191 research outputs found

    Hashing for Multimedia Similarity Modeling and Large-Scale Retrieval

    Get PDF
    In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based solution for audio-visual similarity modeling and apply it to the audio-visual sound source localization problem. We show that synchronized signals in audio and visual modalities demonstrate similar temporal changing patterns in certain feature spaces. We propose to use a permutation-based random hashing technique to capture the temporal order dynamics of audio and visual features by hashing them along the temporal axis into a common Hamming space. In this way, the audio-visual correlation problem is transformed into a similarity search problem in the Hamming space. Our hashing-based audio-visual similarity modeling has shown superior performances in the localization and segmentation of sounding objects in videos. The success of the permutation-based hashing method motivates us to generalize and formally define the supervised ranking-based hashing problem, and study its application to large-scale image retrieval. Specifically, we propose an effective supervised learning procedure to learn optimized ranking-based hash functions that can be used for large-scale similarity search. Compared with the randomized version, the optimized ranking-based hash codes are much more compact and discriminative. Moreover, it can be easily extended to kernel space to discover more complex ranking structures that cannot be revealed in linear subspaces. Experiments on large image datasets demonstrate the effectiveness of the proposed method for image retrieval. We further studied the ranking-based hashing method for the cross-media similarity search problem. Specifically, we propose two optimization methods to jointly learn two groups of linear subspaces, one for each media type, so that features\u27 ranking orders in different linear subspaces maximally preserve the cross-media similarities. Additionally, we develop this ranking-based hashing method in the cross-media context into a flexible hashing framework with a more general solution. We have demonstrated through extensive experiments on several real-world datasets that the proposed cross-media hashing method can achieve superior cross-media retrieval performances against several state-of-the-art algorithms. Lastly, to make better use of the supervisory label information, as well as to further improve the efficiency and accuracy of supervised hashing, we propose a novel multimedia discrete hashing framework that optimizes an instance-wise loss objective, as compared to the pairwise losses, using an efficient discrete optimization method. In addition, the proposed method decouples the binary codes learning and hash function learning into two separate stages, thus making the proposed method equally applicable for both single-media and cross-media search. Extensive experiments on both single-media and cross-media retrieval tasks demonstrate the effectiveness of the proposed method

    Learning compact hashing codes with complex objectives from multiple sources for large scale similarity search

    Get PDF
    Similarity search is a key problem in many real world applications including image and text retrieval, content reuse detection and collaborative filtering. The purpose of similarity search is to identify similar data examples given a query example. Due to the explosive growth of the Internet, a huge amount of data such as texts, images and videos has been generated, which indicates that efficient large scale similarity search becomes more important.^ Hashing methods have become popular for large scale similarity search due to their computational and memory efficiency. These hashing methods design compact binary codes to represent data examples so that similar examples are mapped into similar codes. This dissertation addresses five major problems for utilizing supervised information from multiple sources in hashing with respect to different objectives. Firstly, we address the problem of incorporating semantic tags by modeling the latent correlations between tags and data examples. More precisely, the hashing codes are learned in a unified semi-supervised framework by simultaneously preserving the similarities between data examples and ensuring the tag consistency via a latent factor model. Secondly, we solve the missing data problem by latent subspace learning from multiple sources. The hashing codes are learned by enforcing the data consistency among different sources. Thirdly, we address the problem of hashing on structured data by graph learning. A weighted graph is constructed based on the structured knowledge from the data. The hashing codes are then learned by preserving the graph similarities. Fourthly, we address the problem of learning high ranking quality hashing codes by utilizing the relevance judgments from users. The hashing code/function is learned via optimizing a commonly used non-smooth non-convex ranking measure, NDCG. Finally, we deal with the problem of insufficient supervision by active learning. We propose to actively select the most informative data examples and tags in a joint manner based on the selection criteria that both the data examples and tags should be most uncertain and dissimilar with each other.^ Extensive experiments on several large scale datasets demonstrate the superior performance of the proposed approaches over several state-of-the-art hashing methods from different perspectives

