740 research outputs found

    Inventory control in production-inventory systems with random yield and rework: The unit-tracking approach

    Get PDF
    This paper considers a single-stage make-to-stock production–inventory system under random demand and random yield, where defective units are reworked. We examine how to set cost-minimizing production/order quantities in such imperfect systems, which is challenging because a random yield implies an uncertain arrival time of outstanding units and the possibility of them crossing each other in the pipeline. To determine the order/production quantity in each period, we extend the unit-tracking/decomposition approach, taking into account the possibility of order-crossing, which is new to the literature and relevant to other planning problems. The extended unit-tracking/decomposition approach allows us to determine the optimal base-stock level and to formulate the exact and an approximate expression of the per-period cost of a base-stock policy. The same approach is also used to develop a state-dependent ordering policy. The numerical study reveals that our state-dependent policy can reduce inventory-related costs compared to the base-stock policy by up to 6% and compared to an existing approach from the literature by up to 4.5%. From a managerial perspective, the most interesting finding is that a high mean production yield does not necessarily lead to lower expected inventory-related costs. This counterintuitive finding, which can be observed for the most commonly used yield model, is driven by an increased probability that all the units in a batch are either of good or unacceptable quality

    Production planning in different stages of a manufacturing supply chain under multiple uncertainties

    Get PDF
    This thesis focuses on designing stochastic programming models for production planning at different stages in a manufacturing supply chain under multiple sources of uncertainties. Various decision makers along the manufacturing supply chain often have to make planning decisions with embedded risks and uncertainties. In an effort to reduce risks and to ensure that the customer demand is met in the most efficient and cost effective way, the production plans at each stage need to be strategically planned. To assist production planning decisions, a two-stage stochastic programming model is developed with the objective of minimizing the total cost including production, inventory, and backorder costs. The proposed framework is validated with case studies in an automobile part manufacturer with real data based on literature. The results demonstrate the robustness of the stochastic model compared with various deterministic models. Sensitivity analysis is performed for the production capacity parameter to derive managerial insights regarding lot-sizing and scheduling decisions under different scenarios

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Multi-variate time-series for time constraint adherence prediction in complex job shops

    Get PDF
    One of the most complex and agile production environments is semiconductor manufacturing, especially wafer fabrication, as products require more than several hundred operations and remain in Work-In-Progress for months leading to complex job shops. Additionally, an increasingly competitive market environment, i.e. owing to Moore’s law, forces semiconductor companies to focus on operational excellence, resiliency and, hence, leads to product quality as a decisive factor. Product-specific time constraints comprising two or more, not necessarily consecutive, operations ensure product quality at an operational level and, thus, are an industry-specific challenge. Time constraint adherence is of utmost importance, since violations typically lead to scrapping entire lots and a deteriorating yield. Dispatching decisions that determine time constraint adherence are as a state of the art performed manually, which is stressful and error-prone. Therefore, this article presents a data-driven approach combining multi-variate time-series with centralized information to predict time constraint adherence probability in wafer fabrication to facilitate dispatching. Real-world data is analyzed and different statistical and machine learning models are evaluated

    Sustainable Industrial Engineering along Product-Service Life Cycle/Supply Chain

    Get PDF
    Sustainable industrial engineering addresses the sustainability issue from economic, environmental, and social points of view. Its application fields are the whole value chain and lifecycle of products/services, from the development to the end-of-life stages. This book aims to address many of the challenges faced by industrial organizations and supply chains to become more sustainable through reinventing their processes and practices, by continuously incorporating sustainability guidelines and practices in their decisions, such as circular economy, collaboration with suppliers and customers, using information technologies and systems, tracking their products’ life-cycle, using optimization methods to reduce resource use, and to apply new management paradigms to help mitigate many of the wastes that exist across organizations and supply chains. This book will be of interest to the fast-growing body of academics studying and researching sustainability, as well as to industry managers involved in sustainability management

    Integration of Artificial Neural Networks and Simulation Modeling in a Decision Support System

    Get PDF
    A simulation based decision support system is developed for AT&T Microelectronics in Orlando. This system uses simulation modeling to capture the complex nature of semiconductor test operations. Simulation, however, is not a tool for optimization by itself. Numerous executions of the simulation model must generally be performed to narrow in on a set of proper decision parameters. As a means of alleviating this shortcoming, artificial neural networks are used in conjunction with simulation modeling to aid management in the decision making process. The integration of simulation and neural networks in a comprehensive decision support system, in effect, learns the reverse of the simulation process. That is, given a set of goals defined for performance measures, the decision support system suggests proper values for decision parameters to achieve those goals

    Allocating work in process in a multiple-product CONWIP system with lost sales

    Get PDF
    To operate a multiple-product manufacturing system under a CONWIP control policy, one must decide how to assign kanbans to products. With a fixed total number of kanbans in a competitive environment, the goal is to determine their allocation to product types in order to minimize lost sales equitably. In particular, we consider systems in which the products may make multiple visits to the same station with a different processing time distribution on each repeat visit. With a fixed number of kanbans dedicated to each product, the system is modeled as a multiple-chain multiple-class closed queuing network. A nonlinear program simultaneously provides an approximate performance evaluation and optimizes the allocation of kanbans to product types. In numerical examples, the allocations identified are similar to those obtained by exhaustive enumeration with simulation, but frequently differ significantly from a naïve allocation according to demand rates. A variant of the model that minimizes the total work-in-process to achieve specified throughput targets yields results similar to a previous heuristic method

    Determining optimal inventory levels for items nearing the end of a production run

    Get PDF
    Optimal inventory policies determined for items in steady state production are no longer optimal when reaching the end of production. This is due to the obvious fact that during this time, production is no longer in steady state. At the end of a production run, steady state inventory policies can lead to excess costs, as on hand and due-in inventory is no longer need as there is no following period's demand. In this thesis, a newsvendor inventory optimization model which considers salvage value and initial inventory level along with two alternative (s, S) model formulations are tailored to fit items nearing the end of a production run. One of the (s, S) inventory models is modified to include a salvage value and reduce computation time. The three models are demonstrated on a twenty-item example problem and the newsvendor model is selected as the best application for items one lead-time period from the end of production. The cost related benefits of the alternative inventory policies generated by the newsvendor model are analyzed using a simulation-based approach. Although the ideas and analysis presented here were developed and tailored to fit the aerospace industry, the mathematical models can be extended to fit a variety of different applications.Includes bibliographical references (pages 69-71
    corecore