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Abstract—The performance of different probabilistic ampli-
tude shaping (PAS) techniques in the nonlinear regime is in-
vestigated, highlighting its dependence on the PAS block length
and the interaction with carrier phase recovery (CPR). Different
PAS implementations are considered, based on different dis-
tribution matching (DM) techniques—namely, sphere shaping,
shell mapping with different number of shells, and constant
composition DM—and amplitude-to-symbol maps. When CPR is
not included, PAS with optimal block length provides a nonlinear
shaping gain with respect to a linearly optimized PAS (with
infinite block length); among the considered DM techniques,
the largest gain is obtained with sphere shaping. On the other
hand, the nonlinear shaping gain becomes smaller, or completely
vanishes, when CPR is included, meaning that in this case all
the considered implementations achieve a similar performance
for a sufficiently long block length. Similar results are obtained
in different link configurations (1 × 180km, 15 × 80km, and
27 × 80km single-mode-fiber links), and also including laser
phase noise, except when in-line dispersion compensation is
used. Furthermore, we define a new metric, the nonlinear phase
noise (NPN) metric, which is based on the frequency resolved
logarithmic perturbation models and explains the interaction of
CPR and PAS. We show that the NPN metric is highly correlated
with the performance of the system. Our results suggest that, in
general, the optimization of PAS in the nonlinear regime should
always account for the presence of a CPR algorithm. In this
case, the reduction of the rate loss (obtained by using sphere
shaping and increasing the DM block length) turns out to be
more important than the mitigation of the nonlinear phase noise
(obtained by using constant-energy DMs and reducing the block
length), the latter being already granted by the CPR algorithm.

Index Terms—Optical fiber communication, nonlinear fiber
channel, probabilistic shaping, phase noise.

I. INTRODUCTION

PROBABILISTIC amplitude shaping (PAS) has been re-
cently widely investigated as a way to improve the

performance of an optical fiber network. PAS allows to finely
adapt the information rate to the system requirements (chan-
nel signal-to-noise ratio (SNR) and forward error correction
(FEC) code) and to reduce the gap to the Shannon limit

S. Civelli, formerly with the Institute of Telecommunications, Computer
Engineering, and Photonics (TeCIP), Scuola Superiore Sant’Anna, Pisa, Italy,
is now with the Cnr-Istituto di Elettronica e di Ingegneria dell’Informazione
e delle Telecomunicazioni, Pisa, Italy, and with the National Laboratory of
Photonic Networks, CNIT, Pisa, Italy. E. Forestieri and M. Secondini are with
the Institute of Telecommunications, Computer Engineering, and Photonics
(TeCIP), Scuola Superiore Sant’Anna, Pisa, Italy, and with the National
Laboratory of Photonic Networks, CNIT, Pisa, Italy. E. Parente is with
the Institute of Telecommunications, Computer Engineering, and Photonics
(TeCIP), Scuola Superiore Sant’Anna, Pisa, Italy. Email: stella.civelli@cnr.it.

This paper was presented in part at the European Conference on Optical
Communication (ECOC), Brusselles, Belgium, December 6-10, 2020. [1]

in the linear regime [2]–[4]. The SNR gain—up to 1.53 dB
for large constellation size [5]—depends on the particular
implementation of PAS, handled by the distribution matcher
(DM). The DM maps k independent input bits with uniform
distribution to N output amplitudes with the desired Maxwell–
Boltzmann (MB) distribution—the optimal one in the linear
regime. To do so, the DM imposes some specific constraints
(e.g., a constant composition or a maximum energy) on the N
symbols of each block, which are therefore correlated. While
a DM can be implemented in different ways, its performance
generally improves with the block length N . In fact, the
correlation between the symbols of each block decreases
when N increases, allowing to encode more information per
transmitted symbol. For N →∞, the correlation vanishes and
the DM output looks like an i.i.d. source with MB distribution,
yielding the optimal PAS gain in the linear regime for a given
rate and constellation size [5].

Previous studies on PAS concerned the DM implementation
and PAS performance in the linear regime, aiming at reducing
the rate loss—a useful performance metric defined as the
difference between the entropy of the target MB distribution
and the actual DM rate k/N—with reasonable computa-
tional complexity, hardware requirements, and flexibility [3].
For instance, sphere shaping (SS), implemented through the
enumerative sphere shaping (ESS) algorithm, provides the
best performance for a given block length [6]–[8]; constant
composition DM (CCDM), implemented by arithmetic coding,
is a simple and flexible technique to obtain the desired target
distribution [9], [10]; hierarchical DM (Hi-DM) is an effective
approach to combine several short DMs (based, e.g., on simple
look-up tables) to form a long DM with good performance
and low complexity [11]–[14]. In general, it was shown that
increasing the block length N of the DM reduces the rate loss
and improves the performance in the linear regime, without
any downside (but for the increased latency and difficulties
in the DM implementation). The interaction of carrier phase
recovery (CPR) algorithms and PAS was investigated in [15],
considering the ideal MB distribution in the linear regime.