    Matching sets of features for efficient retrieval and recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 145-153).In numerous domains it is useful to represent a single example by the collection of local features or parts that comprise it. In computer vision in particular, local image features are a powerful way to describe images of objects and scenes. Their stability under variable image conditions is critical for success in a wide range of recognition and retrieval applications. However, many conventional similarity measures and machine learning algorithms assume vector inputs. Comparing and learning from images represented by sets of local features is therefore challenging, since each set may vary in cardinality and its elements lack a meaningful ordering. In this thesis I present computationally efficient techniques to handle comparisons, learning, and indexing with examples represented by sets of features. The primary goal of this research is to design and demonstrate algorithms that can effectively accommodate this useful representation in a way that scales with both the representation size as well as the number of images available for indexing or learning. I introduce the pyramid match algorithm, which efficiently forms an implicit partial matching between two sets of feature vectors.(cont.) The matching has a linear time complexity, naturally forms a Mercer kernel, and is robust to clutter or outlier features, a critical advantage for handling images with variable backgrounds, occlusions, and viewpoint changes. I provide bounds on the expected error relative to the optimal partial matching. For very large databases, even extremely efficient pairwise comparisons may not offer adequately responsive query times. I show how to perform sub-linear time retrievals under the matching measure with randomized hashing techniques, even when input sets have varying numbers of features. My results are focused on several important vision tasks, including applications to content-based image retrieval, discriminative classification for object recognition, kernel regression, and unsupervised learning of categories. I show how the dramatic increase in performance enables accurate and flexible image comparisons to be made on large-scale data sets, and removes the need to artificially limit the number of local descriptions used per image when learning visual categories.by Kristen Lorraine Grauman.Ph.D

    Rekonstruktion und skalierbare Detektion und Verfolgung von 3D Objekten

    Get PDF
    The task of detecting objects in images is essential for autonomous systems to categorize, comprehend and eventually navigate or manipulate its environment. Since many applications demand not only detection of objects but also the estimation of their exact poses, 3D CAD models can prove helpful since they provide means for feature extraction and hypothesis refinement. This work, therefore, explores two paths: firstly, we will look into methods to create richly-textured and geometrically accurate models of real-life objects. Using these reconstructions as a basis, we will investigate on how to improve in the domain of 3D object detection and pose estimation, focusing especially on scalability, i.e. the problem of dealing with multiple objects simultaneously.Objekterkennung in Bildern ist fĂŒr ein autonomes System von entscheidender Bedeutung, um seine Umgebung zu kategorisieren, zu erfassen und schließlich zu navigieren oder zu manipulieren. Da viele Anwendungen nicht nur die Erkennung von Objekten, sondern auch die SchĂ€tzung ihrer exakten Positionen erfordern, können sich 3D-CAD-Modelle als hilfreich erweisen, da sie Mittel zur Merkmalsextraktion und Verfeinerung von Hypothesen bereitstellen. In dieser Arbeit werden daher zwei Wege untersucht: Erstens werden wir Methoden untersuchen, um strukturreiche und geometrisch genaue Modelle realer Objekte zu erstellen. Auf der Grundlage dieser Konstruktionen werden wir untersuchen, wie sich der Bereich der 3D-Objekterkennung und der PosenschĂ€tzung verbessern lĂ€sst, wobei insbesondere die Skalierbarkeit im Vordergrund steht, d.h. das Problem der gleichzeitigen Bearbeitung mehrerer Objekte

    Large-scale image collection cleansing, summarization and exploration

    Get PDF
    A perennially interesting topic in the research field of large scale image collection organization is how to effectively and efficiently conduct the tasks of image cleansing, summarization and exploration. The primary objective of such an image organization system is to enhance user exploration experience with redundancy removal and summarization operations on large-scale image collection. An ideal system is to discover and utilize the visual correlation among the images, to reduce the redundancy in large-scale image collection, to organize and visualize the structure of large-scale image collection, and to facilitate exploration and knowledge discovery. In this dissertation, a novel system is developed for exploiting and navigating large-scale image collection. Our system consists of the following key components: (a) junk image filtering by incorporating bilingual search results; (b) near duplicate image detection by using a coarse-to-fine framework; (c) concept network generation and visualization; (d) image collection summarization via dictionary learning for sparse representation; and (e) a multimedia practice of graffiti image retrieval and exploration. For junk image filtering, bilingual image search results, which are adopted for the same keyword-based query, are integrated to automatically identify the clusters for the junk images and the clusters for the relevant images. Within relevant image clusters, the results are further refined by removing the duplications under a coarse-to-fine structure. The duplicate pairs are detected with both global feature (partition based color histogram) and local feature (CPAM and SIFT Bag-of-Word model). The duplications are detected and removed from the data collection to facilitate further exploration and visual correlation analysis. After junk image filtering and duplication removal, the visual concepts are further organized and visualized by the proposed concept network. An automatic algorithm is developed to generate such visual concept network which characterizes the visual correlation between image concept pairs. Multiple kernels are combined and a kernel canonical correlation analysis algorithm is used to characterize the diverse visual similarity contexts between the image concepts. The FishEye visualization technique is implemented to facilitate the navigation of image concepts through our image concept network. To better assist the exploration of large scale data collection, we design an efficient summarization algorithm to extract representative examplars. For this collection summarization task, a sparse dictionary (a small set of the most representative images) is learned to represent all the images in the given set, e.g., such sparse dictionary is treated as the summary for the given image set. The simulated annealing algorithm is adopted to learn such sparse dictionary (image summary) by minimizing an explicit optimization function. In order to handle large scale image collection, we have evaluated both the accuracy performance of the proposed algorithms and their computation efficiency. For each of the above tasks, we have conducted experiments on multiple public available image collections, such as ImageNet, NUS-WIDE, LabelMe, etc. We have observed very promising results compared to existing frameworks. The computation performance is also satisfiable for large-scale image collection applications. The original intention to design such a large-scale image collection exploration and organization system is to better service the tasks of information retrieval and knowledge discovery. For this purpose, we utilize the proposed system to a graffiti retrieval and exploration application and receive positive feedback

