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ABSTRACT 

EXTRACTING THE STRUCTURE AND CONFORMATIONS OF BIOLOGICAL 

ENTITIES FROM LARGE DATASETS 

 

by 

 

Ali Dashti 

 

 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Professor Roshan M. D'Souza  

 

 

In biology, structure determines function, which often proceeds via changes in 

conformation.  Efficient means for determining structure exist, but mapping 

conformations continue to present a serious challenge.  Single-particles approaches, such 

as cryogenic electron microscopy (cryo-EM) and emerging “diffract & destroy” X-ray 

techniques are, in principle, ideally positioned to overcome these challenges.  But the 

algorithmic ability to extract information from large heterogeneous datasets consisting of 

“unsorted” snapshots - each emanating from an unknown orientation of an object in an 

unknown conformation - remains elusive.   

It is the objective of this thesis to describe and validate a powerful suite of manifold-

based algorithms able to extract structural and conformational information from large 

datasets.  These computationally efficient algorithms offer a new approach to determining 

the structure and conformations of viruses and macromolecules.   

After an introduction, we demonstrate a distributed, exact k-Nearest Neighbor Graph (k-

NNG) construction method, in order to establish a firm algorithmic basis for manifold-
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based analysis. The proposed algorithm uses Graphics Processing Units (GPUs) and 

exploits multiple levels of parallelism in distributed computational environment and it is 

scalable for different cluster sizes, with each compute node in the cluster containing 

multiple GPUs.  

Next, we present applications of manifold-based analysis in determining structure and 

conformational variability. Using the Diffusion Map algorithm, a new approach is 

presented, which is capable of determining structure of symmetric objects, such as 

viruses, to 1/100th of the object diameter, using low-signal diffraction snapshots.  This is 

demonstrated by means of a successful 3D reconstruction of the Satellite Tobacco 

Necrosis Virus (STNV) to atomic resolution from simulated diffraction snapshots with 

and without noise.  

We next present a new approach for determining discrete conformational changes of the 

enzyme Adenylate kinase (ADK) from very large datasets of up to 20 million snapshots, 

each with ~10
4
 pixels.  This exceeds by an order of magnitude the largest dataset 

previously analyzed.   

Finally, we present a theoretical framework and an algorithmic pipeline for capturing 

continuous conformational changes of the ribosome from ultralow-signal (-12dB) 

experimental cryo-EM. Our analysis shows a smooth, concerted change in molecular 

structure in two-dimensional projection, which might be indicative of the way the 

ribosome functions as a molecular machine.   

The thesis ends with a summary and future prospects. 
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Introduction  
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1. Introduction  

1.1. Summary 

This chapter sets the stage for our contributions in the analysis of single-particle 

snapshots of biological entities. We start with a brief introduction to bimolecular 

structure and its relation to functional dynamics. We next present the ribosome molecule 

as an example of a molecular machine whose structural heterogeneity has an important 

role in its functional design. Single-particle imaging techniques such as Cryogenic 

Electron Microscopy (cryo-EM) imaging and X-ray Free Electron Laser (XFEL) 

diffraction for capturing the structure and its variations of biological entities are 

presented. A review of existing algorithmic tools for recovering high-resolution structure 

and conformational changes with each of the above techniques are discussed In addition, 

a section is dedicated to the impact of studying biological entities in high resolution and 

capturing structural variability using single-particle imaging techniques. We conclude the 

chapter with the thesis statement and objectives of this thesis is presented at the end of 

this chapter.   
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1.2. Structure and conformational spectrum of biological molecules 

1.2.1. Molecular machines 

The term "molecular machine" was introduced by Brue Albert's 1998 programmatic 

assay in the journal Cell (Alberts, 1998). "Machine" is a familiar term in macroscopic 

world. It brings the image of gears, levers and springs moving in concert with each other 

in a causal chain of events conducted mainly by gravity and inertia. However, the 

situation is fundamentally different in the aqueous environment of the cellular world, the 

traditional gravitational and inertia forces  are dominated by the random thermal 

bombardment of the solvent molecules causing these nanometer-long "machines" to 

move in a jittery fashion. (Frank, 2011).  

The main forces in this watery world are non-covalent interactions between molecular 

parts, levers and gears, and collision with water molecules. The most mysterious fact 

about molecular machines is their interactions and conformational changes of structure 

called functional dynamics that lead into groups of irreversible chemical reactions with 

directed motions towards making a specific product (Frank, 2011). 

1.2.2. Structural variability and molecular functions 

To perform their tasks, molecular machines need energy. The way the nano-scale 

molecules obtain their energy will reveal their statistic structural changes while working. 

This energy stems primarily from chemical reactions in the cell. A common chemical 

reaction for releasing energy is the hydrolysis of a high-energy phosphate compound, in 

the form of Adenosine triphosphate (ATP) or Guanosine triphosphate (GTP) in an 
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aqueous cell environment.  In contrast to common view of machinery function, molecular 

machines do not have a smooth deterministic way of action and their functional motions 

are stochastic/random. The nano-scale structure and weak non covalent bonds between 

molecular subunits allow weak energies and thermal fluctuations form the cell 

environment to play a crucial role in this seemingly random behavior of biological 

molecules, best described by Brownian motor mechanisms of operations (Peskin et al., 

1993; Cordova et al., 1992, Frank, 2011). 

The nano-scale structure and weak non covalent bounds between molecular subunits 

allow weak energies and thermal fluctuations form the cell environment to. play a crucial 

role in this seemingly random behavior of biological molecules, best described by 

Brownian motor mechanisms of operations (Peskin et al., 1993; Cordova et al., 1992). 

Brownian motor mechanisms of operations simply states that structural parts of 

molecular machines are subject to random stochastic changes lead by thermal 

fluctuations. However this random behavior in noisy environment cannot explain the 

processivity of molecular machines, the way molecules undergo unidirectional chemical 

reactions and produce their products. Directionality is explained by intervention of 

additional cofactors or binding effects that can lead to irreversible reaction steps and 

hence release of the product from molecular complex (Frank, 2011).  

The Brownian motor mechanisms of operations is an important factor for interpretation 

of seemingly deterministic behavior of molecular machines from their captured 

"snapshots" at random time frames using single particle imaging. Functional states of 

molecular machines present the local minima in free energy landscape of molecule and 
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each molecule reaches different functional states by random motions as a result of 

thermal fluctuations. 

1.2.3. The ribosome 

The Ribosome is one of the most important molecular machines in nature. It is known as 

engineer of the cell. It plays a major role in protein synthesis, the central process for 

living cells. Ribosome is a large macromolecular machine, 250
o
 in diameter, with two 

distinct subunits mainly composed of ribosome RNA or rRNA in its core.  Ribosome's 

main task is to knit the chain of polypeptides or infant proteins, from the sequences of 

amino acids delivered by transfer RNAs (tRNA) from genetic instructions encoded in 

messenger RNA (mRNA). This process known as translation is a central part of 

molecular biology dogma (Figure 1). Having such intricate and important tasks, the 

Ribosome is nearly preserved in all kingdoms of life.  

Exploring Ribosome structure and its variability has been the subject of extensive 

research over the past decade (Schmeing et al., 2009). One target aim of these studies is 

to couple the conformational changes of different parts of ribosome with each other and 

provide a global view of conformational changes as a whole, which further provides an 

explanation of ribosome functional design in the process of translation.  

Figure 2 demonstrates the overview of structure and dynamics of ribosome.The 

Ribosome structure is determined by the architecture of its two subunits. Ribosome has 

three tRNA binding sites, A (for amino-acyl), P (for peptidyl) and E (for exit) in the 

intersection of two subunits. The placement of tRNAs into these binding sites determines 

the stage of translation and consequent conformational changes (Frank 2011).  
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Figure 1: Bacterial translation cycle (Schmeing et al., 2009). The chain of reactions 

corresponding to initiation, elongation, release and recycling stages of translation are 

viewed schematically. Abbreviations are aa-tRNA for aminoacyl-tRNA; EF elongation 

factor; IF for initiation factor and RF for release factor.  

 

As figure 2 demonstrates, ribosome subunits undergo various conformational changes. 

These degrees of freedom have evolved to perform the key actions of protein synthesis 

machinery. The question then arises is how to capture the structure and conformational 

changes of the Ribosome as a molecular machine during its functional states, and in 

addition, how to relate the structural variability of ribosome to its functional design.  
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Figure 2: Ribosome structure and dynamics (Frank 2011). a) Ribosome and its subunits 

in protein translation machinery. b) Large subunit and estimated range of motion for L1 

stalk and GAC components. c) small subunit and its range of motions.  



8 

 

 

 

Our knowledge of Ribosome and its structural heterogeneity is hugely indebted to single 

particle imaging techniques and complex processing algorithms that enable us to capture 

and extract different conformational states of molecule while coexisting as sample 

ensemble all at once. This development will be augmented in future by further 

enhancement of experimental capabilities and development of more complex algorithms 

for time-resolved analysis. That would have a great influence on understanding the 

mechanism of translation and Ribosome machinery by revealing its tiny intermediate 

conformational changes. The new conformational spectrum will lead to discovery of 

novel functional states and provide a better view of ribosome functional dynamics 

(Fischer et al., 2010).   

1.3. Techniques  for determining structure and conformational 

changes 

1.3.1. X-ray crystallography 

In order to capture the conformational spectrum of a biomolecule, it is first necessary to 

know its' phenomenological description and structure in static state. X-ray 

crystallography is a well-established technique for this purpose. It is possible to capture 

high resolution structures of molecular machines with or without their functional ligands 

and even their subunits with X-ray crystallography. Reconstruction of bacterial ribosome 

structure is one of the major achievements of this technique (Yusupov et al., 2001) 

(Figure 3).  
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Figure 3: Structure of T. thermophilus ribosome (Yusupov et al., 2001). A) to D) 

represents 90o rotations of the molecule along vertical axis. Structure is determined  with 

5.5 Å resolution by X-ray crystallography. 

 

X-ray crystallography determines atomic structure from crystals where the constituent 

atoms of biomolecule are placed in an ordered pattern. Crystals provide an structure view 

of "typical" molecule by averaging different conformations and leaving out study of 

conformational spectrum. 

In order to step beyond mere structure reconstruction and observe the functional changes 

of a molecular machine, single particle imaging techniques such as cryogenic electron 
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microscopy (cryo-EM) and newly established X-ray free electron laser (XFEL) come into 

action.  

1.3.2. Cryogenic electron microscopy 

Cryogenic electron microscopy (cryo-EM) uses the same optical principles as the 

transmission electron microscopy (TEM) to provide two-dimensional (2D) projections of 

3-dimensional (3D) biomolecule in a detector. Each 2D projection or "projection 

snapshot" is the line integral of the mean inner potential distribution representing the 

object in space. In order to provide a high vacuum path for electron beam, cryo-EM uses 

frozen-hydrated specimen preparation techniques (Taylor et al., 1976) in which multiple 

particles are embedded in a thin layer of ice before microscopy. 

A cryo-EM micrograph represents a mosaic of projection snapshots, with each mosaic 

representing the snapshot of the object of interest  in a random orientation and 

presumably in an instant of functional behavior.  Figure 4 demonstrates a schematic view 

of cryo-EM and the resulting micrograph. For analyzing cryo-EM data, at first the 

micrograph is segmented into smaller boxes, each box containing one projection 

snapshot, by a process called particle picking (Rath and Frank 2004). The goal of image 

processing then will be to analyze projection snapshot of all particles to map 

conformational changes and recover structure of each conformation. As a results of such 

processing, a 3-D reconstruction of a molecular machine in each of its functional states is 

acquired from projection snapshots. 
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Figure 4: Schematic view of cryo-EM imaging (Grassucci et al., 2007). Distribution of 

projection snapshots in the micrograph reflects the particle distribution of ribosome 

molecules on a frozen-hydrated grid. 

 

1.3.3. X-ray free electron laser (XFEL) 

X-ray free electron laser have recently made it possible to have X-ray diffraction 

snapshots of biological entities before destroying the molecules by radiation damage 

(Boutet et al., 2012). X-ray strong ionizing effects almost make it impossible to have a 

diffraction pattern from single molecules. XFEL solves this issue by sending the ultra-

short pulses and recording the diffraction snapshots before the disentanglement of 

molecules from intensity of the pulse (Gaffney and Chapman, 2007; Chapman et al., 

2006). Radiation damage is a limiting factor in the quality of experimental structural data. 

In addition to noise, the resolution of spatial reconstruction of structure is determined by 

level of damages. The limitation is manifested in all single particle imaging techniques 

such as CryoEM (Frank 2002) and X-ray crystallography. XFEL ultra-short femto-

second pulses that contains up to 10
12

 photons provide a possible solution to this problem 
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by obtaining diffraction snapshots of single particle beam before their destruction in a so 

called "scatter and destroy" approaches (Solem and Baldwin, 1982). 

 

Figure 5: XFEL microscopy (Chapman et al., 2011). Nanocrystals of biological 

molecules injected from the liquid jet and have an interaction with X-ray FEL pulses in 

fornt of the detectors. Two detectors captures the high- and low-angle diffractions from 

X-ray FEL pulses. 

 

Representing promising preliminary success in maintaining the natural state of molecules 

in incident beam (Hau-Reige et al., 2005) and recovering the scattering patterns before 

the start of radiation damage (Hau-Reige et al. 2007), XFEL is becoming a powerful tool 

for high resolution structure recovery and determination of conformational changes from 

single particle beams. Hence, there is an increasing need for noise robust algorithms to 

classify and reconstruct three-dimensional structures of functional states from XFEL 

diffraction patterns in the absence of orientation information and presence of 

overwhelming noise and background scattering. 
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1.4. Extracting information from large datasets 

Both cryo-EM and XFEL generate large datasets of snapshots capturing 2D view of 

biological entities in random orientations. The presence of conformational heterogeneity 

in captured molecules adds an additional unknown factor for recovering structure from 

these techniques. In this section we review different methods of structure recovery and 

mapping conformational changes from XFEL and cryo-EM. 

1.4.1. Structure recovery from cryo-EM and XFEL 

In cryo-EM there is an active area for developing algorithms to determine the three-

dimensional structure of single molecules. The main computational task in structure 

recovery however, is the determination of a priory unknown projection angles. In cryo-

EM there is an established methodology with more than three decades worth of literature 

in this area that can be categorized in two class of algorithms for unfolding projection 

angles.  

Method of common lines (Van Heel, 1987), finds the projection angles by having the 

assumption that all 2-D projections of a 3-D object have a common line in Fourier space. 

Having a common line between a set of three independent projection snapshots, relative 

Euler angles can be determined by finding associations between each subset of two 

snapshots (Figure 7).   

Random-conical reconstruction, are aiming at constructing a conical projection geometry 

based on tilting the azimuthal in-plane position of the object and recover three Euler 
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angles for each class of similar projection cones (Radermacher et al., 1987; Frank, 1998) 

(Figure 6). 

 

Figure 6: Random conical tilt reconstruction (Leschziner, 2010). A) Image is collected 

from tilted samples at 50
o
. B) Second set of images are recorded from samples at 0

o
. Two 

sets of images in A and B are aligned with each other by an in plane rotation.  D) The two 

aligned images represents the same view of the molecule and can be viewed as they are in 

the same class.  E) Having enough images to fully sample the desired structure, 

reconstruction can be made. 

 

Figure 7: Common line method of angular reconstruction (Van Heel 2010). common 

line projection theorem stating that two different two-dimensional (2D) projections of the 

same 3D object have a one- dimensional (1D) line projection in common. 
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Our group presented the first demonstration of high resolution structure recovery from 

simulated XFEL snapshots of macromolecules using Generative Topographic Mapping 

(GTM) (Fung et al., 2008). The GTM approach is a Bayesian nonlinear factor-analytical 

approach that determines the structure using maximum-likelihood as a measure of 

classification for orientations. GTM fits the correlations between the snapshots in the 

presence of geometry constraints in an embedded space ('latent space') (Fung et al., 

2008).  

Other structure recovery solutions for XFEL (Elser, 2009), also associate snapshots to 

their orientation based on maximum likelihood classification. After finding the 

orientation angles, iterative phasing algorithms are then used to reconstruct a 3D 

diffraction volume by gathering information from all snapshots and their orientations and 

hence provide a 3D reconstruction of the molecule (Fineup, 1978; Oszlányi and Suto, 

2004; Elser, 2003). However because of computational costs the best achievable 

reconstruction by Bayesian approaches has the resolution of 1/10
th

 of molecule diameter 

(Moths and Ourmazd, 2011). At this resolution, in depth study of larger molecular 

entities and molecular machines such as viruses and large proteins are out of reach of 

these algorithms. There are non-Bayesian approaches with higher resolution of 1/30
th

 of 

the  object diameter (Giannakis et al., 2010 I; Schwander et al., 2012) but even this 

resolution is still not sufficient for studying viruses and large proteins such as ribosome 

(with > 200Å diameter) at atomic resolutions.   
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1.4.2. Mapping conformational changes by cryo-EM and XFEL 

There are numerous algorithms for dealing with heterogeneity of large molecules in 

unknown orientations or projection angles from cryo-EM. Examples of such 

sophisticated algorithms in mapping conformational changes are the study of  structural 

variability in 70S E. coli ribosome (Scheres et al., 2006), mapping structural 

heterogeneity of human fatty acid synthase (Brink et al., 2004) and tRNA movement and 

its role in translation dynamics by time-resolved electron microscopy (Fischer et al., 

2010). Despite the collective evidence for crucial role of conformational heterogeneity in 

cellular life, the study of structural variability is still in its early stages having limited 

abilities for finding structure and dynamics and relating them into function. 