More recently, the performance of PAS in the nonlinear
regime has been studied [4], and it was shown, firstly for SS
[16] and later for CCDM [17], [18], that increasing the block
length at will is not beneficial. Indeed, the constraints induced
by the DM on the N symbols of each block, besides reducing
the rate of the source causing a rate loss, usually reduce also
the intensity fluctuations on the signal, hence reducing the
amount of nonlinear interference generated by each channel
and yielding an additional nonlinear shaping gain. In this
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case, the correlation induced by the DM is beneficial, so
that the nonlinear shaping gain decreases as N increases,
vanishing for N → ∞. Therefore, there is an optimal block
length that maximizes the shaping gain by providing the best
trade-off between linear and nonlinear gain. The nonlinear
interference due to DM was analyzed in [19] for the CCDM,
while the kurtosis-limited sphere shaping, which selects the
sequences with minimum energy and low kurtosis, showed
superior performance in the nonlinear regime with respect to
equivalent-length ESS in a single-span scenario but not for
a multi-span link [20]. Furthermore, it was shown that the
nonlinear shaping gain improves by properly packing shaped
sequences in time and frequency [21].

However, it is also known that a good part of the inter-
channel nonlinear interference generated by intensity fluctu-
ations (which are reduced by a short-block-length DM, as
explained above) manifests as correlated phase noise, which
can be mitigated also by a properly optimized CPR algorithm
[22]–[26]. Unfortunately, a preliminary study on the interac-
tion between the nonlinear shaping gain and CPR algorithms
showed that the gain provided by the two techniques is very
similar and does not add up [1]. Similar conclusions were
drawn by an analytical study about the interaction of CPR
and CCDM for cross phase modulation [27]. This effect is
particularly relevant from a system design perspective, since
a carrier recovery algorithm is always included in practical
systems, meaning that the nonlinear shaping gain observed
in simulations in the absence of a carrier recovery algorithm,
might in fact disappear (or be drastically reduced) in realistic
systems. In this work, we extend the analysis in [1] to
assess the interaction between CPR and PAS in terms of
nonlinearity mitigation in a wavelength-division multiplexing
(WDM) scenario. This is done by including the laser phase
noise in the system, highlighting the performance of different
PAS and DM implementations, considering different scenarios,
and introducing a new performance metric to study and predict
this interaction.

II. PROBABILISTIC AMPLITUDE SHAPING

PAS is implemented at the transmitter by using four iden-
tical DMs. Each DM maps k uniformly distributed bits to
N shaped amplitudes, A1, . . . , AN . The 4N amplitudes are
then combined with 4N signs (obtained from other 4N
uniform bits) and mapped to the four components of N
dual-polarization QAM symbols (i.e., 4D symbols).1 The
amplitude-to-symbol mapping can be done in different man-
ners. Here, we consider the two maps sketched in Fig. 1,
referred to as serial map and parallel map. On the one hand,
the serial map maps the N amplitudes generated by the first
DM to the four components of the first N/4 4D symbols,
the N amplitudes generated by the second DM to the four
components of the next N/4 4D symbols, and so on. On the
other hand, the parallel map maps the N amplitudes of the
first DM to the first component of the N 4D symbols, the
N amplitudes of the second DM to the second component of

1The reverse concatenation with the FEC is irrelevant to this description
and is, therefore, omitted.
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Figure 1. Different mappings to generate N 2-pol QAM symbols from 4N
amplitudes generated by four instances of the same DM and 4N i.i.d. bits
used for the signs.

Figure 2. 2D energy description of different DM techniques. Black thin circles
represent possible energy levels.
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the N 4D symbols, and so on. While the serial map induces
a stronger correlation (the four components are correlated)
on a shorter block of N/4 adjacent symbols, the parallel
map induces a weaker correlation (the four components are
independent) on a longer block of N adjacent symbols. The
two maps are equivalent in the linear regime but, as we will
see in the following, they provide different performance in the
nonlinear regime.

For the PAS implementation, we consider different DM
techniques: SS, shell mapping (SM), and CCDM, as described
below. The energy distribution of the methods is qualitatively
depicted in Fig. 2.2

SS maps k bits to the 2k lowest-energy sequences of N
amplitudes. Thus, by representing each sequence as a point in
an N-dimensional space, all the sequences must lie within the
smallest possible sphere that contains at least 2k sequences.
The map covers all the sequences inside the sphere and some
of the sequences on the sphere, as shown qualitatively in
Fig. 2. For a given block length N and constellation size, SS
maximizes the source rate for a given average energy, yielding
the best performance in the linear regime. The average energy
of the sequences is ESS. In this manuscript, SS is implemented
using the ESS algorithm [6], [28], [29], resorting to the double-
trellis trick proposed in [13] and studied in [30] to obtain
optimal performance; however, this is not the only way to
implement SS [8] and a simple look-up-table could be used
for short-block-lengths.

SM maps k bits to the 2k lowest-energy sequences, with
the additional constraint that at most m energy levels (shells)
can be occupied—indicated as SM-m. Thus, SM-1 uses only
sequences that lie in a single shell and, therefore, have the
same energy; SM-2 uses two adjacent shells; and so on. When
the number of shells increases, SM-m tends to SS. The energy
of the sequences covered by SM-m is limited by a maximum
and a minimum value, with ESM-m being the average energy.
Also SM is implemented by using the ESS algorithm; the
recently proposed band-ESS can also be used [31]. In the
following, we consider only two extreme cases: the single-
shell case, denoted as SM-1, and the case with the maximum
number of shells (but lower than SS), denoted as SM-max.
The latter is obtained by adding one higher-energy shell to
those used by SS and removing all the innermost ones that
are no longer needed (the number of shells m varies in this
case).

CCDM maps k bits on 2k amplitude sequences with the
same composition, i.e., permutations of the same sequence
[9], [32]. The composition is determined by the desired target
distribution. Since the sequences have the same composition,
they also have the same energy ECCDM and lie in a single
shell, as in the SM-1 case.

