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Summary

Nowadays, wireless communication standards are promising data rates around 10 Gbps to
their users. Compared to the standards that came out at the beginning of the millennia, this
translates to more than two orders of magnitude increase in data rates over two decades. This
increase does not only stem from the use of multi-antenna techniques or higher frequencies
and the consequent utilization of larger bandwidths. There is also a rapid improvement in the
efficient usage of the available spectrum. Advanced forward error correction (FEC) codes
that virtually close the coding gap became widely available with low-density parity-check
and polar codes leading the way. Furthermore, 1024-point constellations—which were once
deemed unrealistic—are now considered as ordinary parts of wireless systems.

Recently, the popularization of high-order modulation formats brought a new dimension
to the research on bandwidth-efficient communications: constellation shaping. Constellation
shaping identifies techniques to optimize the properties of modulation formats to match the
characteristics of the communication channel. By realizing shaping, it is possible to save
more than 30% transmit power. Moreover, this room for improvement is particularly sig-
nificant for constellations larger than 16-point. Consequently, Böcherer et al. introduced
probabilistic amplitude shaping (PAS) in 2015 as a power-efficient transmission strategy in
which both the coding and the shaping gaps are closed.

PAS improves the performance of digital communication systems by including amplitude
shaping as an outer code—the inner code being a systematic FEC code—and closing the
so-called shaping gap for the additive white Gaussian noise (AWGN) channel. During our
research, we have investigated enumerative sphere shaping (ESS) as the amplitude shaping
technique in the PAS framework for short blocklengths. ESS specifies a pair of algorithms
that create a fixed-to-fixed length mapping from messages to channel inputs with minimum
energy. For this purpose, we construct an enumerative amplitude trellis containing the se-
quences sorted lexicographically. The enumerative trellis needs to be stored in the memory
to realize ESS. Moreover, significant computational power is necessary to realize the algo-
rithms.



vi Summary

In this thesis, we first examine sphere shaping and PAS from an information-theoretic
perspective. Next, we evaluate the performance of PAS with ESS over the AWGN and fading
channels. We then study the practical implementation of ESS in the PAS framework, compare
it to alternative sphere shaping algorithms such as two algorithms by (Laroia et al., 1994),
and provide techniques to decrease its storage and computational complexity. Finally, we
study a partial shaping scheme based on ESS in which we focus on quantized channel input
distributions.

First, we provide an information-theoretic framework based on weak typicality to study
the achievable rates of PAS. Within this framework, we develop random sign-coding argu-
ments, and we show that PAS achieves the capacity of discrete memoryless channels with
symmetric capacity-achieving distributions. We consider both symbol-metric and bit-metric
decoding (BMD). Then we investigate the optimality of sphere codes, and we show that they
minimize the rate loss at any blocklength. We demonstrate that for short blocklengths for
the AWGN channel, sphere shaping whose objective is to construct energy-efficient signal
sets outperforms constant composition distribution matching whose motivation is to match
the capacity-achieving distribution.

Second, we study the optimum shaping and FEC coding rates for PAS that maximize
the performance gain. Inspired by (Wachsmann et al., 1999), we use the gap-to-capacity
of shaped BMD as the performance metric. We show that for a given target rate and con-
stellation, there is an optimum shaping and coding redundancy combination that minimizes
the gap-to-capacity. Moreover, we repeat this study for fading channels, and we show that
as the communication channel becomes more dynamic, i.e., changes first to Rician, then to
Rayleigh, increased coding redundancy is required to optimize the performance. We justify
these observations by simulating ESS-based PAS. Finally, we introduce an input-selection
procedure that enables the use of nonsystematic convolutional codes from the IEEE 802.11
standard in PAS, and we assess the performance of PAS with these codes.

Third, we investigate the practical implementation of ESS. To decrease the storage and
computational complexity, we propose a bounded precision (BP) version of ESS. We prove
the invertibility of the shaping function for BP ESS, and we show that the resulting rate loss
can be upper-bounded as a function of the precision. A consequence of the BP implemen-
tation is that it enables sliding-window shaping (SWS). SWS requires only local and 16-bit
arithmetic operations, in contrast to the original technique where the entire input sequence
must be kept in the processor. Finally, to further decrease the required storage, we propose to
store only a single column of the trellis and compute the rest on-the-fly. Our results apply to
Laroia’s Algorithm 1, while our BP technique also applies to Laroia’s Algorithm 2, i.e., shell
mapping.

Finally, we study partial shaping, and we show that keeping specific amplitude bits uni-
form and independent of the others, i.e., using quantized distributions, does not lead to a
significant decrease in achievable rates. Then we propose a corresponding amplitude shaping
architecture, partial ESS, which reduces the required storage and computational complexity
of shaping in return to a negligible loss in performance.
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CHAPTER 1
Introduction

“With every mistake, we must surely be learning.”
- George Harrison



1

6 Introduction

1.1 Motivation

In the context of engineering, most articles and theses written on communications in the
past decade start with an emphasis on one of the following: “the demand for increased data
rates” or “the ever-increasing number of devices connected to the internet”. Consequently,
communications literature may seem to be suffering from a constant lack of creativity to an
outside observer, at least in the introductory sections. However, although quite appealing,
it is not our objective to revolt against cliches in this thesis. All in all, there is a perfectly
justifiable reason behind this routine: The data rates and the number of connected devices
are indeed increasing at a pace that is hard to keep up with. According to the Cisco Visual
Networking Index [1], the average Wi-Fi connection speed will increase from 24.4 megabits
per second (Mbps) in 2017 to 54.2 Mbps in 2022 globally. The same study forecasts that the
global IP traffic will rise from 122 exabytes1 per month (EBpm) to 396 EBpm, with more than
25 billion connected devices. To provide a more striking and relatable example, especially to
the same outside observer we mentioned above, consider a movie with 4K resolution which
typically has a size around 100 gigabytes (GB). Downloading this movie with the 28.8 kbps
dial-up internet connections of the 1990s would take a few weeks shy of a year. However,
using Wi-Fi 6 with speeds up to 10 Gbps, the same movie can be downloaded in a couple of
minutes.2 These changes are so drastic that it is understandable to mention them whenever
possible. In the end, cliches are cliches for a reason, aren’t they?

Behind these advances in communication engineering, there lies a century’s worth of re-
search and development on coded modulation (CM), accelerated by the seminal works of
Claude E. Shannon [2]. From a purely Shannon-theoretic perspective, there are two funda-
mental ways of increasing the data rate of a communication system in bits per unit time. On
the one hand, for a fixed spectral efficiency, one can increase the bandwidth, and hence, the
data rate. As an example, a Wi-Fi-based wireless link and a 5G new radio-based wireless link
usually operate at similar spectral efficiencies. However, the former frequently utilizes 40
MHz bands while the latter can employ up to 400 MHz [3], leading to an order of magnitude
difference in data rate. With this motivation, wireless communications researchers have been
exploring the possibility of communication using terahertz carrier frequencies, where there
is a vast amount of bandwidth available [4]. On the other hand, for a fixed bandwidth, one
can increase the spectral efficiency, and hence, the data rate. This elegant approach aims to
utilize the available bandwidth more efficiently, rather than seeking for a trivial solution such
as using more bandwidth. In this line of research, the goal is basically to operate as close as
possible to channel capacity [2].

The first ingredient necessary to communicate at rates close to capacity is channel cod-
ing. A careful examination of Shannon’s second theorem (the noisy-channel coding theorem)
shows that rather than prescribing ways to identify capacity-achieving codes, he only proved
the existence of codes that enable reliable information transmission. The following decades

1One exabyte is 1018 bytes, where a byte is 8 bits.
2Wi-Fi 6 is the marketing name of the IEEE 802.11ax standard.
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saw an outstanding effort to develop such forward error correction (FEC) codes and optimal
decoding algorithms. As an example, convolutional codes and the Viterbi algorithm were
developed around the 1960s [5], and today, they are included in every device which can
connect to a Wi-Fi access point. Capacity-approaching turbo codes were introduced in the
1990s [6] and standardized for cellular and satellite communications. Soon after, Gallager’s
low-density parity-check (LDPC) codes were rediscovered [7, 8], and became an essential
part of every new generation communication protocol. Finally, in 2009, polar codes were
introduced by Arıkan, proven to be capacity-achieving, and quickly put to use in the 5G
standard [9].

The second ingredient required to operate close to capacity is constellation shaping, which
broadly identifies techniques used to optimize the properties of the channel inputs. A second
inspection of the channel coding theorem shows that the channel inputs must be Gaussian-
distributed to achieve the capacity of the additive white Gaussian noise (AWGN) channel,
which is used to model the actual physical channel in many practical scenarios. Equivalently,
the capacity of the AWGN channel can be achieved if the channel inputs are confined in a
sphere when represented as points in the Euclidean space. In fact, this equivalence is the
reason why people fell into two camps in their perception of shaping, and it is the focus
of the main philosophical discussion in this thesis. On the one hand, the goal of shaping is
formulated as to “match” the capacity-achieving distribution which is called the direct method
by Calderbank and Ozarow in [10]. On the other, supporters of the indirect method (including
the author of this thesis) advocated the construction of the most energy-efficient channel input
set. Starting from the early 1980s, both direct and indirect shaping approaches have been
investigated, and shaping even found application in commercial systems such as the V.34
voiceband modem recommendation [11]. However, it was not until recently that an efficient
and flexible way to combine constellation shaping with channel coding is introduced.3

Sketched in 2014 [12], probabilistic amplitude shaping (PAS) is devised as a capacity-
achieving CM strategy that incorporates shaping with coding in 2015 [13]. As shown in
Fig. 1.1, the key idea behind PAS is to realize shaping prior to coding, which is sometimes
called the “reverse concatenation” in the context of constrained coding [14,15]. In this struc-
ture, shaping is used to select the amplitudes of the channel inputs and to optimize the sig-
naling for the channel in the presence of input constraints. Then systematic channel coding
is employed to select the signs, and to enable FEC. This strategy also enables transmission
rate adaptation in the shaping stage, by tuning the parameters of the shaping block, which
would otherwise require the implementation of many different channel codes and modula-
tion formats, e.g., as in [16, Table 21-24]. PAS quickly attracted attention, especially in the
optical communication society, and it is demonstrated both numerically and experimentally
that PAS provides rate adaptivity, reach increase, and improved power-efficiency for optical
links [17–19]. However, optical communication was not the only area in which PAS is recog-
nized as a key technique, and PAS is considered for inclusion in the future cellular and digital
subscriber line standards as well [20, 21]. This thesis is a result of our four-years-long study

3Unlike the case for channel coding, we leave the historical background of shaping for Chapter 2.
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Figure 1.1: Reverse concatenation architecture. Amplitude shaping and deshaping blocks
(dashed boxes) are examined in this thesis.

centered around PAS, focusing mainly on its amplitude shaping stage.

1.2 Thesis Scope
In Chapter 2 which constitutes Part I of this thesis with the current chapter, we provide
some background information on communication channels, coded modulation strategies, and
achievable rates. Then in Part II, we play the part of an information-theorist and analyze the
fundamental limits of PAS and the amplitude shaping stage for both asymptotically large and
finite blocklength regimes. The research questions (RQs) that we try to answer in this part
and the outline of the corresponding chapters are as follows.

