460 research outputs found

    Partial Enumerative Sphere Shaping

    Full text link
    The dependency between the Gaussianity of the input distribution for the additive white Gaussian noise (AWGN) channel and the gap-to-capacity is discussed. We show that a set of particular approximations to the Maxwell-Boltzmann (MB) distribution virtually closes most of the shaping gap. We relate these symbol-level distributions to bit-level distributions, and demonstrate that they correspond to keeping some of the amplitude bit-levels uniform and independent of the others. Then we propose partial enumerative sphere shaping (P-ESS) to realize such distributions in the probabilistic amplitude shaping (PAS) framework. Simulations over the AWGN channel exhibit that shaping 2 amplitude bits of 16-ASK have almost the same performance as shaping 3 bits, which is 1.3 dB more power-efficient than uniform signaling at a rate of 3 bit/symbol. In this way, required storage and computational complexity of shaping are reduced by factors of 6 and 3, respectively.Comment: 6 pages, 6 figure

    Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping

    Get PDF
    In this paper, we provide for the first time a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. As the blocklength decreases, however, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths and over the additive white Gaussian channel (AWGN), the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM), enumerative sphere shaping (ESS) and shell mapping (SM), are reviewed as energy-efficient shaping techniques. Numerical results show that MPDM and SpSh have smaller rate losses than CCDM. SpSh--whose sole objective is to maximize the energy efficiency--is shown to have the minimum rate loss amongst all. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspective of latency, storage and computations.Comment: 18 pages, 10 figure

    Enumerative sphere shaping techniques for short blocklength wireless communications

    Get PDF

    Enumerative sphere shaping techniques for short blocklength wireless communications

    Get PDF

    Probabilistic Constellation Shaping Algorithms: Performance vs. Complexity Trade-offs:Performance vs. Complexity Trade-offs

    Get PDF
    We review the recent advances in the design of probabilistic shaping algorithms. We investigate the implementation complexity of these algorithms in terms of required storage and computational power. We show that (1) the optimum performance can be achieved via different algorithms creating a trade-off between storage and computational complexities, and (2) a significant reduction in complexity can be achieved via the recently-proposed shift-based band-trellis enumerative sphere shaping if a slight degradation in performance is tolerated

    On Probability Shaping for 5G MIMO Wireless Channel with Realistic LDPC Codes

    Full text link
    Probability Shaping (PS) is a method to improve a Modulation and Coding Scheme (MCS) in order to increase reliability of data transmission. It is already implemented in some modern radio broadcasting and optic systems, but not yet in wireless communication systems. Here we adapt PS for the 5G wireless protocol, namely, for relatively small transport block size, strict complexity requirements and actual low-density parity-check codes (LDPC). We support our proposal by a numerical experiment results in Sionna simulator, showing 0.6 dB gain of PS based MCS versus commonly used MCS.Comment: Paper contains 14 pages, 10 figures, 2 tables, comments are welcome! Recommended for publication in Communications in Computer and Information Scienc

    On the Nonlinear Shaping Gain with Probabilistic Shaping and Carrier Phase Recovery

    Get PDF
    The performance of different probabilistic amplitude shaping (PAS)techniques in the nonlinear regime is investigated, highlighting its dependence on the PAS block length and the interaction with carrier phase recovery (CPR). Different PAS implementations are considered, based on different distribution matching (DM) techniques—namely, sphere shaping, shell mapping with different number of shells, and constant composition DM—and amplitude-to-symbol maps. When CPR is not included, PAS with optimal block length provides a nonlinear shaping gain with respect to a linearly optimized PAS (with infinite block length); among the considered DM techniques, the largest gain is obtained with sphere shaping. On the other hand, the nonlinear shaping gain becomes smaller, or completely vanishes, when CPR is included, meaning that in this case all the considered implementations achieve a similar performance for a sufficiently long block length. Similar results are obtained in different link configurations (1×1801\times 180 km, 15×8015\times 80 km, and 27×8027\times 80 km single-mode-fiber links), and also including laser phase noise, except when in-line dispersion compensation is used. Furthermore, we define a new metric, the nonlinear phase noise (NPN) metric, which is based on the frequency resolved logarithmic perturbation models and explains the interaction of CPR and PAS. We show that the NPN metric is highly correlated with the performance of the system. Our results suggest that, in general, the optimization of PAS in the nonlinear regime should always account for the presence of a CPR algorithm. In this case, the reduction of the rate loss (obtained by using sphere shaping and increasing the DM block length) turns out to be more important than the mitigation of the nonlinear phase noise (obtained by using constant-energy DMs and reducing the block length), the latter being already granted by the CPR algorithm
    corecore