In the linear regime, for a given block length N and con-
stellation size, the PAS performance depends on the average
energy EDM of the 2k sequences used by the considered DM.

2While in our manuscript we think of SS as a type of DM, a different
perspective is given in [8], where the SS is proposed as an indirect method
to implement PAS, as opposed to the direct methods implemented by a DM.
This difference is, however, only a matter of definition and does not affect
the practical realization of PAS.

It is simple to verify that ECCDM ≥ ESM-1 ≥ ESM-2 ≥ · · · ≥
ESM−max ≥ ESS. Thus, the best performance is obtained
with SS, then with SM-m (the performance decreasing with
decreasing m), and eventually with CCDM. As the block
length N increases, all the mentioned methods approach an
i.i.d. source with MB distribution [5], which yields the ultimate
linear shaping gain (and zero rate and energy losses). For a
given block length and constellation size, the rate loss, which
is a very common performance metric for DMs in the linear
regime, follows the same ranking indicated by the average
energy, as shown in several recent publications including [17],
[29].

On the other hand, in the nonlinear regime, the capacity-
achieving distribution and, consequently, the optimal DM
are unknown. However, some useful design guidelines can
be obtained from approximated models or observations. For
instance, it has been shown that the amount of nonlinear
interference generated by a propagating signal depends not
only on its average power (second-order moment), but also on
its fourth-order moment (when symbols are i.i.d.) [23], [33]–
[35] or, more in general, on the variations of the instantaneous
power over a finite temporal window [19], [21], [36]. In
this case, the use of a shorter block length N is expected
to be beneficial, as it introduces a constraint on the energy
of each block of N symbols. The constraint is stronger for
CCDM and SM-1 (for which the energy of each sequence
if constant), and becomes weaker for SM-m as m increases
(since the energy of each sequence may take m different
values). Therefore, as opposed to the ranking defined in
terms of linear performance, we expect CCDM and SM-1 to
provide the most effective nonlinearity mitigation, followed
by SM-2, SM-3, and so on, while SS should be the least
effective. As a result, the optimization of both the DM type
and its block length should aim to obtain the best trade-off
between two conflicting objectives: the reduction of the rate
loss (linear shaping gain) and the reduction of the intensity
fluctuations (nonlinear shaping gain). This will be investigated
in Section VI.

To study the behavior of different DMs as a function of the
block length N , we resort to a trick to emulate SS and SM-m
for N > 512, when the rate loss of the two methods is very
small, but the computation of the required trellis structures
becomes nearly unfeasible. In this case, we concatenate the
amplitudes generated by N/512 independent uses of a DM of
block length 512, followed by an interleaver of length N . In
this manner, we emulate the correlation induced by a DM of
block length N , while achieving almost the same rate loss.

III. NONLINEAR PHASE NOISE METRIC

Different fiber nonlinearity models agree that a relevant
portion of nonlinear interference—in particular that generated
by the intensity fluctuations of the signal—manifests as phase
noise [22], [23], [33], [34]. For instance, the frequency-
resolved logarithmic perturbation (FRLP) model describes
nonlinear interference as a frequency-dependent phase noise
that can be expressed as a quadratic form of the symbols
transmitted in a certain time window around the considered
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time on the (self- or cross-) interfering channels [34], [37].3

For i.i.d. symbols, the variance of this phase noise depends
on the kurtosis of the symbols, so that non-constant-envelope
modulations (e.g., QAM or Gaussian modulation) cause a
stronger NLI than constant-envelope modulations (e.g., PSK)
[34]. However, the nonlinear phase noise generated by non-
constant-envelope modulations is strongly correlated in time,
so that it can be mitigated by a suitable carrier-phase recovery
algorithm, after which its variance practically reduces to that
of constant-envelope modulation [38]. Here, we extend the
analysis to the case of correlated symbols, such as those
generated by the PAS schemes described in Section II, with
the aim of finding a suitable metric to predict the dependence
of the generated NLI on the PAS block length, accounting for
the possible presence of a carrier-phase recovery algorithm.
With respect to [34], since removing the i.i.d. assumption
significantly complicates the analysis [39], we further simplify
the FRLP model to obtain a nonlinear phase noise model that
depends only on signal intensity, and resort to a numerical
approach for the computation of the variance.

The simplified nonlinear phase noise model is derived from
the FRLP model [34] by following the same approach used in
[40]–[43] to develop the enhanced split-step Fourier method
(ESSFM) and the coupled-channel ESSFM (CCESSFM) algo-
rithms for DBP. By considering only the terms on the diagonal
of the quadratic form in [34, eq. (18)], neglecting (or averaging
out) their dependence on frequency, and accounting for the
contributions of the two polarizations of each interfering
channel, we eventually obtain a simple phase noise term that
depends on the intensity variations of all the interfering chan-
nels. Specifically, considering M WDM channels, denoting by
xi[k] and yi[k] the normalized kth symbols transmitted on the
two polarizations of the ith channel, the corresponding output
samples after dispersion compensation can be expressed as
xi[k] exp(−jθi[k]) and yi[k] exp(−jθi[k]), where

θi[k] =

M∑
`=1

φ̄i`

Nc∑
m=−Nc

C`−i[m]
(
|x`[k +m]|2 + |y`[k +m]|2

)
(1)

is the overall nonlinear phase rotation [43]. In (1), C`−i[m]
(m = −Nc, . . . , Nc) are 2Nc + 1 real coefficients accounting
for the interaction of dispersion and nonlinearity induced by
channel ` over channel i; φ̄i` = (3/2− δi`/2)γ

∫ L
0
P`(ζ)dζ is

the average nonlinear phase rotation induced by channel ` over
channel i, with P`(ζ) the power of channel ` at distance ζ, L
the length of the link, γ the nonlinear coefficient of the fiber,
and δi` the Kronecker delta. The coefficients can be evaluated
analytically from [34, eq. (19)]4 as

3Though the window formally extend over an infinite time, the coefficients
of the quadratic form rapidly decays outside a finite time window determined
by the walk-off time between the frequency components involved in the
interference process.