RQ-1 What are the achievable information rates (AIRs) of PAS for symbol-metric
decoding (SMD) and bit-metric decoding (BMD)? Is it possible to achieve the
capacity of memoryless channels with PAS? What are the optimum shaping and
coding rates in PAS that maximize AIR gains?

In Chapter 3, we revisit the problem of computing AIRs of PAS, and show
that for memoryless channels with symmetric capacity-achieving distributions,
PAS achieves the capacity. Unlike the AIR computations in [22–24] which
follow Gallager’s error exponent approach [25, Ch. 5], we base our derivations
on weak typicality [26, Secs. 3.1, 7.6, 15.2] in a modified manner. Our main
contribution in this chapter is to provide the random sign-coding framework that
unifies achievability results for all PAS settings. Moreover, in our achievability
proofs, the codes are generated as constructively as possible unlike the random
codes in most proofs of Shannon’s channel coding theorem. Finally, we use a
modified version of the gap-to-capacity curves proposed by Wachsmann et al.
in [27] to find the optimum shaping and coding rates for PAS. We demonstrate
that as the channel becomes more and more frequency selective, the coding rate
should be decreased to obtain the optimum performance, while the shaping rate
increases. Considering Fig. 1.1, we take N →∞ in this chapter.
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RQ-2 What is the “best” amplitude shaping strategy for finite values of the block-
length N? What are the metrics to be used to assess the “goodness” of different
amplitude shaping approaches?

In Chapter 4, we first introduce performance metrics and the notion of “optimal-
ity” for amplitude shaping codes As. We investigate two different approaches.
The first is constant composition distribution matching (CCDM) [28] which
represents the direct method in the Calderbank/Ozarow terminology [10]. The
second is sphere shaping [29, 30] which represents the indirect side. We show
that both these approaches are asymptotically optimum for large N . Then we
demonstrate the superiority of sphere shaping over CCDM for finite N in terms
of rate loss and shaping gain.

The main takeaways from Part II are that (1) PAS achieves capacity, and (2) sphere shaping
is the best amplitude shaping technique for finite (especially for small) N .

In Part III of this thesis, we look at the problem at hand through the eyes of a communi-
cation engineer, and we investigate sphere shaping algorithms and their practical implemen-
tation within the PAS framework. The RQs that we try to answer in this part and the outline
of the corresponding chapters are as follows.

RQ-3 How can sphere shaping be realized algorithmically? Which algorithm provides
high performance with low complexity? What is the end-to-end decoding per-
formance of PAS using sphere shaping over the AWGN and frequency selective
channels?

In Chapter 5, we introduce enumerative sphere shaping (ESS) as an effective
way to realize sphere shaping. We compare ESS with two different sphere
shaping algorithms proposed in [30] by Laroia, Farvardin, and Tretter, and we
show that ESS provides virtually the same performance with smaller computa-
tional and storage requirements. Then we provide end-to-end decoding results
based on Monte Carlo simulation of PAS with ESS and LDPC codes, and we
demonstrate that more than 1 dB improvement in power-efficiency can be ob-
tained with ESS for both the AWGN and frequency selective channels, over a
large range of transmission rates and shaping blocklengths.

RQ-4 Can PAS be incorporated into existing communication systems that are based
on the IEEE 802.11 standard? Can PAS be combined with the nonsystem-
atic convolutional codes used in 802.11 [16] which are a mandatory part of
the standard?

In Chapter 6, we provide a guideline on how to use the nonsystematic convo-
lutional codes from the IEEE 802.11 in the PAS framework. An intermediate
layer called the input-select layer is proposed to be placed in between the shap-
ing and coding layers of PAS to ensure that the temporal structure of amplitude
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sequences is preserved through nonsystematic encoding. This way, PAS can be
fully integrated into 802.11-based systems, in both convolutional- and LDPC-
coded modes.

RQ-5 Can we further improve the energy-efficiency of ESS for practical scenarios?
How can ESS be implemented with low storage complexity, minimal computa-
tional requirements, and limited latency?

In Chapter 7, we first devise an algorithm to compute the exact amplitude distri-
bution of the operational shaping set of ESS. We use this algorithm to demon-
strate that the energy efficiency of ESS is virtually the same as the algorithms
from [30] for moderate to long blocklengths. For short blocklengths where ESS
is slightly inefficient, we propose a heuristic routine to optimize ESS. Then
we introduce bounded precision sphere shaping implementation that decreases
the required storage, arithmetic precision, and computational power for ESS
and the two other sphere shaping algorithms from [30]. Next, we propose a
sliding window shaping method for ESS which works with limited (and fixed)
arithmetic precision and operates with smaller latency than the classical imple-
mentation. Finally, on-the-fly computation techniques are employed to realize
ESS with further decreased storage requirements.

RQ-6 How much do we need to shape the channel input to reap most of the possible
shaping gain? Is it possible to obtain a reduction in required storage and com-
putational complexity by realizing a “rough” shaping strategy? How can this
rough shaping be realized based on ESS?

In Chapter 8, we evaluate the loss in AIR and shaping gain resulting from trans-
mitting channel inputs with quantized Gaussian distributions. We demonstrate
that shaping one or two most significant amplitude bits of the binary labels of
the channel inputs (while keeping the rest uniform) is enough to obtain most of
the possible gain. Then we introduce partial ESS (P-ESS) in which ESS is used
to shape some amplitude bits while the remaining amplitude bits are reserved
for data bits. Simulation results are then provided to show that P-ESS provides
virtually the same performance as ESS over the AWGN channel.

The main takeaways from Part III are that (1) ESS is an effective sphere shaping algo-
rithm, and (2) implementation of ESS can be tailored to specific constraints imposed by the
available hardware resources such as limited memory and computational power, and finite
arithmetic precision.

Finally, Chapter 9 concludes with a summary and a discussion of our results.
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2.1 Notation Convention
We use calligraphic letters X to denote sets of real numbers {X (1),X (2), · · · ,X (|X |)}.
The n-fold Cartesian product of X with itself is denoted by Xn while X ×Y is the Cartesian
product of X and Y . We define XY as {xy : x ∈ X , y ∈ Y}.

Capital letters X are used to denote random variables while lower case letters x are used
to denote their realizations. We useXN and xN to denote random vectors (X1, X2, · · · , XN )
and their realizations (x1, x2, · · · , xN ), respectively. Concatenation of two vectors xN and
yN is indicated by (xN , yN ). Element-wise multiplication of xN and yN is denoted by
xN ⊗yN . We use bold letters T to specify matrices where ti denotes the ith column of T, i.e.,
T = [t0t1 · · · tN ].

For x ∈ X and a discrete setX , the probability of occurrence is expressed as Pr{X = x}.
The probability (mass or density) function of a (discrete or continuous) random variable X
is denoted by p(x). The joint probability function of X and Y is denoted by p(x, y). The
conditional probability of Y given X is denoted by p(y|x). The entropy of a discrete random
variable X is denoted by H(X) (in bits). The (differential) entropy of a continuous random
variable X is denoted by h(X) (in bits). The expected value of X is shown as E[X].

We use 1[·] to indicate the indicator function which is 1 when its argument is true and 0
otherwise. The operator [·]+ is defined as max{0, ·}. The superscript “•” indicates signaling
with sphere shaping, while the superscript “�” indicates uniform signaling.

2.2 Channel Models

2.2.1 The AWGN Channel
The time-discrete AWGN channel shown in Fig. 2.1 (left) is modeled as Yn = Xn + Zn
where Xn ∈ X and Yn ∈ Y are the channel input and output at time n = 1, 2, · · · , N , re-
spectively [26, Ch. 9]. HereN is the blocklength, and both X and Y are sets of real numbers.
The noise variables Zn’s are independently and identically distributed (i.i.d.) according to a
zero-mean Gaussian distribution with variance σ2, and they are assumed to be independent
of the input X . We assume that there is an average power constraint such that any channel
input sequence (x1, x2, · · · , xN ) satisfies

1

N

N∑
n=1

x2
n ≤ P. (2.1)

For the AWGN channel, the signal-to-noise ratio (SNR) is defined as SNR = E
[
X2
]
/σ2.

2.2.2 Fading Channels
The time-discrete communication channel in the existence of fading is modeled as Yn =
HnXn + Zn as shown in Fig. 2.1 (right). Here, Hn is the fading coefficient at time n. In



2

2.3 Channel Capacity 15

X +

Z

Y X ×

H

+

Z

Y

Figure 2.1: Channel Models: (Left) the AWGN channel and (right) fading channels.

the literature, the fading coefficients Hn are frequently assumed to be i.i.d. according to a
Nakagami distribution with fading parameter 1/2 ≤ η < ∞ [31, Sec. 3.2.2], and they are
assumed to be independent ofX . The channel in Fig. 2.1 (right) reduces to a Rayleigh fading
channel for η = 1, to a Rician fading channel with parameter K for η = (K+1)2/(2K+1),
and to the AWGN channel for η = ∞. The Rayleigh and Rician fading channel models are
used in our paper [32].

2.3 Channel Capacity
For a given communication channel, the channel capacity C is an upper bound on the amount
of information that can be transmitted reliably per unit of channel use. This reliability is in
the sense that the probability of making an error can be made arbitrarily small, as the number
of channel uses grows to infinity [2]. Shannon’s second theorem (the noisy-channel coding
theorem) states that at any rate below C, it is possible to transmit information reliably, while
at any rate above C, the probability of making an error is bounded away from zero [2].1

2.3.1 Discrete Memoryless Channels
Consider a memoryless channel for which the channel law is given by

p(yN |xN ) =

N∏
n=1

p(yn|xn) (2.2)

with discrete input X ∈ X and discrete output Y ∈ Y . The capacity of this discrete memo-
ryless channel (DMC) is defined as

C = max
p(x)

I(X;Y ) (2.3)

in bits per real symbol (bit/1-D). Here I(X;Y ) is the mutual information (MI) of the channel
inputX and output Y . The maximization in (2.3) is over all possible input distributions p(x).

1On the other hand, Shannon’s first theorem (noiseless coding theorem) states that N i.i.d random variables
with entropy H(X) cannot be compressed into less than NH(X) bits reliably, while the converse statement also
holds [2]. This reliability is in the sense that the risk of information loss can be made arbitrarily small as N →
∞ [33, Sec. 4.4].
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Shannon proved the achievability of C for DMCs in [2]—in fact, he only provided an outline
of the proof—using the asymptotic equipartition property and the concept of typicality [26,
Ch. 3]. We used similar arguments in our paper [34].