 The first set of algorithms for mapping conformational changes in cryo-EM includes 

supervised classification methods which groups the projections based on their similarity 

to few a-priori known 2D or 3D molecular models (Valle et al., 2002). These set of 

algorithms have two limiting assumptions. First, they assume a known atomic model for 

all functional states of a molecule. This assumption might not be valid in some molecular 

machines with unknown functional states and novel structures. Secondly, and similar to 

all classification algorithms, these methods have an a-priori known number classes for 

functional states of a molecule. This limitation forces the algorithm to detect the desired 

number of classes and gives no information about the actual number of functional states 

that are found in the real world  

There are also unsupervised methods of classification that requires little or no a-priori 

knowledge about the classes. Methods such as maximum-likelihood classification 
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(Scheres, 2010) (Figure 8) and bootstrapping (Liao and Frank 2010) perform the 

classification completely unsupervised. Unsupervised algorithms do not have the first 

limitation of supervised classification approaches. However the second limitation still 

holds. By choosing a cluster number for conformations, these algorithms are limiting the 

functional states of molecules to the assigned number.  

 

Figure 8: Maximum-likelihood unsupervised classification (Scheres 2010). Projection 

snapshots of ribosome is processed with ML3D software. Three iterative runs of the 

algorithm separates the molecules from incomplete subunits (first run), empty ribosomes 

from the one with strong t-RNA signal (second run) and weak t-RNA signals (Third run). 

Structural heterogeneity of ribosome has been the subject of extensive research in Cryo-

EM in recent years. Due to its important role in the process of cellular translation,  

capturing translating ribosome in motion has many applications in understanding 
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functional units and dynamics of translation in general. However most of the 

computational algorithms for mapping conformational changes from cryo-EM data stem 

from classification roots (Scheres et al., 2006;2010). A typical result of cryo-EM 

processing algorithm reveals functional dynamics of ribosome in different phases of 

translation as discrete functional states, having a presupposed number of classes. As it is 

discussed in above, a priory given number of classes may not entail any biological and 

physical significance and in result, two or more of functional states may indeed have the 

same structure and be merged manually after the algorithms' run.  

In a recent work by (Fischer et al., 2010), the authors suggested a time-resolved detection 

of continuous conformational changes by extracting some loose timing information from 

experimental cryo-EM setup. As a result, 50 distinct conformational states of ribosome 

during translocation, a phase in translation process (Figure 1), is detected with unbiased 

computational sorting using loose timing. Three-dimensional reconstruction of the 

conformations showed many intermediate states for tRNAs which led to better 

understanding of tRNA movement through the ribosome. In addition, functional 

dynamics of ribosome is revealed along the motion of tRNA in both head and body of its 

subunits. It is believed that these conformational changes are helping the tRNA to 

position along the neck of ribosome subunits. 

For having loose timing information, cryo-EM samples were prepared at different time 

points (zero, one two, five and twenty minutes) after adding the tRNAs to a solvent with 

empty ribosomes. Zero point in time is assumed to be the starting point of reaction and by 
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sampling ribosome in different time frames, projection snapshots entail a loose time 

stamp which allocate ribosome in different phases of its machinery.  

There are proposed algorithms for mapping conformational changes (Schwander et al., 

2010) and sorting ensembles of particle mixtures (Tegze and Bortel 2013) from simulated 

X-ray diffraction patterns. In addition, the other pathway of capturing conformational 

heterogeneity form XFEL is to exploit timing information from the experimental setting 

providing different states of a biomolecule based on pre-known phases of a reaction or 

molecular function leading to 3D reconstruction of non-identical objects with limited 

resolution (Schmidt et al., 2008; Bergh et al., 2008).  

However, there are as yet no experimental results, capturing conformational changes 

from XFEL diffraction patterns. This is mainly because of the fact that XFEL 

experimental setup is still in its infancy and have many experimental and algorithmic 

challenges for structure recovery of macromolecular ensembles yet aside conformational 

changes. 

1.5. Impact in biology and medicine 

Molecular machines, the basic functional units of the cell almost and always undergo 

conformational changes in different degrees due to free energy landscape constrained by 

their structure. Ideally, .single-particle approaches are perfect candidate for  determining 

structural variability of biological entities. There is an increasing appreciation for the fact 

that the dynamic behavior of molecular machines yields significant information about 
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their functional design. High-resolution determination of structural variability is an 

important task mainly for its role in scientific understanding of cellular functions in their 

basic level by studying the building blocks of the cell such as proteins, molecular agents 

and in higher levels chromosomes and organelles. 

A deep understanding of the mechanisms and role of conformational variability in 

biological entities would revolutionize our knowledge of cellular life and its key 

processes in both normal and pathological states (Schwander et al., 2010). Examples of 

importance of structural variability in clinical setting are abundant and range from 

reversible, pH-driven conformational changes of flavivirus and their role in the host 

stabilization and processing response (King and Kesson, 2003) to the classical 

descriptions hemoglobin R to T switch and its role in oxygen transportation in blood cells 

(Schotte et al., 2003) in addition to the relation between virulence of the dengue virus to 

structural rearrangements in  protein binding sites (Yu et al., 2008). Unraveling this 

relation is expected to help discovery of novel strategies for fighting viral infection 

(Schwander et al., 2010). 

The impact of studying structure and dynamics of ribosome in the fields of medicine and 

biology can be deduced from the fact that it awarded two Nobel prizes in 1974, in 

Physiology or Medicine for its discovery and 2009, in Chemistry for detailed structure 

and mechanisms.  

Quoting from press release of 2009 Chemistry Nobel prize: 

"An understanding of the ribosome's innermost workings is important for a scientific 

understanding of life. This knowledge can be put to a practical and immediate use; many 
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of today's antibiotics cure various diseases by blocking the function of bacterial 

ribosome. Without functional ribosome, bacteria cannot survive. This is why ribosome is 

such an important target for new antibiotics." 

Hereby, the understanding of ribosome and its dynamics in fine levels of resolution, one 

of the main perspectives of this thesis, would play a crucial role in future medicine and 

molecular biology.  

1.6. Thesis statement and contributions 

This thesis aims to study the feasibility of applying manifold embedding-based 

algorithms for structure recovery, and mapping conformational changes of biological 

entities from large datasets of single particle imaging snapshots. Towards this goal, I 

have developed a scalable and highly efficient implementation of Diffusion Maps 

(Coifman and Lafon 2006), a non-linear non-Bayesian approach for dimensionality 

reduction.  The suite of software implementations will be used in our groups’ endeavors 

in structure recovery in the presence of structural variability (Schwander et al., 2010; 

Giannakis et al., 2010). 

  

This project has four specific objectives: 

First: To develop an optimized, fast and expandable algorithm for Diffusion Map 

embedding and its' most computationally expensive part, k-NNG, using a computational 

cluster of graphical processing units.  
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Second: To apply the developed Diffusion Map algorithm for three-dimensional 

reconstruction of Satellite Tobacco Necrosis virus (STNV) from simulated random 

diffraction snapshots up to atomic resolutions, the highest resolution attainable by any 

reconstruction method.  

Third: To apply the developed Diffusion Map algorithm for unsupervised detection of 

conformational changes of Adelynate Kinase (ADK) from simulated random diffraction 

snapshots, for up to ten conformational states, the highest number of conformational 

states attainable by any method. This objective provides further proof for extendibility of 

implementation by moving number of snapshots up to an order of magnitude higher than 

the upper boundaries of the present XFEL and CryoEM  setups. 

Forth: To design a theoretical pipeline using developed algorithms and gained 

knowledge of previous steps in order to map conformational changes of the Ribosome 

macro-molecule from random snapshots of experimental cryo-EM.  

 

My contributions towards the aim of this thesis are as follows:  

I designed (with help of RMD
1
 and IK

2
) and developed a fast and scalable 

implementation of the Diffusion Map algorithm capable of leveraging the parallel 

computing capabilities of a cluster of compute nodes with graphics processing units 

(GPUs).  

                                                 
1
 Roshan M. D'Souza 

2
 Ivan Komarov 
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The said implementation was applied successfully in a software pipeline for structure 

recovery (by AH
3
 and PS

4
) from large dataset of Satellite Tobacco Necrosis Virus 

(STNV) simulated XFEL diffraction snapshots.  

I (with help of PS) applied the implementation for mapping discrete conformational 

changes of melting Adenylate Kinase (ADK) molecule from a large simulated dataset 

of XFEL snapshots.  

In addition, I designed (with help of AO
5
 and PS) and developed an algorithmic 

pipeline, including Diffusion Map, for mapping the continuous conformational 

changes of ribosome from experimental cryo-EM dataset. 

 

The rest of the thesis is organized as follows: In chapter two, Diffusion Map, a manifold-

based method for nonlinear dimensionality reduction is explained, and algorithm 

development steps for having a fast and scalable implementation of Diffusion Map on a 

GPU cluster is described. Chapter three presents the results of applying Diffusion Map to 

two model systems aiming at structure recovery and mapping conformational changes. At 

first, theoretical framework and algorithm development for high-resolution structure 

recovery of STNV is described and then we show the results of Diffusion Map 

embedding for detecting 10 discrete conformational changes of ADK molecule 

undergoing the melting process. Chapter four presents the theoretical framework and 

algorithmic pipeline developed and its application to mapping structural heterogeneity of 

                                                 
3
 Ahmad Hosseinizadeh 

4
 Peter Schwander 

5
 Abbas Ourmazd 
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the ribosome from experimental cryo-EM. The final chapter concludes the thesis with  a 

discussion of the remaining challenges and a road map for future work.  
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Chapter 2 

A GPU accelerated parallel implementation 

of the Diffusion Map  
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2. A GPU accelerated parallel implementation of the Diffusion 

Map   

2.1. Summary 

In this chapter, we first provide a brief introduction to diffusion map, a nonlinear 

dimensionality reduction algorithm. We next describe a GPU accelerated, computing 

cluster-based parallel implementation of this algorithm. We describe efficient data 

partitioning and communication schemes that were developed to partition the large input 

data set among individual nodes of a computing cluster for balanced execution. The k-

Nearest Neighbor Graph (k-NNG) construction, a step in the Diffusion Map algorithm is 

a two step process. The first step finds distances between individual images based on a 

pre-defined metric. The second finds the k-Nearest Neighbors based on this metric. We 

have developed an efficient implementation for computing distances using matrix 

multiplication formulation for which there exist optimized libraries. For the second step 

we describe two novel based on multi-sort and partial sort. Overall, our work delivered a 

13x speedup over a comparable parallel implementation on a CPU cluster.  
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2.2. Manifold embedding and Diffusion Map 

Manifold embedding exploits the fact that the similarities between high-dimensional data 

points reveal themselves as a low-dimensional hyper-surface embedded in the high-

dimensional data space. The embedded hyper-surface, called a manifold from here on, 

contains the information about the object giving rise to the snapshots, for example, 3D 

structure of a virus or conformational states of a molecular machine. 

Manifold embedding measures the similarities or nonlinear correlations between clouds 

of snapshots by tracking their response to an operator and finding the orthonormal 

coordinates needed to describe the manifold. Another interesting feature of manifolds is 

their dimensionality. Dimensionality of a manifold has a direct relationship with the 

degrees of freedom the object. For example, since rotation of an object in space has three 

degrees of freedom and can be characterized by three values (Euler angles), the manifold 

of snapshots form a three-dimensional hyperspace in the nine-dimensional space of 

rotation (SO(3)). (Figure 9). 

Manifold embedding is distinguished from graph-theoretic approaches of dimensionality 

reduction due to its presupposition of finding manifold in low-dimensional space that 

lead to exploiting the intrinsic geometry of the data. In contrast, graph-theoretic 

approaches are more general and have no specific "geometric" treatment of data.  
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Figure 9: Schematic view of a manifold (Schwander et al., 2010). Correlations in high-

dimensional space reveal themselves as a low-dimensional hyper-surface (manifold).  

 

Diffusion Map is a manifold-based approach that uses the so-called diffusion 

characteristics of the dataset. Specifically, it measures the distance between two points 

according to their Euclidean distance, but the path taken by the diffusion of heat. An 

affinity graph is defined as the exponential normalization of Euclidean distance between 

points with their neighbors in the k-nearest neighbor graph. Probability of diffusion from 

one point to another on a path in the manifold is then defined by applying Laplace-

Beltrami normalization to the affinity graph. A diffusion probability matrix contains all 

the probabilities of diffusion from one point to another on the manifold. Finally, 

eigenvectors of the diffusion probability matrix provide a description of the manifold in 

terms of a set of Euclidean coordinates (eigenvectors). 

A flowchart of a Diffusion Map algorithm is demonstrated in the following:  
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Diffusion Map embedding, following (Coifman and Lafon, 2006) 

Inputs:  

n×d snapshots' pixel intensity matrix: I 

Gaussian width: ɛ 

Normalization parameter: α 

nearest neighbors parameter: k 

embedding space dimension: t 

Output: 

Diffusion Map Ѱ:  ℝd
→ℝt 

Steps: 

1: Construct n×k  k-nearest neighbor distance S and index N matrices, from Euclidean 

distances between rows of I. 

2: construct an n×n sparse symmetric weight matrix W, such that:  

 

Wij = 

 
 
 

 
                        

     
 

                   
                       

                     

  

3: Calculate the n×n diagonal matrix Q with nonzero elements Qii =     
 
    

4: Form the anisotropic kernel matrix K = Q
-α

WQ
-α

 

5: Calculate the n×n diagonal matrix D with nonzero elements Dii =     
 
    

6: Form  n×n sparse transition probability matrix Pɛ  = D
-1

 K 

7: Return Diffusion Map Ѱ, as a result of standard Eigen functions decomposition 

problem         Pɛν = λν, such that: 
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2.3. implementation and computational costs 

The main computational part of Diffusion Map is construction of a k-NN distance graph 

for a high-dimensional data cloud that will be analyzed to generate a Diffusion Map in 

subsequent stages of the algorithm. The input data to the manifold embedding application 

contains upwards of 10
7
 images, with each data point having up to 160k pixels. 

The k-Nearest Neighbor (k-NN) and the related k-Nearest Neighbor Graph (k-NNG) are 

important techniques used in a variety of fields such as pattern recognition (Cover and 

Hart, 1967), genomics (Dudoit et al., 2002), data mining (Levin, 2004), navigation 

systems (Safar, 2005) and fluids dynamics (Adams et al., 2007). The k-NN search is 

rooted in the post office problem first mentioned by Donald Knuth in The Art of 

Computer Programming (Knuth, 2006).  Post-office problem is the task of finding nearest 

post office(s) for each resident from a set of post offices in the area. 

Given a set of vectors {x1,x2,...,xn}∈ ℝD
, a distance metric D: ℝD

 × ℝD
 → ℝ, nearest 

neighbor number k and query vector qϵ ℝD
  

The nearest neighbor search set is the following: 

   {xq1, xq2,...,xqk} where {q1,q2,...,qk} ⊂ {1...n} and  

    D(q, xq1)≤ D(q, xq2)≤... ≤ D(q, xqk) 

and     

    D(q,xqk) ≤ D(q,xi) for all i ∈ {1...n} - {q1,q2,...,qk} 

 

As opposed to k-NN search, in k-NNG construction, every vector in the reference 
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data set is also a query vector. In the following, nearest neighbor set, for each xi that 

belongs to reference set  (i∈{1,2,...n}), is shown: 

   {xi1, xi2,...,xik} where {i1,i2,...,ik}⊂{1...n} and  

    D(xi, xi1)≤ D(xi, xi2)≤... ≤ D(xi, xik) 

and     

    D(xi,xik) ≤ D(xi,xj) for all j ∈{1...n} - {i1,i2,...,in}       

 

In this section, we discuss previous work on algorithms for k-nearest neighbor graph 

construction and k-nearest neighbor search. Broadly speaking, there are two categories of 

algorithms. One set of algorithms provides the exact k-NNs while the second set of 

algorithms sacrifices accuracy to a certain degree to gain on performance. For low-

dimensional data sets, there are several efficient algorithms based on space partitioning 

data structures. For intermediate dimensional data sets, there are approximate algorithms 

based on hashing (Datar et al., 2004). For high-dimensional data sets where exact 

computation of k-NN is a must, the only alternative is a brute force search that is 

computationally quite expensive. Recently, there has been much research into addressing 

the computational complexity of a brute force search by using novel architectures such as 

graphics processing units. 

2.3.1. Exact and approximate k-NN methods 

In very low-dimensional spaces (2D or 3D) graph-based searching methods such as those 

using Voronoi diagrams and proximity graphs are very efficient and achieve super-linear 
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speedup.  For higher dimensions, space partitioning methods such as kd-Trees (Bentley, 

1990) , BBD-Trees (Arya et al., 1994), rp-Trees (Dasgupta and Freund, 2008) and 

Metric-Trees are most efficient. For these methods, there is a pre-processing step where 

the reference data set is used to build the search data structure. Once this data structure is 

built, the search for k-NN is quite cheap. However, building the search data structure 

itself is quite expensive . Therefore these methods are most useful if the reference data set 

is static. For large data dimensions and large values of k, the search process is no better 

than the brute-force technique. 

In many applications, especially with large data dimensions, search accuracy constraints 

are not very stringent. In such cases, methods have been developed based on hashing to 

bin objects based on the object hash that is a function of its vector coordinates. Popular 

hashing schemes include the Locality Sensitive Hashing (LSH) (Datar et al., 2004), Z-

Morton Curve based hashing  (Connor and Kumar, 2010) and Hilbert space filling curve 

hashing (Moon et al., 2001) . Essentially, hashing schemes convert a D-dimensional 

problem to a 1-D problem through a hash function that preserves proximity of the input 

data set (Figure 10). The most challenging part of this scheme is the definition of a good 

hashing function. There are other approximate algorithms that use a hybrid approach. For 

example,  in (Connor and Kumar, 2010), a disk-based quad-tree data structure is initially 

used to partition the reference data set. The k-NN search is conducted in two phases. A Z-

order-based approximate proximity measure is used to find the approximate k-NN. Next, 

a recursive correction algorithm is used to improve the accuracy. 
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Figure 10: Locality sensitive hashing (Haghani et al., 2008). Two level hashing from d- 

dimensional data space to peer identifier space.  