4In this case, we consider only the diagonal terms of the quadratic form,
neglect their dependence on frequency, assume an ideal sinc pulse shape, and
adopt a different normalization

Cn[m] = T 2

∫ 2n+1
2T

2n−1
2T

∫ 2n+1
2T

2n−1
2T

K(µ, ν)e−j2π(µ−ν)mT dµdν

(2)
where T is the symbol time and K(µ, ν) is a function
that depends on the link characteristics and accounts for the
nonlinear interaction efficiency of different frequency compo-
nents. Considering a dispersion-unmanaged link made of Ns
identical fiber spans of length Ls, with attenuation coefficient
α, dispersion parameter β2, nonlinear coefficient γ, and ideal
dispersion compensation at the end of the link, we have

K(µ, ν) =
exp

[
−α+ j4π2β2ν(ν − µ)Ls

]
− 1

−α+ j4π2β2ν(ν − µ)

×
exp

[
j4π2β2ν(ν − µ)NsLs

]
− 1

exp [j4π2β2ν(ν − µ)Ls]− 1

α

Ns(1− e−αLs)
(3)

Interestingly, there is a clear similarity between the non-
linear phase rotation in (1) and the weighted sum of symbol
energies used in [19], [36] to define the energy dispersion
index (EDI) and the exponentially-weighted EDI (EEDI) and
predict the nonlinear shaping gain that occurs in a PAS system
using CCDM. For example, the EEDI is defined as [36]

EEDI =
Var(Gλ[k])

E(Gλ[k])
(4)

where

Gλ[k] =

+∞∑
m=−∞

λ|m||xi[k +m]|2 (5)

and 0 ≤ λ ≤ 1 is a forgetting factor.5 This similarity
provides a physical explanation of why EDI and EEDI are
good predictors of the nonlinear shaping gain (when they
are small, the signal is affected by less nonlinear phase
noise). The main difference between (5) and (1) is that the
coefficients in (1) depend on the link characteristics and can
be obtained analytically, while the parameter λ in (5) (or
the window length W in the EDI) is optimized a posteriori,
through extensive simulations, to maximize the correlation
with the system performance. Moreover, (1) accounts for both
polarizations and includes the interfering channels.6 Therefore,
we propose to replace the EDI or EEDI with the variance of (1)
as a predictor of the nonlinear shaping gain of PAS systems.
This solution avoids the use of extensive simulations, poses
performance prediction on a more physical ground—relating
it to the amount of nonlinear phase noise accumulated during
propagation—and, as shown below, allows to easily account
for the impact of CPR.

In order to account for the randomness of the carrier phase
and its temporal variations due to laser phase noise, coherent
optical receivers usually include a CPR algorithm. Practical
algorithms, though not specifically designed for this purpose,

5A similar definition holds for the EDI, with the only difference of
considering a finite sum of W elements with λ = 1.

6The recently proposed lowpass filtered symbol-amplitude sequences
(LSAS) metric also allows to account for inter-polarization and inter-channel
effects [44].
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can partly mitigate also the nonlinear phase noise in (1),
reducing its variance. Of course, the amount of nonlinearity
that can be mitigated depends on the specific algorithm and on
the width of the time window over which the carrier phase is
estimated (or any other parameter playing an analogous role).
As with the conventional phase noise due to lasers, a longer
time window allows to average out more effectively the impact
of additive white Gaussian noise on the estimate, but reduces
the ability to track fast changes of the phase.

The above considerations have two important consequences.
First, when estimating the effectiveness of PAS as a nonlinear
mitigation strategy, the presence of CPR should be accounted
for. Second, the optimization of the PAS block length N and
of the CPR half time window NCPR are intertwined: they
depend on each other and should be done jointly, accounting
for the link configuration, the signal-to-noise ratio, and the
laser linewidth.

With this in mind we define the nonlinear phase noise
(NPN) metric (for the generic ith channel) as

σ2
θ = Var(θi[k]− θ̂i[k]) + σ2

ξ (6)

where

θ̂i[k] =

∑NCPR
m=−NCPR

θi[m+ k]

2NCPR + 1
. (7)

is the noiseless estimate of the nonlinear phase rotation at time
k provided by the CPR, which we assume to equal the average
nonlinear phase noise measured over a window of 2NCPR + 1
symbols around the kth symbol, and σ2

ξ is the variance of the
noise affecting the CPR estimate. In general, the latter depends
on the specific CPR algorithm, on its block length (or other
equivalent parameter), and on the signal-to-noise ratio (SNR).
Here, for the sake of simplicity, we assume

σ2
ξ =

(2Es/N0)−1/(2NCPR + 1)

eCPR
(8)

where the numerator is the Cramér–Rao lower bound, and
eCPR ≤ 1 is a coefficient that measures the efficiency of the
CPR algorithm with respect to the bound [45]. In principle,
different definitions of (7) and (8) could be employed to
account more precisely for the actual behavior of a specific
CPR algorithm, though this is outside the scope of this work.

