalanobis norm.  

 

The simulations were repeated using hierarchical clustering (Table 5.6 and Table 5.7). 

Four variants were explored: Single linkage with Euclidean norm (hes), Single 

linkage with Mahalanobis norm (hms), Ward's method with Euclidean norm (hew), 

and Ward's method with Mahalanobis norm (hmw). The basis functions {RBF, TBFN, 

DBFN, EBFN, TBFP, DBFP, EBFP} were used. The corresponding scatter plot is 

Figure 5.5.  

 

Compared to Table 5.5, using hierarchical clustering methods resulted in slightly less 

NEV when Mc ≤ 200. The use of Mahalanobis norm and Ward's linkage (Table 5.7) 

for clustering, and coupled with the ordinary RBF algorithm appears to do quite well 

here; it achieves low values of NEV without requiring the use of too many centers. 

From Figure 5.6, the hewRBF trained using embedding dimension is dE = 4 has the 

lowest NEV, which is similar to results obtained with kRBF4 and fRBF4 in Table 5.5. 

It appears that hierarchical clustering only confers marginal benefits, since the 

difference in performance between kRBF4 and hewRBF4 is slight. 
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Table 5.6 Training results using variants of hierarchical clustering (Euclidean 

norm) 

clustering stage basis function dE Mc γ GE NEV NMSE 
hes TBFN 3 25 1.0E-04 2.25E-01 1.46E-01 1.46E-01
hes EBFN 3 25 1.0E-04 2.25E-01 1.46E-01 1.46E-01
hew DBFP 4 50 0.0E+00 4.79E-02 1.81E-02 1.82E-02
hew DBFP 3 50 0.0E+00 3.77E-02 1.86E-02 1.88E-02
hew DBFP 5 50 0.0E+00 4.37E-02 3.09E-02 3.09E-02
hew TBFP 4 50 0.0E+00 6.67E-02 3.57E-02 3.66E-02
hew EBFP 4 50 0.0E+00 6.67E-02 3.57E-02 3.66E-02
hes TBFN 4 50 0.0E+00 2.87E-01 1.72E-01 1.74E-01
hes EBFN 4 50 0.0E+00 2.87E-01 1.72E-01 1.74E-01
hes TBFN 5 50 0.0E+00 2.63E-01 2.08E-01 2.12E-01
hes EBFN 5 50 0.0E+00 2.63E-01 2.08E-01 2.12E-01
hew RBF 4 100 3.0E-04 2.70E-02 5.59E-03 5.62E-03
hew RBF 5 100 1.0E-03 5.10E-02 8.85E-03 8.92E-03
hew RBF 3 100 1.0E-03 4.17E-02 1.98E-02 1.99E-02
hew TBFP 3 100 0.0E+00 5.31E-02 2.27E-02 2.26E-02
hew EBFP 3 100 0.0E+00 5.31E-02 2.27E-02 2.26E-02
hes RBF 3 100 1.0E-03 4.75E-02 3.01E-02 3.12E-02
hes TBFP 4 100 0.0E+00 1.82E-01 1.33E-01 1.35E-01
hes EBFP 4 100 0.0E+00 1.82E-01 1.33E-01 1.35E-01
hes DBFN 4 100 0.0E+00 1.69E-01 1.72E-01 1.72E-01
hes DBFN 5 100 0.0E+00 1.69E-01 2.08E-01 2.08E-01
hes DBFP 4 200 0.0E+00 8.62E-02 2.67E-02 2.66E-02
hes RBF 4 200 3.0E-03 6.14E-02 3.66E-02 3.70E-02
hes RBF 5 200 1.0E-04 5.86E-02 4.12E-02 4.14E-02
hes DBFP 5 200 1.0E-04 9.82E-02 4.62E-02 4.61E-02
hes DBFP 3 200 0.0E+00 6.45E-02 4.76E-02 4.76E-02
hes TBFP 3 200 1.0E-04 1.75E-01 6.33E-02 6.37E-02
hes EBFP 3 200 1.0E-04 1.75E-01 6.33E-02 6.37E-02
hew TBFP 5 200 3.0E-03 6.98E-02 1.78E-01 1.78E-01
hew EBFP 5 200 3.0E-03 6.98E-02 1.78E-01 1.78E-01
hew TBFN 4 400 1.0E-02 7.39E-02 1.47E-02 1.47E-02
hew DBFN 4 400 1.0E-02 7.39E-02 1.47E-02 1.47E-02
hew EBFN 4 400 1.0E-02 7.39E-02 1.47E-02 1.47E-02
hew TBFN 5 400 1.0E-02 8.38E-02 1.79E-02 1.78E-02
hew DBFN 5 400 1.0E-02 8.38E-02 1.79E-02 1.78E-02
hew EBFN 5 400 1.0E-02 8.38E-02 1.79E-02 1.78E-02
hew TBFN 3 400 1.0E-01 6.39E-02 2.03E-02 2.03E-02
hew DBFN 3 400 1.0E-01 6.39E-02 2.03E-02 2.03E-02
hew EBFN 3 400 1.0E-01 6.39E-02 2.03E-02 2.03E-02
hes DBFN 3 400 0.0E+00 9.65E-02 6.70E-02 6.68E-02
hes TBFP 5 400 1.0E-03 2.29E-01 1.58E-01 1.58E-01
hes EBFP 5 400 1.0E-03 2.29E-01 1.58E-01 1.58E-01
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Table 5.7 Training results using variants of hierarchical clustering (Mahalanobis 

norm) 

clustering stage basis function dE Mc γ GE NEV NMSE 
hms TBFN 3 10 1.0E-04 3.65E-01 3.35E-01 3.35E-01
hms EBFN 3 10 1.0E-04 3.65E-01 3.35E-01 3.35E-01
hmw DBFP 4 50 0.0E+00 4.87E-02 1.35E-02 1.35E-02
hmw RBF 3 50 1.0E-04 4.09E-02 2.04E-02 2.05E-02
hmw TBFP 3 50 0.0E+00 5.26E-02 2.66E-02 2.65E-02
hmw EBFP 3 50 0.0E+00 5.26E-02 2.66E-02 2.65E-02
hmw TBFP 4 50 0.0E+00 6.39E-02 3.95E-02 4.03E-02
hmw EBFP 4 50 0.0E+00 6.39E-02 3.95E-02 4.03E-02
hms TBFN 4 50 0.0E+00 1.99E-01 1.24E-01 1.30E-01
hms EBFN 4 50 0.0E+00 1.99E-01 1.24E-01 1.30E-01
hms TBFP 3 50 0.0E+00 1.30E-01 2.15E-01 2.15E-01
hms EBFP 3 50 0.0E+00 1.30E-01 2.15E-01 2.15E-01
hmw RBF 4 100 1.0E-04 2.52E-02 6.11E-03 6.10E-03
hmw RBF 5 100 3.0E-04 4.48E-02 7.25E-03 7.27E-03
hmw DBFP 5 100 0.0E+00 5.27E-02 1.83E-02 1.82E-02
hmw DBFP 3 100 0.0E+00 4.18E-02 2.56E-02 2.58E-02
hms TBFN 5 100 1.0E-04 3.10E-01 3.71E-01 3.70E-01
hms EBFN 5 100 1.0E-04 3.10E-01 3.71E-01 3.70E-01
hms RBF 3 200 3.0E-02 5.20E-02 2.23E-02 2.23E-02
hms RBF 4 200 1.0E-04 8.99E-02 9.10E-02 9.16E-02
hmw DBFN 3 200 1.0E-04 1.09E-01 9.11E-02 9.08E-02
hms DBFP 5 200 0.0E+00 9.62E-02 1.29E-01 1.29E-01
hms RBF 5 200 3.0E-03 1.09E-01 1.48E-01 1.49E-01
hms DBFN 3 200 1.0E-04 1.30E-01 2.30E-01 2.29E-01
hmw TBFN 4 400 3.0E-02 9.41E-02 2.51E-02 2.51E-02
hmw DBFN 4 400 3.0E-02 9.41E-02 2.51E-02 2.51E-02
hmw EBFN 4 400 3.0E-02 9.41E-02 2.51E-02 2.51E-02
hmw TBFP 5 400 3.0E-02 9.66E-02 2.84E-02 2.84E-02
hmw EBFP 5 400 3.0E-02 9.66E-02 2.84E-02 2.84E-02
hmw TBFN 5 400 3.0E-02 9.66E-02 2.84E-02 2.84E-02
hmw DBFN 5 400 3.0E-02 9.66E-02 2.84E-02 2.84E-02
hmw EBFN 5 400 3.0E-02 9.66E-02 2.84E-02 2.84E-02
hms DBFP 4 400 1.0E-04 9.96E-02 6.58E-02 6.68E-02
hms DBFN 4 400 3.0E-04 1.62E-01 1.35E-01 1.35E-01
hms TBFP 4 400 0.0E+00 1.65E-01 1.47E-01 1.47E-01
hms EBFP 4 400 0.0E+00 1.65E-01 1.47E-01 1.47E-01
hms DBFN 5 400 0.0E+00 1.69E-01 1.48E-01 1.48E-01
hms TBFP 5 400 3.0E-04 2.14E-01 1.56E-01 1.55E-01
hms EBFP 5 400 3.0E-04 2.14E-01 1.56E-01 1.55E-01
hmw TBFN 3 400 3.0E-04 5.00E-02 9.96E-01 9.93E-01
hmw EBFN 3 400 3.0E-04 5.00E-02 9.96E-01 9.93E-01
hms DBFP 3 500 0.0E+00 7.52E-02 9.35E-02 9.34E-02
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Figure 5.5 Scatter-plot of results using hierarchical clustering. 
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Figure 5.6 Plots of results in Figure 5.5 for Mc ≤ 100, and Mc ≥ 200, respectively. 
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The use of hew coupled with non-radial basis functions appeared to do well. It seems 

counterintuitive, but the use of hmw combined with non-radial basis functions did not 

appear to do well. There were also several clusters in Figure 5.6, whereby the use of 

identical clustering algorithms and values of dE, coupled with different variants of the 

basis functions resulted in virtually identical results. One such cluster was hewTBFN4, 

hewEBFN4 and hewDBFN4. The text labels had been manually rearranged for the 

sake of readability. 

 

One conclusion that can be drawn was the single linkage did not appear to be very 

useful. The results in Figure 5.6 indicate that Ward's method does better than single 

linkage, indicating that clusters of relatively equal sizes and shapes are favoured.  

 

Perhaps, the important issue is the balance between spherical and elliptical clusters, 

and one way to investigate this is to explore the use of Babuska's method of clustering 

which also obtains ellipsoidal clusters (Section 3.3), with the shape of the clusters 

determined by γc. The results are recorded in Table 5.8 and Table 5.9, with 

corresponding scatter-plots in Figure 5.7 and Figure 5.8. The effect of changing the 

clustering regularization parameter γc was explored; γc = 0.05 (bh), γc = 0.1 (b1) and 

γc = 0.2 (b2). The basis functions {RBF, TBFN, DBFN, EBFN, TBFP, DBFP, EBFP} 

were used. Interestingly, the RBFs in Table 5.8 end up with Mc = 100, and 

performance which is slightly better than in Table 5.5. Thus, the pairing of non-

Euclidean clustering methods with the ordinary RBF can be successful. 

 

It seems that γc = 0.2 does better than γc = 0.05 when Mc is small, but the situation is 

reversed when Mc is large. Since higher values of γc indicates more spherical clusters, 
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this suggests that ellipsoidal clusters do better when Mc is large. However, in such a 

situation, many of the clusters are effectively singletons (with covariance matrix set to 

I), since the ratio of points to centers is close to 1. The results for hierarchical 

clustering, and for Babuska's method suggest that non-Euclidean methods of 

clustering do not seem to confer significant benefits.  