 

Another set of techniques is based on a hybrid of spatial subdivision up to a threshold 

granularity and small scale brute force evaluation or heuristics for refinement  (Dong et 

al., 2011; Chen et al., 2009; Wang et al., 2012). Some techniques take advantage of the 

intrinsic dimensionality of the data set to project the data set into a low-dimensional 

space that preserves proximity. These techniques use the results of the Johnson-

Lindenstrauss theorem that says for any n point subset of Euclidean space can be 

embedded in k = O(log(n× ɛ
2
)) dimensions without distorting the distances between any 

pair of points by more than a factor of 1 + ɛ for any 0 < ɛ < 1 . This reduces the 

complexity of the search. Examples of such work include techniques using random 

projections as in (Paredes et al., 2006).  

2.3.2. High-dimensional data and curse of dimensionality 

The main computational part of Diffusion Map is the construction of a k-NN distance 

graph for a high-dimensional data cloud. The input data to the algorithm contains 

upwards of 10
7
 images, with each data point having up to 160k pixels. 

For practical purposes, when one insists on having linear or near linear space 

requirement,  the best performance time per query for a random input point cloud is 
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bounded to min(2
O(d)

, d×n), where d is data dimension and n is number of data points, 

which is essentially equal to exhaustive search (Indyk, 2004).  In other words, the 

complexity of algorithms is linearly related to dimension and data number, even for 

moderate dimensions. Exponential dependence of time or space on dimension in k-NN 

search is termed the curse of dimensionality and has been observed in practical 

experiments. Many well known structures exhibit linear time search with linear or near 

linear storage  even with moderate dimensions (10-20). 

The curse of dimensionality leads to a belief supported by many researchers that the most 

efficient method for finding k-NNGs for high-dimensional data clouds is in fact the brute 

force method (Jing et al., 2012).  

2.3.3. Brute force k-NN solutions 

The brute force algorithm breaks into two parts: distance calculation and comparison. In 

the distance calculation part, all distances between all points for graph construction are 

computed. That results in an M × N distance matrix, where M is the number of query 

points and N is the number of data-base points. Next, each row of the matrix is sorted to 

get the nearest k neighbors to each of the query points. Fortunately, due to their 

simplicity, brute force methods are highly parallelizable and can be processed by 

computational clusters, clouds and high throughput parallel processors such as Graphical 

Processing Units (GPU). 
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2.3.4. Implementation on Graphical Processing Units 

Recently, there have been several methods that accelerate brute force k-NN and k-NNGs 

on graphics processing units. The complexity of the brute force algorithm brings the need 

for the development of algorithms and implementation on massive parallel processors 

such as GPUs. There are some GPU implementations of the brute force algorithm both 

for k-NN search and k-NNG construction.  

(Garcia et al., 2010) proposed an algorithm for a k-NN search by devising two kernels for 

distance calculation based on cuBLAS (Volkov and Demmel, 2008),  an optimized 

matrix multiplication library on the GPU, and a comparison kernel based on a parallel 

insertion sort, and achieved a 100-fold increase in speed compared with the approximate 

nearest neighbor (C++ ANN library).  

This method works on multiple queries simultaneously, with each thread handling a 

single query. If k is small, then the data structure for an insertion sort can be stored in a 

fast on-chip shared memory and this method can be quite efficient. For a large k the 

insertion sort data structure spills into the main memory and causes a dramatic loss of 

efficiency because of un-coalesced memory transactions. In fact, for a large k, the 

selection is much slower than a simple sort operation.  

(Kato el al., 2010) proposed a multi-GPU brute force k-NNG algorithm. Data are 

partitioned and distributed among 3 GPUs on a single computing cluster node. They use 

symmetry of the distance matrix to compute only half the entries. For each data partition 

called a grid. In the second phase, a heap-based selection is employed. Each row of the 

distance matrix is processed by a thread block. There is a per thread block heap that 
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stores the k smallest/largest elements. Each thread maintains a local buffer that stores the 

thread elements that are smaller/larger than the smallest/largest element in the heap.  

Work presented in (Kato el al., 2010) uses a slightly different approach that (Garcia et al., 

2010) to finding k-NN given the distance matrix. Here a single thread block handles each 

row of the distance matrix. Each thread stores a heap of k elements that records the local 

k-NN. Each thread strides through the given row of the distance matrix in a coalesced 

manner to find the local k-NN. At the end of this process,  all threads in the block have 

their own heaps. In the next step, a single warp is used to build 32 k-NN heaps, one for 

each thread. In the final step, the first thread of the first warp reduces the 32 k-NN heaps 

to get the final k-NN. The second and third steps of this algorithm lose a large amount of 

parallelism and therefore underutilize GPU resources. Finally, this method works well 

only if k is small such that the thread heaps can be stored in an on-chip shared memory.  

Otherwise, just like the Garcia k-NN, the heap is stored in global memory that 

necessitates un-coalesced global memory reads. 

In (Kuang and Zhauo, 2009) a radix sort-based approach is used to select the k nearest 

neighbors. The authors claim that for large data sets, especially for a large number of 

queries, the selection process dominates. A simple complexity analysis suggests that this 

is quite impossible (O(d×m×n) for distance calculation vs. O(m×n×log(n)) for sorting). 

A closer examination shows that the approach process each row of the distance matrix in 

a separate sort. For an n that fits into GPU memory,  this process underuses GPU 

resources.   
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In another implementation of a brute force k-NN search algorithm, (Sismanis et al., 2012) 

proposed the truncated bitonic sort (TBiS), a selection method based on the biotonic sort. 

One of the main characterizations of the proposed method is having a low 

synchronization cost achieved by using synchronous memory operations. The TBiSort 

uses recursion to break down input arrays all the way to the base level and then goes 

upwards, merging the values. In the merging step, minimum and maximum values of 

each element pairs of two lists are detected and assigned to two minimum and maximum 

monotonic sub-lists. Having truncation, only the k elements of the minimum sub-list are 

gathered in each step and the maximum sub-list is set free in each step upwards. 

Truncation starts and continues from a minimum sub-list with k elements. While this 

method performs significantly faster than a plain sort and selects for small values of k 

and n,  it rapidly loses efficiency as k and n grow. While it is 16x faster than a plain radix 

sort and selects for k = 2 and n = 2
17

, for k = 2
8
 and n = 2

20
 it is no better than a plain 

radix sort and select. 

2.4. Distributed parallel processing on GPU cluster 

The k-NNG implementation developed in this thesis uses multi-level parallel execution 

on computing clusters with GPU accelerators. In this section the various tools, techniques 

and programming models used in this implementation are described. 
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2.4.1. Massage passing interface (MPI) 

Message passing interface (MPI) is the most widely used application protocol interface  

(API) for distributed memory parallel execution on computing clusters. It is a message-

passing application programmer interface, together with protocol and semantic 

specifications for how its features must behave in any implementation (Pacheco 1997). It 

provides language binding for C, C++ and FORTRAN, and currently is the de facto 

standard interface for high performance and high throughput computing applications on 

distributed memory architecture. In the MPI programming model one node in the 

computing cluster is designated as the head node and controls the overall execution. 

Other nodes are designated as worker nodes and are responsible for the distributed 

execution. MPI provides point-to-point message passing for user-specified groups of 

exclusive processes. In programming with MPI, worker nodes access each others’ data 

through the high-speed network connecting the cluster. In addition, there is an option for 

each node to broadcast its data to all other worker nodes in the cluster. 

2.4.2. Open multiprocessing (OpenMP) 

In contrast to MPI, OpenMP is a shared memory architecture API. OpenMP enables the 

harnessing of multiple cores on modern CPUs through multi-threading. OpenMP follows 

a fork-join programming model, where a parent task/process can spawn multiple tasks 

that can execute in parallel. Parallel tasks can share data and synchronize. Tasks can 

execute entirely different programs on different data types. In the OpenMP task execution 

model each task can have independent access to memory and cache. OpenMP supports 
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bindings for popular programming languages such as C, C++ and FORTRAN. In a 

cluster setup, MPI can be used for assigning the tasks to worker nodes and multithreaded 

task executions inside the nodes can be achieved with the help of OpenMP. 

2.4.3. Graphics Processing Units (GPUs) 

Graphics Processing Units were initially developed to handle computations related to 

graphics rendering. The need for specialized rendering routines led GPU vendors to 

provide user-defined functionality through shader programming (Luebke et al., 2006). 

Subsequently, researchers used shaders to essentially trick GPUs into performing 

scientific computations. This further led GPU vendors to develop extensions of the C 

language in order to directly access the parallel processing power for general purpose 

scientific computing. Examples of these APIs include CUDA (Sanders and Kandrot, 

2010), OpenCL (Khronos, 2008), and OpenGL (Woo et al., 1999). 

The processing elements in a GPU are organized around several multi-processors (MPs). 

Each multi-processor, as the name suggests, has several serial processing units (SPUs). 

All SPUs in an MP have access on-chip to a user-controlled cache called shared memory. 

In addition, there is a register file that is distributed among all MPs. Shared memory is 

organized into memory banks. The off-chip RAM on a GPU is called global memory. 

While previous generation GPUs did not cache global memory, the latest generation 

GPUs have L1 and L2 caches. L1 cache is local to an MP while the L2 cache is shared 

among all MPs (Figure 11). A small portion of the global memory is designated as read-

only constant memory. This memory that is automatically cached can be used to store 

constant values that are frequently accessed. 
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Figure 11: GPU Fermi architecture (Sanders and Kandrot, 2010).  16 multiprocessors 

are positioned around a common L2cache. Each orange portion is scheduler and dispatch, 

green portions are execution units andlight blue portions are memory for register file and 

L1 cache  

 

GPUs generally follow the data-parallel programming model, where the same instruction 

is applied to elements of a data array. For GPUs developed by NVIDIA, there is a native 

API called Compute Unified Device Architecture (CUDA), which dramatically decreases 

the programming overhead involved in accessing the parallel computing power of GPUs. 

The basic execution unit is a thread. Every thread executes the same program called a 

kernel. Threads are organized into logical partitions called thread blocks (TBs). During 

execution, all threads in a TB are assigned to a single MP. Threads in a TB can 

communicate via shared memory and can be synchronized. In a typical execution, the 

number of TBs far exceeds the number of MPs (Figure 12). At the hardware level, 

threads are organized into warps. All threads in a warp execute in lock-step fashion. 

Warps are equivalent to threads in the symmetric multi-process context. It is therefore 

advisable to avoid thread divergence with a warp. If two or more threads in a warp access 
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the same shared memory bank, this operation will cause bank conflicts and serialization. 

However, if all threads access a single shared memory location, then an efficient 

broadcast mechanism is used. In accessing global memory, all threads in a warp must 

access memory within a contiguous 128b segment. Non-compliant memory accesses are 

called un-coalesced accesses and are serialized. 

 

Figure 12: CUDA Model (NVIDIA, 2008).   Threads, blocks, and grids, with 

corresponding memory spaces for private per-threads, shared per-block, and global per-

applications. 

2.5. Algorithm development 

In this section, an expandable method for the construction of nearest neighbor graphs for 

very large high-dimensional data clouds is presented using the brute force method. The 
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method presented in here relies on three levels of parallelism, is designed to execute on 

computing clusters with GPU accelerators in the nodes, and addresses the computational 

complexity of the brute force method. The three levels of parallelism are: distributed 

memory parallelism between the nodes of the cluster; shared memory parallelism 

between the cores of the CPUs in the node; and finally, data-parallelism within the GPU 

accelerators in each node. The main contributions of this thesis are the following: (a) A 

novel scheme for data partitioning and management for load balancing between the nodes 

of the cluster and efficient communication. (b) Two algorithms for selecting k-NN on 

GPUs. The first is based on indexed sorting and relies on the optimized radix sort 

algorithm available in the Thrust library (Bell and Hoberock, 2011). The second is an 

efficient implementation of the quick-select algorithm by using latest GPU 

functionalities. To our knowledge, the last algorithm is the fastest multi-query k-NN 

select algorithm to date. 

2.5.1. Distributed k-nearest neighbors graph construction on GPU clusters 

Brute force methods have two primary tasks, namely, generation of the distance matrix 

between input vectors, and selection of k-NNs. Both these tasks are computationally 

expensive. Due to the massive input data size and the even more massive intermediate 

results (distance matrix), we use a distributed approach with interleaving of distance 

calculation and k-NN selection along with merging of results. In this section, we begin by 

describing the distance calculation. Next, we describe our data partitioning approach to 

handle the massive memory footprint as well as to balance the computation. Finally, we 

describe the two new algorithms for k-NN selection. 
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In this thesis we focus on calculating the Euclidian distance. A similar approach can be 

taken for other distance metrics such as Cosine or Pearson distance. Given two D-

dimensional vectors vi; vj , the square of the Euclidian distance is given by: 

                  
 
 

                  
 
 

        
 
        

   
       

       
    

     
      

 
    

    

Now consider a set V = [ v1 v2  ... vn ]. Further consider a squared distance matrix that 

contains the mutual distance between all vectors in V: 

   

 

 
 

               
                  

        

               
                  

        
                                                

                                         

 

 
 

 

Defining matrices A
N×D

, B
N×N

 be given by 

   

 

 
 

  
 

  
 

 
  
 

 

 
 

 

   

 

 
 

    
           

                 
  

    
           

                 
 

                               
                                 

 

 
 

 

We can now write the following equation 
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Therefore, the calculation of the squared distance matrix can be formulated in terms of 

vector reductions, vector additions, and dense matrix multiplication. All of these are 

BLAS routines and have very efficient libraries on GPUs. Note that the S is symmetric 

and therefore, it is enough to compute only elements S(i,j) | j≤i . Finding the set of the k 

nearest neighbors for vector vi involves sorting the ith row of S and picking the column 

indices corresponding to the k smallest distances. To handle the large data size, our 

approach is to compute the k nearest neighbors in parts. As illustrated in Figure 13, 

computation of the squared distance matrix S is split into P×P partitions. Consequently, 

each portion S(I,J) is computed as: 

             
         

   

where AI ;BI I = 1;2...P are partitions of A;B respectively. 
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Figure 13 Data partitioning for distributed parallel execution. 

 

Computing clusters typically have several nodes connected by high-speed interconnects. 

One of the nodes is designated as the head node, which typically co-ordinates the tasks 

between different worker nodes. Each node has its own hard disk. In addition, there is a 

large shared disk accessible by all nodes through parallel (I/O) that typically holds input 

data and results. The worker nodes, with smaller local disk space, copy input data from 

the shared disk as required. 

For load balancing, we distribute computing of the partitions of S in a block cyclic 

manner. This means that node q computes all the partitions SI,J | J : J%Q = q. Now 
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consider the case where the Ith block row of S is being processed. Any block SI,J requires 

inputs AI ;AJ ;BI ;BJ . Of these, AI , BI are used by all nodes that are processing the Ith 

block row. 

Each node q also requires BJ , AJ  | J : J%Q = q. The disk space on the nodes restricts the 

number of partitions of A that can be saved locally. Therefore, in our setup, the vector 

data A is uploaded on the shared disk and divided into A1,A2...AP partitions. The partition 

AI is read in parallel from the shared disk on the head node while partitions AJ| J : J%Q = 

q are stored locally on node q. AI is then read in parallel by all nodes from the shared 

disk and then the portions are shared by using an asynchronous ‘all gather’ operation to 

build an image of AI in each node's RAM. Figure 14 illustrates this process. We use 

message passing interface (MPI) to distribute the computational tasks as well as to 

communicate data between various nodes in the cluster.  

We do not actually build the matrix B. Instead, the vector 

        
      

        
     is computed in advance and stored in the RAM of each 

node. Even for N = 10
7
 the size of B (> 10MB) is quite small compared with the RAM in 

each node ( 48 GB). Each node q computes the vector norms for all vectors in the 

partitions AJ | J%Q = q resident on its disk space locally. It then broadcasts the results to 

all other nodes.  
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Figure 14: Load balancing between cluster nodes. 

 

Once the partition S(I,J) is computed, the local k-NNs with respect to both the rows (kR-

NNs) and columns (kC-NNs) are computed. Since the matrix S is symmetric, the local kC-

NNs w.r.t. partition S(I,J) are identical to the local kR-NNs w.r.t. partition S(J,I). Therefore, 

each node q maintains one heap per column J | J%Q = q of S that it processes. Each of 

these heaps contains the merged local kC-NNs w.r.t. partitions S(I,J) | I = 1, 2, ... J, J%Q = 

q. For example, as shown in Figure 15, node 4 maintains one heap for each of the 

columns 4,Q+4, ... (P-Q+4). The heap for column 4 will contain the merged local kC-NNs 

for S(1,4), S(2,4), S(3,4), S(4,4). The heap for column Q + 4 will contain the merged local kC-

NNs for partitions S(1,Q+4), S(2,Q+4), ..., S(Q+4,Q+4). 

The node q is used to compute the global k-NNs for all vectors in AI | I%Q = q. The 

global k-NNs for all the vectors in AI are generated by merging the local kR-NNs w.r.t. 

partitions S(I,J) J = 1, 2, ..., P. However, the merged results of the local kR-NNs w.r.t all 
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partitions S(I,J) | J = 1, 2, ..., I are already available in node q from the local kR-NNs 

computed previously. The local kR-NNs w.r.t. all partitions S(I,J) J = I + 1, I + 2, ... , P are 

cooperatively computed by different nodes. Each node maintains a heap to merge the 

results of finding the local kR-NNs of the partitions that it processes. 