2.3.2 The AWGN Channel with Power Constraint
The capacity of the AWGN channel in Fig. 2.1 (left) is [26, Sec. 9.1]

C = max
p(x):E[X2]≤P

I(X;Y ) =
1

2
log2

(
1 +

P

σ2

)
(2.4)

in bit/1-D, and it is shown versus SNR = P/σ2 in Fig. 2.2. The maximum in (2.4) is
obtained whenXn’s are i.i.d. according to the zero-mean Gaussian distribution with variance
P [2]. The corresponding random coding argument shows that input sequences, drawn from
a Gaussian distribution, are likely to lie in an N -sphere of squared radius N(P + ε) for any
ε > 0, when N → ∞. Therefore, it is reasonable to choose the input sequences inside a
sphere, or equivalently, to use an N -sphere as the signal space boundary, to achieve capacity.
Alternatively, the sphere hardening result that is discussed, e.g., by Wozencraft and Jacobs
in [35, Sec. 5.5, Fig. 5.20], shows that practically all codewords are near the surface of the
sphere asN →∞. Consequently, one could argue that codewords chosen from the surface of
a sphere would lead to good signal sets. We compared both approaches in our papers [32,36].
The first approach we refer to as sphere shaping, and it is our main focus in this thesis. The
second approach we refer to as constant composition shaping.

2.3.3 Capacity at Finite Blocklengths
Channel capacity is an upper bound on the maximum AIR for a given SNR that holds for
asymptotically large signaling blocklengths N . On the other hand, to limit complexity and
latency, practical communication systems operate at finite N , which is often small, where
transmitting at a rate close to capacity reliably is not a realistic objective. In [37, eq. (1)],
Polyanskiy et al. provided the normal approximation Rmax to the maximal AIR for the
AWGN channel in the finite blocklength regime. More specifically,

Rmax (ε,N) ≈ C −
√
V

N
Q−1(ε) (2.5)

where ε is the error probability, Q−1 is the inverse Q-function, and V is the AWGN channel
dispersion defined as [37, eq. (293)]

V =
(log2 e)

2

2

(
1− 1

(1 + SNR)2

)
. (2.6)

We used (2.5) as a benchmark in our paper [32]. In Fig. 2.2, we also show Rmax(10−3, N)
for N = 100, 250, 1000 versus SNR. We see from the inset figure that signaling at rate 3
bit/1-D with N = 100 introduces a gap to capacity of approximately 2 dB.
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Figure 2.2: (Solid black) The capacity of the AWGN channel, and (dashed red, dotted blue,
dash-dotted green) Polyanskiy’s normal approximation to the maximum achievable rate for
the AWGN channel in the finite blocklength regime for N = 1000, 250, 100, respectively.

2.4 Coded Modulation
After Shannon set the fundamental limits of communication, the research focused on design-
ing communication systems that operate close to the channel capacity. The joint or inde-
pendent design of channel encoders/decoders and modulators/demodulators is called coded
modulation (CM). In the following, we introduce concepts related to CM, and we briefly
discuss the principles of bit-interleaved CM (BICM).

2.4.1 Signal Sets and Binary Labeling
An elementary constraint in practical communication system design is that the channel input
alphabetX must be discrete. One of the most frequently used signal sets is the 2m-amplitude-
shift keying (ASK) alphabet which is in the form

X = {±1,±3, · · · ,±(2m − 1)} (2.7)

where 2m = M is the constellation size, and the integer m is the number of bits required
to represent each input x ∈ X . The alphabet in (2.7) can be factorized as X = SA where
S = {−1, 1} andA = {1, 3, · · · , 2m−1} are the sign and amplitude alphabets, respectively.
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Table 2.1: The BRGC for 8-ASK

A 7 5 3 1 1 3 5 7
S -1 -1 -1 -1 1 1 1 1
X -7 -5 -3 -1 1 3 5 7
C1 0 0 0 0 1 1 1 1
C2 0 0 1 1 1 1 0 0
C3 0 1 1 0 0 1 1 0

A binary labeling strategy assigns a unique m-tuple C1C2 · · ·Cm to every possible chan-
nel input symbol x ∈ X . One of the most frequently used labeling strategies is the binary
reflected Gray code (BRGC) [38, Definition 2.10] in which labels of adjacent symbols differ
by only one bit. When a BRGC is used, the binary label C1C2 · · ·Cm of a 2m-ASK con-
stellation point can be decomposed into the sign bit C1 and the amplitude bits C2C3 · · ·Cm.
In our papers and this thesis, we only focus on ASK alphabets labeled with the BRGC, and
we use X and C1C2 · · ·Cm interchangeably. The BRGC of order m = 3 is tabulated in
Table 2.1 along with the amplitudes and the signs of each channel input. Color codes relate
the amplitude bits to the amplitudes with red, and the sign bit to the sign with blue.

2.4.2 Bit-interleaved Coded Modulation
CM combines multi-level modulation with FEC, and it is indispensable for digital commu-
nication strategies targeting high transmission rates. To realize CM, different techniques
have been proposed in the literature, such as multilevel coding (MLC) [27, 39], trellis CM
(TCM) [40], and BICM [38, 41–44]. Among the many proposed CM architectures, the de-
facto standard is to combine a high-order modulation format with a binary FEC code using a
binary labeling strategy (typically a BRGC), frequently in the absence of an interleaver, and
to use bit-metric decoding (BMD) at the receiver, which corresponds to the BICM paradigm.2

Throughout this thesis, we will restrict our attention to BICM systems.
In Fig. 2.3, the block diagram of a BICM transceiver is provided. At the transmitter, a k-

bit information sequence uk = (u1, u2, · · · , uk) is encoded by a rate Rc = k/(mN) binary
FEC code. Afterward, the coded sequence cmN is divided into m-bit vectors, each of which
is mapped to a channel input symbol x via the symbol mapper. Finally, the sequence xN is
transmitted over the channel. The transmission rate of this construction isRt = k/N bit/1-D.

At the receiver, BMD is employed. First, log-likelihood ratios (LLR) are computed for
each bit independently. The LLR of the bit-level j of channel input x is

Lj = log

∑
x∈Xj,0

p(x)p(y|x)∑
x∈Xj,1

p(x)p(y|x)
, (2.8)

2The term “BMD” refers to the demapping/decoding strategies where the bit-levels Ci’s are treated independently
at the receiver. BMD will be discussed in more detail in Section 2.7.
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Figure 2.3: BICM system under consideration with transmission rate Rt = k/N bit/1-D.

for j = 1, 2, · · · ,m, where y is the corresponding channel output. Here Xj,u denotes the
subset of X which have Cj = u in their binary labels for u ∈ {0, 1}. Then based on the
LLRs, an FEC decoder recovers the information bits and outputs the estimates ûk. In this
thesis, we use the system in Fig. 2.3 as our baseline for performance comparison.

2.5 Shaping Gap for the AWGN Channel

In most communication systems and standards, each possible channel input symbol is trans-
mitted with equal probability. In Fig. 2.4, I(X;Y ) is shown for the AWGN channel where
X is distributed uniformly over 2m-ASK alphabets. It is visible that as SNR→∞, the MI is
bounded away from the capacity, and it converges to m.

When the input X has a continuous uniform distribution, we obtain the maximum AIR
for uniform signaling. This so-called uniform capacity is computed for an input which is
uniformly distributed over the interval (±

√
3P ,±

√
3P ) [45, Sec. 4.2.6], and it is shown in

Fig. 2.4. We observe that there is a gap to capacity that results from using uniform inputs
instead of Gaussian ones. This gap, i.e., the increase in required SNR to achieve a given
rate, is called the ultimate shaping gap, and it is asymptotically equal to 1.53 dB for large
SNRs. Equivalently, the ultimate shaping gap can be expressed as a decrease in the AIR for
asymptotically large SNRs, and it is equal to 0.255 bit/1-D. In the following, we will derive
this ultimate shaping gap using information-theoretic and geometric arguments.

2.5.1 Information-theoretic Perspective

Continuous Gaussian Distribution

The capacity-achieving input distribution for the AWGN channel is a zero-mean Gaussian
distribution. Without loss of generality, we assume thatE[X2] = 1, and hence, SNR = 1/σ2.
When the capacity-achieving distribution is used, the channel output Y is the summation of
two independent zero-mean Gaussian random variables, and thus, it is a zero-mean Gaussian
random variable with variance E[Y 2] = 1 + σ2. Consequently, I(X;Y ) can be written for a
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Figure 2.4: The capacity of the AWGN channel (black), the capacity of the AWGN channel
for uniform X (red), and I(X;Y ) for uniform X where X is given by (2.7) for 1 ≤ m ≤ 5.

Gaussian X as

C = Ig(X;Y ) = h(Yg)− h(Yg|Xg)

= h(Yg)− h(N) (2.9)

=
1

2
log2 2πe(1 + σ2)− 1

2
log2 2πeσ2

=
1

2
log2

1 + σ2

σ2

=
1

2
log2(1 + SNR) (2.10)

where (2.9) follows from Y = X + N , and from the independence of X and N . The
expression in (2.10) is the famous AWGN channel capacity presented already in (2.4).

Continuous Uniform Distribution

When the channel input X has the uniform distribution

p(x) =

{
1√
12

if |x| ≤
√

3,

0 otherwise,
(2.11)
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with variance E[X2] = 1, its differential entropy is h(X) = log2

√
12. Since X is indepen-

dent of N , the distribution of the channel output Y = X+N can be found by convolving the
distributions of X and N . For asymptotically large SNRs, i.e., as σ2 → 0, p(n) converges
to the Dirac delta δ(n), and therefore, p(y) converges to p(x). Here we assumed that the
convolution of f(t) and δ(t) is equal to f(t).

The Ultimate Shaping Gap

Finally, the difference between the MIs of the Gaussian- and uniform-input cases is

Ig(X;Y )− Iu(X;Y ) = h(Yg)− h(Yu)

=
1

2
log2 2πe(1 + σ2)− h(Xu +N)

σ2→0→ 1

2
log2 2πe− lim

σ2→0
h(Xu +N)

=
1

2
log2 2πe− h(Xu)

=
1

2
log2 2πe− log2

√
12

=
1

2
log

πe

6
= 0.2546 bits, (2.12)

which is the ultimate shaping gap as shown in Fig. 2.4. When σ2 → 0, the AWGN channel
capacity is given by C = (log2 SNR)/2. If 2C1 = log2 SNR1, 2C2 = log2 SNR2, and
C2 − C1 = 0.2546 from (2.12), then

10 log10

SNR2

SNR1
= 10 log10 22·0.2546 = 1.5329 dB, (2.13)

which tells that the (vertical) ultimate shaping gap of 0.2546 bits in rate is equivalent to a
(horizontal) gap of 1.5329 dB in SNR as shown in Fig. 2.4.

2.5.2 Geometric Perspective
When the channel input X has a uniform distribution, channel input sequences form an N -
cube in the Euclidean space. On the other hand, the most-energy efficient geometry for a fixed
volume is the N -sphere. We note here that the volume of the signal space in the continuous
domain is analogous to the cardinality of the signal set in the discrete domain, and they both
determine the rate.

