1,652 research outputs found

    Selling Privacy at Auction

    Get PDF
    We initiate the study of markets for private data, though the lens of differential privacy. Although the purchase and sale of private data has already begun on a large scale, a theory of privacy as a commodity is missing. In this paper, we propose to build such a theory. Specifically, we consider a setting in which a data analyst wishes to buy information from a population from which he can estimate some statistic. The analyst wishes to obtain an accurate estimate cheaply. On the other hand, the owners of the private data experience some cost for their loss of privacy, and must be compensated for this loss. Agents are selfish, and wish to maximize their profit, so our goal is to design truthful mechanisms. Our main result is that such auctions can naturally be viewed and optimally solved as variants of multi-unit procurement auctions. Based on this result, we derive auctions for two natural settings which are optimal up to small constant factors: 1. In the setting in which the data analyst has a fixed accuracy goal, we show that an application of the classic Vickrey auction achieves the analyst's accuracy goal while minimizing his total payment. 2. In the setting in which the data analyst has a fixed budget, we give a mechanism which maximizes the accuracy of the resulting estimate while guaranteeing that the resulting sum payments do not exceed the analysts budget. In both cases, our comparison class is the set of envy-free mechanisms, which correspond to the natural class of fixed-price mechanisms in our setting. In both of these results, we ignore the privacy cost due to possible correlations between an individuals private data and his valuation for privacy itself. We then show that generically, no individually rational mechanism can compensate individuals for the privacy loss incurred due to their reported valuations for privacy.Comment: Extended Abstract appeared in the proceedings of EC 201

    How to Balance Privacy and Money through Pricing Mechanism in Personal Data Market

    Full text link
    A personal data market is a platform including three participants: data owners (individuals), data buyers and market maker. Data owners who provide personal data are compensated according to their privacy loss. Data buyers can submit a query and pay for the result according to their desired accuracy. Market maker coordinates between data owner and buyer. This framework has been previously studied based on differential privacy. However, the previous study assumes data owners can accept any level of privacy loss and data buyers can conduct the transaction without regard to the financial budget. In this paper, we propose a practical personal data trading framework that is able to strike a balance between money and privacy. In order to gain insights on user preferences, we first conducted an online survey on human attitude to- ward privacy and interest in personal data trading. Second, we identify the 5 key principles of personal data market, which is important for designing a reasonable trading frame- work and pricing mechanism. Third, we propose a reason- able trading framework for personal data which provides an overview of how the data is traded. Fourth, we propose a balanced pricing mechanism which computes the query price for data buyers and compensation for data owners (whose data are utilized) as a function of their privacy loss. The main goal is to ensure a fair trading for both parties. Finally, we will conduct an experiment to evaluate the output of our proposed pricing mechanism in comparison with other previously proposed mechanism

    A dominant strategy, double clock auction with estimation-based tatonnement

    Get PDF
    The price mechanism is fundamental to economics but difficult to reconcile with incentive compatibility and individual rationality. We introduce a double clock auction for a homogeneous good market with multidimensional private information and multiunit traders that is deficit‐free, ex post individually rational, constrained efficient, and makes sincere bidding a dominant strategy equilibrium. Under a weak dependence and an identifiability condition, our double clock auction is also asymptotically efficient. Asymptotic efficiency is achieved by estimating demand and supply using information from the bids of traders that have dropped out and following a tâtonnement process that adjusts the clock prices based on the estimates
    corecore