At the end, the merged results are communicated to the node processing the global k-NNs 

for the block row I for merging at the global level. For example, for I = 4, node 3 will 

compute local kR-NNs w.r.t. all partitions S(4,Q+3), S(2,2Q+3), ... , S(4,Q-P+3). The results will 

be merged and stored in a heap. At the end of the computation, the results in the heap will 

be communicated to node 4 for computing the global k-NNs for all vectors in A4.  

 

Figure 15: Computing k-NN in GPUs. 

We assume that each node has M GPUs. In our current setup, M = 2. As mentioned 

previously, each node is responsible for computing a partition S(I,J) of the squared 
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distance matrix. AI s are read from the head node through parallel I/O. AJ s are read from 

the local disk. Within the node, AI is divided into M equal partitions. AJ is divided into R 

partitions. R is governed by the available GPU RAM. While reading AI is quite fast (it is 

parallelized), reading AJ from the local disk is slow. We therefore hide this latency by 

reading the disk in parallel with computation. 

Each GPU is given a partition of AI denoted by AI (m) | m = 1, 2, ... , M. A partition of 

the file AJ denoted by AJ (r) | r = 1, 2,...,R is read by all GPUs. When the computation of 

S(1,J)(1,r), S(2,J) (2,r), ..., S(1,J)(m,r) is being done by the M GPUs, the node simultaneously 

reads the file partition AJ (r+1) into the RAM. The node also has the norm vector    in its 

RAM.    is partitioned in two ways: one has M partitions with each of these partitions 

going to the M different GPUs and the other has R partitions, with each partition being 

read sequentially by all GPUs. When the computation of S(I,J)(m, r) is complete, the 

column k-NNs as well as the row k-NNs are computed using sorting. The column k-NNs 

are written back to CPU memory while the row k-NNs are kept on global memory to be 

merged. Note that S(I,J)(m, r) r = 1, 2,...,R are being processed by the same GPU m, 

therefore, it makes sense to merge row k-NNs in the GPU memory without write back to 

CPU RAM. However, S(I,J)(m, r) m = 1, 2, ..., M are being processed by different GPUs, 

therefore, the column k -NNs are generated by different GPUs. The accumulated column 

k-NNs are then merged by one GPU per column. The final result of this operation is the 

local row and column k-NNs for the partition S(I,J). Figure 16 illustrates this process. 
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Figure 16: Task distribution within the nodes. 

 

We use OpenMP multi-threading. Each node runs M+1 CPU threads. M threads control 

the M GPUs while one thread is in charge of I/O from the local disk as well as the shared 

disk. 

The tasks that are accomplished within each GPU include the following: 

 Finding vector    of input data norms 

 Dense matrix multiplication to generate the result         
     

 Summation to find the result                       
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 Finding local k-NNs based on S(I,J) (m, r) 

Finding vector    of input data norms is done once in the beginning at the same time that 

the input files AJ are communicated to each node. For example, if node q will receive all 

files AJ | q = J%Q. When the file is received, it is partitioned into M partitions, one 

partition per GPU. Although there is a library function to calculate vector norms in 

CUBLAS (NVIDIA, 2008), using it will be inefficient since the vectors are relatively 

large in number (N=10
6
 -10

7
) with much smaller dimension D ≈ 15000.  

2.5.2. Batch index sorting 

We could obviously sort each column and each row separately. However, this is not 

efficient because the resources on the GPU are not fully used. Also, for sorting according 

to columns, we will need to execute an expensive operation to rearrange the data in the 

column major format. Instead, we use a process we called Batch Index Sorting. Note that 

in GPU RAM, S(I,J) (m, r) is laid out as a linear array in a row-major format. Each 

element of S(I,J) (m, r) is also then associated with its row index and column index. We 

use radix sort with the elements of S(I,J) (m, r) as key. In the next two steps, we execute an 

order preserving sort of the result of the previous step with the column index as the key. 

Separately, we also execute an order preserving sort with the result of the first sort with 

the row index as the key. These two sorting operations generate the nearest neighbors for 

each column and row. We then execute a separate kernel to extract the k-NNs for each 

row and column w.r.t. S(I,J) (m, r). Figure 17 illustrates this process. 
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Figure 17: Batch index sorting. 

 

2.5.3. Quick select 

The quick select algorithm is a variant of the quick sort algorithm. Given an array, just as 

in the quick sort algorithm, a random element is selected as the pivot. Next, the array is 

re-arranged with the elements less than the pivot being moved to the left of the pivot and 
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the elements greater than the pivot being moved to the right side. This process is 

recursive on the right partition and the left partition until the partition size reaches two 

elements and these elements can be swapped. In the quick select algorithm, as soon as the 

partition is finished,  the sizes of the left and right partitions, L and R respectively, are 

found. If L > k, then the right partition is discarded and the left partition is further 

recursively processed. If L < k,  then the left partition is kept. Next we set k = k - L. Then 

the right partition is processed recursively. This algorithm has complexity O(n) + k log(k) 

for a sorted k-NN list and O(n)  for the unsorted k-NN list. 

Our approach operates on multiple arrays simultaneously. Each array is handled by a 

single thread warp. Threads in a warp are executed simultaneously on a single multi-

processor and therefore are synchronized by default. Partitioning of an array is done 

incrementally in 32-element wide segments. We use shared memory to ensure coalesced 

memory writes of the results of partitioning into the auxiliary array in global memory. 

Our approach uses the warp voting function ballot(p) to partition the input without 

reading the input array twice and without executing the parallel-prefix sum. The ballot 

function ballot(p) fills a 32-bit unsigned integer, one bit per thread in the warp, based on 

the evaluation of the predicate p. 

Each thread in the warp first reads in an element into its register from global memory. 

Elements are then written to a 32-element wide shared memory array with elements 

greater than equal to the pivot being written from the right end and elements less than the 

pivot being written from the left end. To do this, each thread needs to know where in 

shared memory to off load 
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its element. We execute the warp voting function based on a predicate that checks 

whether the element in the register is greater than or equal to the pivot or smaller than the 

pivot. Threads that have an element greater than or equal to the pivot set the 

corresponding bit to ’1’ and to ’0’ if the element is less than the pivot. This process is 

illustrated in Figure 18. 

 

Figure 18: Read in process. Read in of the array is done incrementally in sets of 32 

elements. As illustrated, the memory access is coalesced. The value is stored in a register. 

Simultaneously, the invocation of the warp voting function fills the bit array B based on 

the evaluation of the predicate that indicates if value in the register is greater than, equal 

to or less than the pivot. 

If the element in the register is less than the pivot, then the thread needs to find how 

many of threads before it have elements less than the pivot and vice-versa. We use a 

combination of bit shift operations and the popc(x) function on the integer result of the 

warp voting to accomplish this. The popc(x) functions count the number of bits set to ’1’ 

in the input integer ’x’. For example, if the warp vote integer in binary is B = 0101..., 

then it is clear that threads 0,2 have elements less than the pivot and threads 1,3 have 

elements greater than or equal to the pivot. Each thread i computes the result b = B >> 

(31 - i). When the popc(b) function is applied to the result of this step, it will indicate the 
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position in shared memory at which thread i will off-load its element that happens to be 

less than the pivot. Similarly, [31 - popc(~b )]  will indicate the position from the right 

side at which thread i will off-load its element that happens to be greater than or equal to 

the pivot. In the example, thread 3 will bit shift B to the right by 29 bits and the result 

will be b = 0101. Then popc(b)=2. Therefore, thread 3 will off-load its element at the 

second location from the left in shared memory (Figure 19). 

 

Figure 19: Pivot process. The pivot process is accomplished in shared memory. Each 

thread determines where in the shared memory the value has to be written. Values less 

than the pivot are accumulated on the left hand side and values greater than or equal to 

the pivot are accumulated on the right hand side. Since all threads write to different 

locations, there are no bank conflicts. 

 Note that the total number of elements in shared memory that are less than the pivot is 

given by popc(B). Two global counters, g< and g≥, keep track of the total number of 

elements less than the pivot and the total number of elements greater than or equal to the 

pivot, respectively, are also maintained. These two counters indicate the location in the 

auxiliary array at which the warp writes the incremental results of pivoting from shared 

memory. Next, the threads write the contents of the shared memory into the global 
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auxiliary array with threads whose id is less than popc(B) writing from the left side and 

other threads writing from the right side. This write process requires two coalesced 

writes, one for elements smaller than the pivot and one for elements greater than or equal 

to the pivot, into the auxiliary array (Figure 20). 

 

Figure 20: Write-out process. The thread id indicates (based on the computation popc(B) 

whether a given thread is writing out an element less than the pivot or greater than or 

equal to the pivot. The values g< piv and g≥ piv that are maintained in shared memory 

and updated incrementally indicate the location in the global array the location of the last 

element that is less than the pivot and greater than or equal to the pivot. This operation 

involves at most two coalesced memory writes. 

 

Once a partition is complete, the output array (auxiliary array) has a left side of length L 

elements, each of whom is less than the pivot. The right side is of length R elements, each 

of whom is greater than equal to the pivot. Suppose we need k nearest neighbors, and k < 

L; then we need to process only the left hand side. Suppose k > L; then we keep the left 

hand side as is, and partition the right hand side to find k - L elements. Since the input 

and auxiliary arrays are swapped at the end of the partition process, in the second case (k 
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> L), we would have to copy the left hand side from the auxiliary array to the input array. 

We can avoid copying the data by storing a stack of references that indicate the start and 

end indices and the arrays (auxiliary or input) where the partitions that form the k nearest 

neighbors are to be found. This significantly reduces the memory transactions needed for 

the operations. 

2.6. Performance benchmarks 

In this section we present the results of our benchmarks. Our implementation of task 

distribution and data partitioning is unique to the problem at hand; i.e., calculating one 

half of the distance matrix and generating k-NNG. While there are optimized algorithms 

for dense matrix multiplication on distributed computing systems, these methods are not 

suitable for our application. However, there are several comparable exact brute force k-

NN implementations on GPUs (Garcia et al., 2010; Kato and Hosino, 2010; Arefin et al., 

2012; Barrientos et al., 2011). We chose to benchmark against (Garcia et al., 2011) and 

(Arefin et al., 2012), since the code is readily available. All implementations were 

compiled using C++ with appropriate compiler optimization flags. The implementations 

were run on a NVIDIA Tesla C2050. We used synthetic data sets for performance 

analysis. We provide benchmark results for distance computation, k-NN selection, and 

total calculation time. 



61 

 

 

 

2.6.1. Batch index sorting 

This section presents performance analysis of k-NNG with the batch-index sorting 

algorithm.  First the results of single GPU benchmarks are presented. Performance 

analysis was performed for varying different parameters, which showcase the behavior of 

our implementation for different scales. Benchmarks were obtained with various k 

(number of wanted nearest neighbors), n (number of data points) and D (dimension of 

each data vector). Our performance benchmarks show that our algorithm performance is 

superior to those of Garcia and Arefin, even in single GPU execution. In addition, we 

benchmarked multi GPU performance analysis vs. that of Arefin, reaching better 

performance due to proper task distribution with a symmetric k-NNG structure. 

Figure 21 compares the performance of our first k-NNG algorithm with that of Garcia 

with varying k. In this test two constant parameters, data dimension and the number of 

samples, were set to d = 4096 and n = 16384, respectively. Figure 21(a) shows the 

distance calculation, selection and the total k-NNG speedup. The distance computation 

time is almost the same for both algorithms, because both formulate distance computation 

as a matrix-matrix multiplication and use the optimized CUBLAS library. Our version of 

the k-NN selection breaks even with the work of Garcia at about k = 128 and outperforms 

it by 15× for k = 1024. Overall, our implementation has a performance advantage of 

7.87×. 
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Figure 21: Performance analysis of batch index sorting (varying k). benchmark results 

for varying k in comparison with (Garcia et al., 2010) and (Arefin et al., 2012). In this 

test our input data has the dimension d = 4096 and the number of input objects/vectors n 

= 16384. (a) shows the performance vs. Garcia. (b) shows the performance vs. Arefin. 

 

In Figure 21 (b) we re-formulated the Pearson distance computation to enable the use of 

optimized matrix-matrix multiplication. Consequently,  our distance implementation has 

a roughly 9× performance advantage. The k-NN implementation is a per-thread linear 

insertion sort with each thread handling one row of the distance matrix. Our 
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implementation breaks even at k = 128 and ends up with a 42× performance advantage 

when k = 1024. Overall, our implementation has a 24× performance gain at k = 1024. 

The degradation of performance of the k-NN selection algorithms in Garcia and Arefin 

occurs at large values of k, because the temporary list of k elements maintained for each 

thread does not fit into the fast shared memory on GPUs and is therefore maintained in 

global memory. Because of the nature of the insertion sort and the heap sort, this causes 

thread divergence and un-coalesced memory transaction that results in a huge drop in 

performance. 

In order to show the performance of k-NNG with batch index sorting for different data 

dimensionalities, we performed a second set of benchmarks in which n = 16384 and k = 

512 and d was varied. Figure 22 (a) shows the comparison with Garcia. As the 

complexity of distance calculation is linearly related to the number of data dimensions 

and the complexity of the selection part of k-NNG is not related to the data 

dimensionality, the speedup with respect to both distance and k-NN selection remains 

constant at  1× and  6×, respectively. However, as the proportion of time for the distance 

computation increases linearly with d, the performance gain for the total time decreases 

from 5.7× to 3.5×.  

Figure 22(b) shows the speedup with respect to Arefin. Once again, the speedup with 

respect to distance and with respect to k-NN selection remains constant at 9.5× and 10×, 

respectively. As d increases, the proportion of time for the distance computation increases 

linearly with d. For the large d, the graph shows the stabilization of the overall speed up 

at 10.25×. 
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Figure 22: Performance analysis of batch index sorting (varying d). Benchmarks for 

varying d. In this test our input data has the number of closest neighbors k = 512 and the 

number of input objects/vectors n = 16384. (a) shows the performance vs. Garcia. (b) 

shows the performance vs. Arefin. 

 

Next we benchmarked the performance for different values of n. Specifically, we kept d = 

1024 and k = 512 and varied n. Figure 23 shows the comparisons. For a small n, the 

speedup with respect to selection is 200× against Garcia. As n increases, the performance 

gains taper off to 12×. Overall speedup starts off at  100× and falls to  11×. Figure 23 (b) 
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shows the comparison with Arefin. Once again, for a small n, the speedup with respect to 

selection is ≈ 37×. As n increases, the speedup tapers off to  5.6×. Overall speedup starts 

off at 20× and tapers off to 4.7×. Finally, for the tests with varying d and n, while our 

implementation was able to handle a model size up to n = 32, 767, the implementations 

by  Garcia could only handle a model size up to n = 16, 384. Note that our k-NN method 

grows proportional to n
2
 log(n) as opposed to n

2
 log(k). However, for data with the ranges 

of n that fit into GPU memory, our k-NN method is still much faster. 

 

Figure 23: Performance analysis of batch index sorting (varying n). In this test our 

input data have the dimension k = 1024 and the number of input objects/vectors d = 4192. 

(a) shows the performance vs. Garcia. (b) shows the performance vs. Arefin. 
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2.6.2. Quick select 

In this section, we analyze the performance of the k-NNG construction with Quick-

Select. Different tests were designed in order to showcase the performance of our 

algorithm with varying parameters, against k-NN algorithms presented in (Sismanis et al., 

2012) and (Garcia et al., 2010). The Sismanis work uses a truncated bitonic sort for a k-

NN search on GPUs. Finally, we benchmarked our code kth element selection algorithm 

(Bexter, 2012). The kth element algorithm selects the kth largest/smallest values in a 

vector, and therefore is slightly different from the k-NN problem. 

In Figure 24 the comparison of quick select k-NN search algorithm is shown with that of 

Garcia. A three-dimensional graph is chosen to represent the performance analysis of k-

NN search algorithms with varying k and n. The data dimension is set to a constant value 

of d = 128 for all tests. The number of objects varies from n = 1024 to n = 131072, and 

the number of extracted nearest neighbors is varied from k = 8 to k = 512. As the figure 

shows, the speedup grows exponentially with increasing n. For small k and n, the 

speedup is 3×. For small n values, increasing k leads to 250× speedup. This speedup 

grows to up to 450× for large values of n with increasing k. 

Figure 25 shows the performance advantage of our algorithm when benchmarked against 

truncated bitonic sort by Sismanis. Our speedup ranges from 1.5x for k = 2
3
; n = 2

17
 to 

5.3x for k = 2
9
; n = 2

17
. We could not go above k = 2

9
 since the Sismanis implementation 

would crash. It is obvious that the speedup saturates for large n. This saturation point is 

further away as the size of k grows. This clearly shows that for k > 29, the speedup would 

grow even more.   
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Figure 24: Quick-Select benchmarks against Garcia. In this set of tests the data 

dimension is set to be constant at d = 128 and k is doubled from k = 8 to k = 512. For 

each k, the performance graph is representing the timings for different n starting from n = 

1024 to n = 131072. 

 

Figure 25: Quick-Select benchmarks against TBiS. In this set of tests the data 

dimension is set to be constant at d= 128 and k is doubled from k = 8 to k = 512. For each 

k, the performance graph is representing the timings for different n starting from n = 1024 

to n = 131072. 

Our benchmarks against the MGPU Select was for the selection algorithm alone. Note 

that the MGPU Select works for one query at time. Moreover, the MGPU Select 
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algorithm only selects the kth largest/smallest element. We conducted multiple queries by 

first loading the distance matrix in global memory on the GPU and then running the 

MGPU Select in successive rows, one row at a time. Furthermore, while our algorithm 

finds the k smallest elements with indices, the MGPU Select algorithm only finds the kth 

smallest element. For finding the k smallest elements with indices, the MGPU Select 

algorithm is no better than a plain sort and selection (Bexter, 2012). Figure 26 shows the 

results. For small n, our algorithm has dramatic performance advantages (100×). This is 

because the GPU is not saturated by the MGPU Select.  With increasing n, we see a 

significant drop off and possible saturation of the performance gain at around 8×. We are 

not able to explore a larger n because the distance matrix does not fit into GPU memory. 