    Extracting the Structure and Conformations of Biological Entities from Large Datasets

    Get PDF
    In biology, structure determines function, which often proceeds via changes in conformation. Efficient means for determining structure exist, but mapping conformations continue to present a serious challenge. Single-particles approaches, such as cryogenic electron microscopy (cryo-EM) and emerging diffract & destroy X-ray techniques are, in principle, ideally positioned to overcome these challenges. But the algorithmic ability to extract information from large heterogeneous datasets consisting of unsorted snapshots - each emanating from an unknown orientation of an object in an unknown conformation - remains elusive. It is the objective of this thesis to describe and validate a powerful suite of manifold-based algorithms able to extract structural and conformational information from large datasets. These computationally efficient algorithms offer a new approach to determining the structure and conformations of viruses and macromolecules. After an introduction, we demonstrate a distributed, exact k-Nearest Neighbor Graph (k-NNG) construction method, in order to establish a firm algorithmic basis for manifold-based analysis. The proposed algorithm uses Graphics Processing Units (GPUs) and exploits multiple levels of parallelism in distributed computational environment and it is scalable for different cluster sizes, with each compute node in the cluster containing multiple GPUs. Next, we present applications of manifold-based analysis in determining structure and conformational variability. Using the Diffusion Map algorithm, a new approach is presented, which is capable of determining structure of symmetric objects, such as viruses, to 1/100th of the object diameter, using low-signal diffraction snapshots. This is demonstrated by means of a successful 3D reconstruction of the Satellite Tobacco Necrosis Virus (STNV) to atomic resolution from simulated diffraction snapshots with and without noise. We next present a new approach for determining discrete conformational changes of the enzyme Adenylate kinase (ADK) from very large datasets of up to 20 million snapshots, each with ~104 pixels. This exceeds by an order of magnitude the largest dataset previously analyzed. Finally, we present a theoretical framework and an algorithmic pipeline for capturing continuous conformational changes of the ribosome from ultralow-signal (-12dB) experimental cryo-EM. Our analysis shows a smooth, concerted change in molecular structure in two-dimensional projection, which might be indicative of the way the ribosome functions as a molecular machine. The thesis ends with a summary and future prospects

    RICH AND EFFICIENT VISUAL DATA REPRESENTATION

    Get PDF
    Increasing the size of training data in many computer vision tasks has shown to be very effective. Using large scale image datasets (e.g. ImageNet) with simple learning techniques (e.g. linear classifiers) one can achieve state-of-the-art performance in object recognition compared to sophisticated learning techniques on smaller image sets. Semantic search on visual data has become very popular. There are billions of images on the internet and the number is increasing every day. Dealing with large scale image sets is intense per se. They take a significant amount of memory that makes it impossible to process the images with complex algorithms on single CPU machines. Finding an efficient image representation can be a key to attack this problem. A representation being efficient is not enough for image understanding. It should be comprehensive and rich in carrying semantic information. In this proposal we develop an approach to computing binary codes that provide a rich and efficient image representation. We demonstrate several tasks in which binary features can be very effective. We show how binary features can speed up large scale image classification. We present learning techniques to learn the binary features from supervised image set (With different types of semantic supervision; class labels, textual descriptions). We propose several problems that are very important in finding and using efficient image representation