N -spherical Signal Spaces

The volume of the N -sphere of radius R is V • = BNR
N where for even N ,

BN =
πN/2

(N/2)!
. (2.14)
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The volume of an N -D shell of outer radius ρ with infinitesimal thickness ∆ρ is

BNρ
N −BN (ρ−∆ρ)N ≈ BNNρN−1∆ρ. (2.15)

Then assuming that the points inside the N -sphere of radius R are uniformly distributed, i.e.,
p(xN ) = 1/V •, the average energy is

E• =
1

V •

∫ R

0

BNNρ
N−1ρ2dρ

=
1

V •

∫ R

0

BNNρ
N+1dρ

=
1

V •
BN

N

N + 2
RN+2

=
N

N + 2
R2. (2.16)

N -cubical Signal Spaces

The volume of the N -cube of side length d is V � = dN . Assuming that the points inside the
N -cube of side length d are uniformly distributed, i.e., p(xN ) = 1/dN , the average energy is
E� = Nd2/12.

The Ultimate Shaping Gap

When the N -cube and the N -sphere have the same volume, i.e., the same rate,

BNR
N = dN =⇒ d2

R2
= (BN )2/N . (2.17)

Then the ratio of the average energy of the N -cube of side length d to that of the N -sphere
of radius R is

E�

E•
=
Nd2

12

N + 2

NR2

(2.17)
=

N + 2

12
(BN )2/N . (2.18)

As N →∞,

BN =
πN/2

(N/2)!
≈ πN/2√

πN exp(−N/2)(N/2)N/2
(2.19)

which follows from Stirling’s approximation. Therefore, as N →∞,

(BN )2/N ≈ π

exp(−1)N/2
=

2πe

N
. (2.20)
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Finally,

lim
N→∞

10 log10

E�

E•
= lim
N→∞

10 log10

(
N + 2

12
(BN )2/N

)
(2.21)

= 10 log10

πe

6
(2.22)

= 1.5329 dB. (2.23)

Interestingly, the ultimate shaping gap of 1.53 dB can be derived both from the ratio of
the second moment of an N -cube to that of an N -sphere and from entropy calculations with
1-D distributions. Though we have to note that this fact was found remarkable by Forney et
al. already 40 years ago [46, Sec. IV-B].

2.6 Constellation Shaping

2.6.1 Shaping with Discrete Signal Sets
Since the capacity-achieving distribution for the AWGN channel is symmetric around the
origin, i.e., it can be factorized as p(x) = p(s)p(a) where p(s) is uniform, we restrict our
attention to the distribution of amplitudes, and we assume that the signs are uniform.

There is no analytical expression for the distribution that maximizes the AIR for an ASK
constellation and a σ2. For such constellations, Maxwell-Boltzmann (MB) distributions of
the form

p(a) = K (λ) e−λa
2

, a ∈ A, (2.24)

are pragmatically chosen for amplitude shaping in [13, 47], since they maximize the entropy
for a fixed average energy, or equivalently, minimize the average energy for a given en-
tropy [26, Ch. 12]. Furthermore, to achieve a given target rate, the gap between the required
SNRs for the capacity-achieving distribution and the optimum MB distribution is insignifi-
cant for ASK constellations [23, Table 5.1]. In (2.24), the parameter λ governs the variance
of the distribution, and the parameter

K (λ) =
1∑

a∈A e
−λa2 (2.25)

normalizes it.
In Fig. 2.5, the maximum I(X;Y ) is shown for 2m-ASK alphabets for the AWGN chan-

nel. The maximization is done over all possible channel input distributions p(x) = p(s)p(a)
where S is uniform, andA is MB-distributed. We see that by transmitting channel inputs with
MB-distributed amplitudes, it is possible to close the shaping gap for ASK constellations over
a wide range of transmission rates virtually completely. For instance, consider the inset figure
which shows the region around the target rate 3 bit/1-D for 16 ASK. Here, a shaping gain of
1.08 dB can be obtained by transmitting 16-ASK symbols with MB-distributed amplitudes.
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Figure 2.5: (Solid black) The capacity of the AWGN channel, (solid others) I(X;Y ) for
uniform X , and (dashed) maximum I(X;Y ) for MB-distributed X where X is given by
(2.7) for 1 ≤ m ≤ 4. For BPSK, |A| = 1, and thus, it is not possible to realize shaping.
For 4-ASK, |A| = 2, and thus, the capacity-achieving distribution can be written as an MB
distribution. Therefore, the dashed red curve shows the maximum AIR for 4-ASK.

The remaining 0.1 dB gap to capacity is largely due to the discrete nature ofA, and negligibly
due to the suboptimality of the MB distribution. Furthermore, for all rates below 3 bit/1-D,
the shaping gap is virtually closed. For the rates above, it is reasonable to switch to 32-ASK.

In a similar (and pragmatic) manner, sphere shaping is considered also for multidimen-
sional ASK constellations to obtain high energy efficiency, and to obtain (discrete) Gaussian-
like-distributed inputs in [29, 30]. In our paper [36], we showed that if the region of an ASK
lattice that is bounded by an N -sphere is considered, an MB distribution is induced on the
1-D constituent constellation asymptotically for large N . We emphasize that although MB-
distributed and sphere-shaped ASK constellations maximize the energy efficiency, they do
not maximize the AIR.

2.6.2 A Brief History of Constellation Shaping Techniques

There exist numerous techniques in the literature, most of them proposed in the late 1980s and
early 1990s, that attempt to close the shaping gap. Motivated by the fact that the capacity-
achieving distribution for the AWGN channel is Gaussian, these techniques fundamentally
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aim at one of the following. The first goal is to construct a signal constellation with a
Gaussian-like geometry, which is called geometric shaping (GS) [48–55]. The other ap-
proach is to induce a Gaussian-like distribution over the equidistant signal structure, which is
called probabilistic shaping (PS) [10, 29, 30, 47, 56]. PS techniques can be further classified
into two subgroups using the terminology introduced by Calderbank and Ozarow in [10]. The
direct approach is to start with a target distribution (which is typically close to the capacity-
achieving distribution in an information-theoretic sense) over a low-dimensional signal con-
stellation, and have an algorithm try to obtain it [10,47]. Following recent literature [57], the
direct approach can also be called distribution matching (DM). The indirect approach is to
start with a target rate and bound the multi-dimensional signal structure by a sphere, which
we call sphere shaping [29, 30]. Here, a Gaussian distribution is induced indirectly (when
N →∞) as a by-product. Finally, there exist some hybrid shaping approaches in which GS
and PS are combined [58–60].

In the context of BICM, signal shaping techniques again attracted a considerable amount
of attention in the 2000s. GS was investigated for BICM in [61–63], and PS was studied
in [64–67]. An iterative demapping and decoding architecture with PS was proposed in [68].
The achievability of the so-called generalized MI (GMI) was shown for independent but
shaped bit-levels in [69]. In [70], it was demonstrated that the GMI is a nonconvex function of
the input bit distribution, i.e., the problem of computing the input distribution that maximizes
GMI is nonconvex. An efficient numerical algorithm to compute optimal input distributions
for BICM was introduced by [71]. The effect of mismatched shaping, i.e., not using the
true symbol probabilities or reference constellation at the receiver, was examined in [72].
The achievable rates, error exponents, and error probability of BICM with PS were analyzed
in [73]. Signal shaping was investigated for BICM at low SNR in [74]. PS in BICM was
considered for Rayleigh fading channels in [75, 76].

For a detailed discussion on GS, we refer the reader to [45, Sec. 4.5]. In [13, Sec. II], a
concise review of PS is provided. In this thesis, we restrict our attention to PS.

2.6.3 Probabilistic Amplitude Shaping

Recently in [13], probabilistic amplitude shaping (PAS) has been proposed to provide low-
complexity integration of shaping into existing BICM systems. PAS uses a reverse con-
catenation strategy where the shaping operation precedes FEC coding as shown in Fig. 2.6.
This construction has been first examined for constrained coding problems in [14]. A cor-
responding soft-decision decoding approach for this structure was studied in [15]. PAS can
be considered as an instance of the Bliss architecture [14] in which a shaping code is used in
the outer layer, and then parity symbols are added in the inner layer. The main advantage of
this structure is that amplitude shaping can be added to existing BICM systems as an outer
code. In addition to closing the shaping gap, PAS moves the rate adaptation functionality
to the shaping layer. This means that instead of using many FEC codes of different rates to
obtain a granular set of transmission rates as in [77, Table 5b], the rate can be adjusted by
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Figure 2.6: Reverse concatenation architecture. Amplitude shaping and deshaping blocks
(dashed boxes) are examined in this thesis.

the amplitude shaper with a fixed FEC code. Owing to these advantages, PAS has attracted
a lot of attention. PAS has been combined with LDPC codes [13], polar codes [78], and
convolutional codes [32]. Its performance has been evaluated over the AWGN channel [13],
optical channels [18, 79, 80], wireless channels [32], and parallel channels with channel state
information (CSI) available at the transmitter [81].

In summary, PAS combines shaped amplitudes with signs generated by an FEC code in
the form of parity based on the binary labels of these amplitudes. Due to the uniform check
bit assumption explained in [13, Sec. IV-A.2], the signs have an (approximately) uniform
distribution which is required to obtain the capacity-achieving distribution. In the following,
the basic and modified PAS structures will be explained. In our papers [32, 36, 82, 83], we
used these PAS structures.

2.6.3.1 Basic PAS Structure

Figure 2.7 shows the basic PAS architecture where first, an amplitude shaping block maps
a k-bit information sequence uk to an N -amplitude sequence aN = (a1, a2, · · · , aN ) in
an invertible manner, where aj ∈ A for j = 1, 2, · · · , N . After this mapping block, the
amplitudes are transformed into bits using the m − 1 amplitude bits of the corresponding
BRGC. We note that due to the shaped nature of aN , the bits at the output of the amplitude-to-
bit conversion in Fig. 2.7 are nonuniform. These N(m− 1) nonuniform bits cN2 , c

N
3 , · · · , cNm

are then used as the input of a systematic, rate Rc = (m−1)/m FEC code which is specified
by an N(m − 1)-by-Nm parity-check matrix P. The N -bit parity output of this code is
employed as the sign bit-level, i.e., the first bit of the binary labels, to determine the sign
sequence sN = (s1, s2, · · · , sN ). Finally, xN = sN ⊗ aN ∈ SNAN is transmitted over the
channel. The transmission rate of this scheme is Rt = k/N bit/1-D.
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Figure 2.7: Basic PAS structure. All information is carried in the amplitudes of the channel
inputs. Transmission rate is Rt = k/N bit/1-D.
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Figure 2.8: Modified PAS structure. Information is carried in the amplitudes of the channel
inputs and in some signs. Transmission rate is Rt = k/N + γ bit/1-D.

2.6.3.2 Modified PAS Structure

To use a higher FEC code rate Rc > (m − 1)/m, a modified PAS architecture is proposed
in [13] as shown in Fig. 2.8. The code rate in this scheme is Rc = (m − 1 + γ)/m where
γ = Rcm − (m − 1) specifies the rate of extra data (in bit/1-D) that will be transmitted.
In this modified structure, in addition to the N(m − 1) bit output of the shaper, extra γN
information bits ũγN are fed to the FEC code which is now specified by an N(m − 1 + γ)-
by-Nm parity-check matrix P. The (1 − γ)N bit parity output of the FEC code is then
multiplexed with the information bits ũγN to form an N -bit sequence sN that will select the
signs. The transmission rate of this scheme is Rt = k/N + γ bit/1-D.