 

Figure 26: Timing benchmarks of quick select and MGPU select algorithms. In this set 

of tests k is doubled from k = 8 to k = 512. For each k, the performance graph is 

representing the timings for different n starting from n = 1024 to n = 131072. 
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2.7. Conclusions 

In this chapter, we presented a distributed GPU-accelerated implementation of the brute 

force k nearest neighbor graph construction method. Our implementation runs on an 

exclusive access GPU cluster. It forms a central core of a software pipeline for data and 

compute intensive Diffusion Map being used for structure and conformation recovery of 

biological entities from a large data set of noisy snapshots.  

The contributions of this work are the following: 

 A scheme for data partitioning and task assignment for efficient load-balanced 

execution of the brute force k-NNG method on a homogeneous cluster with GPU 

accelerated nodes. This implementation uses multiple levels of parallelism 

(between nodes, between multiple cores in nodes, and on GPUs) along with 

parallel I/O. 

 Two new GPU algorithms for finding k-NNG from a given distance matrix  

 -The first called batch index sorting uses three sort operations to directly 

find the k-NNG without further manipulation of the distance matrix. 

 -The second is an efficient GPU implementation of the quick select 

algorithm and requires the computation of the transpose of the distance matrix for 

k-NNG construction.  

This implementation is the fastest method in its class with a nearly 4x gain over 

the state-of-the art.  
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Chapter 3 

Applications in determining the structure and 

conformations of biological entities  
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3. Applications in determining the structure and 

conformations of biological entities 

3.1. Summary 

This chapter describes applications of developed Diffusion Map algorithm in determining 

structure and discrete conformational changes of biological entities with a bright 

perspective in high-resolution studies of wide variety of biological entities, namely: 

viruses, large proteins and other macromolecules.   

First, we present the capabilities of Diffusion Map for recovering the structure of 

symmetric objects to 1/100th of diameter from diffraction snapshots, leading to 3D 

reconstruction to atomic resolution using Satellite Tobacco Necrosis Virus (STNV) as 

simulated model system. High resolution structure recovery is made possible using highly 

optimized GPU implementation of Diffusion Map embedding, considering the fact that 

computational costs of embedding grows with eighth power of resolution elements.  

Next, we present Diffusion Map for determining discrete conformational changes of the 

enzyme Adenylate kinase (ADK) from very large datasets of up to 20 million snapshots, 

each with ~10
4
 pixels.  This exceeds by an order of magnitude the largest dataset 

previously analyzed.   
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3.2. High resolution structure of viruses from random diffraction 

snapshots 

3.2.1. Background 

X-ray Free Electron Lasers (XFEL) ultra-short pulses provide a solution of a century long 

problem of acquiring damage free diffraction snapshots from intense radiation. XFEL 

opens new windows for single particle determination of structure of proteins and viruses. 

It also has the potential to provide information regarding conformational changes of 

biological entities. However theoretical methodology and algorithmic tools need to be 

developed to extract orientation and conformation signals from ultralow-signal 

diffraction snapshots.  

As it is discussed in more detail in first chapter, different Bayesian and non-Bayesian 

algorithms took the challenge of determining structure from XFEL snapshots.. However, 

those methods lack enough resolution for determining structure of large proteins and 

viruses with ~100k atoms. As viruses become a common subject of study for XFEL due 

to their high scattering rate, developing high-resolution structure recovery algorithms 

become a must.  

In addition, object symmetry is an important characteristic of viruses and many biological 

entities that has not been fully exploited by discussed algorithms. According to Shannon-

Nyquist sampling theorem and in the presence of symmetry, reconstruction resolution r 

has a relation with number of available diffraction snapshots Nsnap., the object diameter 

D, and the number of elements NG in the point group of a symmetric object (Moths and 

Ourmazd, 2011): 
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As the above equation shows, in the presence of symmetry, higher resolution is 

achievable using the same number of available diffraction snapshots. In current XFEL 

experimental setup, although there are some examples of high-resolution structure 

recovery using scattering snapshots (Seibert et al., 2011), the lack of sufficient “useful” 

single-particle snapshots  (small Nsnap) is a limiting factor (Yoon et al., 2011). Hereby the 

exploitation of symmetry is a crucial compensating element for scarcity of single-particle 

snapshots in high-resolution reconstruction. Being that said, there is no evidence of 

exploiting object symmetry for high-resolution reconstruction methods from single-

molecule diffraction with their ultralow signal to noise ratio. We address this issue by 

introducing Diffusion Map, as a non-Bayesian manifold approach for high-resolution 

structure determination in the presence of object symmetry. By incorporation of object 

symmetry into Diffusion Map embedding, structure determination with resolution to 

1/100th of object diameter is achieved.  

3.2.2. Methods 

Diffusion Map and symmetry 

The main theoretical assumption of manifold approaches, including Diffusion Map states 

that the scattering provides a "mapping" from object orientation to a diffraction snapshot. 

In a more general sense, scattering maps the orientation manifold, resulted from all 

orientations in rotation space, to a topologically equivalent compact manifold in the 
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diffraction snapshots space. The collection of all possible orientations in 3D space spans 

an SO(3) manifold. The SO(3) is mapped by scattering to a manifold governed by 

"symmetric top" metric in snapshots space. "symmetric top" manifold is roughly sketched 

as a sphere shortened in the direction of the incident beam as a results of projection 

(Giannakis et al., 2010). The mathematical formulation for describing "symmetric top" 

manifold is Wigner D-functions (Hu, 1973). These functions formulate the elements of a 

(3x3) rotation matrix in snapshots space (Hosseinizadeh et al., 2013). 

 In order to determine the orientation of snapshots, manifold approaches associate 

orthogonal Eigenfunctions of known operators from snapshots manifold into Wigner D-

functions. Diffusion Map does that by describing snapshots manifold in terms of the 

Eigenfunctions of the Laplace-Beltrami operator with respect to an unknown metric 

(Coifman et al., 2005).  Scattering from symmetric objects bring more complexity to the 

association with Wigner D-functions. In the absence of object symmetry, manifold 

produced by scattering is described by a homogenous metric to a good approximation. 

This leads the direct association of Eigenfunctions of Laplace-Beltrami operator to 

Wigner D-functions. However, in the presence of object symmetry, symmetrized 

Eigenfunctions are needed. Symmetrized Eigenfunctions are obtained by superposition of 

Wigner D-functions after operation by the elements of the object point-group: 
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where a  denotes the three numbers collectively representing any rotation, NG the number 

of operations OR
i
in the point-group G, and D ¢m , m

j
(a )  the (real) Wigner D-functions 

(Hosseinizadeh et al., 2013)..   

For more detailed discussion about association of symmetrized Wigner D-functions 

please refer to our paper (Hosseinizadeh et al., 2013). Figure 27 compares symmetrized 

Wigner D-functions with snapshot manifold of an Icosahedral object by representing 

their spectra of Laplace-Beltrami operator.  

 

Figure 27: Comparison between Laplace-Beltrami operator spectra (Hosseinizadeh et 

al., 2013).  (a) Spectrum for icosahedral Wigner D-functions.  (b) Spectrum from the 

manifold produced by diffraction snapshots of the satellite tobacco necrosis virus. 
 

Orientation recovery 

Orientation recovery needs an association between Eigenfunctions of manifold produced 

by scattering snapshots and symmetrized Wigner D-functions. Having the association, 

orientation of each snapshot will be extracted from Wigner D-functions of low-

dimensional mapped manifold produced by diffraction snapshots. Diffusion Map 

provides the governing dimensions of this manifold with respect to orthogonal empirical 

coordinates denoted here by Ψi . In principle, the task is to identify the association 
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between Ψi and symmetrized Wigner D-function. In the absence of substantial noise, 

eigenvalue spectrum comparison is enough for association. In the presence of noise and 

for more reliable association, scattering plots of embedded snapshots manifold in Ψi 

coordinates and symmetrized Wigner D-functions work as a perfect association 

mechanism. Figure 28 shows the comparisons of scattering plots. This association paves 

the way for recovering the orientation of each snapshot from its manifold in diffraction 

space (Hosseinizadeh et al., 2013).. 

 

Figure 28: Association between pairs of (Ψi , Ψj) and Wigner D-functions 

(Hosseinizadeh et al., 2013). 

 

Presence of symmetry introduces degeneracy between symmetrized Eigenfunctions. This 

adds an additional complication to the identification of the right Ψi . Since all orthogonal 

and normalized degenerate pairs of (Ψi , Ψj) is acceptable as a candidate for Wigner D-

functions, any orthogonal operation, namely rotation, on the (Ψi , Ψj) pair is also 

providing an acceptable candidate. The following equation formulized the relation 
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between each degenerate (Ψi , Ψj) pair and its counterpart in Wigner D-functions via an 

unknown mixing angle, and a scaling factor (Hosseinizadeh et al., 2013): 
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In order to measure unknown mixing angle for each degenerate pair, we used mirroring 

over an axis to have conjugate snapshots in both diffraction space and more importantly 

in orientation space.  For any snapshot, its conjugate, is simply its mirror image about an 

axis perpendicular to the incident beam axis passing through the center of the snapshot. 

(Figure 29). 

 

Figure 29: Schematic diagram of the mirroring process (Hosseinizadeh et al., 2013). 

The figure shows the relationship between the conjugate of an image, and its rotated 

version in the presence of Friedel symmetry. 

Each snapshot and its conjugate are symmetrically located with respect to the axis of 

mirroring (Figure 30). Specifically, mirroring axis is perpendicular bisector of the line 

connecting an image to its conjugate.  Since the conjugate of an image is easily obtained 

by a mirror operation through a line in the plane of the snapshots passing through its 

center, the mixing angle can be readily determined by adding the mirror images of a 
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subset of the snapshots to the dataset before Diffusion Map embedding.  Each mixing 

angle can then be determined to within π by the position of the perpendicular bisector of 

the lines connecting conjugate snapshots. 

 

Figure 30: Finding the mixing angle, θm. By tracking the position of an snapshot with a 

few degrees rotation, the existence of an inversion in association with Wigner D-

functions is found out.  

Finally, there is a remaining π ambiguity between degenerate (Ψi , Ψj) pairs and their 

Wigner D-functions. This ambiguity stems from the chosen direction for the 

perpendicular bisector and is resolved by performing nonlinear square fits for each of the 

associated possibilities. The outcome of the fit, associated pairs with the lowest residual 

will eventually finalize the process of identifying association. The following cost 

functions measure the relation between the icosahedral Wigner D-functions and 

embedded Eigenfunctions for STNV model system in the presence of Icosahedral 

symmetry. For more information please refer (Hosseinizadeh et al., 2013): 
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This cost function is minimized using the “trust-region-reflective” nonlinear least-squares 

algorithm.  The output is an estimated set of orientations (e.g., Euler angles) for each 

snapshot in the dataset, and a residual of the fit.   

Simulating diffraction snapshots of the STNV 

The STNV is used as a model system which presents Icosahedral symmetry. Molecular 

dynamics model of the virus, found in PDB under the name of 2BUK is used for 

generating diffraction pattern. The STNV has 20nm in diameter and 89,000 atoms. 

hydrogen atoms were neglected for simulation.  X-ray diffraction patterns were simulated 

in random orientations to a crystallographic spatial resolution 0.2nm, having 12.4 keV 

photons. At first the 3D diffraction volume for all atom positions of the virus is calculated 

using Cromer-Mann atomic scattering factor (Cohan, 1958). Each diffraction pattern was 

obtained from the intersection of the diffraction volume with the Ewald sphere and 

subsequent projection onto a planar detector. The diffraction patterns were produced on a 

uniform grid of 443×443 = 196,249 detector pixels. Approximately 1.32 million 

diffraction snapshots are generated to give 0.2nm resolution for an object of 20nm. The 

orientations were sampled approximately uniformly as described by (Lavisolo and Da 

Silva, 2001).  
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GPU implementation 

The procedure and pseud-ocode for embedding diffraction data with Diffusion Map are 

described in detail in chapter 2 and (Ginnakis et al., 2010). The proposed method is 

scalable with multi-levels of parallelism (between nodes of a cluster, between different 

GPUs on a single node, and within a GPU). The distance matrix calculation was 

performed on a parallel GPU cluster with 16 nodes, each equipped with two NVIDIA 

Tesla C2050 processors. The eigenvalue decomposition of the diffusion matrix was 

implemented with the Arnoldi factorization routine (ARPACK package; 

http://forge.scilab.org/index.php/p/arpack-ng/) using a single GPU for matrix-vector 

multiplication subroutines.  

Given the characteristics of STNV diffraction snapshots dataset, extremely large 

dimensions and moderate batches, a modified task distribution between GPUs is 

implemented to exploit the full efficiency of GPU resources.  Having the same 

assumption of 2 GPUs per node. Each node runs 3 CPU threads. 2 threads control the 

GPUs while one thread is in charge of I/O from the local disk as well as the shared disk. 

Each node is responsible for computing a partition S(I,J) of the squared distance matrix. 

AI s are read from the head node through parallel I/O. AJ s are read from the local disk. 

Within the node, AI is divided into M=8 equal partitions. AJ is divided into R=8 

partitions. which is governed by available GPU RAM. While reading AI from memory is 

quite fast (it is parallelized), reading AJ from the local disk is slow. We therefore hide this 

latency by reading the disk in parallel with computation. 

When the computation of S(I,J)(m, r) is complete, the column k-NNs as well as the row k-

NNs are computed using sorting. However as opposed to general task distribution 
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presented in chapter 2, S(I,J)(m, r) r = 1, 2,...,R are being sorted by the same GPU and at 

the same time. Due to small size of each S(I,J)(m, r), sorting them serially will under-

utilizes the GPUs. Thereby by simultaneous processing of all S(I,J)(m, r) r = 1, 2,...,R in 

each GPU better efficiency and speed is achieved. Simultaneous processing of all S(I,J)(m, 

r) r = 1, 2,...,R needs proper data structure for indices of rows and columns. That will be 

achieved by changing the data structure of row and column indices to contain M blocks 

of data instead of one. As it is discussed in more detail in chapter two, our method of 

processing, batch index sorting, is insensitive to the ordering and structure of given data 

as long as the given index data structures matches the row and column indices of each 

element.  

Three-dimensional reconstruction 

After structure determination, finding orientations of all snapshots, the 3D diffraction 

volume is reconstructed by assembling the diffraction snapshots with the now found 

orientation. Structure determination by iterative phasing is most efficiently performed by 

Fast Fourier Transformation of a diffraction volume sampled on a uniform Cartesian grid, 

which requires interpolation.  A so-called “Cone-Gridding” algorithm is used for that 

purpose, briefly described below. 

To estimate the diffraction volume A(q)  at a point q , all diffraction patterns with 

scattering vector q  are identified. Geometrically, the incident beam directions of these 

diffraction patterns form a cone, hence the name “Cone-Gridding”. To recover the real-

space structure (electron density), the phases at each point in the 3D diffraction volume 

must be determined.  Two iterative phasing algorithms are used in combination: Hybrid-
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Input-Output (HIO) (Fienup, 1978) and Charge-Flipping (Oszlányi and Suto, 2004). First, 

the HIO algorithm was applied for a few hundred iterations using a spherical support 

constraint with approximately the diameter of the virus. This did not produce good 

agreement between the (input) diffraction volume and the retrieved structure. Second, the 

output from HIO was used as input for the Charge-Flipping algorithm for refinement, 

with a threshold determined by the standard deviation of the input diffraction volume, 

and no support constraints. Charge-Flipping converged typically within a few thousand 

iterations (Hosseinizadeh et al., 2013).  

3.2.3. Results 

GPU performance 

The STNV dataset presents a new challenge for Diffusion Map embedding with GPU 

cluster. having 0.154 M pixels for each diffraction snapshots, processed data dimensions 

for k-NN graph construction is an order of magnitude larger than tested datasets. Number 

of pixels in each snapshot has a direct relation with input file sizes and having large 

dimensions has its own challenges in the input I/O. However, because of expandability of 

design and with some small modifications, highly optimized implementation of k-NN 

graph construction and consequent embedding is obtained. 

A 13-fold speedup is achieved in data processing as compared with an optimized method 

running on a cluster of CPUs for embedding dataset of 1.3 million simulated snapshots of 

STNV with 160k dimensionality. For the dataset in the present work comprising 1.3 M 

snapshots each with 0.154 M pixels, the distance calculation was performed in 36 hours. 
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The execution time for the eigenvalue decomposition of the diffusion matrix or full 

dataset was about one hour. 

Three-dimensional reconstruction 

The structure of STNV as a model system icosahedral virus is reconstructed to 1/100
th

 of 

its diameter.  For the satellite tobacco necrosis virus (STNV, PDB designation: 2BUK) 

used here, this corresponds to atomic resolution (0.2 nm) (Figure 31).  The ability of 

proposed approach to operate successfully at signal-to-noise ratios as low as ~10
-2

 has 

already been demonstrated with simulated and experimental datasets for a variety of 

systems.  This is ample for dealing with a wide range of weakly scattering biological 

objects.  

 

Figure 31: Atomic-resolution structure of the satellite tobacco necrosis virus 

(Hosseinizadeh et al., 2013). (a) The three-dimensional electron density map with 

resolution 1/100
th

 of the object diameter (0.2nm).  (b) A slice of the electron density 

showing atomic resolution.   

 

 

For three-dimensional reconstruction, the snapshot orientations are recovered and used to 

compile a 3D diffraction volume. The electron density was obtained by iterative phasing 
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(Oszlányi and Suto, 2004) to recover the atomic-level structure shown in Figure 31. 

Figure 32 compares cuts through the exact and recovered diffraction volumes.  This 

completes the demonstration of structure recovery to 1/100
th

 of the object diameter. 