    Three-dimensional Laser-based Classification in Outdoor Environments

    Get PDF
    Robotics research strives for deploying autonomous systems in populated environments, such as inner city traffic. Autonomous cars need a reliable collision avoidance, but also an object recognition to distinguish different classes of traffic participants. For both tasks, fast three-dimensional laser range sensors generating multiple accurate laser range scans per second, each consisting of a vast number of laser points, are often employed. In this thesis, we investigate and develop classification algorithms that allow us to automatically assign semantic labels to laser scans. We mainly face two challenges: (1) we have to ensure consistent and correct classification results and (2) we must efficiently process a vast number of laser points per scan. In consideration of these challenges, we cover both stages of classification -- the feature extraction from laser range scans and the classification model that maps from the features to semantic labels. As for the feature extraction, we contribute by thoroughly evaluating important state-of-the-art histogram descriptors. We investigate critical parameters of the descriptors and experimentally show for the first time that the classification performance can be significantly improved using a large support radius and a global reference frame. As for learning the classification model, we contribute with new algorithms that improve the classification efficiency and accuracy. Our first approach aims at deriving a consistent point-wise interpretation of the whole laser range scan. By combining efficient similarity-preserving hashing and multiple linear classifiers, we considerably improve the consistency of label assignments, requiring only minimal computational overhead compared to a single linear classifier. In the last part of the thesis, we aim at classifying objects represented by segments. We propose a novel hierarchical segmentation approach comprising multiple stages and a novel mixture classification model of multiple bag-of-words vocabularies. We demonstrate superior performance of both approaches compared to their single component counterparts using challenging real world datasets.Ziel des Forschungsbereichs Robotik ist der Einsatz autonomer Systeme in natĂŒrlichen Umgebungen, wie zum Beispiel innerstĂ€dtischem Verkehr. Autonome Fahrzeuge benötigen einerseits eine zuverlĂ€ssige Kollisionsvermeidung und andererseits auch eine Objekterkennung zur Unterscheidung verschiedener Klassen von Verkehrsteilnehmern. Verwendung finden vorallem drei-dimensionale Laserentfernungssensoren, die mehrere prĂ€zise Laserentfernungsscans pro Sekunde erzeugen und jeder Scan besteht hierbei aus einer hohen Anzahl an Laserpunkten. In dieser Dissertation widmen wir uns der Untersuchung und Entwicklung neuartiger Klassifikationsverfahren zur automatischen Zuweisung von semantischen Objektklassen zu Laserpunkten. Hierbei begegnen wir hauptsĂ€chlich zwei Herausforderungen: (1) wir möchten konsistente und korrekte Klassifikationsergebnisse erreichen und (2) die immense Menge an Laserdaten effizient verarbeiten. Unter BerĂŒcksichtigung dieser Herausforderungen untersuchen wir beide Verarbeitungsschritte eines Klassifikationsverfahrens -- die Merkmalsextraktion unter Nutzung von Laserdaten und das eigentliche Klassifikationsmodell, welches die Merkmale auf semantische Objektklassen abbildet. BezĂŒglich der Merkmalsextraktion leisten wir ein Beitrag durch eine ausfĂŒhrliche Evaluation wichtiger Histogrammdeskriptoren. Wir untersuchen kritische Deskriptorparameter und zeigen zum ersten Mal, dass die KlassifikationsgĂŒte unter Nutzung von großen Merkmalsradien und eines globalen Referenzrahmens signifikant gesteigert wird. BezĂŒglich des Lernens des Klassifikationsmodells, leisten wir BeitrĂ€ge durch neue Algorithmen, welche die Effizienz und Genauigkeit der Klassifikation verbessern. In unserem ersten Ansatz möchten wir eine konsistente punktweise Interpretation des gesamten Laserscans erreichen. Zu diesem Zweck kombinieren wir eine Ă€hnlichkeitserhaltende Hashfunktion und mehrere lineare Klassifikatoren und erreichen hierdurch eine erhebliche Verbesserung der Konsistenz der Klassenzuweisung bei minimalen zusĂ€tzlichen Aufwand im Vergleich zu einem einzelnen linearen Klassifikator. Im letzten Teil der Dissertation möchten wir Objekte, die als Segmente reprĂ€sentiert sind, klassifizieren. Wir stellen eine neuartiges hierarchisches Segmentierungsverfahren und ein neuartiges Klassifikationsmodell auf Basis einer Mixtur mehrerer bag-of-words Vokabulare vor. Wir demonstrieren unter Nutzung von praxisrelevanten DatensĂ€tzen, dass beide AnsĂ€tze im Vergleich zu ihren Entsprechungen aus einer einzelnen Komponente zu erheblichen Verbesserungen fĂŒhren

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∌ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p
    • 

    corecore