Example 2.1 (Shaping, FEC code and transmission rates in PAS). Consider the PAS
architecture using 8-ASK, a rate Rc = 5/6 FEC code, and a target transmission rate Rt =
2.25 bit/1-D. The rate of the additional information is γ = Rcm − (m − 1) = 0.5 bit/1-D.
Therefore, the rate of the amplitude shaper should be k/N = Rt − γ = 1.75 bit/1-D.

2.6.3.3 PAS Receiver

At the receiver, LLRs are computed using (2.8). We emphasize that unlike uniform signaling
where p(x) is uniform and can be removed from (2.8) without affecting the performance,
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p(x) is nonuniform for PAS and must be used when computing (2.8). Then based on the
LLRs, a binary FEC decoder recovers the bits that were encoded by the FEC code. For the
basic PAS architecture shown in Fig. 2.7, the output of the decoder consists of the estimates
of the amplitude bits. Then these are mapped back to the information bit estimates using
the inverse functions of the blocks in the shaper (green boxes in Fig. 2.7 and 2.8), i.e., the
corresponding bit-to-amplitude mapper followed by the corresponding amplitude deshaper.
In addition to this, for the generalized PAS architecture shown in Fig. 2.8, the decoder also
outputs the estimates of the γN extra data bits which were used as some of the signs.

2.7 Achievable Information Rates
For a memoryless channel which is characterized by an input alphabet X , input distribution
p(x), and channel law p(y|x), the maximum AIR is the MI I(X;Y ) of the channel input X
and output Y . Consequently, the capacity of this channel is defined as I(X;Y ) maximized
over all possible input distributions p(x), typically under an average power constraint, e.g.,
in [26, Sec. 9.1]. The MI can be achieved, e.g., with MLC and multi-stage decoding [27,39].

In BICM systems, channel inputs are uniquely labeled with log2 |X | = m-bit binary
strings. At the transmitter, the output of a binary FEC code is mapped to channel inputs
using this labeling strategy. At the receiver, BMD is employed, i.e., binary labels Ci’s are
assumed to be independent, and consequently, the symbol-wise decoding metric is written as
the product of bit-metrics

q(x, y) =

m∏
i=1

qi (ci (x) , y) (2.26)

where ci(x) is the value at the ith position of the binary label of x. Since the metric in (2.26)
is in general not proportional to p(y|x), i.e., there is a mismatch between the actual channel
law and the one assumed at the receiver, this setup is called mismatched decoding.

Different AIRs have been derived for this so-called mismatched decoding setup. One of
these is the GMI [84, 85]

GMI (p(x)) = max
s≥0

E

[
log

[q(X,Y )]
s∑

x∈X p(x) [q(x, Y )]
s

]
, (2.27)

which reduces to [38, Th. 4.11, Corollary 4.12], [44]

GMI (p(c1)p(c2) · · · p(cm)) =

m∑
i=1

I(Ci;Y ) (2.28)

when the bit-levels are independent at the transmitter, i.e., p(x) = p(c1, c2, · · · , cm) =
p(c1)p(c2) · · · p(cm), and

qi(ci, y) = p(y|ci). (2.29)
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The rate (2.28) is achievable for both uniform and shaped bit-levels [42, 69]. The problem
of computing the bit-level distributions that maximize the GMI in (2.28) is shown to be
nonconvex in [70]. The parameter that maximizes (2.27) to obtain (2.28) is s = 1.

Another AIR for mismatched decoding is the LM (lower bound on the mismatch capacity)
rate [73, 85]

LM (p(x)) = max
s≥0,r(·)

E

[
log

[q(X,Y )]
s
r (X)∑

x∈X p(x) [q(x, Y )]
s
r (x)

]
(2.30)

where r(·) is a real-valued cost function defined on X . The expectations in (2.27) and (2.30)
are taken with respect to p(x, y).

When there is dependence among bit-levels, i.e., when p(x) 6= p(c1)p(c2) · · · p(cm), the
rate [12, 86]

RBMD (p(x)) = H (C1C2 · · ·Cm)−
m∑
i=1

H(Ci|Y ) (2.31)

is achievable by BMD for any joint input distribution p(x) = p(c1, c2, · · · , cm). In [12,
86], the achievability of (2.31) is derived using random coding arguments based on strong
typicality [87, Ch. 1]. Later in [88, Lemma 1], it is shown that (2.31) is an instance of the
so-called LM rate (2.30) for s = 1, the symbol decoding metric (2.26), bit decoding metrics
(2.29), and the cost function

r(c1, c2, · · · , cm) =

∏m
i=1 p(ci)

p(c1, c2, · · · , cm)
. (2.32)

We note here that RBMD in (2.31) can be negative as discussed in [88, Sec. II-B]. In such
cases, RBMD should not be considered as an achievable rate. To avoid this, RBMD is defined
as the maximum of (2.31) and zero in [88, eq. (1)].
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CHAPTER 3
Achievable Rates of PAS:
Random Sign-coding Arguments

“Almost all events are almost equally surprising.”
- T. Cover and J. Thomas

Parts of this chapter are published in:

Y. C. Gültekin, A. Alvarado, and F. M. J. Willems, “Achievable information rates of prob-
abilistic amplitude shaping: An alternative approach via random sign-coding arguments,” in
Proc. Int. Zurich Seminar on Inf. and Commun. (IZS), Zurich, Switzerland, Feb. 2020.
(Abstract & poster presentation)

Y. C. Gültekin, A. Alvarado, and F. M. J. Willems, “Achievable information rates for prob-
abilistic amplitude shaping: An alternative approach via random sign-coding arguments,”
Entropy, vol. 22, no. 7: 762, July 2020.
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Notational Caveat: Unlike the rest of this dissertation, in this chapter, underlined capital and
lower case letters X and x are used to denote random vectors (X1, X2, · · · , Xn) and their
realizations (x1, x2, · · · , xN ), respectively. We note that n = 1, 2, · · · , N is the time index.
Boldface capital and lower case letters B and b are used to denote collections of random
variables (B1, B2, · · · , Bm) and their realizations (b1, b2, · · · , bm), respectively. Underlined
boldface capital and lower case letters B and b are used to denote collections of random
vectors and their realizations, respectively,

B =


B1

B2
...

BM

 =


B11 B12 · · · B1N

B21 B22 · · · B2N

...
...

. . .
...

BM1 BM2 · · · BMN

 (3.1)

b =


b1
b2
...
bM

 =


b11 b12 · · · b1N
b21 b22 · · · b2N

...
...

. . .
...

bM1 bM2 · · · bMN

 . (3.2)

3.1 Introduction
In this chapter, we will address the research question RQ-1 which concerns the achievable
rates of the PAS framework. AIRs of PAS have been investigated in [22–24, 89] based on
Gallager’s error exponent approach [25, Ch. 5].

• In [22], a random code ensemble is considered from which the channel inputs (x) are
drawn. This is a special case of uniform random coding where for each message, there
are multiple codewords. Among these, the codeword which is in the (strongly) typical
set1 with respect to a target distribution p(x) is transmitted [22, Sec. 3]. Then the AIR
in [22, eq. (34)] is derived for a general memoryless decoding metric q(x, y). It is
shown that by properly selecting q(x, y), I(X;Y ) andRBMD can be recovered from the
derived AIR, and consequently, they can be achieved with PAS.

• In [23, Ch. 10], a random code ensemble is considered from which only the signs (s)
of the channel inputs are drawn, while their amplitudes (a) are generated constructively.
We call this the random sign-coding setup. The error exponent [23, eq. (10.42)] is then
derived again for a general memoryless decoding metric.

• In [24, 89], error exponents of PAS have been examined based on the joint source-
channel coding (JSCC) setup, and random sign-coding is considered, but only with
SMD and only for the specific case where γ = 0.

1We refer the reader to [87, Ch. 1] for a detailed explanation of strong typicality.
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Here, we derive AIRs of PAS in a random sign-coding framework based on weak typ-
icality.2 We first consider basic sign coding in which amplitudes of the channel inputs are
generated constructively while the signs are drawn from a randomly generated code. Basic
sign coding corresponds to PAS with γ = 0, i.e., Fig. 2.7. Then we consider modified sign
coding in which only some of the signs are drawn from the random code while the remain-
ing are chosen directly by information bits. Modified sign coding corresponds to PAS with
0 < γ < 1, i.e., Fig. 2.8. We compute AIRs for both SMD and BMD.

Our first objective is to provide alternative proofs of achievability in which the codes
are generated as constructively as possible. In our random sign-coding experiment, both the
amplitude sequences (a) and the sign sequence parts (si) which are information bits are con-
structively produced, and only the remaining signs (sp) are randomly generated as illustrated
in Fig. 3.1 (which is a simplified version of Fig. 2.8). In most proofs of Shannon’s channel
coding theorem, channel input sequences (x) are drawn at random, and the existence of a
good code is demonstrated. Therefore, these proofs are not constructive and cannot be used
to identify good codes as discussed, e.g., in [91, Sec. I] and references therein. On the other
hand, in our proofs using random sign-coding arguments, it is self-evident how—at least a
part of—the code should be constructed. Our second objective is to provide a unified frame-
work in which all possible PAS scenarios are considered, i.e., SMD or BMD at the receiver
with 0 ≤ γ < 1, and corresponding AIRs are determined using a single technique, i.e., the
random sign-coding argument.

Note that our approach differs from the random sign-coding setup considered in [23]
and [24] where all the signs (si and sp) are generated randomly which is called partially
systematic encoding in [23, Ch. 10]. We will show later that only sp needs to be chosen
randomly. Furthermore, we define a special type of typicality (B-typicality, see Definition 3.1
below) that allows us to avoid the mismatched JSCC approach of [24, 89].