 

 

Figure 32: Comparison of the exact and recovered diffraction volumes (Hosseinizadeh 

et al., 2013).  (a) The exact three-dimensional diffraction volume from simulate model 

system.  (b) Same slice through the diffraction volume from recovered orientations. 

3.3. Conformational heterogeneity in molecular degredation 

3.3.1. Background 

This section represents the power of manifold-based approaches for structure recovery 

alongside mapping conformational heterogeneity of biological entities passing the limits 

of radiation damage and ultralow signal to noise regimes.  

Mapping conformational heterogeneity of biological entities is a topic of interest for x-

ray crystallography and cryo-EM. Previous single particle reconstruction methods 

presume the absence of conformational changes in macromolecules and hence provided a 

limited knowledge of the conformations assumed by biological systems and their role in 
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cellular function. Manifold-based embedding is proposed as a new approach to determine 

conformational changes alongside high resolution structure recovery of biological entities 

with existing and emerging experimental techniques (Schwander et al., 2010). 

In general, manifold based algorithms, including Diffusion Map are not modality 

dependent and can be used with established experimental techniques such as X-ray 

crystallography and cryo-Em as well as emerging new techniques such as XFEL. It 

previously shown by our group that manifold-based methods are capable of determining 

structure of individual macromolecules from diffraction snapshots with high resolution 

(Schwander et al., 2012; Hosseinizadeh et al., 2013), and even in the very low radiation 

which is an order of magnitude below the previously required signals (Fung et al., 2008) 

(Figure 33).  

 

Figure 33:  Chignolin reconstruction in the presence of noise (Fung et al., 2008). The 

structure is reconstructed from 72,000 simulated diffraction snapshots of the molecule at 
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random orientations and with mean photon count of 4×10
-2

 per pixel. Colors in the figure 

represents different atoms: C: yellow; N: blue;  O: red.  

 

The next step, which is the subject of this chapter, is to present the results of three-

dimensional (3D) structure determination for different conformations of an object from 

random snapshots of an ensemble of non-identical objects, each in a different 

conformation This proposed application has significant impact on single particle imaging 

specially XFEL and cryo-EM. It also has the potential for inspiring future advanced 

tomographic studies of even more complex systems such as cellular organelles, 

Chromosomes and even the whole cell. Having a poor signal to noise ratio is one of the 

main challenges of mapping heterogeneity. Even in the absence of conformational 

changes, orientation recovery is challenging in ultralow SNR ensembles of diffraction 

snapshots and adding structural variability due to functional states of a molecule or a 

ligand-binding complicate the matter more.  

Manifold based approaches is a new and powerful tool in structural biology to recover the 

structure and conformational changes of a biomolecule from a large ensemble of noisy 

snapshots obtained from unknown orientations and conformations. In the presence of 

different discrete conformations, manifold-based approach has the capability of 

unsupervised sorting of diffraction snapshots into different conformational classes and 

determine their orientation (Schwander et al., 2010).  

Figure 34 shows the results of Isomap embedding of simulated diffraction patterns of 

randomly oriented over beam axis (one orientation degree of freedom) and randomly 

conformed into two conformations for the closed and open state of the molecule 
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adenylate kinase (ADK; Protein Data Bank entries: 1ANK and 4AKE, respectively). 

Isomap is a nonlinear dimensionality reduction approach similar to Diffusion Map, that 

generates the similarity matrix based on geodesic distances between high-dimensional 

data point. The robustness power of manifold-based approach is demonstrated by 

embedding at a signal level corresponding to 4×10
-2

 photons pixel at 0.18 nm resolution 

(Schwander et al., 2010).  

Due to their structural similarity and chemical identity, it is extremely hard to distinguish 

ADK conformational states using chemical methods. However, using Isomap embedding 

and with no prior information about the types and number of conformations and 

orientation degrees of freedom, all diffraction snapshots are sorted based on their 

conformational state and orientation. Considering the fact that the larger biological 

entities such as viruses and proteins scatter larger signals, it is therefore possible to 

reconstruct heterogeneous particles even with higher accuracy (Schwander et al., 2010).  
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Figure 34: Mapping discrete conformations (Schwander et al., 2010). ADK molecule is 

reconstructed in two open and closed structures using simulated diffraction snapshots of 

molecules with no prior orientation and conformation information.  

One ultimate goal of mapping heterogeneity is to find not only discrete conformational 

states of a molecule but also capability of mapping the entire continuum of 

conformations. Manifold-based approaches are shown to be successful at mapping and 

mapping the continuous changes of biological entities as well (Schwander et al., 2010).  

In order to generate diffraction snapshots from a continuous molecular change. ADK in 

the process of melting is modeled by molecular dynamics. 12,500 diffraction snapshots 

were simulated from 100 conformations, with each conformation assuming 125 

orientations about one axis. Figure 35 represents the results of Isomap embedding. As it 

shows the resulting three dominant Eigenfunctions enclose the manifold of 

conformational and orientation changes. It is clear from the image that structural 

heterogeneity and orientation variation over beam axis are combined and produced a 

tubular manifold. There are two directions of change in the manifold, the circular, closed 



91 

 

 

cross-sections of the tube represents orientation signal and the paths along the main tube 

axis  represent conformational change. 

However the tubular manifold has a qualitatively obvious distinction between 

conformation and orientation directions, in general, orientation directions has a 

distinguishing element that separates them from directions corresponding to 

conformational changes in manifold. Considering the fact that orientation lies on SO(3) , 

more details in previous section, and has symmetries, the closed directions on the 

manifold that represents the SO(3) symmetry are for recovering structural orientations. 

SO(3) symmetry has been extensively established in general relativity and lattice space-

time (Wald, 2010).  

  

 

Figure 35: Embedding of continuous conformations (Schwander et al., 2010). 

Simulated diffraction snapshots of ADK model system is captured in 100 continuous 

conformations moving form closed to open conformation and randomly orientated along 

one rotation axis.  
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Although efficient and successful at mapping structural heterogeneity, manifold-based 

approaches need a computational boost in order to be able to perform conformation and 

orientation recovery over the whole SO(3). 

The computational costs of current algorithms rise rapidly with the number of resolution 

elements r. A rough calculation of computational complexity shows that it is in the order 

of O(r
n
) with 2 ≤n≤ 3, where r ≈ (D/d)

3
, where D and d are the object diameter and 

resolution, respectively (Elser, 2009). Having c discrete conformational states will 

increase the computational costs by c
2
 times as it increases the number of diffraction 

snapshots by c times. Generating this amount of diffraction snapshots is now 

experimentally possible by the advent of XFEL. The LCLS source and relevant detector 

operate at 120 Hz and are capable of delivering 10
7
 diffraction snapshots per day. 

Nevertheless there is another bottleneck in processing structural heterogeneity. As it is 

shown in (Schwander et al., 2012), the cost of embedding for structure recovery of fully 

SO(3) covered ADK snapshots in a single conformation is ≈56 hours using an exclusive 

CPU cluster with 100 MATLAB nodes. Using the same hardware platform for processing  

10 conformations would take ~233 days and is physically impossible. Hereby and in an 

addition to our previous work, this section represents the capability of  manifold-based 

approaches for unsupervised classification and 3D reconstruction of diffraction snapshots 

with unknown orientation and conformational changes using a GPU cluster to 

computationally boost up the processing and hereby bring it down to the realm of 

possibility. 
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3.3.2. model system: melting ADK  

In order to generate diffraction snapshots from a continues molecular change. ADK in the 

process of melting is modeled by molecular dynamics. The coordinates of ADK from E. 

coli in the open state (Protein Data Bank entry: 4AKE) were placed in a spherical droplet 

of water and simulated for 5 ns at a nominal temperature of 850K using NAMD (Philips 

et al., 2005). 20,000,000 diffraction snapshots were simulated from 10 conformations, 

with each conformation assuming 2,000,000 orientations. 

 

Figure 36: ADK model system in 10 different conformation.  

 

X-ray diffraction snapshots of E. coli adenylate kinase (ADK; PDB descriptor 1ANK) in 

10 different conformations from closed to open and in different orientations to a spatial 

resolution d = 2:45 Å, using 1 Å photons. Cromer-Mann atomic scattering factors were 

used for the 1656 non-hydrogen atoms (Cohan, 1958) of ADK in each conformation, 

neglecting the hydrogen atoms. The diffraction patterns were detected on a uniform grid 
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of n = 126 × 126 = 15; 876 detector pixels of appropriate (Shannon) size, taking the 

corresponding orientations uniformly on SO(3) according to the algorithm in (Lavisolo 

and Da Silva, 2001). The number of diffraction patterns required to sample SO(3) 

adequately is given by 8π
2
 (D/d)

3
 ≈ 8.5 ×10

5
, where D = 54 Å is the diameter of the 

molecule (Philips Jr., 1990) and d is the number of resolution elements. In our simulation, 

however, a larger D = 72 Å diameter was assumed, allowing, e.g., for the possibility to 

reconstruct the structure of ADK in different spectra of conformations. Hence, a total of s 

= 20×10
6
 patterns were used in the present analysis. 

As the below formula shows, the computational cost C of orientation recovery for each 

conformation in the absence of orientations scales as a power law: 

C  ≈ O( R
8
 )= (D/d)

8 

with D the object diameter and d the spatial resolution. The analysis of ADK was 

performed with R = 30 (R is the number of spatial resolution elements), compared with 

the largest previously published value of R ≤ 8 . This represents an increase of four 

orders of magnitude in computational complexity over the state of the art (Chapman et 

al., 2008). 

3.3.3. Results  

Performance benchmarks 

To evaluate and apply our algorithms in manifold embedding, we executed k-NNG with 

batch index sorting for two data sets. The first data set contained two million images of 

simulated diffraction patterns of a randomly oriented adenylate kinase (ADK) molecule. 

Each image has 126 × 126 = 15876 pixels; i.e., high dimensionality. The second dataset 
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consisted of twenty million images of simulated diffraction patterns of denaturing ADK 

in ten different molecular conformations. (For more information about the structure of 

data sets, please refer to (Schwander et al., 2012)). We evaluated the k-NNG algorithm 

with a previous implementation of a neighborhood graph construction by using 

MATLAB technical computing language. The MATLAB implementation took 56 hours 

on an exclusive CPU cluster with 32 nodes for two million diffraction patterns with the 

use of a highly optimized ATLAS-BLAS library for multi-threaded Matrix-Matrix 

Multiplication in double precision. The cluster had one Xeon E5420 quad-core CPU per 

node with 16kB of L1 cache, 6144kB of L2 cache and 40GFLOPS of double precision 

computing power. Since the parallel MATLAB implementation did not take advantage of 

the symmetry of the distance matrix, one can assume that such an implementation would 

take about 28 hours. Our GPU cluster had 16 nodes with each node equipped with two 

NVIDIA Tesla C2050 GPUs. Each Tesla C2050 GPU has a RAM of 3GB with 

506GFLOPS of double precision computing power. There are 14 multi-processors 

sharing 720kB of L2 cache and each multi-processor having 48kB of user-configurable 

L1 cache/shared memory. In addition, each of the GPU nodes had two quad-core Xeon 

E5620s. Note that in our GPU cluster, the CPUs are used mostly for managing the GPUs 

and moving data between nodes and not for computation. Our GPU cluster 

implementation took 4.23 hours, giving a roughly 6.6× gain in performance. 

To investigate the efficiency of our implementation we also benchmarked the most 

expensive part of the computation, i.e., matrix-matrix multiplication. We tested both 

double and single precision matrix-matrix multiplication on a single GPU (Tesla C2050) 

vs. a single core of an Xeon E5420 and concluded that if all four cores of the CPU were 
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active, we could achieve a roughly 7.7× speedup using GPUs just for matrix 

multiplication alone. As shown earlier, our complete implementation is slightly worse at 

a 6.6× gain in performance. 

Based on the complexity of the Diffusion Map, the estimated execution time for ADK 

melting dataset with twenty million snapshots on the CPU cluster was more than eight 

months. With the use of Diffusion Map implementation on our GPU cluster, the 

execution time for twenty million snapshots was achieved in less than two weeks. 

 

Table 1: Computational clusters and Diffusion Map total timings for simulated datasets. 

 CPU # GPU # CPU CPU RAM GPU 

GPU 

Global 

Memory 

RME 

Total Time 

First dataset 

(Double 

precision) 

RME 

Total time 

Second 

dataset 

 

GPU 

Cluster 

16 32 
Intel(R) Xeon(R) 

E5620 2.4 GHz 

48 GB 
NVIDIA 

Tesla C2050 

2.5 GB 5:23' Hrs 
16 Days 

 

CPU 

Cluster 

32 0 
Intel(R) Xeon(R) 

E5620 2.4 GHz 

48GB     56 Hrs 
Approx. 233 

days 

 

Mapping discrete conformational changes  

Figure 37 shows the results of Diffusion Map embedding of 20,000,000 diffraction 

snapshots. It represents the scatter plot of first two dominant Eigenfunctions for all 

snapshots. As it shows, perfect clustering of ten conformations are achieved (different 

continents in the plot each representing 2,000,000 conformations).   
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Figure 37: Diffusion Map embedding of ADK. Scattering plot of 20M snapshots reveals 

perfect clustering of 10 discrete conformations of ADK undergoing the process of 

melting. 

 

Three-dimensional reconstruction 

Perfect clustering of ten conformations make it easy to recover structure and have a 3D 

reconstruction for each of the conformations. A separate Diffusion Map embedding is 

used for diffraction snapshots of ADK molecule with closed conformation. In the second 

embedding, the purpose is to recover the orientation. The diffraction patterns are 

provided with no orientation information and orientation of each diffraction pattern is 

determined by method described in (Giannakis et al., 2010). The basic principle of 

structure recovery here is very similar to method proposed in previous section. Here, the 

goal is to provide rotation matrix for each snapshot based on identifying associations 

between Diffusion Map Eigenfunctions and Eigenfunctions describing SO(3) in the 
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diffraction snapshots space, symmetric top, which are taking the form of Wigner D-

functions. 

Next, after orientation recovery, diffraction volume is built by  placing the diffracted 

intensities onto a uniform 3D Cartesian grid, as described by "cone-gridding", and 

deduced the 3D electron density by iterative phasing with a variant of the charge flipping 

technique. Reconstructed 3D molecule is in close agreement with the correct structural 

model is shown in Figure 38. 
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Figure 38: ADK in closed conformation (Schwander et al., 2012). Structure is 

determined using 2,000,000 randomly oriented diffraction snapshots at 2.45 Å  

resolution. Hydrogen atoms are neglected in electron density calculation demonstrated 

here.  

3.4. Conclusions 

In section 3-2, the first approach capable of extracting high-resolution 3D structure from 

diffraction snapshots of symmetric objects with structure recovery to 1/100
th

 of the object 

diameter is presented. The proposed approach offers the possibility of applying manifold-
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based techniques to study the structure of large biological molecules and viruses in 

atomic resolutions. Together with its previously demonstrated capability to operate at 

exceptionally low signal-to-noise ratios, Diffusion Map embedding has a bright 

perspective in processing XFEL diffraction snapshots of biological entities. 

Section 3-3 represents the Diffusion Map embedding of 20 million simulated diffraction 

snapshots of Adenylate kinase (ADK) molecule in ten discrete conformations, with 2M 

snapshots each, capturing the process of melting. By the advent of XFEL single particle 

imaging techniques, number of diffraction snapshots per equipment run is increasing and 

hence having an expandable set of tools to overcome the computational expenses of 

embedding for growing data sizes becomes a necessity. This chapter presents developed 

Diffusion Map algorithm, as a powerful and scalable software tool to address the 

processing demands of growing XFEL datasets. 

.   
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4. Mapping conformational spectrum of the ribosome 

4.1. Summary 

This chapter presents theoretical framework and developed algorithmic pipeline for 

mapping continuous conformational heterogeneity from a ribosome CryoEM 

experimental data. In this chapter, we build up on the Diffusion Map algorithm 

development and its applications in structure recovery and mapping discrete 

conformational changes from simulated data to capture the dynamics of ribosome from 

cryo-EM experimental data in the presence of overwhelming noise and in the absence of 

prior information about conformational changes. As a result we are presenting an 

approach capable of mapping ribosome continuous conformational changes over 

orientation space. Finally, cryo-EM projection snapshots of ribosome are connected via 

our analysis into iso-conformational, (only conformational changes, without orientation 

changes) and iso-orientational (changes of orientation for snapshots with same 

conformations) contours.  
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4.2. Background 

Structural heterogeneity of ribosome has been the subject of extensive research in cryo-

EM in recent years. A time-resolved detection of continuous conformational changes by 

extracting some loose timing information from experimental cryo-EM setup is presented 

by (Fischer et al., 2010). That revealed functional dynamics of ribosome along the motion 

of tRNA in both head and body of its subunits (More information in Chapter1). Beside 

this work and up to the author's knowledge, there is no algorithm capable of mapping 

continuous and time-driven conformational changes in ribosome from cryo-EM data.  

In chapter 3, manifold-based approaches are represented with the ability of unsupervised 

detection of discrete or continuous changes in macromolecules in the presence of noise 

using simulated ADK diffraction snapshots. In next step, we tested the capability of 

Diffusion Map embedding to map conformational changes in simulated ribosome in the 

presence of ultralow signal. Using similar data preparation steps as ADK, a dataset of 

ribosome in two discrete conformational states, separated by attachment of a ligand, are 

prepared and 400,000 diffraction snapshots in random orientations uniformly distributed 

over orientation space are captured from each conformation. For simplification and better 

representation of results, in distance calculation step of Diffusion Map embedding, 

nearest neighbor diffraction snapshots were aligned by rotating along their set axis (with 

known rotation angle) before measuring their Euclidean distance. Hence diffraction 

snapshots lies on S2 manifold (sphere) in the new orientation space. As Figure 39 shows, 

three dominant Eigenfunctions of Diffusion Map presents a manifold consisting two 
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intertwined spheres similar to onion shells. This manifold recovers information regarding 

both conformational states and orientation of points for each conformation over S2. 