 

Table 5.8 Training results using Babuska's method of clustering (Mc ≤ 100) 

clustering stage basis function dE Mc γ GE NEV NMSE 
b2 TBFN 3 25 0.0E+00 7.04E-02 4.96E-02 4.94E-02
bh EBFN 3 25 0.0E+00 7.75E-02 5.08E-02 5.13E-02
bh TBFN 3 25 0.0E+00 7.75E-02 5.10E-02 5.09E-02
b1 TBFN 3 25 0.0E+00 8.32E-02 5.20E-02 5.18E-02
b1 DBFN 3 25 0.0E+00 8.74E-02 5.47E-02 5.46E-02
b1 EBFN 3 25 0.0E+00 8.32E-02 5.94E-02 5.92E-02
b2 EBFN 3 25 0.0E+00 7.04E-02 6.27E-02 6.27E-02
b2 DBFN 3 25 0.0E+00 8.57E-02 6.85E-02 6.83E-02
bh DBFN 3 25 0.0E+00 8.11E-02 7.89E-02 7.87E-02
b1 DBFP 4 50 0.0E+00 3.79E-02 1.10E-02 1.10E-02
b2 DBFP 4 50 0.0E+00 3.46E-02 1.14E-02 1.14E-02
bh DBFP 5 50 0.0E+00 4.50E-02 1.41E-02 1.41E-02
b1 DBFP 5 50 0.0E+00 4.74E-02 1.64E-02 1.66E-02
b1 RBF 3 50 0.0E+00 4.25E-02 1.86E-02 1.87E-02
b2 DBFP 5 50 0.0E+00 4.23E-02 2.07E-02 2.08E-02
bh DBFP 3 50 0.0E+00 4.43E-02 2.13E-02 2.13E-02
bh EBFP 3 50 0.0E+00 5.18E-02 2.19E-02 2.21E-02
bh TBFP 3 50 0.0E+00 5.18E-02 2.22E-02 2.22E-02
b2 TBFP 3 50 0.0E+00 4.70E-02 2.41E-02 2.43E-02
b2 EBFP 3 50 0.0E+00 4.70E-02 2.48E-02 2.48E-02
b2 DBFP 3 50 0.0E+00 3.70E-02 2.50E-02 2.50E-02
b1 RBF 4 100 1.0E-03 2.98E-02 7.66E-03 7.70E-03
bh RBF 4 100 3.0E-04 2.79E-02 7.99E-03 8.03E-03
b2 RBF 4 100 3.0E-04 2.97E-02 8.33E-03 8.44E-03
bh RBF 5 100 1.0E-03 4.49E-02 9.49E-03 9.55E-03
b2 RBF 5 100 1.0E-03 4.35E-02 1.13E-02 1.14E-02
b1 RBF 5 100 1.0E-03 4.33E-02 1.27E-02 1.28E-02
bh RBF 3 100 1.0E-04 3.94E-02 1.64E-02 1.65E-02
b2 RBF 3 100 1.0E-03 4.08E-02 1.65E-02 1.65E-02

 

The non-radial basis functions do appear to provide a good alternative when small 

numbers of centers are required, or when NEV has to be as small as possible. 
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However, the performance of the non-radial basis functions compared to the ordinary 

RBF did not appear to be markedly better. One possible reason is that non-radial basis 

functions are prone to numerical problems.  

 

Table 5.9 Training results using Babuska's method of clustering (Mc ≥ 200) 

clustering stage basis function dE Mc γ GE NEV NMSE 
b1 TBFN 5 200 1.0E-02 5.35E-02 1.28E-02 1.28E-02 
b1 EBFN 5 200 1.0E-02 5.35E-02 1.00E+00 9.97E-01 
b2 TBFN 5 200 1.0E-02 5.36E-02 1.00E+00 9.97E-01 
b2 EBFN 5 200 1.0E-02 5.36E-02 1.00E+00 9.97E-01 
bh TBFP 5 400 1.0E-02 5.44E-02 7.96E-03 7.98E-03 
bh TBFN 5 400 1.0E-02 5.44E-02 8.20E-03 8.21E-03 
bh EBFP 5 400 1.0E-02 5.44E-02 8.53E-03 8.54E-03 
b1 TBFP 5 400 1.0E-02 5.58E-02 9.21E-03 9.20E-03 
bh DBFN 5 400 1.0E-02 5.44E-02 9.44E-03 9.43E-03 
b1 DBFN 5 400 1.0E-02 5.58E-02 9.72E-03 9.71E-03 
b1 EBFP 5 400 1.0E-02 5.58E-02 9.75E-03 9.74E-03 
bh EBFN 5 400 1.0E-02 5.44E-02 1.06E-02 1.06E-02 
b2 TBFP 5 400 3.0E-02 5.68E-02 1.48E-02 1.48E-02 
b2 DBFN 5 400 3.0E-02 5.68E-02 1.63E-02 1.63E-02 
b2 EBFP 5 400 3.0E-02 5.68E-02 1.02E-01 1.02E-01 
bh DBFP 4 500 1.0E-02 4.04E-02 5.37E-03 5.36E-03 
bh TBFP 4 500 1.0E-02 4.04E-02 5.52E-03 5.52E-03 
bh DBFN 4 500 1.0E-02 4.04E-02 5.55E-03 5.54E-03 
b2 TBFP 4 500 1.0E-02 4.14E-02 6.00E-03 6.01E-03 
b1 TBFN 4 500 1.0E-02 4.16E-02 6.21E-03 6.22E-03 
b1 EBFN 4 500 1.0E-02 4.16E-02 6.33E-03 6.33E-03 
bh EBFN 4 500 1.0E-02 4.04E-02 6.42E-03 6.41E-03 
bh TBFN 4 500 1.0E-02 4.04E-02 6.81E-03 6.79E-03 
b1 DBFN 4 500 1.0E-02 4.16E-02 6.91E-03 6.89E-03 
bh EBFP 4 500 1.0E-02 4.04E-02 7.43E-03 7.42E-03 
b1 TBFP 4 500 1.0E-02 4.16E-02 7.61E-03 7.59E-03 
b1 EBFP 4 500 1.0E-02 4.16E-02 7.68E-03 7.66E-03 
b2 EBFP 4 500 1.0E-02 4.14E-02 8.05E-03 8.03E-03 
b1 DBFP 3 500 1.0E-04 3.31E-02 7.95E-02 7.93E-02 
b2 DBFN 4 500 1.0E-02 4.14E-02 2.04E-01 2.03E-01 
b2 EBFN 4 500 1.0E-02 4.14E-02 2.15E-01 2.15E-01 
b1 EBFP 3 500 1.0E-04 3.99E-02 2.63E-01 2.63E-01 
b1 TBFP 3 500 1.0E-04 3.99E-02 3.02E-01 3.01E-01 
b2 TBFN 4 500 1.0E-02 4.14E-02 9.99E-01 9.97E-01 
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Figure 5.7 Scatter-plot of results using Babuska's method of clustering. 
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Figure 5.8 Plots of results in Figure 5.7 for Mc ≤ 100, and Mc ≥ 200, respectively. 
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One way to check how important numerical issues are, is to examine the performance 

of EBFs when the covariance matrices are regularized, as in Eq. (3.41) and Eq. (3.42).  

 

Simulation results are recorded in Table 5.10 and Table 5.11, with corresponding 

scatter-plots in Figure 5.9 and Figure 5.10. Due to the large number of clustering 

methods tested, {k, f, hes, hms, hew, hmw, bh, b1, b2}, only the EBFP and EBFN are 

tested. The regularization parameters γa and γb are varied. These are represented by 

the superscripts γa = 0.05 (ah), γa = 0.1 (a1), γa = 0.2 (a2), γb = 0.05 (bh), γb = 0.1 (b1) 

and γb = 0.2 (b2). As usual, the subscripts refer to the embedding dimension. For 

example, b2
3b1EBFP  refers to the combination of Babuska's method of clustering with 

γc = 0.1, using EBFP, with γa = 0, γb = 0.2, and dE = 3. The total of 324 combinations 

had been reduced to a more manageable 90 combinations by displaying only the top 

15 performers (low NEV) for each value of Mc in Table 5.10 and Table 5.11. 

 

Figure 5.10 illustrates that though regularized covariance matrices do not result in 

significantly better performance compared to kRBF, they do allow EBFP and EBFN 

to perform better than what the results in Table 5.5 to Table 5.9 suggest. Hence, it is 

likely that numerical issues are the main reason why the non-radial basis functions do 

not seem to perform better than the ordinary RBF in Table 5.5 to Table 5.9. 

Incidentally, Figure 5.10 shows that many EBFs have γ = 0. This suggests that when 

regularized covariance matrices are used, it may be possible to do away with 

regularization, in order to reduce computational load.  
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Table 5.10 Training results using regularized covariance matrices (Mc ≤ 100) 

clustering stage basis function γb γa dE Mc γ GE NEV NMSE 
hms EBFN 0 0.05 3 10 1.0E-04 3.72E-01 3.35E-01 3.35E-01
hms EBFN 0 0.1 3 10 1.0E-04 3.79E-01 3.35E-01 3.35E-01
hms EBFN 0 0.2 3 10 1.0E-04 3.96E-01 3.35E-01 3.35E-01
bh EBFN 0 0.2 3 25 0.0E+00 7.46E-02 4.87E-02 4.87E-02
b2 EBFN 0 0.1 3 25 0.0E+00 7.00E-02 4.95E-02 4.93E-02
b1 EBFN 0 0.2 3 25 0.0E+00 8.24E-02 5.00E-02 4.99E-02
bh EBFN 0 0.05 3 25 0.0E+00 7.55E-02 5.09E-02 5.08E-02
b1 EBFN 0 0.1 3 25 0.0E+00 8.32E-02 5.16E-02 5.16E-02
b1 EBFN 0 0.05 3 25 0.0E+00 8.32E-02 5.20E-02 5.18E-02
bh EBFN 0 0.1 3 25 0.0E+00 7.47E-02 5.37E-02 5.38E-02
b2 EBFN 0 0.05 3 25 0.0E+00 7.04E-02 6.54E-02 6.59E-02
b2 EBFN 0 0.2 3 25 0.0E+00 7.04E-02 1.27E-01 1.27E-01
hes EBFN 0 0.05 3 25 1.0E-04 2.25E-01 1.46E-01 1.46E-01
hes EBFN 0 0.1 3 25 1.0E-04 2.25E-01 1.46E-01 1.46E-01
hes EBFN 0 0.2 3 25 1.0E-04 2.25E-01 1.46E-01 1.46E-01
b1 EBFN 0.1 0 4 50 0.0E+00 4.07E-02 1.26E-02 1.27E-02
f EBFN 0.1 0 4 50 0.0E+00 3.59E-02 1.40E-02 1.40E-02

b2 EBFP 0.05 0 4 50 0.0E+00 3.98E-02 1.40E-02 1.43E-02
f EBFP 0.1 0 4 50 0.0E+00 3.59E-02 1.42E-02 1.42E-02

b1 EBFN 0.2 0 4 50 0.0E+00 3.27E-02 1.44E-02 1.45E-02
b1 EBFP 0.05 0 4 50 0.0E+00 3.98E-02 1.53E-02 1.54E-02

hew EBFN 0.05 0 4 50 0.0E+00 3.59E-02 1.72E-02 1.78E-02
b1 EBFP 0.2 0 4 50 0.0E+00 3.27E-02 1.77E-02 1.78E-02

hmw EBFN 0.1 0 4 50 0.0E+00 3.81E-02 1.78E-02 1.79E-02
b1 EBFN 0.05 0 4 50 0.0E+00 4.02E-02 1.91E-02 1.97E-02
f EBFP 0.05 0 3 50 0.0E+00 4.52E-02 2.07E-02 2.07E-02

bh EBFP 0.05 0 3 50 0.0E+00 4.26E-02 2.21E-02 2.21E-02
f EBFN 0.05 0 3 50 0.0E+00 4.17E-02 2.25E-02 2.25E-02
k EBFN 0.05 0 3 50 0.0E+00 4.51E-02 2.26E-02 2.26E-02

b2 EBFN 0.05 0 4 50 0.0E+00 4.08E-02 2.32E-02 2.33E-02
k EBFP 0.2 0 4 100 0.0E+00 2.72E-02 8.34E-03 8.33E-03

hew EBFP 0.2 0 4 100 0.0E+00 2.79E-02 8.62E-03 8.69E-03
hmw EBFP 0.2 0 4 100 0.0E+00 3.41E-02 9.53E-03 9.50E-03
hew EBFN 0.2 0 4 100 0.0E+00 3.40E-02 9.80E-03 9.89E-03
hmw EBFN 0.2 0 4 100 0.0E+00 3.37E-02 1.07E-02 1.07E-02
bh EBFP 0.2 0 4 100 0.0E+00 3.25E-02 1.13E-02 1.13E-02
bh EBFN 0.2 0 4 100 0.0E+00 3.25E-02 1.15E-02 1.15E-02
k EBFN 0.2 0 4 100 0.0E+00 3.18E-02 1.27E-02 1.28E-02