IV. SIMULATION SETUP

The system setup is sketched in Fig. 3, and is the same
considered in [1]. A stream of uniformly distributed bits—
representing the information bits after FEC encoding—feeds
the PAS block (see Section II), which maps the bits to symbols
of a dual polarization 256 quadrature amplitude modulated
(QAM) constellation with rate 6 bits/symbol/pol. Using a root
raised cosine (RRC) pulse with rolloff 0.1 and baud rate Rs =
41.67 GBd, the signals corresponding to 4 adjacent channels
are multiplexed in a single superchannel, the superchannel
of interest (SCOI), with 75 GHz spacing. Two additional
superchannels, with the same properties of the SCOI, are also
multiplexed, such that 12 evenly spaced channels are trans-
mitted over an overall bandwidth of 900 GHz. The generated
WDM waveform is launched into the link, composed of several

spans of 80 km single mode fiber (SMF) with dispersion
D = 17 ps/nm/km, Kerr parameter γ = 1.3 W−1km−1,
and attenuation αdB = 0.2 dB/km. After each span, an
erbium-doped fiber amplifier (EDFA) with a noise figure of
5 dB compensates for loss. At the end of the link, the side
superchannels are filtered out, and the 4 channels of the SCOI
are demultiplexed. The transmitter and receiver laser linewidth
∆ν are set to either 0 or 100 kHz. Each channel undergoes:
(i) either ideal digital back propagation (DBP) or electronic
dispersion compensation (EDC), (ii) matched filtering, (iii)
sampling at symbol time, and (iv) CPR. Finally, the average
achievable information rate (AIR) of the 4 channels of the
SCOI is evaluated, representing the average information per
symbol that can be reliably transmitted on each polarization
and channel of the SCOI, assuming an ideal FEC and bit-wise
mismatched decoding optimized for the AWGN channel [10],
[46], [47].

As regards CPR, two different approaches are considered:
mean phase rotation (MPR) and blind phase search (BPS).
On the one hand, MPR is the typical approach employed in
simulations—when the laser phase noise is not considered and,
thus, CPR not required—to remove the (constant in time)
expected value of the nonlinear phase rotation induced by
fiber nonlinearity for a given total launch power. In practice,
the MPR is estimated by a simple data-aided procedure—
i.e., by averaging the instantaneous phase rotation experienced
by all the transmitted symbols after propagation—and then
removed from all the received symbols. On the other hand,
BPS is a practical CPR algorithm typically employed with
QAM constellations to track the random fluctuations of the
carrier phase induced by laser phase noise [45]. In a nutshell,
BPS estimates the carrier phase at discrete time k as the
phase rotation (selected among a certain number of test
phases) that minimizes the mean square error between the
rotated symbols and the corresponding QAM decisions over a
window of 2NCPR + 1 symbols centered at time k. A shorter
window can track faster phase variations, whereas a longer
window is required to average out the impact of ASE noise
more effectively. The optimal window width is the trade-off
between these two effects. In the following, we optimize NCPR
numerically and consider 64 test phases in a π/2 interval. The
MPR is nearly equivalent to a BPS with NCPR →∞.

The phase estimated by BPS is affected by an ambiguity
of multiples of π/2 due to the 4-fold rotational symmetry of
conventional QAM constellations. This ambiguity may induce
detrimental cycle slips, but can be avoided by using, for
example, differential coding or pilot symbols [45]. In our
simulations, for the sake of simplicity, when laser phase noise
is included in the system, we further apply a supervised cycle-
slip compensation after BPS [15].

V. NUMERICAL RESULTS

First, we investigate the performance of the different PAS
and bit-to-amplitude mapping schemes presented in Section II.
Figure 4 compares the performance of the serial and parallel
bit-to-amplitude maps at the optimal launch power for different
block lengths. In this case, SS is used (implemented with
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the ESS algorithm), DBP is not applied, the laser linewidth
is set to zero, and the BPS carrier-recovery algorithm is not
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distributed i.i.d. symbols (optimal in the linear regime) is also
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by the large rate loss. For longer block lengths, the serial map
performs better than the parallel one and achieves the highest
AIR, with a gain of approximately 0.02 bits/symbol/pol over
the parallel map—a similar behaviour was shown in [48],
[49] for a single polarization QAM map. The superiority of
the serial map is explained by the fact that, for a given DM
block length, it constraints the signal energy on a four-time
shorter time interval (twice shorter in the single-polarization
case) compared to the parallel map, reducing the intensity
fluctuations and the corresponding nonlinear phase noise. Both
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decrease afterwards to approach the MB curve for N → +∞.
The peaky behaviour of both curves and the presence of a
nonlinear shaping gain compared to the MB reference curve
are analyzed in detail in the following, where only the serial
map is considered, due to its superior performance.
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Figure 5. Maximum AIR versus DM block length for 15 × 80km link with
different DM techniques and with and without BPS (a) EDC with NCPR = 24,
and (b) DBP with NCPR = 16. ∆ν = 0 kHz.
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The performance of different DMs are compared in Figs.
5(a)-(b) as a function of the DM block length and with (solid
lines) or without (dashed lines) BPS, for the case without DBP
in (a) and when ideal DBP is included in (b).