 

Figure 39: Manifold of ribosome with two discrete conformations (Schwander et al., 

2013). Diffusion Map three dominant eigenfunctions recover both conformation and 

orientation of simulated ribosome in the presence of overwhelming noise. 

 

Diffusion Map is used in next step for recovering conformational changes in 

experimental cryo-EM ribosome in the presence of overwhelming noise (around -12 db) 

and no prior information about types of conformational changes. Data is gathered by Y. 

Frank group in molecular biology department of Columbia university. The provided cryo-

EM snapshots capture ribosome as a Brownian machine with spontaneous random 

motions that can be transferred into directed reactions by the presence of tRNA and 
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thermal energy fluctuations as it happens in the process of translation. Structure is 

recovered prior to our analysis by SPIDER toolkit for each snapshots.  

SPIDER is an image processing software for reconstruction of biological molecules from 

the electron micrographs of single particles. It also provides a graphical user interface for 

better interactivity. Many people have contributed into development, improvement  and 

maintenance of SPIDER over the past 30 years. (Shaikh et al., 2008) provides the most 

up-to-date information in this regards.   

 As it is discussed in more details in chapter 1, SPIDER uses two approaches, random-

conical tilt and common lines to obtain an initial structure reconstruction of ribosome. 

Although manifold-based approaches are proven to be powerful tools for recovering 

orientation from diffraction snapshots and are even successfully used for orientation 

recovery of the cryo-EM projection snapshots, since orientation recovery in Cryo-EM 

data analysis seems to be a solved problem and SPIDER is used as a standard protocol for 

the purpose, it is chosen as primary software tool for recovering the orientations of 

snapshots.  

 Our initial analysis of experimental CryoEM data indicates that, without prior 

information about orientation of projection snapshots, Diffusion Map embedding of the 

whole dataset doesn't provide meaningful information regarding conformational states. 

Figure 40 demonstrates result of diffusion embedding with the same alignment of in 

plane rotation as it is discussed in the case of simulated data. As it shows dominant 

Eigenfunctions doesn't provide intertwined spheres. The resulting manifold is distorted in 

directions with more projection snapshots and do not represent any thickness, similar to 

onion shells in simulated data. 
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Figure 40: Diffusion Map embedding results of ribosome cryo-EM snapshots. As it 

shows, the structure of manifold is distorted by the anisotropy of distribution on 

orientation space and it does not reveal any clustering or parameterization of underlying 

conformational changes.  

 

We believe there are two main reason for this lack of concordance between simulation 

and experimental data manifolds: First, it seems that the conformational changes are so 

tiny in comparison with orientation signal that are almost masked by its appearance in 

experimental manifold. This is not the case in discrete conformations of simulated data 

(Chapter 3 section 2) which presents a rather large conformation change, presence or 

absence of an elongation factor attached to ribosome. Secondly, the distribution of 

projection snapshots orientation over S2 sphere is heavily uneven (Figure 41), having 

three orders of magnitude difference in number of snapshots for highest and lowest 

populated regions of S2, with around two Shannon angle size. In contrast to experimental 
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dataset, snapshots are uniformly distributed over S2 in simulated case, hence resulting in 

sphere-like shells in embedded manifolds. 

 

 

Figure 41: Distribution of snapshots on orientation space (S2). The distribution can be 

best described by discrete continents. S2 sphere is acquired from two Euler angles (α and 

β) disregarding the in-plane rotation angle, γ. 

 

In order to capture the tiny conformational signal in this anisotropic dataset, a method is 

suggested to zoom in highly populated small (around two Shannon angle)  tessellations of 

S2, called projection directions here on, and apply Diffusion Map embedding to capture 

local changes in each spot. By doing so, changes in orientation would be small enough 
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that would not have a significant effect in the resulting manifold. In addition and after 

analyzing snapshots in local directions, presumably in presence of conformational 

changes, those changes need to be connected to a global view in order to extract 

meaningful reconstructions of conformations.  

These issues and more are organized in the following sections. In methods section, at first 

local embedding is discussed. The way we tessellate S2 into projection directions in each 

projection direction is presented in section 4-3-1. Next section (4-3-2) presents the 

methods we developed to enhance systematic variations of projection snapshots by 

CryoEM, namely the contrast transfer function correction. Third section deals with 

interpretation of Diffusion Map embedding results (4-3-3). Non-linear Laplacian Spectral 

Analysis (NLSA) is presented as a method of unwrapping information in one-

dimensional manifold, which happens to be the case in our local embedding in 4-3-4. At 

last, we present our developed method for connecting the results of local embeddings into 

the global view in order to have a iso-conformation and iso-orientation contours of 

changes over S2 in section 4-3-5.  

In the end, we present the results of initial embedding, correlation analysis of the 

observed manifold with systematic factors and iso-conformation and iso-orientation maps 

of data. At the end we complete this chapter by having a conclusion over the presented 

results.  
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4.3. Methods 

4.3.1. Dataset characteristics 

Cryo-EM ribosome dataset contains 849,919 projection snapshots in the presence of 

overwhelming noise (around -12 db). There is not any published information about types 

and discreteness of conformations in the dataset. Data is provided by Frank group in 

molecular biology department of Columbia university and captures ribosome as a 

Brownian machine with spontaneous random motions in the presence or absence of 

tRNA in the process of translation. Orientations of all snapshots is provided prior to our 

analysis by SPIDER toolkit for each snapshots. 

4.3.2. Projection directions 

Projection snapshots are tessellated over S2 based on their given rotation angles from 

SPIDER, omitting rotation along beam axis, using tessellation method proposed by 

(Lovisolo and Da Silva, 2001). The basic idea behind Lovisolo method is to distribute 

uniformly K points on an N-dimensional hyper-sphere. The main supposition of the 

proposed method is the following: having a large enough K, a set of vectors will be found 

that are uniformly distributed. That set define a tiling of equally length hyper-cubes over 

the hyper-surface. The proposed algorithm starts with a set of K' vectors (K' > K) with 

identical tiling that cover the whole hyper-surface and iteratively decrease K' without 

losing the covered area until convergence at K' =K. In our application, we chose K=1500 

which is the minimum number of snapshots uniformly distributed over S2 that can give 

back the three-dimensional reconstruction with the required resolution. After finding the 
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tiling over S2, projection snapshots are classified into each tessellation based on their 

position over S2. Figure 42 presents the results of Lovisolo tessellations.  

 

Figure 42: Schematic view of Lovisolo tessellations of a sphere. 

After tessellating S2 and classification of snapshots into projection direction, we sort 

projection directions based on their population to give a quantitative measure of 

Anisotropy of dataset. Figure 43 presents sorted population of all 1500 projection 

directions. As it shows, there is a severe anisotropy in number of projection snapshots for 

each projection direction. The population ratio between highest and lowest populated 

areas is 1028.  
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Figure 43: Anisotropy of Cryo-EM dataset. Sorted population of all projection directions 

shows a severe (3 orders of magnitude) anisotrpy in population of projection directions.  

 

4.3.3. Contrast transfer function of CryoEM micrographs 

Contrast transfer function is a measure of true resolution for an electron microscope. As it 

is discussed in more details in Chapter 1, in cryo-EM macromolecules and biological 

entities of interest are frozen in batches on a thin layer of ice and their scattering electron 

density make a trace on a detector. Each micrograph can be approximated as modulation 

of a plane in Fourier space by a function that represents the resolution of electron 

microscope. This function is called CTF and is formulized as bellows:  

 

                           . 

Where we have:  
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Q is fractional amplitude contrast coefficient, s is Fourier 2D frequency amplitude, λ is 

electron wavelength, Cs is spherical aberration coefficient, z0 is the object lens defocus 

and z is relative vertical position with respect to z0.  

Having this formula and for each image radius in Fourier space (fixed s), CTF is roughly 

viewed as a sinusoidal function of object lens defocus, and depth of each ice layer of 

particles from the origin of electron beam.  Similar to most current reconstruction 

methods, we have the fixed layer depth assumption (z = 0) and viewing CTF as a 

sinusoidal function of object lens defocus z0. In cryo-EM datasets, for each projection 

snapshot there is a different CTF function, based on the defocus value of lens in the time 

of capture. Figure 44 represents the CTF functions for a random snapshot from a 

projection direction in our dataset: 
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Figure 44: Contrast Transfer Function of a projection snapshot. CTF is a sinusoidal 

function of object lens defocus. 

  

4.3.4. Local embedding 

To have a correct measure of similarity between snapshots in each projection direction, 

two modifications are applied in Diffusion Map distance calculation routine in order to 

align snapshots with different rotation angles along the beam axis and correct the CTF 

difference between snapshots.  

At first, all the snapshots of a projection direction are aligned along the beam axis with a 

reference snapshot. The alignment is applied with in plane rotation of images by 

difference rotation angle from reference snapshot. As it discussed in background section, 

all rotation angles are a priory provided by SPIDER software. The choice of reference 

image is arbitrary in each projection direction but to have representative alignment and 
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hence snapshot average between all directions, projection snapshot in the center of each 

projection direction is chosen as the reference. After alignment by summing over 

snapshots, a noise reduced view of molecule in given projection direction is appearing. 

The average image is indeed the average of all conformations in a given projection 

direction and more powerful algorithms are needed for capturing the tiny differences due 

to conformational change. 

Figure 45 represents the raw snapshot and the average of aligned snapshots. As it shows, 

due to overwhelming level of noise (~ -12 db) 2D view of the molecule is not 

recognizable by eye. However aligning the snapshots and averaging, works as a low pass 

filter and reduces noise to some extent.  

 

Figure 45 Raw (left) and average (right) 2D view of snapshots. Averaging made 

possible using alignment to a reference by in-plane rotation. 200 snapshots are averaged 

to get the right image.  

Diffusion Map distance is a measure of sum of intensity difference of two snapshots. For 

snapshots with different CTF we have:  
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Where I1 and I2 are the intensity snapshots in Fourier space that we are interested in 

finding their difference and I'1 and I'2 are the CTF filtered images from detector. In order 

to reduce the effect of CTF in difference density we use double filtering method proposed 

by P. Schwander. In this method and for calculating the difference intensity in Fourier 

space, intensities are double filtered by the opposite CTFs. New difference function has 

the following form: 

     
        

            
  

         
          

Using the following formula, the difference intensity information will be kept in every 

pixel except the ones in the zero crossings of both filters. Otherwise, summation of pixel 

intensity difference function would give a desired difference as a measure of distance for 

Diffusion Map.  

 

4.3.5. Nonlinear Laplacian Spectral Analysis 

Nonlinear Laplacian Spectral Analysis (NLSA) is proposed by (Giannakis and Majda, 

2012 I) and further developed in (Giannakis and Majda, 2012 II) to capture nonlinear 

features of data generated by complex systems. NLSA has many applications in 

molecular dynamics (Lima et al., 2009; Hsieh, 2007), fluid dynamics (Dee et al., 2011) 

and even astrophysics (Christiansen, 2005; Vautard and Ghil, 1989). The goal of NLSA 

is to capture physically meaningful information regarding the spatio-temporal evolution 

of a given system from experimental data in order to have better understanding of 
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underlying dynamics and predictive capabilities (Giannakis and Majda, 2012 II). This 

method has been used in this chapter to further analyze the time and average evolution of 

one-dimensional manifold that happens to be the results of local embedding (Figure 46). 

 

Figure 46: NLSA is used to interpret evolution of one-dimensional manifolds. Scatter 

plot of first three Eigenfunctions for all snapshots in one projection direction. 

 

Similar to linear approaches such as singular spectrum analysis (SSA), NLSA uses 

spectral analysis of linear operators to decompose data into corresponding space of 

spatial patterns ("topos" space) and a space of temporal modes ("chronos" space). 

However and in contrast to linear methods, NLSA uses the manifold structure of data for 

decompositions. Having a one-dimensional manifold from Diffusion Map embedding of 
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snapshots, NLSA gives Eigenimages and their nonlinear evolution as a result of walking 

through curvature of the manifold.  

In order to apply NLSA on a one-dimensional manifold the following steps are taken:  

1. Ordering: Data points on the manifold need to be ordered according to manifold 

direction. For this purpose, geodesic distance is used as a measure of distance between 

points on manifold. Method proposed by (Tenenbaum et al., 200)  is used to calculate the 

geodesic distance between points on a manifold. Points on manifold are ordered by their 

geodesic distances to a corner point. Figure 47 demonstrates the Geodesic path between 

points in a graph and Figure 48 demonstrates the ordering step.  

 

Figure 47: Geodesic distance as a measure of ordering along manifold. Geodesic path 

(in red) measured by geodesic distance between two points (in green). As it demonstrates 

Geodesic distance gives a measure of closeness based on graph properties of data.  
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Figure 48: Geodesic ordering. Snapshot are ordered based on their geodesic distance to 

the point in lower left corner. Manifold is color-coded based on the geodesic distance 

values from small (Blue) to large (red). 

 

2) Concatenation: After ordering points on manifold, their corresponding snapshots need 

to be concatenated. Concatenation provide the directionality information needed for 

temporal evolution of the system. Assuming a set of ordered projection snapshots X = 

{X1,X2,..Xn} where X is a snapshot in a form of vector with d dimensions (d is number of 

intensity pixels) and having concatenation order C, concatenated set is: 

 X' = {X1
'
 , X2

'
 , ..., X

'
n}  

where: X'i is a C×d vector consisting of {Xi, Xi+1, ...Xi+c-1}. 

3) Embedding: After concatenation, new set of vectors is used to embed with Diffusion 

Map to have a manifold structure for NLSA decomposition. Diffusion Map embedding is 

applied next on the concatenated set to provide the new manifold with the desired 

directionality being pronounced. Figure 49 is showing the results of embedding 

concatenated data.  
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Figure 49: Diffusion Map embedding of concatenated data. 

 

4) Singular Value decomposition of A = X'μΦ 

From Diffusion Map embedding of concatenated data, Riemannian measure μ and 

projection manifold Φ are extracted. Riemannian measure is and n×n matrix containing 

the first trivial Eigenfunctions of Diffusion Map. Riemannian measure can be seen 

conceptually as the weight of embedding for each data points in reconstruction. Φ is n×L 

matrix of L retained Eigenfunctions of embedding and X' is the concatenated snapshots 

matrix.  Matrix A can be seen as the projection of data onto the concatenated manifold.  

By applying singular value decomposition (SVD) on projected matrix, spatial and 

temporal modes of change are decomposed from A, by the following formula: 

A = USV
T
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Where U is the matrix containing the "topos modes" for spatial dynamics and V entails 

"chronos modes"  for time evolution characteristics on the manifold. S is n×n diagonal 

matrix containing the singular values of SVD. Singular values are a measure of power for 

each mode of SVD.  

5)Back projection: Although V entails temporal evolution but the time information and 

ordering are from projected data on the embedded manifold. In order to have temporal 

information on data space, V needs to be projected back into data space. This has been 

done by the following equation: 

V
T
 = V

T
Φ

T 

5) Reconstruction: Having the U, S and back-projected V matrices, data can be 

reconstructed using up to L topos and chronos modes: 

X
'
k = Uk × Skk × Vk 

Where X
'
k is the kth mode of X' matrix (with concatenated snapshots) reconstructed using 

kth mode of topos and chronos. Figure 50 shows the first modes of topos and chronos for 

a reconstructed data: 
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Figure 50: Topos (right) and chronos modes (left) of NLSA. They provide spatio-

temporal information regarding evolution of an ordered one dimensional manifold using 

NLSA. 

 

4.3.6. Connecting projection directions 

Having a correct interpretation from the results of local embeddings relies upon their 

association with each other. For example, if local embedding of projection directions 

reveals two discrete clustering for each directions, members of each cluster must be 

associated along projection directions to entail sufficient information for further analysis 

of data and ultimately three-dimensional reconstruction.  

The association between projection directions can be explained better by contour line 

analogy. The resulting one-dimensional manifold can be viewed as a iso-orientational 

contour line over each projection direction. By ruling out orientation signal and other 

systematic factors, manifold embedding of each projection direction reveals information 

about conformational changes of the molecule in that projection direction. However, in 
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order to associate different manifolds, another contour line is required that contain the 

iso-conformational information along projection directions. This association is provided 

via finding the relation between metrics that describe manifolds in each projection 

directions. Finding this relationship is similar to finding the same coordinates for all 

manifolds of projection directions.  

In the case of one-dimensional manifolds, the relationship between metrics can be found 

simply by considering the following principle: Having a one-dimensional manifold, the 

describing metric is proportional to the inverse density of points along the manifold 

direction. The relationship is found by equalizing the histograms of points densities along 

all one-dimensional manifolds found in projection directions.   

Before finding the densities, manifold direction needs to be quantified. Eigenfunctions of 

an one-dimensional manifold can be best described by single harmonics in the following 

form: 

Ψw = aw × cos (wπτ) 

First three dominant Eigenfunctions of embedded manifolds fit to single harmonics by an 

iterative nonlinear least square fit. Fitting starts with assigning random parameters (aw 

and τ) to  Ψw and continuing with nonlinear trust-region reflective least square fit. Then, 

every fitted point is projected into manifold and the projected distance is measured as the 

cost function for next iterations of nonlinear least square fit. By having the projected 

distance of fitting function we are giving more importance to the density difference 

between points along the one-dimensional manifold. Figure 51 shows the results of 

iterative fitting. 
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Figure 51: Different steps of the iterative fitting process. One-dimensional manifold 

(scattered) is fitted with single harmonics (Continuous). Manifold is ordered based on 

geodesic distances to lower left corner.  a) First fitting step. b) Fitting after 8 iterations c) 

Best fit with lowest cost function after 20 iterations 

 

As a result of fitting, every point in one-dimensional manifold has an associated τ-value 

which is a measure of its position in the curve. Figure 52 demonstrates the distribution of 

points along manifold direction for fifty projection directions.  
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Figure 52: Histogram of τ distribution over projection directions. Points are color-

coded based on their population in each histogram bin.  