3.2 Weak Typicality
Let ε > 0 and n be a positive integer. Consider X with probability distribution p(x). Then
the (weak) typical set Anε (X) of length-n sequences with respect to p(x) is defined as

Anε (X)
∆
=

{
x ∈ Xn :

∣∣∣∣− 1

n
log p(x)−H(X)

∣∣∣∣ ≤ ε} (3.3)

where

p(x)
∆
=

n∏
i=1

p(xi). (3.4)

The cardinality of the typical set Anε (X) satisfies [26, Th. 3.1.2]

(1− ε)2n(H(X)−ε) (a)
≤ |Anε (X)|

(b)
≤ 2n(H(X)+ε) (3.5)

2We refer the reader to [26, Sec. 3.1, 7.6 and 15.2] and [90, Ch. 20] for a detailed discussion on weak typicality.
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Figure 3.1: (Top) A simplified block diagram of PAS. (Bottom) The scope of the random
coding experiments considered in this work and in [22–24, 89].

where (a) holds for n sufficiently large, (b) holds for all n. For x ∈ Anε (X), the probability
of occurrence can be bounded as [26, eq. (3.6)]

2−n(H(X)+ε) ≤ p(x) ≤ 2−n(H(X)−ε). (3.6)

The idea of typical sets can be generalized for pairs of n-sequences. Now consider the
pair of random variables (X,Y ) with probability distribution p(x, y). Then the typical set
Anε (XY ) of pairs of length-n sequences with respect to p(x, y) is defined as

Anε (XY )
∆
=

{
(x, y) ∈ Xn × Yn :

∣∣∣∣− 1

n
log p(x)−H(X)

∣∣∣∣ ≤ ε,∣∣∣∣− 1

n
log p(y)−H(Y )

∣∣∣∣ ≤ ε,∣∣∣∣− 1

n
log p(x, y)−H(X,Y )

∣∣∣∣ ≤ ε} (3.7)

where

p(x, y)
∆
=

n∏
i=1

p(xi, yi), (3.8)

and where p(x) and p(y) are the marginal distributions that correspond to p(x, y). The car-
dinality of the typical set Anε (XY ) satisfies [26, Th. 7.6.1]

|Anε (XY )| ≤ 2n(H(X,Y )+ε) (3.9)
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for all n. For (x, y) ∈ Anε (XY ), the probability of occurrence can be bounded in a similar
manner to (3.6) as

2−n(H(X,Y )+ε) ≤ p(x, y) ≤ 2−n(H(X,Y )−ε). (3.10)

Along the same lines, joint typicality can be extended for collections of n-sequences
(X1, X2, · · · , Xm), and the corresponding typical set Anε (X1X2 · · ·Xm) can be defined
similar to how (3.3) was extended to (3.7). Then the probability of occurrence can be bounded
for (x1, x2, · · · , xm) ∈ Anε (X1X2 · · ·Xm) in a similar manner to (3.10) as

2−n(H(X)+ε) ≤ p(x1, x2, · · · , xm) ≤ 2−n(H(X)−ε) (3.11)

where X = (X1, X2, . . . , Xm).
Finally, we fix x. The conditional (weak) typical set Anε (Y |x) of length-n sequences is

Anε (Y |x) =
{
y : (x, y) ∈ Anε (XY )

}
. (3.12)

In other words, Anε (Y |x) is the set of all y sequences that are jointly typical with x. For
x ∈ Anε (X) and for sufficiently large n, the cardinality of the conditional typical setAnε (Y |x)
satisfies [26, Th. 15.2.2]

|Anε (Y |x)| ≤ 2n(H(Y |X)+2ε). (3.13)

3.3 B-typicality
Definition 3.1 (B-typicality). Let the input distribution p(u) together with the transition law
p(v|u) determine the joint probability distribution p(u, v) = p(u)p(v|u). Now we define

BnV,ε(U)
∆
= {u : u ∈ Anε (U) and Pr{(u, V ) ∈ Anε (UV ) | U = u)} ≥ 1− ε} (3.14)

where V is the output sequence of a “channel” p(v|u) when sequence u is input.

The set BnV,ε(U) in (3.14) guarantees that a sequence u in this B-typical set, will with
high probability lead to a sequence v that is jointly typical with u. We note that U and/or V
can be composite. The set BnV,ε(U) has three properties as stated in Lemma 3.1.

Lemma 3.1 (B-typicality properties). The set BnV,ε(U) in Definition 3.1 has the following
properties.

P1 : For u ∈ BnV,ε(U),
2−n(H(U)+ε) ≤ p(u) ≤ 2−n(H(U)−ε). (3.15)

P2 : For n large enough, ∑
u/∈Bn

V,ε(U)

p(u) ≤ ε.

P3 : |BnV,ε(U)| ≤ 2n(H(U)+ε) holds for all n, while |BnV,ε(U)| ≥ (1− ε)2n(H(U)−ε) holds
for n large enough.
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3.3.1 Proof of B-typicality Property P1

We see from [26, eq. (3.6)] that for u ∈ Anε (U),

2−n(H(U)+ε) ≤ p(u) ≤ 2−n(H(U)−ε). (3.16)

Due to Definition 3.1, each u ∈ BnV,ε(U) is also in Anε (U), more specifically, BnV,ε(U) ⊆
Anε (U). Consequently, (3.16) also holds for u ∈ BnV,ε(U), which completes the proof of P1.

3.3.2 Proof of B-typicality Property P2

Let (U, V ) be independent and identically distributed with respect to p(u, v). Then

Pr{(U, V ) ∈ Anε (UV )} =
∑
u

p(u)
∑

v:(u,v)∈An
ε (UV )

p(v|u)

=
∑

u∈Bn
V,ε(U)

p(u)
∑

v:(u,v)∈An
ε (UV )

p(v|u)

+
∑

u/∈Bn
V,ε(U)

p(u)
∑

v:(u,v)∈An
ε (UV )

p(v|u)

≤
∑

u∈Bn
V,ε(U)

p(u) +
∑

u/∈Bn
V,ε(U)

p(u)(1− ε) (3.17)

= 1− ε+ ε
∑

u∈Bn
V,ε(U)

p(u)

= 1− ε+ εPr{U ∈ BnV,ε(U)}. (3.18)

Here (3.17) follows from Definition 3.1 which states that Pr
{

(u, V ) ∈ Anε (UV )
∣∣U = u

}
<

1− ε for u ∈ Anε (U), if u /∈ BnV,ε(U). Then from (3.18), we obtain

Pr{U ∈ BnV,ε(U)} ≥ Pr{(U, V ) ∈ Anε (UV )} − 1 + ε

ε

= 1− Pr{(U, V ) /∈ Anε (UV )}
ε

≥ 1− ε (3.19)

for large enough n. Here (3.19) follows from [26, Th. 7.6.1] which states that Pr{(U, V ) ∈
Anε (UV )} → 1 as n → ∞. This implies that Pr{(U, V ) /∈ Anε (UV )} ≤ ε2 for positive ε
and large enough n, which completes the proof of P2.

3.3.3 Proof of B-typicality Property P3

We see from [26, Th. 3.1.2] that

|Anε (U)| ≤ 2n(H(U)+ε). (3.20)
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Figure 3.2: Sign-coding structure: Sign-coding is combined with amplitude shaping.

Since BnV,ε(U) ⊆ Anε (U) again by Definition 3.1, (3.20) also holds for |BnV,ε(U)|. This
proves the upper bound in P3. We obtain the lower bound from (3.19) for n sufficiently large

1− ε ≤ Pr{U ∈ BnV,ε(U)}

≤
∑

u∈Bn
V,ε(U)

2−n(H(U)−ε) (3.21)

= |BnV,ε(U)|2−n(H(U)−ε) (3.22)

where (3.21) follows from (3.16).

3.4 Random Sign-coding Experiment

3.4.1 Sign-coding Setup
We cast the PAS structure shown in Fig. 3.1 (top) as a sign-coding structure as in Fig. 3.2.
The sign-coding setup consists of two layers: a shaping layer and a coding layer.

Definition 3.2 (Sign-coding). For every message index pair (ma,ms), with uniform ma ∈
{1, 2, · · · ,Ma} and uniform ms ∈ {1, 2, · · · ,Ms}, a sign-coding structure as shown in
Fig. 3.2 consists of the following.

• A shaping layer that produces for every message index ma, a length-n shaped ampli-
tude sequence a(ma) where the mapping is one-to-one. The set of amplitude sequences
is assumed to be shaped but uncoded.

• An additional n1-bit (uniform) information string in the form of a sign sequence part
s′(ms) = (s1(ms), s2(ms), · · · , sn1

(ms)) for every message index ms.

• A coding layer that extends the first sign sequence part s′(ms) for all ma and ms by
adding s′′(ma,ms) = (sn1+1(ma,ms), sn1+2(ma,ms), · · · , sn(ma,ms)), a second
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Figure 3.3: Shaping layer of the random sign-coding setup with SMD.
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Figure 3.4: Shaping layer of the random sign-coding setup with BMD for 2m+1-ASK.

length-n2 (uniform) sign sequence part. This is obtained by using an encoder that pro-
duces redundant signs in the set S from a(ma) and s′(ms). Here n1 + n2 = n.

Finally, the transmitted sequence is x(ma,ms) = a(ma)⊗ s(ma,ms), where s(ma,ms) =
(s′(ms), s

′′(ma,ms)). The sign-coding setup with n1 = 0 (γ = 0) is called basic sign-
coding (basic PAS, Fig. 2.7), while the setup with n1 > 0 (γ > 0) is called modified sign-
coding (modified PAS, Fig. 2.8).

3.4.2 Shaping Layer
When SMD is employed at the receiver, the shaping layer is as shown in Fig. 3.3. Here, let
A be distributed with p(a) over A. Then, the shaper produces for every message index ma

a length-n amplitude sequence a(ma) ∈ BnSY,ε(A). We note that for this sign-coding setup,
the rate is

R =
1

n
log2 |MaMs| = γ +

1

n
log2 |BnSY,ε(A)| ≥ H(A) + γ − 2ε (3.23)

where the inequality in (3.23) follows for n large enough from P3.
On the other hand, when BMD is used at the receiver, the shaping layer is as shown in

Fig. 3.4. Here, let B = (B1, B2, · · · , Bm) be distributed with p(b) = p(b1, b2, · · · , bm)
over {0, 1}m. The shaper produces for every message index ma an n-sequence of m-tuples
b(ma) = (b1(ma), b2(ma), · · · , bm(ma)) ∈ BnSY,ε(B1B2 · · ·Bm). Then, each m-tuple is
mapped to an amplitude sequence a(ma) by a symbol-wise mapping function f(·). We note
that for this sign-coding setup, the rate is:

R =
1

n
log2 |MaMs| = γ +

1

n
log2 |BnSY,ε(B)| ≥ H(B) + γ − 2ε (3.24)

where the inequality in (3.24) follows for n large enough from P3.
To realize f(·), we label the channel inputs with (m + 1)-bit strings. The amplitude

is addressed by m amplitude bits B = (B1, B2, · · · , Bm), while the sign is addressed by a
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sign bit S. The symbol-wise mapping function f(·) in Fig. 3.4 uses the addressing B ⇐⇒ A.
We note that unlike the case in Sec. 2.4.1, we use (S,B1, B2, · · · , Bm) to denote a channel
input instead of (C1, C2, · · · , Cm+1) to emphasize the distinction between the sign and the
amplitudes. The amplitudes and signs of x ∈ X are tabulated for 8-ASK in Table 3.1 along
with an example of the mapping function f(b1, b2), namely the BRGC discussed in Sec. 2.4.1.

Table 3.1: Input alphabet and mapping function for 8-ASK.

A 7 5 3 1 1 3 5 7
S -1 -1 -1 -1 1 1 1 1
X -7 -5 -3 -1 1 3 5 7
B1 0 0 1 1 1 1 0 0
B2 0 1 1 0 0 1 1 0

3.4.3 Decoding Rules
At the receiver, SMD finds the unique message index pair (m̂a, m̂s) such that the corre-
sponding amplitude-sign sequence is jointly typical with the received output sequence y, i.e.,
(a(m̂a), s(m̂a, m̂s), y) ∈ Anε (ASY ).