On the one hand, Fig. 5(a) shows that, when BPS is not
employed, the AIR improves up to a certain optimal value of
the block length, after which it decreases again, approaching
the AIR obtained with i.i.d. MB symbols (the distribution
obtained when the DM block length tends to infinity). The
difference between the peak performance and the MB line
is the nonlinear shaping gain [4], [16], [18]. This behaviour
depends on the combination of two opposing trends: on the
one hand, a longer block length implies a lower rate loss
and hence a better linear performance; on the other hand,
it also implies a weaker correlation between the symbols
produced by the DM, whose intensity fluctuates in time more
freely, causing a stronger nonlinear phase noise. The optimal
block length is the trade-off between linear performance (rate
loss) and nonlinear shaping gain (correlations induced by
DM). A similar behavior is observed for all the considered
DMs, and both with or without DBP. However, the nonlinear
shaping gain is the largest for the SS (approximately equal
to 0.085 bit/symbol/pol), just slightly smaller for SM, smaller
for SM-1, and the smallest for CCDM, following the same
ranking shown in the linear regime. Since SM reduces the
intensity fluctuations of the signal with respect to SS, one
could expect the SM or the SM-1 to provide the best nonlinear
performance—as shown in [31] for a 205 km fiber. However,
the results show that the linear performance prevails. In fact,
a lower rate loss (as for the SS) allows to reduce the DM
block length and, consequently, to enforce a stronger constraint
on the possible intensity fluctuations of the signal, with less
nonlinear phase noise. The nonlinear behavior of the CCDM
can be predicted using the energy dispersion index [19], [36].
The superior performance of SS with respect to CCDM in the
nonlinear regime was also shown in [50] and experimentally
in [51].

On the other hand, Fig. 5(a) shows that when BPS is
employed, the performance of all methods improves almost
monotonically towards the MB curve, which is higher than
without BPS. In this case, the additional nonlinear shaping
gain provided by the optimization of the block length is negli-
gible, meaning that the BPS is mitigating the same nonlinear
phase noise that would be mitigated by short-block-length
PAS. In practice, when the BPS is employed, the optimal
performance can be obtained by using PAS with a sufficiently
high block length to reduce the rate loss, without a specific
block length optimization. In this case, the minimum required
block length to achieve the optimal performance depends on
the considered DM, but the optimal performance does not.
The performance for short block lengths follows the same
ranking given in the linear regime, as for the case without
BPS. However, for short block lengths, the performance of the
curves with BPS are slightly worse than those with BPS—this
happens because the BPS (which in this case plays no useful
role since the nonlinear phase noise is completely mitigated by
the short-block-length PAS and there is no laser phase noise)
has been optimized for the MB curve, which has a larger SNR.
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Figure 6. Maximum AIR versus DM block length using SS with ∆ν =
100 kHz laser linewidth (a) 15 spans with NCPR = 38, (b) 27 spans with
NCPR = 92.

Fig. 5(b) shows the same as Fig. 5(a), but adding ideal
DBP. The performance improves, since DBP is applied, but the
overall behavior does not change with respect to Fig. 5(a)—in
fact, even the negligible nonlinear shaping gain observed at
intermediate block lengths in Fig. 5(a) vanishes. This result
confirms that short-block-length PAS and BPS mitigate the
same nonlinear effects (mostly the nonlinear phase noise due
to inter-channel nonlinearity), so that the gains they provide,
which are similar, do not add up. On the other hand, DBP and
PAS (or DBP and BPS) mitigate different nonlinearities—-
intra- and inter-channel, respectively—and their gains add up.

An important conclusion that can be drawn from Figs. 5(a)-
(b) is that the nonlinear shaping gain provided by PAS is not
relevant when BPS is employed and optimized to minimize
nonlinearities. However, while a CPR algorithm is always
included in a system, its time window (in our case, the
2NCPR + 1 symbols over which it estimates the phase) is
typically dictated by the laser linewidth and the system SNR,
so that it cannot be freely optimized to mitigate nonlinear
effects. For instance, while nonlinear phase noise is relatively
fast and requires a short time window for its mitigation, a
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system with relatively good lasers and low SNR may require a
much longer time window to achieve its optimal performance.
The impact of laser phase noise is investigated in Figs. 6(a)-
(b), which show the AIR versus DM block length for a (a)
15 × 80 km and (b) 27 × 80 km link, when a laser with
linewidth ∆ν = 100 kHz is considered at the TX and RX
sides. The time window of the BPS algorithm—optimized
to mitigate the laser phase noise for the MB case when
DBP is not applied—is NCPR = 38 in (a) and NCPR = 92
in (b), the difference being due to the lower SNR in the
second case. In the 15 × 80 km link, the BPS algorithm
has a sufficiently short time window to mitigate most of the
nonlinear phase noise, so that the optimization of the PAS
block length does not yield any additional nonlinear shaping
gain with respect to the case of infinite block length (i.i.d.
samples). On the other hand, in the 27× 80 km link, the BPS
operates on a longer time window and is not able to mitigate
all the nonlinear phase noise—in particular, the portion that
is generated by intrachannel nonlinearity, which has faster
variations. As a result, in this case a small nonlinear shaping
gain of approximately 0.05 bit/symbol/pol can be observed
when DBP is not employed (note that Fig. 6(a) and (b) have
substantially different vertical scales). A similar behavior—
with a larger gain of ≈ 0.1 bit/symbol/pol—was shown in [1],
where the laser phase noise was not included.