hmw EBFN 0.05 0 4 100 0.0E+00 4.17E-02 1.62E-02 1.64E-02
k EBFP 0.1 0 3 100 0.0E+00 4.50E-02 1.74E-02 1.75E-02

bh EBFN 0.2 0 3 100 0.0E+00 4.22E-02 1.75E-02 1.75E-02
f EBFP 0.1 0 3 100 0.0E+00 4.16E-02 1.76E-02 1.77E-02

hmw EBFP 0.05 0 3 100 0.0E+00 3.99E-02 1.77E-02 1.80E-02
f EBFN 0.1 0 3 100 0.0E+00 4.41E-02 1.80E-02 1.80E-02
k EBFP 0.05 0 3 100 0.0E+00 4.57E-02 1.80E-02 1.83E-02
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Table 5.11 Training results using regularized covariance matrices (Mc ≥ 200) 

clustering stage basis function γb γa dE Mc γ GE NEV NMSE 
k EBFN 0.2 0 5 200 3.0E-04 5.06E-02 3.60E-03 3.61E-03

b1 EBFN 0 0.05 5 200 1.0E-02 5.35E-02 1.09E-02 1.11E-02
b1 EBFN 0 0.1 5 200 1.0E-02 5.35E-02 1.30E-02 1.31E-02
k EBFP 0.2 0 5 200 3.0E-04 4.86E-02 1.31E-02 1.34E-02

hew EBFP 0.1 0 4 200 3.0E-04 3.19E-02 1.35E-02 1.39E-02
b2 EBFP 0.2 0 5 200 3.0E-04 5.39E-02 1.46E-02 1.50E-02
f EBFP 0.2 0 4 200 3.0E-04 3.17E-02 1.54E-02 1.60E-02

hmw EBFP 0.2 0 5 200 3.0E-04 3.93E-02 1.57E-02 1.61E-02
b2 EBFN 0.2 0 4 200 1.0E-04 3.72E-02 1.57E-02 1.71E-02

hew EBFP 0.2 0 3 200 0.0E+00 4.06E-02 1.79E-02 1.78E-02
hew EBFP 0.05 0 4 200 0.0E+00 3.17E-02 1.86E-02 1.86E-02
hmw EBFP 0.05 0 4 200 1.0E-04 3.43E-02 1.91E-02 1.92E-02

f EBFP 0.2 0 3 200 0.0E+00 4.23E-02 1.92E-02 1.92E-02
f EBFN 0.2 0 3 200 0.0E+00 3.86E-02 2.04E-02 2.04E-02

hmw EBFP 0.1 0 4 200 3.0E-04 3.07E-02 2.08E-02 2.12E-02
f EBFN 0 0.2 4 400 3.0E-03 3.62E-02 2.98E-03 2.98E-03
f EBFN 0.05 0 4 400 3.0E-03 3.62E-02 3.00E-03 2.99E-03
f EBFP 0 0.2 4 400 3.0E-03 3.62E-02 3.03E-03 3.02E-03
k EBFN 0.05 0 4 400 0.0E+00 3.23E-02 4.64E-03 4.67E-03
k EBFN 0.1 0 4 400 0.0E+00 3.23E-02 4.91E-03 4.96E-03
k EBFN 0.05 0 5 400 1.0E-02 5.29E-02 5.40E-03 5.47E-03
k EBFN 0.1 0 5 400 1.0E-02 5.29E-02 5.49E-03 5.56E-03
k EBFP 0 0.2 5 400 1.0E-02 5.29E-02 5.51E-03 5.58E-03
k EBFP 0 0.05 5 400 1.0E-02 5.29E-02 5.55E-03 5.62E-03
k EBFN 0 0.05 5 400 1.0E-02 5.29E-02 5.55E-03 5.63E-03
k EBFP 0 0.1 5 400 1.0E-02 5.29E-02 5.57E-03 5.64E-03
k EBFP 0 0.2 4 400 0.0E+00 3.23E-02 5.57E-03 5.80E-03
k EBFP 0 0.1 4 400 0.0E+00 3.23E-02 5.61E-03 5.83E-03
k EBFN 0 0.05 4 400 0.0E+00 3.23E-02 5.78E-03 5.90E-03
k EBFN 0 0.2 4 400 0.0E+00 3.23E-02 5.80E-03 5.91E-03

bh EBFP 0 0.2 4 500 1.0E-02 4.04E-02 3.56E-03 3.55E-03
bh EBFN 0 0.2 4 500 1.0E-02 4.04E-02 3.63E-03 3.63E-03
bh EBFP 0.05 0 4 500 1.0E-02 4.04E-02 3.73E-03 3.73E-03
bh EBFN 0.1 0 4 500 1.0E-02 4.04E-02 3.88E-03 3.87E-03
bh EBFN 0 0.1 4 500 1.0E-02 4.04E-02 3.96E-03 3.95E-03
bh EBFP 0 0.1 4 500 1.0E-02 4.04E-02 3.98E-03 3.97E-03
bh EBFN 0 0.05 4 500 1.0E-02 4.04E-02 4.00E-03 4.01E-03
bh EBFP 0 0.05 4 500 1.0E-02 4.04E-02 4.17E-03 4.15E-03
b1 EBFN 0 0.1 4 500 1.0E-02 4.16E-02 5.28E-03 5.28E-03
b1 EBFP 0 0.1 4 500 1.0E-02 4.16E-02 6.25E-03 6.24E-03
b1 EBFP 0 0.05 4 500 1.0E-02 4.16E-02 6.32E-03 6.31E-03
b1 EBFP 0 0.2 4 500 1.0E-02 4.16E-02 6.37E-03 6.36E-03
bh EBFN 0.05 0 4 500 1.0E-02 4.04E-02 6.37E-03 6.36E-03
b1 EBFN 0 0.2 4 500 1.0E-02 4.16E-02 7.03E-03 7.02E-03
b1 EBFN 0 0.05 4 500 1.0E-02 4.16E-02 7.24E-03 7.22E-03



 121

50 100
200

300
400

500

0.0
1.0e-4

3.0e-4
1.0e-3

3.0e-3
1.0e-2

3.0e-2
1.0e-1
0.000

0.005

0.010

0.015

fEBFNa2
4fEBFNbh
4fEBFPa2
4

bhEBFPa2
4

kEBFNb2
5

bhEBFNa2
4bhEBFPbh
4

Mc

bhEBFNb1
4bhEBFNa1
4bhEBFPa1
4bhEBFNah
4

bhEBFPah
4

γ

kEBFNbh
4

kEBFNb1
4

b1EBFNa1
4

kEBFNbh
5

kEBFNb1
5kEBFPa2
5kEBFPah
5kEBFNah
5kEBFPa1
5

kEBFPa2
4kEBFPa1
4

kEBFNah
4kEBFNa2
4kEBFPbh
4kEBFNa1
4kEBFPb1
4

kEBFPb1
5kEBFPbh
5kEBFNa1
5kEBFNa2
5

b1EBFPa1
4b1EBFPah
4b1EBFPa2
4bhEBFNbh
4

kEBFPah
4

bhEBFPa2
5

b1EBFNa2
4

b1EBFNah
4b2EBFNah
4

b2EBFPa2
4

b2EBFPa1
4

b2EBFNa2
4

b1EBFPa2
5b1EBFPb2
5

kEBFPb2
4

bhEBFPb1
5bhEBFPah
5

b1EBFNb1
5

hewEBFPb2
4

bhEBFPa1
5

bhEBFNb2
5

bhEBFNa1
5

bhEBFNah
5bhEBFNa2
5b1EBFPa1
5

hmwEBFPb2
4

fEBFNa1
5fEBFNa2
5b1EBFPbh

5bhEBFPb2
5

hewEBFNb2
4

fEBFNb1
5bhEBFNb1

5

fEBFPah
5fEBFNah
5fEBFPa2
5fEBFPb2
5fEBFPbh
5fEBFNbh
5bhEBFPbh

5
b1EBFNbh

5b1EBFNb2
5bhEBFNbh
5b1EBFPb1
5b1EBFPah
5

hmwEBFNb2
4

b1EBFNah
5

b2EBFPb1
4

bhEBFPb2
4

bhEBFNb2
4

b1EBFNb1
4

kEBFNb2
4

b1EBFNa1
5

kEBFPb2
5

hewEBFPb1
4

fEBFNb1
4

b2EBFPa1
5

b2EBFPbh
4

fEBFPb1
4

b1EBFNb2
4

b2EBFPah
5

b2EBFPb2
5

hewEBFNa2
4hewEBFNa1
4hewEBFNah
4

b2EBFNb1
5

b2EBFPb1
5b2EBFNb2
5

b1EBFPbh
4

fEBFPb2
4

b2EBFPbh
5

hmwEBFPb2
5b2EBFNb2

4
hmwEBFNbh

4

kEBFNah
3fEBFNah

3kEBFNa2
3kEBFNa1
3

hewEBFNbh
4

N
EV

kEBFPb1
3bhEBFNb2

3fEBFPb1
3b1EBFPb2

4
hmwEBFPbh

3hmwEBFNb1
4

hewEBFPb2
3

hewEBFNa2
5hewEBFNa1
5hewEBFNah
5

fEBFNb1
3

 

Figure 5.9 Scatter-plot of results using regularized covariance matrices. 

 

0.0 1.0e-4 3.0e-4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

b1EBFNa1
3b1EBFNa2
3

b1EBFNah
3

bhEBFNa1
3

bhEBFNa2
3

bhEBFNah
3b2EBFNa1
3

b2EBFNah
3

kEBFNbh
3fEBFNbh

3
fEBFPbh

3

bhEBFPa1
3

bhEBFPa2
3bhEBFPah
3bhEBFPbh
3

b2EBFPa1
3b2EBFPa2
3

b2EBFPah
3hewEBFPa1

3hewEBFPa2
3hewEBFNbh
3

hmwEBFPa1
3

hmwEBFPa2
3hmwEBFPah
3

fEBFNb1
4

fEBFPb1
4

b1EBFNb1
4

b1EBFNb2
4

b1EBFPb2
4

b1EBFNbh
4

b1EBFPbh
4

b2EBFNbh
4

b2EBFPbh
4

hewEBFPa1
4hewEBFPa2
4hewEBFPah
4

hewEBFNbh
4

hmwEBFPa1
4

hmwEBFPa2
4

hmwEBFPah
4

hmwEBFNb1
4kEBFPb1

3
kEBFNb2

3kEBFPbh
3

fEBFPa1
3

fEBFPah
3

fEBFNb1
3fEBFPb1
3

b1EBFNb1
3b1EBFNbh
3

bhEBFNb1
3

bhEBFPb1
3

bhEBFNb2
3

bhEBFPb2
3 bhEBFNbh

3b2EBFNb1
3b2EBFNbh

3b2EBFPbh
3

hesEBFNb2
3

hewEBFPah
3

hewEBFNb1
3

hmwEBFPbh
3

kEBFNb2
4

kEBFPb2
4

bhEBFNb2
4 bhEBFPb2

4

hewEBFNb2
4

hewEBFPb2
4

hmwEBFNb2
4

hmwEBFPb2
4

hmwEBFNbh
4

hmwEBFNb1
5

hmwEBFPb1
5

hmwEBFNbh
5hmwEBFPbh
5

γ

N
EV

Mc = 25
Mc = 50
Mc = 100

0.0 1.0e-4 3.0e-4 1.0e-3 3.0e-3 1.0e-2 3.0e-2 1.0e-1

0.003

0.004

0.005

0.006

kEBFNb2
5

kEBFNa1
4

kEBFPa1
4

kEBFNa2
4

kEBFPa2
4

kEBFNah
4

kEBFNb1
4

kEBFPb1
4

kEBFNbh
4

kEBFPbh
4

fEBFNa2
4

fEBFPa2
4fEBFNbh

4

kEBFNa1
5

kEBFPa1
5

kEBFNa2
5

kEBFPa2
5

kEBFNah
5kEBFPah
5kEBFNb1
5

kEBFPb1
5

kEBFNbh
5

kEBFPbh
5

b1EBFNa1
4

b1EBFPa1
4

b1EBFPa2
4b1EBFPah
4

bhEBFNa1
4

bhEBFPa1
4

bhEBFNa2
4 bhEBFPa2

4

bhEBFNah
4

bhEBFPah
4

bhEBFNb1
4

bhEBFNbh
4

bhEBFPbh
4

γ

N
EV

Mc = 200
Mc = 400
Mc = 500

 

Figure 5.10 Plots of results in Figure 5.9 for Mc ≤ 100, and Mc ≥ 200, respectively. 
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The main conclusion which can be drawn from this section is that the kRBF appears 

to offer a good compromise between the number of centers used, and performance on 

the test set, as measured by NEV or NMSE (both NEV and NMSE are highly 

correlated in Table 5.5 to Table 5.9). 