On the other hand, BMD finds the unique message index pair (m̂a, m̂s) such that the cor-
responding bit and sign sequences are (individually) jointly typical with the received sequence
y, i.e., (s(m̂a, m̂s), y) ∈ Anε (SY ), and (bj(m̂a), y) ∈ Anε (BjY ) for j = 1, 2, · · · ,m.
We note that the decoder can use the bit-metrics p(bji = 1|yi) = 1 − p(bji = 0|yi) for
j = 1, 2, · · · ,m and i = 1, 2, · · · , n to find p(bj |y). Here bji is the jth bit of the ith symbol.
Together with p(y) and p(bj), the decoder can check whether (bj , y) ∈ Anε (BjY ). We note
that Bj’s are in general not uniform. A similar statement holds for the uniform sign S.

3.5 Achievable Information Rates for Sign-coding
Here we investigate AIRs of the sign-coding architecture in Fig. 3.2. We consider both SMD
and BMD at the receiver. In what follows, four AIRs are presented. The proofs are based
on B-typicality, a variation of weak typicality, and random sign-coding arguments. As indi-
cated in Definition 3.2, signs S are assumed to be uniform in the proofs. We have not ap-
plied weak typicality for continuous random variables, discussed in [26, Sec. 8.2], [92, Sec.
10.4] and [90, Sec. 20.13], since our channels are discrete-input. However, it is possible
that a hybrid version of weak typicality could be developed that matches with discrete-input
continuous-output channels.

Definition 3.3 (Achievable information rate). A rate R is said to be achievable if for ev-
ery δ > 0 and n large enough, there exists a sign-coding encoder and a decoder such that
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(1/n) log2 (MaMs) ≥ R− δ and error probability Pe ≤ δ.

To derive AIRs, we will follow the classical approach, e.g., as in [26, Sec. 7.7], and
upper-bound the average probability of error P e, averaged over all sign-codewords in the
sign-codebook and averaged over all sign-codebooks. This way, we will demonstrate the
existence of at least one good sign code. Again as in [26, Sec. 7.7] and as explained in
Sec. 3.4.3, we decode by joint typicality: the decoder looks for a unique message index pair
(m̂a, m̂s) for which the corresponding amplitude-sign sequence (a, s) is jointly typical with
the received sequence y.

By the properties of weak typicality and B-typicality, the transmitted amplitude-sign
sequence and the received sequence are jointly typical with a high probability for n large
enough. We call the event that the transmitted amplitude-sign sequence is not jointly typical
with the received sequence the first error event with average probability P e(1). Furthermore,
the probability that any other (not transmitted) amplitude-sign sequence is jointly typical with
the received sequence vanishes for asymptotically large n. We call the event that there is an-
other amplitude-sign sequence that is jointly typical with the received sequence the second
error event with average probability P e(2). Observing that these events are not disjoint, we
can write [26, eq. (7.75)]

P e ≤ P e(1) + P e(2). (3.25)

3.5.1 Sign-coding with Symbol-metric Decoding
Theorem 3.1 (Basic sign-coding with SMD). For a discrete memoryless channel with am-
plitude shaping and basic sign-coding, the rate

Rγ=0
SMD = max

p(a):H(A)≤I(SA;Y )
H(A) (3.26)

is achievable using SMD.

Theorem 3.1 implies that for a memoryless channel, the rate R = H(A) is achievable
with basic sign-coding, as long as H(A) ≤ I(SA;Y ) = I(X;Y ) is satisfied. For the
AWGN channel, this means that a range of rate-SNR pairs is achievable. One of these points,
H(A) = I(SA;Y ), is on the capacity-SNR curve. The existence of an amplitude distribution
p(a) for which H(A) = I(SA;Y ) can be seen by first observing that

H(A) = I(SA;Y ) = H(SA)−H(SA|Y ) = H(A) + 1−H(X|Y ) (3.27)

since the capacity-achieving distributions are symmetric, i.e., H(SA) = H(A) + 1. Conse-
quently, H(A) = I(SA;Y ) and H(X|Y ) = 1 are equivalent conditions. Then the existence
of a point on the capacity-SNR curve for which H(X|Y ) = 1 can be seen by observing that
as SNR → ∞, the equivocation H(X|Y ) ↓ 0. On the other hand as SNR ↓ 0, the equivoca-
tion H(X|Y ) → H(X) = H(A) + 1 ≥ 1. Then by the continuity of H(X|Y ) in the SNR,
there is an SNR for which H(X|Y ) = 1. The existence of this point on the capacity-SNR
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Figure 3.5: Sign-coding with SMD for 4-ASK. All C4-ASK ≥ 0.562 bit/1-D can be achieved
with sign-coding.

curve will also be observed from Fig. 3.5 discussed in Example 3.1. We note that here, “ca-
pacity” indicates the largest achievable rate using X as the channel input alphabet under the
average power constraint E[X2] ≤ P .

Theorem 3.2 (Modified sign-coding with SMD). For a discrete memoryless channel with
amplitude shaping and modified sign-coding, the rate

Rγ>0
SMD = max

p(a),γ:H(A)+γ≤I(SA;Y )
H(A) + γ (3.28)

is achievable using SMD for γ < 1.

Theorem 3.2 implies that for a memoryless channel, the rate H(A) + γ is achievable
with modified sign-coding, as long as R = H(A) + γ ≤ I(SA;Y ) = I(X;Y ) is satisfied.
For the AWGN channel, this means that all points on the capacity-SNR curve for which
H(X|Y ) ≤ 1− γ are achievable. This follows from

H(A) + γ ≤ I(SA;Y ) = H(SA)−H(SA|Y ) = H(A) + 1−H(X|Y ), (3.29)

i.e., the constraint in the maximization in (3.28).
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Example 3.1. We consider the AWGN channel3 with average power constraint E[X2] ≤ P .
Figure 3.5 shows the capacity of 4-ASK

C4-ASK = max
p(x):X={−3,−1,+1,+3},

E[X2]≤P

I(X;Y ) (3.30)

together with the amplitude entropyH(A) of the distribution that achieves this capacity. Here
SNR = E[X2]/σ2, and σ2 is the noise variance. Basic sign-coding achieves capacity only
for SNR = 0.72 dB, i.e., at the point whereH(A) = I(X;Y ) which isC4-ASK = 0.562 bit/1-
D. We see from Fig. 3.5 that the shaping gap is negligible around this point, i.e., the capacity
C4-ASK of 4-ASK and the MI I(X;Y ) for uniform p(x) are virtually the same. On the other
hand, this gap is significant for larger rates, e.g., it is around 0.42 dB at 1.6 bit/1-D. To achieve
rates larger than 0.562 bit/1-D on the capacity-SNR curve, modified sign-coding (γ > 0) is
required. At a given SNR, C4-ASK can be written as C4-ASK = H(A) + γ, i.e., when H(A)
curve is shifted above by γ, the crossing point is again at C4-ASK for that SNR. We have also
plotted the additional rate γ = C4-ASK−H(A) in Fig. 3.5. As an example, at SNR = 9.74 dB,
CASK = H(A)+γ = 1.6 can be achieved with modified sign-coding whereH(A) = 0.9 and
γ = 0.7. We observe that sign-coding achieves the capacity of 4-ASK for SNR ≥ 0.72 dB.

3.5.1.1 Proof of Theorem 3.1

For the error of the first kind, we can write:

P e(1) =

Ma∑
ma=1

1

Ma

∑
s∈Sn

p(s)
∑
y∈Yn

p(y|a(ma), s)1[(a(ma), s, y) /∈ Anε (ASY )]

=
∑
ma

1

Ma

∑
s

∑
y

p(s, y|a(ma))1[(a(ma), s, y) /∈ Anε ] (3.31)

=
∑
ma

1

Ma
Pr
{

(a(ma), S, Y ) /∈ Anε
∣∣A = a(ma)

}
≤
∑
ma

ε

Ma
(3.32)

= ε (3.33)

where we simplified the notation by replacing ma = 1, 2, · · · ,Ma by ma, s ∈ Sn by s,
and y ∈ Yn by y in (3.31). Furthermore, we dropped the index of the typical set Anε (ASY )
and used Anε instead. We will follow these notations for summations and typical sets for the

3In this case, we assume that the channel output Y is a quantized version of the continuous channel output X+Z.
Furthermore, we assume that this quantization is with a resolution high enough that the discrete-output channel is an
accurate model for the underlying continuous-output channel. Therefore, the achievability results we obtained for
discrete memoryless channels carry over to the discrete-input AWGN channel.
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rest of the chapter, assuming for the latter that the index of the typical set will be clear from
the context. To obtain (3.31), we used p(s)p(y|a(ma), s) = p(s, y|a(ma)). Then, (3.32) is a
direct consequence of Definition 3.1 since a(ma) ∈ BnSY,ε(A) for ma = 1, 2, · · · ,Ma.

For the error of the second kind, we can write:

P e(2)

≤
∑
ma

1

Ma

∑
s

p(s)
∑
y

p(y|a(ma), s)

Ma∑
ka=1,ka 6=ma

∑
s̃∈Sn

p(s̃)1[(a(ka), s̃, y) ∈ Anε ]

= Ma

∑
ma

∑
s

p(s)

Ma

∑
y

p(y|a(ma), s)
∑

ka 6=ma

∑
s̃

p(s̃)

Ma
1[(a(ka), s̃, y) ∈ Anε ] (3.34)

≤ Ma26nε
∑
ma

∑
s

p(a(ma))p(s)
∑
y

p(y|a(ma), s)

·
∑

ka 6=ma

∑
s̃

p(a(ka))p(s̃)1[(a(ka), s̃, y) ∈ Anε ] (3.35)

≤ Ma26nε
∑
a∈An

∑
s

p(a)p(s)
∑
y

p(y|a, s)
∑
ã∈An

∑
s̃

p(ã)p(s̃)1[(ã, s̃, y) ∈ Anε ](3.36)

= Ma26nε
∑

(y,x̃)∈An
ε

p(x̃)p(y) (3.37)

≤ 2n(H(A)+ε)26nε|Anε (XY )|2−n(H(X)−ε)2−n(H(Y )−ε) (3.38)
≤ 2n(H(A)+7ε)2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε) (3.39)
= 2n(H(A)−I(SA;Y )+10ε) (3.40)

where we simplified the notation by replacing ka = 1, 2, · · · ,Ma : ka 6= ma by ka 6= ma,
and s̃ ∈ Sn by s̃ in (3.34). We will follow these notations for the rest of the chapter. Then

(3.35) follows for n sufficiently large and for a ∈ BnSY,ε(A) from

1

Ma
=

1

|BnSY,ε(A)|
≤ 2−n(H(A)−ε))

1− ε
(3.41)

=
22nε

1− ε
2−n(H(A)+ε)

≤ 22nε

1− ε
p(a) (3.42)

≤ 23nεp(a) (3.43)

where (3.41) follows from the B-typicality property P3, (3.42) follows from the
B-typicality property P1, and (3.43) holds for all large enough n,
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(3.36) follows from summing over a ∈ An instead of over a(ma) ∈ Bnε , and over ã ∈ An
instead of a(ka) ∈ Bnε for ka 6= ma,

(3.37) is obtained by working out the summations over a and s and by replacing (s̃, ã)
with x̃,

(3.38) follows from Ma = |Bnε (A)| ≤ 2n(H(A)+ε), i.e., the B-typicality property P3,
and from (3.6), and

(3.39) follows from (3.9).