Next, we consider two rather different links to verify if and
how the behaviour highlighted in the previous cases changes
when there is much less accumulated dispersion. In both cases,
we consider SS-based PAS, EDC at the RX, and we include
laser phase noise and the BPS algorithm with optimized NCPR.
Fig. 7(a) reports the AIR versus DM block length for a single-
span SMF link of length 180 km, with NCPR = 60. In this
case, the peak AIR is achieved for an optimal block length
N = 32—much shorter than in previous cases, since the
lower accumulated dispersion makes high-frequency intensity
variations more important in the generation of nonlinear phase
noise, reducing the optimal DM block length—with a gain of
approximately 0.05 bit/symbol/pol with respect to the ideal
case with infinite block length (i.i.d. MB symbols). On the
other hand, Fig. 7(b) reports the AIR versus DM block length
for a 15×80 km link with full inline dispersion compensation,
where each 80 km SMF span is followed by 13 km of
dispersion compensating fiber (DCF) with αdB = 0.57 dB/km,
β2 = 127.5 ps2/km, and γ = 6.5 W−1km−1. One additional
EDFA with a noise figure of 5 dB is added at the input of each
span of DCF, setting the launch power in the DCF 4 dB below
that in the SMF. In this case, since the SNR is significantly
lower than in the previous cases, the BPS must operate on a
longer time window to average out the impact of noise, and
the best performance is obtained for NCPR = 800 symbols.
Differently from the dispersion-unmanaged case, the figure
shows that (i) the optimal DM block length is shorter (N = 64
rather than N = 256), due to the lower accumulated dispersion
(as in the single-span case) and (ii) a large nonlinear shaping
gain of 0.15 bit/symbol/pol is obtained even if the BPS is
employed, since the long BPS performs similarly to MPR and
is ineffective against nonlinear phase noise.

To better understand the interaction between nonlinear shap-

ing gain and CPR, Fig. 8 shows the NPN metric (6) as a
function of the DM block length and for different values of
the BPS half window NCPR, considering the same link as
in Fig. 6(a) (dispersion-unmanaged 15× 80 km without DBP)
and the SS strategy for PAS. The metric is computed for the
second channel of the SCOI, i = 2, and considering the impact
of the 4 channels of the SCOI. For the sake of simplicity, we
simply set eCPR = 0.008 in (8), which yields, on average,
reasonable results for the considered scenario and range of
NCPR values.7 At the optimal launch power, the (linear) SNR
value is Es/N0 = 17 dB. For a very long BPS window (e.g.,
NCPR = 512), the BPS is too slow to track the nonlinear phase
noise and behaves in practice as the MPR. In this case, the
phase estimate (7) converges to the average nonlinear phase
rotation, the variance of the CPR noise (8) vanishes, and
the NPN metric (6) measures only the amount of generated
nonlinear interference. As a result, the metric behaves similarly
to the EEDI: it initially increases with N , until it saturates
(for N ≈ 1024) to the value that would be obtained for i.i.d.
MB symbols. In this case, the use of a relatively short block
length (N < 1024) is beneficial to reduce the nonlinear phase
noise. However, the reduction of the block length causes also
an increase of the DM rate loss. The combination of these
two effects results in the behavior shown in Fig. 5(a) (w/o
BPS), with an optimal block length that maximizes the AIR.
On the other hand, when decreasing the BPS window, the
noiseless phase estimate (7) becomes more accurate, while
the variance of the CPR noise (8) increases. In other words,
the BPS becomes faster but more noisy. As a result, the NPN
metric (6) decreases for long DM block length, where the
phase noise term dominates, and increases for short DM block
length, where the CPR noise term dominates. Thus, the NPN
curves tend to flatten and the dependence on the DM block
length becomes weaker. This explains why the behavior of the
AIR in Fig. 5(a) changes when the BPS is included: in this
case, using a short DM block length is no longer beneficial,
since the BPS already mitigates the nonlinear phase noise
caused by the intensity fluctuations of the signal. In fact, to
go beyond the mitigation capabilities of the BPS and see an
additional SNR improvement caused by PAS, the DM block
length should be reduced too much (e.g., N < 256), where
the DM rate loss is however too high. Finally, the use of a too
short window (e.g., NCPR = 2 or 8) makes the BPS too noisy,
with a significant performance degradation at any DM block
length.

Finally, Figs 9(a-c) show the heat maps of SNR, −NPN
and −EEDI, respectively, as a function of DM block length
N (x-axis) and CPR window NCPR (y-axis), in the same
setup as Fig. 4, i.e., using SS, dispersion compensation and
∆ν = 0 kHz laser linewidth, considering the second channel
of the SCOI. The SNR is obtained through extensive numerical
simulations; the NPN metric is evaluated from (6), with
Es/N0 = 17 dB, eCPR = 0.008, and accounting for the 4

7In general, the parameter eCPR depends on the modulation format, SNR,
and BPS half window NCPR [45]. Thus, more accurate results could be
obtained by a detailed characterization of the BPS behavior and dependence
on these parameters. Our simple choice is, however, sufficient to show the
accuracy of the proposed metric.
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channels of the SCOI; and the EEDI is evaluated from (4),(5)
with λ = 0.985, previously optimized (through numerical
simulations) to maximize the correlation with SNR in the case
without CPR. Comparing 9(a) and 9(b), it is evident that SNR
and -NPN have a similar behavior and are highly correlated:
(i) when the block length N is very short, they achieve their
best values, which are however not practically useful since
associated with a high DM rate loss; (ii) for larger N values,
the best performance is obtained when NCPR is large enough to
average out the noise and small enough to mitigate nonlinear
interference; (iii) with an optimized NCPR, the performance is
almost independent of PAS block length N ; (iv) for very large
(but suboptimal) NCPR values, BPS behaves as MPR and the
dependence of the metric on the DM block length N becomes
more evident, causing the nonlinear shaping gain observed
in these cases. Conversely, the EEDI shown in Fig. 9(c) is
independent of NCPR by definition; therefore, it is weakly
correlated with the SNR and has the correct dependence on the
DM block length only for very large NCPR (or, equivalently,
when MPR is employed). In fact, the correlation coefficient
between SNR and −NPN over the entire range of N and
NCPR values considered in Fig. 9 is 0.99, while the correlation
coefficient between SNR and EEDI is only 0.02. These results
confirm that the proposed NPN metric is highly correlated with
the system SNR and predict accurately its dependence on the
DM block length, even in the presence of CPR.

