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Abstract—We review the recent advances in the design of
probabilistic shaping algorithms. We investigate the implemen-
tation complexity of these algorithms in terms of required
storage and computational power. We show that (1) the optimum
performance can be achieved via different algorithms creating a
trade-off between storage and computational complexities, and
(2) a significant reduction in complexity can be achieved via
the recently-proposed shift-based band-trellis enumerative sphere
shaping if a slight degradation in performance is tolerated.

Index Terms—Probabilistic Amplitude Shaping, Enumerative
Coding, Implementation Complexity.

I. EXTENDED ABSTRACT

Probabilistic amplitude shaping (PAS) [1] combines an
amplitude shaper with a forward error correction (FEC) code,
and achieves the capacity of the additive white Gaussian noise
(AWGN) channel [2], [3]. The function of the amplitude
shaping block is to generate the amplitudes of the channel
inputs while a systematic FEC encoder determines their signs
as shown in Fig. 1. Popular amplitude shaping algorithms
which are optimum for the AWGN channel include constant
composition distribution matching (CCDM) [4], enumera-
tive sphere shaping (ESS) [5], multiset-partition distribution
matching (MPDM) [6], shell mapping (SM) [7], etc. This
optimality is in the sense that the resulting channel input
distribution approaches the Gaussian distribution for large
shaping blocklength N and large constellation cardinality M .

The objective when designing an amplitude shaper is to
obtain a certain characteristic (e.g., fixed composition, small
average energy, small energy variation, low kurtosis, etc.) for
the channel input sequences with (1) low storage complex-
ity, and (2) low computational complexity. For the AWGN
channel, this objective is to obtain a (sampled) Gaussian-
like channel input distribution, i.e., the Maxwell–Boltzmann
(MB) distribution. CCDM, for instance, generates amplitude
sequences with a fixed composition which is obtained by
quantizing the MB distribution. On the other hand, ESS
and SM, both sphere shaping algorithms, generate amplitude
sequences such that the resulting signal space has an N -
spherical shape, which in turn indirectly induces an MB-like
distribution.

The work of Y.C. Gültekin and A. Alvarado has received funding from the
ERC under the EU’s H2020 programme via the Starting grant FUN-NOTCH
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Fig. 1. PAS block diagram. Red blocks are the focus of this paper.

For other types of communication channels, different input
distributions or signal space structures may be more advanta-
geous to improve performance. As an example, the nonlinear
interference generated during the propagation of the channel
input waveform over the nonlinear fiber channels has been
shown to depend on the fourth-order standardized moment of
the input distribution (i.e., kurtosis) [8], [9], or on the energy
variations in the input waveform [10], [11]. Accordingly, we
have recently proposed a modified version of ESS, kurtosis-
limited ESS (K-ESS), to generate shaped input sequences
with low kurtosis [12]. Then in [13], we have proposed
another modified version of ESS, band-trellis ESS (B-ESS),
to generate sequences with small energy variations. We have
demonstrated that K-ESS and B-ESS provide higher signal-to-
noise ratios (SNRs) and increased achievable rates concerning
uniform signaling and AWGN-optimal shaping.

On the practical side, a bounded-precision (BP) implementa-
tion method was proposed for ESS and SM in [14] to decrease
their high storage and computational full-precision (FP) com-
plexities, resp. This method can be applied to ESS, K-ESS,
B-ESS, and in fact, to any enumerative-coding-based shaping
algorithm. In [15], a finite-precision (FiP) implementation was
proposed for arithmetic-coding-based DM algorithms. This
technique can be applied to CCDM, MPDM, and in fact, to
any DM algorithm that has an underlying arithmetic encoder.
Then in [16], an on-the-fly (OtF) computation method was
proposed for ESS, creating a trade-off between its storage
and computational complexities. In [17], a logarithmic-domain
implementation was introduced for arithmetic-coding-based
CCDM such that high-precision multiplications and divisions
required in the algorithm are replaced with low-precision addi-



13.5 14 14.5 15 15.5

10−3

10−2

10−1

1.05 dB

SNR [in dB]

FE
R

FP ESS
BP ESS
BP SM
BP B-ESS (fully stored)
BP B-ESS (shift-based)
CCDM
Uniform

Fig. 2. FER vs. SNR for 64-QAM at the PAS transmission rate of 4 bit/2-D.
All shaping schemes use a blocklength of N = 216. FEC is based on IEEE
802.11’s LDPC codes.

tions and subtractions. Finally, in [18], the implementation of
B-ESS was discussed and an OtF computation technique was
provided based on binary shifts such that the required storage
is independent of the shaping blocklength. The theses [19],
[20] provide a good overview of the implementation of DM
algorithms, while [21] provides a discussion on the complexity
of various shaping algorithms.

In this work, we investigate the performance vs. complexity
trade-offs of some of the above-mentioned shaping algorithms.
We show in Fig. 2 that the optimum performance can be
obtained with different algorithms from different parts of
the storage vs. computational complexity spectrum as shown
in Fig. 3. We also show that if a slight performance loss
is tolerated, our shift-based B-ESS has significantly-reduced
complexity concerning other enumerative algorithms.

REFERENCES
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