 

5.3.1 Committee machine 

Table 5.12 shows GE obtained for Babuska's method of clustering with Mc fixed at 50 

centers, dE = 3, and γc = 0.1, on SFA for both EBFP and EBFN. It demonstrates the 

possibility that either EBFP or EBFN will fail (due to normalization of data to mean 0 

and variance 1, GE ≈ 1 is close to performance obtained when predicting white noise), 

because of the inadequacies in Eq. (3.85) or Eq. (3.86). The failure was not due to 

clustering, because all GE values were obtained from the same set of clustering results. 

When either algorithm fails, the other algorithm may perform better. Thus, it may be 

advisable to choose either EBFP or EBFN, depending on which has less 

generalization error. This is like a "committee machine", which combines the outputs 

of several neural networks [98]. Caching the clustering stage results in reduced 

computational demands if "committee machines" are used. 

 

Table 5.12 Generalization Errors (GE) using Babuska's algorithm 

γ GE 
(EBFP) 

GE 
(EBFN) 

0.0E+00 5.51E-02 5.21E-01 
1.0E-04 5.95E-02 5.08E-01 
3.0E-04 6.36E-02 7.08E-01 
1.0E-03 5.00E-01 1.08E+00 
3.0E-03 9.15E-02 1.03E+00 
1.0E-02 3.09E-01 1.01E+00 
3.0E-02 2.90E-01 1.01E+00 
1.0E-01 1.69E+00 1.01E+00 
3.0E-01 5.36E+01 1.01E+00 
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5.3.2 Effect of Varying SNR 

Simulations were run for Lorenz data with AWGN of varying SNR. The Lorenz 

system is isomorphic to the laser system from which SFA was derived, and it would 

be interesting to compare the results. It turns out that Lorenz data requires more 

centers to model. The Lorenz attractor has two "lobes", whilst the SFA attractor has 

only one "lobe", possibly accounting for the fact that more centers are required to 

model the Lorenz data. It seems unavoidable that the complexity of the neural 

network model corresponds to the complexity of the attractor is in state space, rather 

than the complexity of the underlying equations. 

 

Table 5.13 Variation of GE and NEV of kRBF with SNR for Lorenz data 

SNR Mc γ GE NEV 
-5 25 3.0E-01 8.82E-01 8.57E-01 
10 400 3.0E-01 1.22E-01 1.26E-01 
20 400 1.0E-01 1.36E-02 1.44E-02 
25 800 3.0E-02 4.64E-03 4.77E-03 
30 800 1.0E-02 1.52E-03 1.57E-03 
999 1200 0.0E+00 7.16E-07 1.63E-06 

 

Table 5.13, shows that SNR influences the number of centers required Mc; Mc 

decreased with decreasing SNR. Consider Figure 3.8; if the noise floor is higher, less 

detail will be recoverable. This in turn means that fewer centers will be required. 

Interestingly, even for negative SNR, the NEV remained at less than 1. This meant 

that some learning still took place, despite the limited data length, and the 

overpowering presence of noise.  
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5.3.3 Sea Clutter 

The same procedures were applied to sea clutter data in low sea state (lo.dat), in-

phase component, where Ntotal = 8192. The kRBF with caching was used. The 

embedding dimension was varied, because the embedding dimension is approximately 

5, for both low and high sea state. GE was very low, if compared to Table 5.5 and 

Table 5.13. 

  

Table 5.14 Training Results for Sea Clutter (Low Sea State) 

dE Mc γ GE NEV NMSE 
4 400 0.00E+00 2.16E-03 2.45E-03 2.45E-03 
5 400 3.00E-04 2.45E-03 3.01E-03 3.02E-03 
6 400 0.00E+00 2.65E-03 3.19E-03 3.19E-03 

 

Table 5.15 Training Results for Sea Clutter (High Sea State) 

dE Mc γ GE NEV NMSE 
4 50 1.00E-03 2.06E-02 2.75E-02 2.75E-02 
5 100 3.00E-03 2.36E-02 2.71E-02 2.71E-02 
6 100 3.00E-04 2.62E-02 2.63E-02 2.63E-02 

 

Similarly, the same procedures were applied to sea clutter data in high sea state 

(hi.dat), in-phase component, for Ntotal = 8192. The kRBF with caching was used. 

Curiously, less centers were required; this probably resulted in higher values of NEV 

and NMSE. As expected, the NMSE is higher, since high sea state corresponds to a 

rough sea. Interestingly, the number of centers required were much less, than for low 

sea state. This is reasonable, as overfitting to the noise may occur otherwise. 
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5.4 Dynamic Reconstruction 

In phase space, a noiseless chaotic system has the mapping ( )F i  such that  

 ( )( 1) ( )n n+ =Ψ F Ψ . (5.5) 

Equivalently, the time series has a mapping 1 ( )i iy f+ = ψ . Iterated prediction is the 

use of the neural network that was trained with one-step prediction to make multi-step 

predictions by feeding its output into its input. This results in 

 ( )1
ˆˆ iter iter

i iy f+ = ψ , (5.6) 

where 1ˆ iter
iy +  is the output from iterated prediction, ˆ ( )f i  is the mapping learnt from  

1-step prediction, and ( )1 ( 1)ˆ ˆ ˆ, ,iter iter iter iter
i i i i py y y− − −=ψ " . From the computer science 

point of view, a recursive function means a function which calls itself repeatedly, and 

term "recursive prediction" is also used in the literature [127].  

 

From a sequence of Niter successive values of 1ˆ iter
iy + , it is possible to generate the 

embedding 

 ( )ˆiter iter
i iτ+ =Ψ F Ψ , (5.7) 

whereby ( )( 1)ˆ ˆ ˆ, ,
E

Titer iter iter iter
i i i i dy y yτ τ− − −=Ψ " is treated as the input vector and the 

estimated mapping is ( ) ( ) ( ) ( )( )( 1)
ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

E

T
iter iter iter iter
i i i i df y f y f yτ τ− − −=F Ψ " . If the 

reconstructed phase space in Eq. (5.5) and the reconstructed phase space in Eq. (5.7) 

have similar properties, then dynamic reconstruction is considered to have succeeded. 

Typically, the chaotic invariants produced from each sequence of iterated prediction 
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{ }1 1
ˆ

iterNiter
i i

y + =
 are compared with the chaotic invariants produced from { }1 1

iterN
i i

y + =
, which is 

the observed data . 

 

It is reasonable to enquire if the kRBF used for iterated prediction should be chosen 

using MSE
L

val
k . An example of a typical iterated sequence { }1 1

ˆ
iterNiter

i i
y + =

 produced by 

kRBF chosen using MSE
L

val
k  is given in Figure 5.11, and the corresponding delay 

embedding is in Figure 5.12.  
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Figure 5.11 Iterated prediction on SFA using kRBF chosen by MSE
L

val
k . 
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Figure 5.12 Delay embedding of { }1 1
ˆ

iterNiter
i i

y + =
in Figure 5.11. 

 

Observe that the time series in Figure 5.11 differs markedly from the time series in 

Figure 4.7, since bursts of steadily increasing amplitude, followed by small periods of 

quiescent behaviour are absent. The delay embedding in Figure 5.12 appears to 

capture the general shape of the attractor in Figure 4.8. However, the texture of the 

attractor is markedly different from that in Figure 5.13. Since MSE
L

val
k  appears to give 

qualitatively unsatisfactory results, 2s ( )
L

val
ke  is used in the rest of this work. 

 

5.4.1 Choice of Initialization 

Actually, the data in the test set can be modelled as the sum of an ideal signal and 

observational noise: i i iy y η= +� . Hence, each "ideal" embedding vector can be 

represented as: 
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ii i= − ψψ ψ η� , (5.8) 

where 
iψ

η  is the vector of observational noise associated with iψ . This means that the 

full equation for iterated prediction is: 

 ( )1
ˆ

i i

iter
i iy f+ = + +ψ ψψ η e� . (5.9) 

Thus the actual perturbation of the input vector comes from both 
iψ

η  and 
iψ

e , and to 

minimize the effect of
i i
+ψ ψη e , it is necessary to minimize the magnitude of i ieη + . 

If the observed time series has low SNR, this suggests that initializing the iterated 

prediction with estimated values (one-step prediction), 

 ( )1 ( 1)ˆ ˆ ˆ, ,iter
i i i i py y y− − −=ψ " , (5.10) 

may sometimes be more effective than using values from the test set, 

 ( )1 ( 1), ,iter
i i i i py y y− − −=ψ " . (5.11) 

 

To test the effect of using Eq. (5.10) versus Eq. (5.11), simulations were performed on 

SFA, based on the kRBF which was trained as in Table 5.5. The column "seed" 

designates the seeding method: "e" corresponds to Eq. (5.10), whilst "t" corresponds 

to Eq. (5.11). The column "dE" indicates embedding dimension under which the kRBF 

is trained, i.e. 3 if kRBF3 is used. The error criterion is 2s ( )
L

val
ke  rather than MSE

L

val
k . 

Random starting points from the test set were chosen and the number of time steps of 

iterated prediction (Niter) was 1600 samples, which was longer than the training set 

itself.  
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Table 5.16 Iterated prediction of SFA 

dE seed FIP ˆ
Ed  SIP 2D  (µ ± s) KYD  (µ ± s) HOP (µ ± s) KE (µ ± s) 1λ (µ ± s) 

3 e 99 3 20 1.22 ± 0.175 2.36 ± 0.182 34.3 ± 11.2 0.128 ± 0.0415 0.127 ± 0.0426
- - - 4 10 1.14 ± 0.259 3.15 ± 0.139 26.7 ± 2.68 0.177 ± 0.0371 0.148 ± 0.0156
3 t 106 3 21 1.24 ± 0.147 2.28 ± 0.126 35.9 ± 11.1 0.122 ± 0.0417 0.121 ± 0.0421
- - - 4 9 1.33 ± 0.304 3.14 ± 0.105 25.5 ± 7.86 0.203 ± 0.0585 0.163 ± 0.0375
4 e 0 3 18 1.62 ± 0.427 2.08 ± 0.0324 50.0 ± 13.5 0.0833 ± 0.0203 0.0833 ± 0.0203
- - - 4 12 1.67 ± 0.358 2.59 ± 0.125 52.5 ± 7.03 0.0826 ± 0.0143 0.0758 ± 0.0108
4 t 0 3 15 1.62 ± 0.355 2.07 ± 0.0299 48.4 ± 13.9 0.0861 ± 0.0198 0.0861 ± 0.0198
- - - 4 15 1.59 ± 0.439 2.59 ± 0.123 54.6 ± 9.42 0.0812 ± 0.0148 0.0738 ± 0.0133
5 e 0 3 30 1.95 ± 0.129 2.12 ± 0.0365 44.3 ± 8.38 0.0908 ± 0.0141 0.0908 ± 0.0141
5 t 0 3 30 1.94 ± 0.124 2.13 ± 0.0379 44.0 ± 6.19 0.0905 ± 0.0117 0.0905 ± 0.0117

 

The presence of local Lyapunov exponents means that different starting points may 

have very different behaviour. Thus, sequences { }1 1
ˆ

iterNiter
i i

y + =
 are generated until 30 

successful sequences are found. SIP is the number of successful sequences, while FIP 

is the number of sequences which failed. A successful sequence is one with at least 1 

positive Lyapunov exponent which can be numerically verified. An example of a 

successful sequence is given in Figure 5.13. Note that it captures the main qualitative 

features of Figure 4.7, i.e. bursts of steadily increasing amplitude, followed by small 

periods of quiescent behaviour.  
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Figure 5.13 Example of successful iterated prediction for SFA. 
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In Table 5.16, the embedding dimension of each iterated prediction sequence 

{ }1 1
ˆ

iterNiter
i i

y + =
 is ˆ

Ed , estimated using both GFNN [62] and Cao's method [57]. The 

sequences are sorted into various groups, according to their values of ˆ
Ed ; (µ ± s) 

refers to the mean and sample standard deviation of the quantity under consideration. 