VI. DISCUSSION AND CONCLUSION

In this work, we have investigated the performance of
different PAS schemes in the presence of fiber nonlinear-
ity, considering a conventional WDM setup, different link
configurations, and the presence of carrier phase recovery
(CPR). First, we have compared different amplitude-to-symbol
mapping, showing that it is convenient to pack together the
amplitudes produced by a single DM across the four dimen-
sions given by quadratures and polarizations, hence reducing
the intensity fluctuations of the signal over time.

Next, we have compared different DM implementations—
namely, sphere shaping (SS), shell mapping, and CCDM. In all
the considered cases, increasing the DM block length increases
the linear shaping gain (since the rate loss decreases) but
reduces the nonlinear shaping gain (since the signal intensity
can change more freely over time), so that the optimal per-
formance is obtained at some finite block length. Somewhat
counterintuitively, SS always yields the best performance in
terms of achievable information rate, meaning that its superior
linear shaping gain at short block length more than compen-
sates for its lower effectiveness in constraining the intensity
fluctuations of the signal. In a typical dispersion-unmanaged
WDM scenario, SS with an optimal block length of 256
amplitudes yields a gain of about 0.1 bit/symbol/polarization
compared to the ideal case of infinite PAS block length (i.i.d.
symbols).

After that, we have shown that the presence of a CPR
algorithm (e.g., BPS) may change the overall picture and the
above findings quite significantly, reducing the nonlinear shap-
ing gain provided by a short-block-length PAS and making it
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Figure 7. Maximum AIR versus DM block length using SS with ∆ν =
100 kHz laser linewidth and EDC, for a (a) 180 km single span of SMF, with
NCPR = 60, (b) 15 × 80 km link with full inline dispersion compensation,
with NCPR = 800.

Figure 8. NPN and EEDI as a function of the DM block length, for different
CPR window lengths.
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Figure 9. Heat map of (a) simulated SNR (b) −NPN and (c) −EEDI as a
function of DM block length N and CPR window NCPR. 15 × 80km link,
EDC, ∆ν = 0 kHz.

negligible in most of the scenarios considered in this work.
This is due to the ability of BPS (or similar algorithms) to
mitigate not only the laser phase noise for which it is mainly
employed, but also the nonlinear phase noise caused by fiber
nonlinearity. In this case, reducing the PAS block length brings
no additional benefits. The latter result appears particularly
important when considering that the presence of a CPR
algorithm is often neglected in the numerical investigations
that can be found in the literature, but is always necessary in
real systems. The reduction of the nonlinear shaping gain is
more evident in the scenarios where the mitigation of nonlinear
phase noise by BPS is more effective, that is, for higher
SNR (which allows using a shorter BPS window [45]), more
accumulated dispersion (which increases the coherence time
of nonlinear phase noise [37]), and/or when DBP is included
(which removes intrachannel nonlinearity, against which BPS
is less effective). By contrast, a significant nonlinear shaping
gain can be still observed in some particular scenarios, such
as the link with full inline dispersion compensation and
relatively low SNR considered in this work, where SS with an
optimal block length of 64 amplitudes yields a gain of about
0.15 bit/symbol/pol with respect to the infinite-block-length
PAS, even when an optimized BPS algorithm is included in
the system.

Finally, we have introduced a new NPN metric that explains
and predict quite accurately all the behaviors described above.
The metric is derived from the frequency-resolved logarithmic
perturbation [22], [34] and gives an analytical approximation
of the variance of the residual (after CPR) nonlinear phase
noise generated by the intensity fluctuations of the signal. In
contrast to other existing metrics, such as the EDI and EEDI,
the proposed NPN metric relies on more physical grounds
and contains no adjustable parameters, so that its computation
depends directly on the system configuration and does not
require any preliminary tuning based on extensive simulations.
Moreover, the NPN metric accurately predicts the dependence
of system SNR on both the PAS block length and the size of
the CPR window.

In conclusion, the results presented in this work highlight
the importance of including CPR in the analysis and optimiza-
tion of PAS in the nonlinear regime. In fact, the dependence of
the nonlinear shaping gain on the specific PAS implementation
(DM and amplitude-to-symbol mapping) and block length—
which is observed in many scenarios in the absence of CPR—
may become less relevant in the presence of CPR. In many
cases, different DMs may perform equally well in the non-
linear regime, provided that a sufficiently long block length
is employed, meaning that other factors (e.g., complexity)
may play a more important role in the design of the system.
This is, however, not always true, since there exist some
specific scenarios (e.g, with low SNR and small accumulated
dispersion), where the dependence of nonlinear shaping gain
on the employed DM and block length is still relevant. From
a practical point of view, the NPN metric proposed in this
work allows to account for all these factors accurately, and
can be used as a simple guide to jointly optimize PAS and
CPR without performing extensive simulations.
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