 

After finding a measure of moving along the manifold direction in each projection 

direction, next step is to connect different local measures to a global measure of one-

dimensional change by using Histogram equalization. Histogram equalization assumes 

that two histograms are probability density functions (pdf) of  two random variables of 

the same distribution and will enhance their pdfs towards a mean pdf.  By equalizing 

histograms, the new τ values are the global measure of direction along manifold for all 

projection directions.  
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Figure 53: Results of Histogram equalization. Original distribution, Equalized τ 

histograms and mean distribution of first ten most populated projection direction with 

one-dimensional manifold are shown in the figure.  
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4.4. Results 

4.4.1. Local embeddings 

Local embedding is performed on 189 projection direction with more than 1000 

snapshots. As a results of embedding, three categories of manifolds were observed each 

containing roughly one third of the projection directions.  

Class 1: Fifty five projection directions showed a manifold that entails a dense core 

(~80% of snapshots) and an one-dimensional tail (~20% of snapshots). (Figure 54) 

 

Figure 54: Local embedding of class 1. Scatter plot of projection snapshots with a one-

dimensional tail (~20% of population) is demonstrated. 

Class 2: Seventy three projection directions showed a manifold with a shapeless core and 

no one-dimensional tail (Figure 55). 
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Figure 55: Local embedding of class 2. Embedding shows no manifold characteristics. 

 

Class 3: Remaining sixty one projection direction presented a intermediate behavior with 

a dense core (~90%) and small shapeless tail (~10%) (Figure 56). 

 

Figure 56: Local embedding of class 3. It represents manifolds with intermediate 

characteristics. 

 

The distribution of three classes over projected S2 (two-dimensional) is shown in Figure 

57: 



130 

 

 

 

Figure 57: Distribution of three category of projection directions over S2. For better 

representation, top view projection of S2 is showed here. Green : Class 1, Red: Class 2 

and Blue: Class 3 

 

For further analysis, we focused our attention on class 1 projection directions. At first, we 

are interested in embedding characteristics of each section of manifold (core and one-

dimensional tail) separately. For this purpose, snapshots in core and tail sections of the 

manifolds are re-embed using Diffusion Map. Re-embedding of the tail section reveals an 

approximate parabola in two-dimensional space which is a characteristic of manifold 

produced by single harmonics (more details in methods section). 
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Figure 58: Re-embedding the tail manifold. Observed Parabola, best described by single 

harmonics,  as a result of re-embedding one-dimensional tail of manifolds in class 1 

projection directions. σ is the Gaussian width of embedding, PD: projection direction, k: 

number of nearest neighbors, ns: number of snapshots in projection direction and nl: 

Percentage of snapshots that belong to one-dimensional tail of the manifold. 

 Re-embedding of the core section reveals a two-dimensional sheet which by qualitative 

analysis reveals the information about the small orientation difference of the snapshots 

inside the projection direction.  



132 

 

 

 

Figure 59: Re-embedding the core. Distribution of snapshots in S2 (left) and re-

embedding the core section of manifold produced from class 1 projection direction 

(Right). As the figure shows, the re-embed manifold has the information regarding the 

orientation of snapshots. Point are color-coded based on their proximity to the center of 

left diagram.  

.  

4.4.2. Overrule systematic factors 

Focusing on class 1 projection directions, we are interested in finding the origin of one-

dimensional tail. We tried to find a correlation between known systematic factors and 

observed one-dimensional manifold but the correlation coefficients were insignificant 

(r<0.15) leading us to the conclusion that the one-dimensional manifold indeed represent 

conformational changes of the ribosome. 

 Pearson linear correlation coefficient is used for the measure of dependency between the 

geodesic distance of the points (representing the loop order) and known systematic 

measures.  



133 

 

 

At first defocus value of each snapshot and difference defocus between two snapshots are 

thought to cause the observed behavior. However correlation coefficients between 

geodesic distance over the manifold and defocus (Figure 60) and difference defocus 

(Figure 61) over the manifold were very small, ruling out the defocus as a causing factor.   

Secondly for testing the validity of the assumption that one-dimensional manifold have a 

specific orientation pattern over the S2, snapshots distribution over S2 is plotted and no 

specific pattern is revealed (Figure 62).  

 

Figure 60: Correlation between direction order and defocus value. Note the 

insignificancy of the results |r|<0.12 
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Figure 61: Correlation between direction order and difference defocus value. Note the 

insignificancy of the results |r|<0.13 

 

 

Figure 62: distribution of snapshots from tail of class 1 manifolds over S2. Green: one-

dimensional snapshots (~20%), Red: Other snapshots (~80%). No significant pattern is 

produces there.  
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Quantitatively, we measured the correlation between the angular distance between the 

points on S2 and geodesic distance over the direction of manifold and couldn't find a 

large correlation in any projection directions (Figure 63).  

 

Figure 63: Correlation between direction order and angular distance over S2. Note the 

insignificancy of the results |r|<0.17 

 

In another view of the relation between one-dimensional manifold and orientations over 

S2, Euclidean distance of each points from the projection direction center is used as a 

measure of orientation distance and qualitatively shown over the loop direction. Similar 

to re-embedding the core, as Figure 64 shows, having a relations between manifold and 

orientations cause the same pattern between snapshots over S2 and in embedded state 

which was not the case with one-dimensional manifolds.  
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Figure 64: Distribution pattern of tail manifold. Distribution of snapshots in S2 (left) 

and re-embedding the tail section of manifold produced from class 1 projection direction 

(Right). As the figure shows, the re-embed manifold has creates no specific patterns with 

the orientation of snapshots. Point are color-coded based on their proximity to the center 

of left diagram.  

 

In addition, observing the images by eye did not reveal any pathological behavior that 

cause separation between core and tail sections (Supplementary movie I
6
). Projection 

directions which entail class 1 manifold also didn't have any characteristic population 

pattern. They are distributed in some local hot spots over S2 might be indicative of larger 

conformational change that are observable in those directions.   

Overall, we could not find a systematic factor that generates the tail section of class 1 

manifold. This led us to this belief that the tail section is representative of a continuous 

conformational change in ribosome. From biological point of view, this notion can be 

supported by taking into account the continuous ratchet like motion of small subunit and 

                                                 
6
 http://goo.gl/wts2Nm 
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its coupling motions of large subunit parts in empty ribosome (without t-RNA) and due to 

thermal fluctuations of energy. Capturing empty ribosome was one of the subjects of 

experimental study that led to cryo-EM dataset and further support this idea.  

4.4.3. Iso-orienational movie 

Focusing on projection directions with one-dimensional manifold (class1), we want to 

observe statistically significant differences between core and tail sections. Average 

images of the snapshots in core and tail sections does not reveal any specific differences 

(Figure 65). In addition, moving average of snapshots by walking in tail direction does 

not reveal any continuous observable changes (supplementary movie II
7
). 

 

Figure 65: Average from tail (a), core (b) and all (c) snapshots. As the figure shows, 

averaging does not provide a significant difference between core and tail sections of 

manifold. d) demonstrate the intensity difference of tail and core averages. 

                                                 
7
 http://goo.gl/cHouml 
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However in order to capture the true nonlinear spatiotemporal dynamics of the manifold, 

we used NLSA. Using power shifting routine to enhance the power of first mode to 

become equal to sum of the power of all other modes, reconstructed snapshots of first 

eight modes of NLSA revealed concerted continuous change globally distributed over the 

whole image areas (supplementary movie III
8
).  

The observed smooth change can also be observed from the behavior of the back-

projected chronos modes that represent the temporal dynamics of snapshots manifold 

(Figure 66). 

 

Figure 66: NLSA Chronos modes. It reveals the smooth, continuous change associated 

with walking through direction of one-dimensional manifold. 

  

                                                 
8
 http://goo.gl/HxqXU9 
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4.4.4. Iso-conformational map 

Iso-conformational map is the contour line that connect snapshots with same 

conformation over projection directions. Using iterative nonlinear least square fitting and 

histogram equalization, global τ values are extracted as a measure of movement along 

conformational direction (presumed direction of one-dimensional manifold) for all 55 

projection directions of class 1 manifolds. In order to specify iso-conformational 

contours, two tasks must be done. First, a path need to be specified between projection 

directions. We chose a path closest to a great circle in order to enhance the tomographic 

three-dimensional reconstruction of conformational states (supplementary movie IV
9
). 

Secondly, separate conformational states need to be extracted for each contour line. By 

binning τ values into 10 bins, all snapshots are categorized into ten classes each 

representing a conformational state of ribosome and hence ten iso-conformational 

contour lines are drown. Supplementary movie V
10

 demonstrates one of the iso-

conformational paths.  

  

                                                 
9
 http://goo.gl/QiEHa2 

10
 http://goo.gl/sEZXCN 
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4.5. Conclusions 

This chapter presents a theoretical framework and algorithmic tool-chain for capturing 

the dynamics of ribosome from cryo-EM experimental data. Applying Diffusion Map 

embedding to local projection directions (small tessellations of S2 orientation space), 

gives a one-dimensional manifold which to our beliefs represents the continuous 

conformational changes of empty ribosome due to thermal fluctuations. By using NLSA, 

we were able to capture the temporal dynamics of this manifold. The concerted, smooth 

dynamics of this manifold is presented as a iso-orientation movie of conformational 

changes over 2D snapshot of each projection direction. In addition, we proposed a 

framework for connecting one-dimensional manifolds of different projection directions 

over S2. A global measure of continuous conformational change is used for each 

snapshot as a result of connection. Having this parameter, we were able to draw iso-

conformational contours over projection directions over S2 connecting all the snapshots 

with the same conformation state and different orientations. Iso-conformational contour 

will help the future three-dimensional reconstruction of each conformational state. As a 

result of this work, we developed a pioneering approach to capture the structural 

variability of ribosome and its continuous functional states in a completely unsupervised 

manner. 
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Chapter 5 

Conclusions and future directions 
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5. Conclusions and future direction 

5.1. Conclusions 

In this thesis, a theoretically sound and computationally powerful algorithmic chain is 

proposed to tackle the problem of high-resolution structure recovery in the presence of 

structural heterogeneity from single particle imaging techniques such as Cryogenic 

Electron Microscopy (cryo-EM) and emerging X-ray Free Electron Laser (XFEL).   

A review on existing algorithmic tools for recovering high resolution structure revealed 

their limitations for reconstruction of large macromolecules and viruses due to their i) 

theoretical and ii) computational constraints.  In addition and in the presence of 

heterogeneity,  there is a need for an algorithmic tool capable of iii) unsupervised 

detection of continuous conformational changes of complex molecular machines such as 

ribosome. All these issues are addressed in the course of this thesis.  

By the advent of XFEL, there is a constant increase in flow of data as the number of 

diffraction snapshots per equipment run is increasing. Hereby  an expandable and reliable 

set of algorithms to overcome the computational expenses of data processing becomes a 

necessity.  

In chapter two, a fast and extendable implementation of Diffusion Map embedding is 

proposed using computational power of Graphical Processing Units (GPU). The 

developed algorithm forms a data and compute intensive software pipeline for structure 
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and conformation recovery of biological entities from a large datasets of Cryo-EM and 

XFEL.  

The importance of developed pipeline is demonstrated in two main applications presented 

in Chapter three. a) the first approach capable of extracting high-resolution 3D structure 

from diffraction snapshots of symmetric objects with structure recovery to 1/100
th

 of the 

object diameter and b) the hitherto impossible analysis of  20 million simulated 

diffraction snapshots for capturing conformational heterogeneity of Adenylate kinase 

(ADK) molecule in the process of molecule melting.  

we have outlined powerful new algorithmic approaches based on Diffusion Map 

embedding, and demonstrated their potential for extracting signal from noise, recovering 

3D structure with no orientation information, separating discrete conformations and 

species, and eventually mapping conformational continua.  

Final chapter of thesis presents a solution for the latter challenge by extracting and 

processing continuous structure v ariablity of ribosome from experimental cryo-EM data 

in the presence of overwhelming noise(SNR≈ -12 DB). 

5.2. Discussions 

As far as the algorithm development goes, there is room for further enhancements in our 

implementation, as evidenced from comparing the raw float point processing power of 

the processors. The most expensive part of the brute force k-NNG is matrix 

multiplication. With the best tuned GPU libraries, we see that there is only 50 percent use 

of GPU resources as opposed to 90 percent use by finely tuned CPU libraries. A better 
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GPU matrix multiplication library would further enhance the performance of our 

approach. 

The brute force implementation requires O(n
2
) distance calculations. This dominates the 

computational expense for a large n. One way of reducing this complexity will be to use a 

hybrid algorithm that approximately subdivides the data sets into overlapping sets to 

reduce the computations (distance computation and selection) for each input vector based 

on the set membership. While such methods exist, to our knowledge there are no parallel 

cluster implementations with GPU acceleration. 

Finally, performance of the algorithms is significantly impacted by the nature of the data  

(data dimension as well as size) and the execution configuration parameters. For 

example, currently we manually select the number of data partitions P of the input matrix 

A and the size of sub-partitions of AI within the nodes. The GPU quick select algorithm 

in particular is very sensitive to the number of simultaneous queries and the arrangement 

of execution resources  (the number of warps per thread block). Currently, these 

execution parameters are manually set and adjusted through trial and error. This can be 

automated is the future. 

High-resolution structure recovery in the presence of symmetry has proven to be a 

powerful tool for recovering structure by enhancing the effective number of snapshots 

and improving resolution. In addition by having a superior noise robustness, our approach 

for determining high-resolution structure at low radiation signal levels will play a vital 

role in the future of structure recovery from single particle techniques and understanding 

“biologically relevant” information from biological entities. 
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However, preliminary results of our analysis of XFEL diffraction snapshots  does not 

reveal meaningful structural information. The main reason for this issue is the presence of 

experimental artifacts, such as variations in beam intensity, position and inclination, and 

other systematic nonlinearities and limitations. Nevertheless by generating more datasets 

of biological entities and the rapid progress in XFEL-based imaging and processing 

techniques, improved single-particle XFEL datasets are expected in near future. 

One immediate application of our manifold-based approach for mapping discrete 

conformations is the purification of different biological molecules or even molecular-

species after the experiment. Using this algorithm can potentially lead to simpler 

experimental sample preparation and faster experimental setups for generating snapshots 

of single particles. In addition by providing a processing pipeline for 20 million 

snapshots, our approach is showing superior capabilities for analyzing current state of the 

art datasets of biological entities and set the stage for upcoming results of future XFEL 

experiments.  

For studying continuous conformational changes, our manifold-based approach is 

perhaps most appropriate algorithm, because it requires no a priori knowledge of the type 

and characteristics of hidden conformational information and has the capability to deduce 

conformational information by finding the governing dimensions of 2D snapshots in a 

totally unsupervised manner. This is in contrast to Bayesian approaches that either 

require prior knowledge of the number of conformations, or deduce this number by trial 

and error.  
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5.3. Future directions 

Manifold-based dimensionality reduction approaches and specially Diffusion Map has 

been providing theoretically sound, noise robust and expandable solutions for processing 

the output of single particle imaging modalities such as XFEL and CryoEm. In future, 

these algorithms has the potential for inspiring structural studies of even more complex 

systems such as Mitochondria, Endoplasmic reticulum, Chromosomes and even the 

whole cell.  

The capability of manifold-based approaches to map conformation continua from single 

particle snapshots will have a revolutionizing effect in both methodology and biological 

understanding of molecular machines and their interactions in cellular environment. 

Upon their success, these methods has the potential for building the new understanding of 

dynamics in molecular and cellular level and shape the future of cellular physiology and 

molecular biology. This thesis has taken a small but important step towards this goal by 

providing computational boost, initial proof of concept in simulation environment and 

parameterizing an observed continuous conformational phenomena in ribosome Cryo-EM 

data.  

In this regards, our immediate future step is to have a biologically sound interpretation of 

the observed behavior by having a 3D reconstruction of conformational parameterized 

intermediate steps and matching the observed behavior to knowledge base of previously 

found functional states of ribosome. For this purpose, a reconstruction method capable of 

3D reconstruction of conformational classes in the presence of severe orientation 

anisotropy and sparsity of conformational information in orientation space is a necessity.  
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In addition, there are room for improvement in other aspects of this work as well. In 

algorithm development, we achieved the computational capability to deal with data 

ensembles at least one order of magnitude larger than current datasets. However, with the 

growing pace of expansion in input data sizes (both in number of dimensions and 

reference data points)  alongside technological advances in GPU hardware and software 

configurations, new strategies for data management, partitioning and algorithm 

development will be needed in the foreseeable future. Our future algorithm development 

will continues in two different areas. First is the development of a stand-alone k-NN 

search library on GPU that outperforms all state of the art algorithms and that can be 

easily accessible and applicable to huge applications of k-NN search and k- NN graph 

construction. In order to achieve this goal, we are planning to create a user friendly 

environment and a parameter space for different range of applications. The second 

possible target of future work in this area is to release a user friendly version of a k-NNG 

construction library for GPU distributed systems. The proposed library would use the 

expandability and flexibility of proposed algorithm with regards to computational system 

configurations and data characteristics respectively.  

We also provided a strong footing for manifold-based approaches in the future of XFEL 

data analysis. Our both model systems for structure recovery and mapping 

conformational changes, in addition to our computationally powerful implementation, set 

the stage for analyzing future XFEL high throughput diffraction snapshots. One future 

avenue of this thesis would be to apply the proposed methodology for high-resolution 

structure recovery of symmetric viruses and mapping conformational states of large 
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proteins and macromolecules from XFEL experiments, upon the quality improvement 

and resolving the systematic artifacts.  
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