The quantities D2, KYD , HOP, KE and 1λ  are measured for each { }1 1
ˆ

iterNiter
i i

y + =
 in a group.  

For example, D2 is measured for each { }1 1
ˆ

iterNiter
i i

y + =
 corresponding to ˆ 3Ed = , and the 

mean and sample standard deviation are recorded. Usually, the most positive 

Lyapunov exponent is more important, and so 1λ is tabulated, instead of the entire 

Lyapunov spectrum.  

 

The results in Table 5.16 suggest that the use of seeding method e reduced the number 

of failures for the case of kRBF3 (106 reduced to 99). However, for kRBF4 and kRBF5, 

the benefits were marginal. This is because SFA is not noisy enough for the benefits 

of using seeding method e to become apparent. 

 

Note that Figure 5.13 is distorted by the presence of spikes, causing the reconstructed 

attractor in Figure 5.14 to be more thinly spread out in phase space, resulting in 

underestimation of D2, but not KYD . Thus, the values of 2D  are significantly lower 

than the values of KYD  in Table 5.16. 
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Figure 5.14 Delay embedding of { }1 1
ˆ

iterNiter
i i

y + =
 in Figure 5.13. 

 

It is worthwhile to clarify the distinction between successful and failed sequences. As 

it stands, iterated prediction is rather problematic. Several examples of failed attempts 

are catalogued in Ref. [128]. They are: output becomes constant (see Figure 5.18), 

output becomes periodic, or output breaks down and output diverges and becomes 

unstable. This is actually equivalent to 2 possibilities: output converges to a lower 

dimensional attractor, or output becomes unstable. A fixed point is an attractor of 

dimension 1 whilst a limit cycle is an attractor of dimension 2. 

 

Another cause of failure is numerical. When lyap_spec.exe, the program to 

estimate Lyapunov exponents fails due to numerical reasons, this is counted as a 

failure. Figure 5.15 illustrates an example of a failed reconstruction. Visually, it is not 

too different from Figure 5.13. However, one of the spikes is longer than any of the 
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spikes in Figure 5.15, and the quiescent period is also longer. The presence of 

sufficiently long spikes may have made the estimation of Lyapunov exponents 

difficult, and caused numerical difficulties. In any case, Figure 5.14 illustrates that 

spikes can cause distortions to the embedding, and hence, if the spikes are serious 

enough to interfere with the measurement of Lyapunov exponents, classifying this as 

failure is not unreasonable. Besides, a necessary condition for chaos is the presence of 

a positive Lyapunov exponent. 
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Figure 5.15 Example of failure for SFA. 

 

5.4.2 Prior Information 

Since iter
iψ  is not the same as iψ , supplying the feedback of the output to the input is 

actually equivalent to supplying dynamical noise: 

 ( )1
ˆˆ

i

iter
i iy f+ = + ψψ e . (5.12) 

Here 
iψ

e  is the perturbation of the input vector iψ  due to previous errors in the 

prediction output. A small amount of dynamical noise is sufficient to cause trouble for 

prediction [129]; this explains why iterated prediction is so difficult. As dynamical 
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noise could result in intermittency [130, 131], this also naturally explains why 

periodicity may suddenly appear (i.e. bifurcations). 

 

A trick to improve iterated prediction is to utilize prior information. For example, the 

largest Lyapunov exponent can be used to improve the performance of iterated 

prediction [127]. However, a simple way to utilize prior information is to clip values 

of each 1ˆ iter
iy +  to the maximum and minimum of the training set. This should not be 

confused with clipping of { }1 1
ˆ

iterNiter
i i

y + =
after iterated prediction is performed. Rather, at 

each time step, a rule determines if the predicted point exceeds the maximum or the 

minimum of the training set. The value of the predicted point is then clipped. This 

means that the input to the next time step iter
iψ  is corrected and thus the instability 

does not propagate throughout the iterated prediction. Otherwise, the phase space 

point could have escaped from the basin of attraction (see Glossary). 

 

An example of the effect of clipping is illustrated in Figure 5.16. The range of values 

of 1ˆ iter
iy +  is limited to 1ˆ1.17 3.99iter

iy +− ≤ ≤ , based on the maximum and minimum of the 

training set. The effect of clipping is most pronounced for i between 1000 to 1200, 

where a lot of points hover close to the lower limits but never go below it. The 

sequence { }1 1
ˆ

iterNiter
i i

y + =
 exhibits the property of bursts of steadily increasing amplitude, 

followed by small periods of quiescent behaviour, and is reasonably similar to Figure 

4.7. In phase space, Figure 5.17 is reasonably similar to Figure 4.8, which suggests 

that clipping is very effective for SFA. 
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Figure 5.16 Illustration of the effect of clipping. 
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Figure 5.17 Delay embedding of { }1 1
ˆ

iterNiter
i i

y + =
 in Figure 5.16. 

 

Experiments similar to those in Table 5.16 are repeated, with clipping and Niter = 1600; 

results are recorded in Table 5.17. Excellent results are obtained when kRBF5 is used, 

regardless of the seeding method; the mean values of D2 and KYD  are remarkably 
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close to the theoretical values of 2.06. In fact, the results were comparable to state of 

the art neural network implementation by Patel and Haykin [128]. Furthermore, Ref. 

[128] showed only the outcome of a few selected starting points, whilst this work 

considered many arbitrary starting points. 

 

Table 5.17 Iterated prediction of SFA (with clipping) 

dE seed FIP ˆ
Ed  SIP 2D  (µ ± s) KYD  (µ ± s) HOP (µ ± s) KE (µ ± s) 1λ (µ ± s) 

3 e 0 3 6 1.82 ± 0.103 2.22 ± 0.0343 28.2 ± 2.91 0.140 ± 0.0149 0.140 ± 0.0149 
- - - 4 24 1.88 ± 0.106 3.08 ± 0.0403 20.7 ± 1.17 0.241 ± 0.0163 0.189 ± 0.0105 
3 t 1 3 11 1.85 ± 0.0622 2.22 ± 0.0398 30.6 ± 4.40 0.131 ± 0.0191 0.130 ± 0.0180 
- - - 4 19 1.89 ± 0.107 3.09 ± 0.0430 20.6 ± 1.88 0.247 ± 0.0212 0.192 ± 0.0174 
4 e 0 3 29 1.85 ± 0.455 2.08 ± 0.117 32.0 ± 14.0 0.138 ± 0.0402 0.138 ± 0.0406 
- - - 4 1 1.83 ± 0.00 2.67 ± 0.00 40.9 ± 0.00 0.113 ± 0.00 0.0955 ± 0.00 
4 t 0 3 29 1.87 ± 0.388 2.08 ± 0.0908 31.0 ± 10.6 0.136 ± 0.0335 0.136 ± 0.0335 
- - - 4 1 1.96 ± 0.00 2.50 ± 0.00 43.7 ± 0.00 0.0896 ± 0.00 0.0896 ± 0.00 
5 e 0 3 30 2.09 ± 0.137 2.09 ± 0.0442 40.7 ± 5.29 0.0979 ± 0.0133 0.0979 ± 0.0133
5 t 0 3 30 2.05 ± 0.114 2.09 ± 0.0379 39.7 ± 4.13 0.0996 ± 0.0107 0.0996 ± 0.0107
 

5.4.3 Sea Clutter 

The ideas in the previous sections are applied to the iterated prediction of in-phase 

component of sea clutter data in low sea state. Niter = 1600 and kRBF5 was used, 

based on dE = 5 in Table 4.4; results are recorded in Table 5.18. The use of clipping 

resulted in 2673 failures and no SIP, and so the corresponding rows are not tabulated. 

 

Table 5.18 Iterated prediction results for sea clutter in low sea state 

seed FIP ˆ
Ed  SIP 2D  (µ ± s) KYD  (µ ± s) HOP (µ ± s) KE (µ ± s) 1λ (µ ± s) 

e 2663 3 10 2.69 ± 0.143 1.40 ± 0.343 1470 ± 1050 0.00501 ± 0.00417 0.00501 ± 0.00417
t 2666 3 7 2.62 ± 0.103 1.73 ± 0.352 776 ± 570 0.00759 ± 0.00481 0.00759 ± 0.00481

 

The entire test set was used, and only a handful of successful reconstructions were 

found. The failures were all due to convergence to a fixed point; see Figure 5.18 for 
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an example. The use of seeding method e resulted in slightly more SIP than seeding 

method t. 
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Figure 5.18 Example of convergence onto fixed point; an example of failed 

dynamic reconstruction of in-phase component of sea clutter in low sea 

state. 
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Figure 5.19 Iterated prediction of in-phase component of sea clutter in low sea state. 

 

The estimated embedding dimension ˆ
Ed  of each { }1 1

ˆ
iterNiter

i i
y + =

 is 3, but the largest 

Lyapunov exponent of each { }1 1
ˆ

iterNiter
i i

y + =
 is so close to 0, that the chaotic nature of each 



 137

sequence is in doubt. Besides, the regularity of { }1600

1 801
ˆ iter

i i
y + =

 in Figure 5.19 is highly 

suspicious. Thus, it is imperative to examine the delay embedding of { }1 1
ˆ

iterNiter
i i

y + =
 in 

Figure 5.21 and compare it with the delay embedding of the original time series of in-

phase component of sea clutter in low sea state. Incidentally, Figure 5.20 is a 

projection of the actual delay embedding from dimension 5 onto dimension 3. 

Nonetheless, it is possible to extract useful information by regarding this as a kind of 

phase portrait. It appears that the outer part of the attractor is shaped like a torus, with 

an interior region (possibly higher dimensional) which is densely packed, as if it is 

noise (noise is infinite dimensional and appears ellipsoidal when embedded). It is 

possible that the toroidal portion could be due to the presence of 2 dominant 

frequencies, one fast and one slow. Peculiarly, part of the attractor appears squarish. 
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Figure 5.20 Delay embedding of in-phase component of sea clutter data (low sea 

state) in only 3 dimensions. 
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Figure 5.21 Delay embedding of { }1600
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 from time series in Figure 5.19. 
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Figure 5.22 Delay embedding of { }1600
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 from time series in Figure 5.19. 
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Figure 5.22 is the delay embedding of the latter half of the time series in Figure 5.19, 

and clearly shows convergence onto the surface of a torus. This confirms that 

quasiperiodicity occurs in Figure 5.19. The values of 1λ  in Table 5.18 should be 0 for 

a torus; the tiny positive values could be due to numerical inaccuracy. Studying all the 

Lyapunov exponents in Table 5.19 (listed separately due to space constraints, it can 

be concluded that 1λ  and 2λ  are close to 0, which is consistent with the existence of a 

torus; again, the tiny negative values could be due to numerical inaccuracy. 

 

Table 5.19 Lyapunov exponents from { }1600

1 1
ˆ iter

i i
y + =

 for sea clutter in low sea state 

seed ˆ
Ed  SIP 1λ (µ ± s) 2λ (µ ± s) 3λ (µ ± s) 

e 3 10 5.01E-03 ± 4.17E-03 -1.26E-02 ± 2.85E-03 -1.89E-01 ± 2.44E-02 
t 3 7 7.59E-03 ± 4.81E-03 -8.19E-03 ± 4.13E-03 -1.85E-01 ± 2.27E-02 

 

Apparently, iterated prediction has failed in the sense that most sequences converge 

onto a fixed point, and for those that do not, converge onto a torus which should have 

no positive Lyapunov exponent. On the other hand, it seems that Figure 5.20 could be 

crudely approximated as the union of a torus and a dense sphere. Thus, convergence 

onto a torus may show that the kRBF had successfully modelled part of the state 

space. If it is crudely assumed that union can be approximated by addition, i.e. the 

union of 2 attractors in state space can be approximated by the addition of 2 attractors 

in state space, in turn equivalent to the addition of 2 signals in time domain. In such a 

case, the dense spherical portion of the attractor could be regarded as white noise, 

which is impossible to model. Alternatively, it could be assumed that below a certain 

magnitude in state space, the system is so dominated by noise, that it is effectively 

producing only white noise, whereas above that magnitude, the system is 

quasiperiodic (converges onto a torus). 
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Iterated prediction was also performed on in-phase component of sea clutter data in 

high sea state. Niter = 1600 and kRBF was used. Results are recorded in Table 5.20. 

The use of clipping resulted in completely identical results, and so it is not tabulated. 

Despite varying dE, and the seeding method, no successful sequences were found; all 

sequences failed by converging onto a fixed point (see Figure 5.23). 

 

Table 5.20 Chaotic invariants of time Series in Figure 5.21 

dE seed failures SIP 
4 e 2721 0 
4 t 2721 0 
5 e 2718 0 
5 t 2718 0 
6 e 2715 0 
6 t 2715 0 
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Figure 5.23 An example of failed dynamic reconstruction of in-phase component 

of sea clutter in high sea state. 

 

One pertinent question is whether 400 centers (Table 5.14) is sufficient to learn an 

attractor of dimension 5 or 6, due to the curse of dimensionality. However, Table 5.14 
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showed that the generalization error is low, even lower than for SFA, which is a very 

much smaller system, so it seems that the kRBF had been successfully trained.  

 

On the other hand, GE is an order of magnitude higher for sea clutter in high sea state, 

but still reasonably low (Table 5.15). Thus, it seems possible to model sea clutter in 

high sea state. However, the number of centers used is either 50 or 100, depending on 

dE. This suggests that sea clutter data in high sea state may be so noisy that fewer 

centers are necessary, as with low SNR Lorenz data (see Table 5.13). 

 

Consider the projection of the actual delay embedding of sea clutter in high sea state 

from dimension 5 onto dimension 3. Due to the impossibility of visualizing 5 

dimensional embeddings, it is necessary to make do with 3 dimensions in Figure 5.24. 

It seems that there are no prominent features in state space, and the embedding 

resembles one which would be obtained with correlated noise (infinite dimensional 

elllipsoid). Thus, the case of sea clutter in high sea state is relatively ambiguous, 

compared to sea clutter in low sea state, whereby some structure can still be discerned 

in 3 dimensions. Thus, it seems difficult to model sea clutter in high sea state using 

state space information. In fact, Ref. [38] argues that sea clutter should be modelled 

with AR processes.  
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Figure 5.24 Delay embedding of in-phase component of sea clutter data (high sea 

state) in only 3 dimensions. 

 

5.5 Contributions of this Chapter 

• The problem of finding the optimal hyperparameters from cross-validation is 

reformulated into a voting scheme to deal with the problem of erraticity (Section 

5.1.2). 

• Error variance is used, instead of mean squared error, because bias does not affect 

the chaotic invariants of the estimated sequence (Section 5.2). It is demonstrated 

that sequences generated by kRBF models selected using error variance (Figure 

5.17) can result in better dynamic reconstructions than kRBF models selected 

using mean squared error (Figure 5.12). 

• Besides speeding up cross-validation, caching also deals with the problem of 

erraticity. Hence, it is possible to compare different algorithms, without fear that 
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clustering results may affect the outcome. Caching also reduces the computational 

complexity, when various algorithms are combined in a committee machine 

(Section 5.3.1). 

• Iterated prediction is performed using many different unique candidate starting 

points; this guards against possible aberrations caused by local Lyapunov 

exponents. Initializing iterated prediction with estimated values instead of the test 

set is suggested (Section 5.4.1). 

• Clipping is introduced, as a simple, yet effective way to stabilize iterated 

predictions (Section 5.4.2). 

• Examples of iterated prediction converging onto torus are documented (Section 

5.4.3). 
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CHAPTER 6 

Conclusions and Future Work 

This thesis is concerned with the problem of using RBF and variants to perform 

dynamic reconstruction of sea clutter data. In Chapters 2-5, many ideas were 

discussed and tested. In this chapter, a short summary is given, together with pointers 

some for future work. 

 

6.1 Conclusions 

It is clearly seen that the proposed method of speeding up cross validation results in 

significant savings in computational load, compared to the ordinary method of 

performing cross validation on regularized RBF networks. Since this trick requires the 

recognition that only one equation needs to be computed for the innermost loop, it 

may not be possible to speed up cross validation for MLPs, unless drastic 

approximations are performed. Since cross validation is necessary to prevent 

overfitting, and most neural network applications currently employ MLPs, this could 

encourage many more applications to employ the RBF or its variants. 

 

It is observed that the use of data driven basis functions sometimes resulted in fewer 

centers and lower levels of regularization. In fact, no regularization is required for 

some of the variants at times. It may be possible that the Minimum Description 

Length [132] of the data driven basis functions are effectively the same as that of the 

ordinary RBF, for the same number of centers, because the calculation of the 

covariance matrix is data driven, and not derived by tuning external hyperparameters. 

Thus, data driven basis functions (using few centers) could be useful for crude 
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approximations. The problem is that for any given basis function, it is difficult to 

gauge how many centers it would require, and how the error performance would be 

like. It is not possible to have a simple rule describing the relative performance of the 

various algorithms, because there is no clear discernible trend of superiority of one 

model across all data sets and choices of embedding dimensions. Nonetheless, the 

kRBF appears to give a good compromise between the number of centers required, 

and performance as measured by NEV and NMSE. Note that the number of centers 

required is a crude measure of the complexity of the attractor in phase space, but does 

not necessarily reflect the underlying complexity of the system, since SFA and Lorenz 

data require significantly different number of centers to model. 

 

Disappointingly, iterated prediction was remarkably unsuccessful for sea clutter, 

compared to the results obtainable with SFA; most sequences converged onto a fixed 

point. One possibility is that the RBF failed to learn the dynamics, because the 

training set was too small. Nonetheless, it could not be too big to ensure that 

simulation time is manageable, and also to avoid the danger of oscillations [82]. The 

other possibility is that sea clutter is intrinsically a 3 or 4 dimensional process, with 

the extra dimensionality possibly due to the presence of noise. After all, Figure 5.20 

shows that part of the attractor is shaped like a torus.  

 

Consider a dynamical system consisting of c independent oscillators, each with a limit 

cycle. If the fundamental periods of coupled oscillators are irrationally related, then 

the attractor of the combined system is the c-dimensional surface of a torus [133]. 

Thus, the 2-torus in Figure 5.22 seems to suggest that gravity waves and capillary 

waves may be produced by 2 coupled oscillators. However, since a dynamical system 
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in the ocean should be dissipative (see Glossary), the torus is not satisfactory as a 

model since it is a Hamiltonian system (see Glossary). 

 

The Poincaré section of a c-dimensional torus is a torus of dimension c-1 [133]. 

Consider a system of c independent oscillators; if c ≥ 3, a weak nonlinear coupling 

may produce a "turbulent" behaviour [134] (note that this is not true for c ≤ 2). This 

suggests that an oceanic system comprising weakly coupled capillary waves, gravity 

waves and Rossby waves (waves with very large wave lengths) could be chaotic. In 

fact, Ref [33, 34] mention chaotic models of atmospheric systems which include 

Rossby waves and are incidentally of dimension 5.  

 

In Ref. [13], the largest Lyapunov exponent was correlated with wave height, whilst 

wind was stated to be the most important environmental factor influencing sea clutter 

[1]. Perhaps the effect of wind could be modelled as a stochastic perturbation which 

increases the intrinsic dimensionality of the underlying dynamics. However, it should 

be noted that the effect of wind is contrary to the assumption of stationarity, i.e. 

transients can be ignored for chaotic systems [45]. 

 

It also has to be acknowledged that the presence of local Lyapunov exponents may 

cause two neural network models to have different performance with respect to 

iterated prediction. This is because a "successful" sequence generated by iterated 

prediction requires that the neural network models the phase space closely, and also 

requires the local positive Lyapunov exponents to be low, so that the iterated 

prediction sequence will not diverge too much. Perhaps this is why existing literature 
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on iterated prediction, such as [128], only use a few selected starting points for 

iterated prediction. 

 

Another problem is that the topology of the attractor could be too complicated, with 

many basins of attraction, and the neural network had only managed to learn only part 

of the phase space corresponding to one basin of attraction. Since fractal dimension is 

a global property, it is unable to distinguish between a network which had 

successfully learnt an entire attractor, and between a neural network which had failed 

to learn part of the attractor. Thus, it is necessary to inspect the reconstructed attractor 

visually. However, this is a course of action which is unavailable to high dimensional 

attractors. 

 

It should also be noted that the whole process of dynamical reconstruction is itself 

fraught with limitations. Consider that as the modelling error approaches 0, the error 

in the estimated chaotic invariants should also approach 0. On the other hand, the 

converse is not necessarily true, i.e. a good match of the chaotic invariants of the 

system and the chaotic invariants of the reconstructed system is a necessary, but not 

sufficient, criterion for a good reconstruction. Hence, there is no guarantee that a good 

match between the chaotic invariants of the original system and the chaotic invariants 

of the reconstructed system implies that the reconstruction is successful. If dynamical 

reconstruction is successful, it may be useful for helping to decide if the original 

process is chaotic or stochastic. On the other hand, if the reconstruction is 

unsuccessful, it is difficult to draw any conclusion. 
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It may also be necessary to consider the fact that there are alternative routes to 

turbulence besides chaos [135]. There is the possibility that the underlying process 

behind the generation of sea clutter could be non-chaotic. It may very well be that 

under many conditions, such as high sea state, sea clutter data could be better 

modelled using stochastic processes, as in Ref. [38]. 

 

6.2 Future Work and Recommendations 

• The techniques discussed in this thesis should be applied to sea clutter data 

obtained under different wind and wave conditions, from different places. 

• Thus far, this work has only dealt with stationary data. In order to cope with non-

stationarity, Kalman filters or Extended Kalman Filters (EKFs) should be 

incorporated. Indeed, this was already done in Ref. [40]. A combination of ideas 

would perhaps represent the state of the art in RBF networks and variants, in 

future.  

• Brizzotti and Carvalho [84] had compared the effect of different clustering 

algorithms on RBF generalization in the context of pattern classification. It was 

claimed that some relatives of the k-means algorithm had improved performance. 

It may be interesting to use some of the clustering techniques employed in  

Ref. [84] and examine their performance in the context of regression. 

• In addition, nonlinear signal processing methods for nonstationary data should be 

considered, such as Ref. [136, 137]. 

• The IPIX radar resolution is about 3cm, but capillary waves are of the order of 2 

cm or less [11]. In fact, Skolnik [1] had stated that the assumption that sea surface 

displacements are small compared to radar wavelength is usually not satisfied. It 
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seems pertinent to ask if capillary waves are relevant to clutter of X-band radar. 

Thus it may be advisable to perform experiments with radar clutter of varying 

wavelengths to verify that the composite surface model is valid.  

• It is clear that similar concepts can be utilized for clutter analysis for Light 

Detection and Ranging (LIDAR) systems. So far, the K-distribution appears to fit 

the data well. On the other hand, turbulence may imply chaos. It may be possible 

to use the same techniques on LIDAR clutter.  
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APPENDIX A 
Derivation of K-distribution 

 

The most general clutter model at this time is the Rayleigh mixture model [4]. It is 

assumed that in each patch of ocean surface, the received signal is dominated by a 

small number of independent scatterers (this is reminiscent of Rayleigh fading). The 

probability density of rc, the clutter voltage envelope, is then given as 

 
0 0

( ) ( | ) ( ) ( | ) ( )c c cf r p r q d p r dQσ σ σ σ σ
∞ ∞

= =∫ ∫ , (A.1) 

where  

 
2

2( | ) ( )
cr

c
c

rp r e uσσ σ
σ

−
=  (A.2) 

is Rayleigh distributed, and ( )u i  is the unit step function. The random variable σ  

describes clutter power, and is distributed according to some probability density 

distribution ( )q σ  (with associated cumulative distribution function ( )Q σ ).  

 

Jakeman and Pusey [138] argued that when radar illuminates a large area of the sea, 

the envelope of the return signal can be well approximated by a Rayleigh distribution. 

This is a consequence of the central limit theorem, since the signal can be thought of 

as being the vector sum of randomly phased components from a large number of 

independent scatterers. 

 

The K-distribution was introduced by Jakeman and Pusey in 1976 [138], but it was 

Ward who first showed the K-distribution to be the closed form solution of a Gamma 

distribution modulated by a Rayleigh distribution in reference [139]. The Gamma 

distribution can be derived by taking a random walk where the number of steps, n, 

obey the negative binomial distribution. In the limit as n →∞ , i.e. the radar patch 
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size is large compared to the density of scatterers, yet small compared to the 

characteristic bunching size, the negative binomial distribution approaches the gamma 

distribution [139]. According to Peebles [4], the names Chi and Gamma are used 

interchangeably in the literature. 

 

The K-distribution can be derived from (A.1) by substituting a Gamma distribution:  
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 (A.3) 

where b > 0, is a scale parameter that relates only to the mean of the clutter, ( )Γ ⋅  is 

the gamma function, and σ  is the average power in the bandpass clutter signal having 

the voltage amplitude rc. Substituting (A.2) and (A.3) into (A.1), we obtain:  
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Given the following relationship: 

 ( )2
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where Re( ) 0γ > , Re( ) 0β >  and ( )Bν ⋅  is the modified Bessel function of order ν 

[140], we substitute 1bν = − , bγ
σ

= , and 
2

2
crβ =  to get: 
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 (A.6) 

 

This is equivalent to the K-distribution, which is defined as: 

 
1
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1
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One interesting property of the K-distribution is that the sum of a finite number, N, of 

vectors whose amplitudes are K-distributed, is also K-distributed, albeit with a scaled 

shape parameter, bN [6]. 

 

Besides sea clutter, the K-distribution can be used to model scattering of laser light in 

a turbulent layer of air, [141-143], and also scattering of laser light by a turbulent 

layer of crystal [144-146]. 
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APPENDIX B 
Positive Definiteness of (A+B)-1 

 

Theorem B.1 The covariance matrix is positive semidefinite 

Let the covariance matrix be ( )( )HE ⎡ ⎤− −⎣ ⎦Σ x µ x µ� , where x is a random vector and 

µ is the mean, such that , D∈x µ ^ , where D +∈] . Let a be any vector D∈a ^ . Define 

( )Hy −a x µ� . Substitute Σ into 0HE y y⎡ ⎤ ≥⎣ ⎦ , 

 
( )( )

0.

H H H

H

E y y E⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦
= ≥

a x µ x µ a

a Σa
 (B.1) 

Since a is any vector, this means that Σ is positive semidefinite. 

 

Theorem B.2 Sum of positive definite matrix and positive semidefinite matrix is 

positive definite 

Consider a positive definite matrix D D×∈A \ , a positive semidefinite matrix D D×∈B \ , 

and any nonzero vector D∈x ^ , where D +∈] . The following relationship holds: 

 ( )H H H+ = +x A B x x Ax x Bx . (B.2) 

As 0H >x Ax  and 0H ≥x Bx , this means that 0H H+ >x Ax x Bx . Thus, the sum of a 

positive definite and positive semidefinite matrix is positive definite.  

 

Theorem B.3 The inverse of a positive definite matrix is positive definite 

From the definition of the eigenvalue and eigenvector, 

 11 ,−

= λ

=
λ

Ax x

x A x
 (B.3) 

where D D×∈A \ , D∈x \  and λ∈\ . Eq. (B.3) shows that if A has the eigenvalue λ, 

then the corresponding eigenvalue of A-1 would be 1 λ . 
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Consider a positive definite matrix D D×∈C \ , where D +∈] ; each eigenvalue of C is 

positive. From Eq. (B.3), each eigenvalue of C-1 is also positive. This implies that C-1 

is also positive definite. 

 

From Theorems B.1, B.2 and B.3, ( ) 1−+A B  is positive definite, where A is positive 

definite, and B is positive semidefinite. 
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APPENDIX C 
Proof that Mahalanobis Norm is a Valid Metric 

 

The Mahalanobis norm is defined by 

 1( , ) ( ) ( )Hd −− −x y x y M x y� , (C.1) 

where , D∈x y ^ , D D×∈M \ is symmetric positive definite, and D +∈] . Consider a 

finite dimensional complex vector space, and associate it with the distance function 

( , ) : D Dd × →x y ^ ^ \  . This is a valid metric; it has 4 properties (see Glossary): 

 

1. ( , ) 0d ≥x y , , D∀ ∈x y ^ , D +∈] . 

Inverse of any symmetric positive definite matrix D D×∈M \  is positive definite 

(Theorem B.3 of Appendix B). If ≠x y , 
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1

( ) ( ) 0

( ) ( ) 0.

H
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− − >

− − >

x y M x y

x y M x y
 (C.2) 

If x = y, ( , ) 0d =x y . An intuitive way to see this is that the square root of any value of 

a quadratic function has to be nonnegative. Furthermore, this property also implies 

another property: 

 

2. ( , ) 0d =x y  if and only if x = y, , D∀ ∈x y ^ , D +∈] . 

Clearly, if ≠x y , then ( , ) 0d >x y . 

 

3. ( , ) ( , )d d=x y y x , , D∀ ∈x y ^ , D +∈] . 

 ( ) ( )1( , ) ( ) ( ) ( , )Hd d−= − − − − =y x x y M x y x y  (C.3) 
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An intuitive way to see this is that the positive square root of a quadratic function is 

symmetrical. 

 

4. ( , ) ( , ) ( , )d d d+ ≥x y y z x z , , , D∀ ∈x y z ^ , D +∈] . 

This is the triangle equality, which is usually proved using the Cauchy-Schwartz 

inequality. The trivial case x = y = z results in equality, and hence the ≥ sign. The 

triangle inequality can be reformulated by substituting − =x y w  and − =y z v : 

 1 1 1

1 1 1

( , ) ( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ).

H H H

H H H

d d d
− − −

− − −

+ ≥

− − + − − ≥ − −

+ ≥ + +

x y y z x z

x y M x y y z M y z x z M x z

w M w v M v w v M w v

 (C.4) 

Using the extended Cauchy-Schwartz inequality, (C.9): 

 

2 1

1

1 1 1 1

2

2 .

H H H

H H H H

H H H H H H

−

−

− − − −

≤

≥ +

≥ +

u v u Muv M v

u Muv M v u v v u

u M M Muv M v v M Mu u M M v

 (C.5) 

Substituting w = Mu into (C.5), 

 

1 1 1 1

1 1 1 1 1 1

1 1

2

2

.

H H H H

H H H H H H

H H

− − − −

− − − − − −

− −

≥ +

+ + ≥ +

+ +

w M wv M v v M w w M v

w M w w M wv M v v M v v M w w M v

w M w v M v

 (C.6) 

Using the triangle inequality for complex numbers, i.e. 1 2 3z z z+ ≥ , whereby 

1 2 3z , ,z z ∈^ , and substituting into (C.6), 

 

( )
( )

2
1 1 1 1 1 1

2
1 1 1

1 1 1

( ) ( )

( ) ( ) .

H H H H H H

H H H

H H H

− − − − − −

− − −

− − −

+ ≥ + + +

+ ≥ + +

+ ≥ + +

w M w v M v v M w w M v w M w v M v

w M w v M v w v M w v

w M w v M v w v M w v

 (C.7) 

(C.7) is equivalent to (C.4). Hence, the Mahalanobis norm is a valid metric QED. 
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Theorem C.1 Cauchy-Schwartz Inequality 

For any 2 nonzero vectors D∈x ^ , D∈y ^ , and D +∈] , 

 2( ) ( )( )H H H≤x y x x y y  (C.8) 

with equality if c=y x  for some c∈^ , since 2( ) ( )( )H H H Hc c c=x x x x x x . However, a 

more general form of the Cauchy-Schwartz Inequality is required: 

 

Theorem C.2 Extended Cauchy-Schwartz Inequality 

For any 2 nonzero vectors D∈u ^  and D∈v ^ , any symmetric positive definite 

matrix D D×∈M \ , and D +∈] , 

 2 1( ) ( )( )H H H −≤u v u Mu v M v , (C.9) 

with equality if c=v Mu  for some c∈^  (or, equivalently, 1
2c −=u M v  for some 

2c ∈^ ). 

 

Proof 

Since M is symmetric positive definite, there exists a non-singular matrix 1 2M  such 

that ( )21 2 =M M , with inverse ( ) 11 2 1 2 −− =M M . Let 1 2=x M u  and 1 2−=y M v . Then  

 

2 1 2 1 2 2

2

1

( ) ( )
( )
( )( ) ( )( ).

H H

H

H H H H

−

−

=

=

≤ =

u v x M M y
x y
x x y y u Mu v M v

 (C.10) 

Equality in (C.10) holds exactly if c=y x  for some c∈^ , i.e., if 1 2 1 2c− =M v M u  or 

c=v Mu  for some c∈^ . 

 

As a consequence of the Extended Cauchy-Schwartz Inequality, for a given vector 

D∈v ^ , and a given symmetric positive definite matrix M,  
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2

1( )max
D

H
H

H
−

∈
=

u

u v v M v
u Mu^

, (C.11) 

and the maximum is attained for any vector u proportional to 1−M v : 

 
2 1

2 1

( ) ( )( )
( ) ( )( ).

H H H

H H H

−

−

≤

≤

u v u Mu v M v
u Mu u Mu u MM Mu

 (C.12) 

It is easy to build on these results to show also that the Mahalanobis Norm is a valid 

norm. The property required is: 

 

5. ( , ) ( , )d k k k d=x y x y  for any k∈^ . 

 ( ) ( )1( , ) ( ) ( ) ( , )H Hd k k k k k d−= − − =x y x y M x y x y . (C.13) 

 

Note 

2 ( , )d x y  is not a valid metric:  

Suppose 2 ( , )d x y  is a valid metric. Then, the triangle inequality should hold: 

 
2 2 2

1 1 1

( , ) ( , ) ( , )
( ) ( ) ( ) ( ) ( ) ( ),H H H

d d d
− − −

+ ≥

− − + − − ≥ − −

x y y z x z
x y M x y y z M y z x z M x z

 (C.14) 

, , D∀ ∈x y z ^ . Substituting = −w x y and = −v y z  into (C.14), 

 
1 1 1

1 1

( ) ( )
0 .

H H H

H H

− − −

− −

+ ≥ + +

≥ +

w M w v M v w v M w v
v M w w M v

 (C.15) 

Substituting w = Mu into (C.15), 

 1

1

0

2Re 0

Re 0

Re ( ) ( ) 0.

H H

H

H

H

−

−

≥ +

⎡ ⎤ ≤⎣ ⎦
⎡ ⎤ ≤⎣ ⎦

⎡ ⎤− − ≤⎣ ⎦

v u u v

v u

v M w

y z M x y

 (C.16) 
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(C.16) is not necessarily true; if w = v, the positive definiteness of 1−M  ensures that 

1 0H − >w M w . This contradicts (C.16). Thus, x - y = y - z is a counterexample for 

(C.14) and hence 2 ( , )d x y  is not a valid metric.  
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APPENDIX D 
Expectation Maximization 

 

Expectation Maximization (EM) is an iterative method which can be used to estimate 

mixture distribution parameters. Define the prior distribution (prior to incorporating 

information about the location of the data points) of the j-th cluster to be: 

 ( ) j
j

N
P

N
ω � , (D.1) 

where j = 1, ..., Mc, Nj is the number of points in the j-th cluster, and N is the total 

number of points in the dataset [147]. The mean of the cluster is then given as: 

 1

j

j i
i IjN ∈

= ∑µ ψ , (D.2) 

where Ij is the set of indices of points belonging to the j-th cluster and iψ  is the  

i-th data point. The variance of each cluster is given as: 

 
22 1

j

j i j
i IjpN

σ
∈

= −∑ ψ µ , (D.3) 

where p is the dimension of the data.  

 

Not knowing which component generated each data point, we consider a hypothetical 

complete data set in which each data point is labelled with the component that 

generated it. So, for each i-th data point, iψ , there is a corresponding class label, zi, 

which is an integer in the range 1, ..., Mc. The complete data point is i
i

iz
⎛ ⎞
⎜ ⎟
⎝ ⎠

ψ
ξ � . The 

likelihood of a complete data point if zi = j is 

 ( )( | ) ( | , ) ( | )
( | ) ( | ),

T
i i i i i

i j i

p z j p z j P z j
p P z j

= = = =

= =

ψ θ ψ θ θ
ψ θ θ

 (D.4) 
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where 
1

cM

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

θ
θ

θ
#  and jθ  contains the parameters for each component, i.e. mean and 

variance. As with Eq. (3.15), 

 
1

( | ) ( | ) ( | )
cM

i i j i
j

p p P z j
=

= =∑ψ θ ψ θ θ . (D.5) 

Form the function 

 
( )

( )

( )

1

( )

1 1

( | ) ln ( | )

ln ( , | ) ( | , ),

t

c
t

N
i

i
i

M N
i

i i i i
j i

Q E p

p z P z j

=

= =

⎡ ⎤
⎢ ⎥⎣ ⎦

= =⎡ ⎤⎣ ⎦

∑

∑∑

θ θ ξ θ

ψ θ ψ θ

�
 (D.6) 

where ( )tiθ  contains the parameters for each it-th iteration (do not confuse it with i), 

and ( )
1

ln ( | )
N

i
i

p
=
∑ ξ θ  is the log-likelihood, similar to Eq. (3.17). Define 

 ( ) ( )( | ) ( | , ),t ti i
j i i iP P z jω =ψ ψ θ�  (D.7) 

where ( ) ( | )ti
j iP ω ψ  is the expected posterior distribution of the class labels given the 

observed data at the it-th iteration. Substituting Eq. (D.4) and Eq. (D.7) into Eq. (D.6), 

 ( ) ( )( ) ( )

1 1

( | ) ln ( | ) ln ( ) ( | )
c

t t

M N
i i

i j j j i
j i

Q p P Pω ω
= =

⎡ ⎤= +⎣ ⎦∑∑θ θ ψ θ ψ . (D.8) 

Note that ( )( | )tiQ θ θ  is a function of the parameters ( )jP ω  and jθ , while ( ) ( )ti
jP ω  

and ( )ti
jθ  are fixed values.  

 

The calculation of Q is the "expectation" step of the algorithm. To compute the new 

set of parameter values, ( 1)ti +θ , we optimize ( )( | )tiQ θ θ , i.e. 

 ( 1) ( )arg max ( | )t ti iQ+ =
θ

θ θ θ . (D.9) 

This is the "maximization" step of the algorithm. 
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GLOSSARY 

Definitions in this glossary follow those in Ref. [41-43] closely. 

 

attractor 

An invariant subset (see invariant subset) of the phase space which is reached 

asymptotically as time t →∞ . 

 

basin of attraction 

In nonlinear dissipative systems, it is possible for more than one attractor to exist 

for a single parameter setting. Different initial conditions will evolve towards one or 

other of the co-existing attractors. The closure of the set of initial conditions which 

approaches a given attractor is called the basin of attraction of that attractor. The 

boundary between one basin of attraction and another is called the basin boundary. 

 

beamwidth 

Angle subtended by beam (see Figure 1.1). 

 

box-counting dimension 

The box-counting dimension D0 of a set U is defined as 

0
0

log ( )lim sup
log(1/ )

ND
ε

ε
ε+→

� , 

where ( )N ε  is the number of balls of diameter ε required to cover U. See Section 2.4. 

 

capacity dimension 

Synonym for box-counting dimension. 
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capillary waves 

Capillary waves are small waves (less than about 1.73cm); their velocity is 

determined mainly by the surface tension of water [1]. 

 

chaotic attractor 

See attractor. 

 

chaotic invariant 

In this thesis, chaotic invariants (Section 2.4) are quantities like box-counting 

dimension and Lyapunov exponents. Chaotic invariants are unchanged under 

nonlinear changes of coordinate system [43]. 

 

continuous dependence on initial conditions 

Let F be a function defined on the open set DU ∈\ , D +∈] . Assume that F has 

Lipschitz constant L in the variable v on U. Let ( )tv  and ( )tw  be solutions of the 

differential equation ( )=v F v� , and let 0 1[ , ]t t  be a subset of the domains of both 

solutions. Then continuous dependence on initial conditions [70] means 

0( )
0 0( ) ( ) ( ) ( ) L t tt t t t e −− ≤ −v w v w , 

0 1[ , ]t t t∀ ∈ . 

 

correlation dimension 

The correlation dimension, D2, is defined as 

( )
2 0

log ( )
lim

log( )r

C r
D

r→
� , 

where C(r) is the correlation sum. The correlation sum is in turn defined as 
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( )
2 2

2
1 1,

1( ) ( ) ( )
( 1)

N N

n n n n
C r u r n n

N N = = ≠

− −
− ∑ ∑

Ψ Ψ

Ψ Ψ Ψ Ψ� , 

where r∈\ , n and n2 are dummy variables, NΨ  is the number of embedding vectors 

and ( )u i  is the step function. See Section 2.4.2 for details. 

 

cross validation 

A method of evaluating parameters or classifiers by dividing the training set into 

several parts, and in turn using one part to test the function fitted to the remaining 

parts. 

 

curse of dimensionality 

Essentially, the curse of dimensionality [148] refers to the exponential growth of 

hypervolume as a function of dimensionality. Consider function approximation of the 

following process ( )y f= ψ , where p∈ψ \ . In order to approximate the function 

( )f i  from the data, the whole p dimensional input space must be covered with data 

samples. Suppose for a unit interval, n samples are required to cover the interval, then 

in p dimension, pn  data points are needed [114]. Thus the number of data points 

required increase exponentially. 

 

degree of freedom 

The number of independent coordinates necessary to describe the position and 

momentum of a system in Euclidean space.  
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design set 

During cross validation, this is part of the training set which is used as a training set. 

The purpose is to tune the hyperparameters of the neural network, e.g. number of 

centers, based on performance.  

 

dissipative system 

A dissipative system is one whereby the total energy is not conserved. In the long 

term, the system converges onto the attractor, and transients can be ignored. In a 

dissipative system, the sum of Lyapunov exponents is less than 0. 

 

embedding delay 

The lag (integer) between 2 consecutive elements of the embedding vector is called 

the embedding delay. See Section 2.2 for details. 

 

embedding dimension 

The (integer) dimension of phase space required to unfold the attractor of a nonlinear 

system from the observation of scalar signals from the source. See Section 2.3 for 

details. 

 

Expectation-Maximization (EM) algorithm 

The EM algorithm is an algorithm which uses maximum likelihood techniques to 

estimate missing features [89] (see Appendix D for details).  
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false nearest neighbours 

If an attractor is projected onto a space which is too low dimensional to unfold it 

completely, some points will be projected near to each other, although they are not 

originally close together. These points are called false nearest neighbours. 

 

fractal dimension 

If the box-counting dimension of the set U is non-integer, it is said to be fractal. 

 

generalization 

A measure of the ability of a neural network to perform well on unseen or future 

examples. Alternatively, such a measure applied to a method to design neural 

networks. The term originates from psychology and refers to the ability to infer the 

correct structure from examples. 

 

gravity waves 

Long wavelength water waves. Gravity waves are so named because their velocity of 

propagation is determined primarily by gravity [1]. 

 

grazing angle 

The angle between the land or sea surface and the radar signal is called the grazing 

angle (see Figure 1.1). 
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Gronwall inequality 

Nearby solutions can diverge no faster than an exponential rate determined by the 

Lipschitz constant of the differential equation [70]. The Gronwall inequality is 

related to the continuous dependence on initial conditions. 

 

Hamiltonian system 

A Hamiltonian system is one whereby the total energy is conserved. It is so named 

because their time evolution can be described by Hamilton's equations. There are no 

attractors in a Hamiltonian system, and the sum of Lyapunov exponents is 0. 

 

HF-band 

Electromagnetic radiation of 3-30MHz. 

 

hyperparameter 

A parameter which is adjusted in cross validation, which is not one of the weights of 

the neural network. For example, the number of neurons in the hidden layer, Mc, or 

the regularization parameter γ. 

  

intermittency 

Occurrence of fluctuations that alternate 'randomly' between long periods of regular 

behaviour and relatively short irregular bursts. 

 

invariant subset 

Let DU ⊂ \ , D +∈]  and : D Df →\ \ . The set U is an invariant set if ( )f U U= . 
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Ku-band 

Electromagnetic radiation of 8-12GHz. 

 

Lipschitz 

Let F be a function defined on the open set DU ∈\ , D +∈] . F is said to be Lipschitz 

on U if there exists a constant L < ∞  such that ( ) ( ) L− ≤ −F v F w v w , , U∀ ∈v w . 

The constant L is called a Lipschitz constant for F [70]. 

 

Lipschitz constant 

See Lipschitz.  

 

Lyapunov exponent 

The rate at which nearby orbits diverge from each other after small perturbations 

when the evolution of a nonlinear system is chaotic. See Section 2.4.3. 

 

metric space 

A metric space M  is a set, together with a distance function :d × → \M M  which 

satisfies the following conditions: 

1. ( , ) 0d x y ≥ , 

2. ( , ) 0d x y =  if and only if x = y, 

3.  ( , ) ( , )d x y d y x= , 

4. ( , ) ( , ) ( , )d x y d y z d x z+ ≥ , 

where , ,x y z∀ ∈M . An example of a metric space is a finite dimensional vector space 

with the Euclidean norm as the distance function. 
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multifractals 

Multiscale, non-uniform fractals are called multifractals. 

 

orbit 

Consider a map :f U U→ . Then the orbit is the set 2{ , ( ), ( ), }y f y f y " , where 

y U∈  and denotes f ς denotes the ς -th iteration of map f. A trajectory generated by 

differential equations is also referred to as an orbit. 

 

phase portrait 

The phase portrait is a plot in phase space of the orbit evolution. 

 

phase space 

Consider the system such that ( )d f
dt

=
Ψ Ψ , where DU∈ ⊂Ψ \  and D +∈] . The 

phase space is the set U. 

 

radial basis function (RBF) 

The RBF is a function approximation method which uses a weighted sum of nonlinear 

functions. See Chapter 3 for details. 

 

Runge-Kutta method 

A numerical technique which can be used to solve ODEs (See Chapter 16 of Ref. [103] 

for details). 
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sea spikes 

Large amplitude radar echo. 

 

Self Organizing Map (SOM) 

The SOM is a biologically inspired neural network able to perform a nonlinear 

mapping from a high dimension to a lower dimension. Each neuron is initialized to a 

random weight vector w. Initialize the learning rate α to 1.  

 

Each iteration it, the neuron whose weight vector matches the input vector x most 

closely is chosen as the winner. The winning unit and neighbouring units update their 

weights according to the formula [ ]( 1) ( ) ( ) ( ) ( )t t t t ti i i h i iα+ = + −w w x w , where ( )h i , 

the neighbouring function is typically a Gaussian function which gradually becomes 

narrower. Initially, α decreases rapidly as the SOM organizes itself, but in the second 

phase, α decreases slowly for final convergence. 

 

sensitive dependence on initial conditions 

Let f be a map on a metric space M ; one criterion for f to be defined as chaotic is 

sensitive dependence on initial conditions. Mathematically [149], f possesses sensitive 

dependence on initial conditions, if there exists ε +∈\  such that for any 0y ∈M , and 

any open set U ⊂M  containing 0y , there exists y U∈  and ς +∈]  such that 

0( ) ( )f y f yς ς ε− > . This means that no matter how precisely an initial condition is 

defined, there are nearby states which eventually diverge from it. 
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state space 

Synonym for phase space. 

 

Taken's embedding theorem 

Taken's embedding theorem states that it is possible to reconstruct state space from a 

time series of measurements. See Section 2.1 for details. 

 

test set 

A set of examples used only to assess the performance (generalization) of a fully-

specified neural network. 

 

training set 

A set of examples used for learning, i.e. to fit the weights of the neural network. 

 

trajectory 

Consider an ODE, ( )d f
dt

=
Ψ Ψ , where D∈Ψ \ , D +∈] . The solution ( )tΨ , from a 

given initial condition 0 0( )t=Ψ Ψ , plotted in phase space is called a trajectory or 

orbit. 

 

transitivity 

One criterion for a system to be defined as chaotic, is transitivity [149]. Let f be a map 

on a metric space M . Then f is topologically transitive if for any pair of nonempty 

open sets U ⊂M  and V ⊂M , there exists ς +∈]  such that ( )f U Vς ∩ ≠ ∅ . 
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Intuitively, under a transitive map, a point wanders all over the space M  where its 

orbit gets arbitrarily close to every point in M . 

 

validation set 

During cross validation, this is part of the training set which is used as a test set. The 

purpose is to tune the hyperparameters of the neural network, e.g. number of centers, 

based on performance.  

 

VHF-band 

Electromagnetic radiation of 30-300MHz. 

 

X-band 

Electromagnetic radiation of 4-8GHz. 