The conclusion from (3.40) is that for H(A) < I(X;Y ) − 10ε, the error probability of the
second kind

P e(2) ≤ ε (3.44)

for n large enough. Using (3.33) and (3.44) in (3.25), we find that the error probability
averaged over all sign-codewords in the sign-codebook, and averaged over all sign-codebooks
P e ≤ 2ε for n large enough. This implies the existence of a basic sign-code with total error
probability Pe = Pr{M̂a 6= Ma} ≤ 2ε. This holds for all ε > 0, and therefore, the rate

R = H(A) ≤ I(X;Y ) (3.45)

is achievable with basic sign-coding, which concludes the proof of Theorem 3.1.

3.5.1.2 Proof of Theorem 3.2

For the error of the first kind, we can write:

P e(1)

=
∑
ma

1

Ma

Ms∑
ms=1

1

2n1

∑
s′′∈Sn2

p(s′′)

·
∑
y

p(y|a(ma), s′(ms)s
′′)1[(a(ma), s′(ms)s

′′, y) /∈ Anε ]

=
∑
ma

1

Ma

∑
ms

∑
s′′

2−n
∑
y

p(y|a(ma), s′(ms)s
′′)1[(a(ma), s′(ms)s

′′, y) /∈ Anε ] (3.46)

=
∑
ma

1

Ma

∑
ms

∑
s′′

∑
y

p(s′(ms)s
′′, y|a(ma))1[(a(ma), s′(ms)s

′′, y) /∈ Anε ] (3.47)

=
∑
ma

1

Ma
Pr
{

(a(ma), S, Y ) /∈ Anε
∣∣A = a(ma)

}
≤
∑
ma

ε

Ma
(3.48)

= ε (3.49)
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where we simplified the notation by replacing s′′ ∈ Sn2 by s′′ and ms = 1, 2, · · · ,Ms by
ms in (3.46). We will follow these notations for the rest of the chapter. To obtain (3.46), we
used the fact that S′′ is uniform, more precisely p(s′′) = 2−n2 . To obtain (3.47), we used the
fact that S′ is also uniform, and then, 2−np(y|a(ma), s′(ms)s

′′) = p(s′(ms)s
′′, y|a(ma)).

Then, (3.48) is a direct consequence of Definition 3.1 since a(ma) ∈ BnSY,ε(A) for ma =
1, 2, · · · ,Ma.

For the error of the second kind, we obtain:

P e(2) ≤
∑
ma

1

Ma

∑
ms

1

2n1

∑
s′′

p(s′′)
∑
y

p(y|a(ma), s′(ms)s
′′)

·
∑

(ka,ks)6=(ma,ms)

∑
s̃′′

p(s̃′′)1[(a(ka), s′(ks)s̃
′′, y) ∈ Anε ]

= Ma2n1

∑
ma,ms,s′′

2−n

Ma

∑
y

p(y|a(ma), s′(ms)s
′′)

·
∑

(ka,ks)6=(ma,ms)

∑
s̃′′

2−n

Ma
1[(a(ka), s′(ks)s̃

′′, y) ∈ Anε ](3.50)

= Ma2n1

∑
ma,ms,s′′

2−n

Ma

∑
y

p(y|a(ma), s′(ms)s
′′)

·
∑

ka 6=ma,ks,s̃′′

2−n

Ma
1[(a(ka), s′(ks)s̃

′′, y) ∈ Anε ]

+ 2n1

∑
ma,ms,s′′

2−n

Ma

∑
y

p(y|a(ma), s′(ms)s
′′)

·
∑

ks 6=ms,s̃′′

2−n1[(a(ma), s′(ks)s̃
′′, y) ∈ Anε ](3.51)

≤Ma2n126nε
∑

ma,ms,s′′

p(a(ma))p(s′(ms)s
′′)
∑
y

p(y|a(ma), s′(ms)s
′′)

·
∑

ka 6=ma,ks,s̃′′

p(a(ka))p(s′(ks)s̃
′′)1[(a(ka), s′(ks)s̃

′′, y) ∈ Anε ]

+ 2n123nε
∑

ma,ms,s′′

p(a(ma))p(s′(ms)s
′′)
∑
y

p(y|a(ma), s′(ms)s
′′)

·
∑

ks 6=ms,s̃′′

p(s′(ks)s̃
′′)1[(a(ma), s′(ks)s̃

′′, y) ∈ Anε ].(3.52)

Here, we replaced nested summations over ma, ms, and s′ by a single summation over
(ma,ms, s

′) for the sake of better readability. We will use this notation for the rest of the
chapter. Then
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(3.50) follows from n = n1 + n2 and from the fact that S′′ is uniform, more precisely,
p(s′′) = 2−n2 ,

(3.51) is obtained by splitting (ka, ks) 6= (ma,ms) into {ka 6= ma, ks} and {ka =
ma, ks 6= ms}, and

(3.52) follows for n sufficiently large and for a ∈ BnSY,ε(A) from

1

Ma

(3.43)
≤ 23nεp(a),

and from p(s′s′′) = 2−n.

From (3.52), we obtain:

P e(2)

≤ Ma2n126nε
∑
a,s′s′′

p(a)p(s′s′′)
∑
y

p(y|a, s′s′′)
∑
ã,s̃′s̃′′

p(ã)p(s̃′s̃′′)1[(ã, s̃′s̃′′, y) ∈ Anε ]

+ 2n123nε
∑
a,s′s′′

p(a)p(s′s′′)
∑
y

p(y|a, s′s′′)
∑
s̃′s̃′′

p(s̃′s̃′′)1[(a, s̃′s̃′′, y) ∈ Anε ] (3.53)

= Ma2n126nε
∑
a,s

p(a)p(s)
∑
y

p(y|a, s)
∑
ã,s̃

p(ã)p(s̃)1[(ã, s̃, y) ∈ Anε ]

+ 2n123nε
∑
a,s

p(a)p(s)
∑
y

p(y|a, s)
∑
s̃

p(s̃)1[(a, s̃, y) ∈ Anε ], (3.54)

where

(3.53) follows from summing over a ∈ An instead of over a(ma) ∈ Bnε , and over ã ∈ An
instead of a(ka) ∈ Bnε for ka 6= ma. Moreover, it follows from summing over
s′ ∈ Sn1 instead of s′(ks) for ks = 1, 2, · · · ,Ms and ks 6= ms, and

(3.54) follows from substituting s for s′s′′, and s̃ for s̃′s̃′′.

Finally, from (3.54), we obtain:

P e(2) = Ma2n126nε
∑
y

p(y)
∑
x̃

p(x̃)1[(x̃, y) ∈ Anε ]

+ 2n123nε
∑
a,y

p(a, y)
∑
s̃

p(s̃)1[(a, s̃, y) ∈ Anε ] (3.55)

≤ 2n(H(A)+ε)2nγ26nε|Anε (XY )|2−n(H(X)−ε)2−n(H(Y )−ε)

+ 2nγ23nε|Anε (SAY )|2−n(H(A,Y )−ε)2−n(H(S)−ε) (3.56)
≤ 2n(H(A)+7ε)2nγ2n(H(X,Y )+ε)2−n(H(X)−ε)2−n(H(Y )−ε)

+ 2nγ23nε2n(H(S,A,Y )+ε)2−n(H(A,Y )−ε)2−n(H(S)−ε) (3.57)
= 2n(H(A)+γ+10ε−I(X;Y )) + 2n(γ+6ε−I(S;A,Y )). (3.58)



3

3.5 Achievable Information Rates for Sign-coding 49

Here, we substituted n1 = nγ in (3.56). Then

(3.55) is obtained by working out the summations over a, s in the first part and s in the
second part. Moreover, we replaced (s̃, ã) with x̃,

(3.56) is obtained using for the first part that Ma = |Bnε (A)| ≤ 2n(H(A)+ε), i.e., the B-
typicality property P3 and (3.6). For the second part, we used (3.6) for p(s) and
(3.10) for p(a, y), and

(3.57) follows from (3.9) and its extension to jointly typical triplets, more precisely, it
follows from |Anε (SAY )| ≤ 2n(H(S,A,Y )+ε).

The conclusion from (3.58) is that for H(A) + γ < I(X;Y ) − 10ε and for γ <
I(S;A, Y )− 6ε, the error probability of the second kind

P e(2) ≤ ε (3.59)

for n large enough. The first constraint, i.e., H(A) + γ < I(X;Y ) − 10ε, already implies
the second constraint, i.e., γ < I(S;A, Y )− 6ε, since

γ < I(X;Y )−H(A)− 10ε

≤ I(S,A;Y )− I(A;Y )− 10ε (3.60)
= I(S;Y |A)− 10ε (3.61)
≤ I(S;Y |A) + I(S;A)− 10ε

= I(S;A, Y )− 10ε (3.62)

where we substituted (S,A) for X in (3.60). Here, (3.60) follows from [26, Th. 2.4.1],
and both (3.61) and (3.62) follow from the chain rule for MI [26, Th. 2.5.2].

Using (3.49) and (3.59) in (3.25), we find that the error probability averaged over all sign-
codewords in the modified sign-codebook, and averaged over all modified sign-codebooks
P e ≤ 2ε for n large enough. This implies the existence of a modified sign-code with total
error probability Pe = Pr{(M̂a, M̂s) 6= (Ma,Ms)} ≤ 2ε. This holds for all ε > 0, and thus,
the rate

R = H(A) + γ ≤ I(X;Y ) (3.63)

is achievable with modified sign-coding, which concludes the proof of Theorem 3.2.

3.5.2 Sign-coding with Bit-metric Decoding
The following theorems give AIRs for sign-coding with BMD.

Theorem 3.3 (Basic sign-coding with BMD). For a discrete memoryless channel with am-
plitude shaping using 2m+1-ASK and basic sign-coding, the rate

Rγ=0
BMD = max

p(b):H(B)≤RBMD(p(x))
H(B) (3.64)



3

50 Random Sign-coding Arguments

is achievable using BMD. Here B = (B1, B2, . . . , Bm), p(b) = p(b1, b2, . . . , bm), p(x) =
p(s, b1, b2, . . . , bm), and RBMD(p(x)) is as defined in (2.31).

Theorem 3.4 (Modified sign-coding with BMD). For a discrete memoryless channel with
amplitude shaping using 2m+1-ASK and modified sign-coding, the rate

Rγ>0
BMD = max

p(b),γ:H(B)+γ≤RBMD(p(x))
H(B) + γ (3.65)

is achievable using BMD for γ < 1.

Theorems 3.3 and 3.4 imply that for a memoryless channel, the rate R = H(B) + γ =
H(A) + γ is achievable with sign-coding and BMD, as long as R ≤ RBMD is satisfied.

Remark 3.1 (Random sign-coding with binary linear codes). An amplitude can be repre-
sented by m bits. We can uniformly generate a code matrix with mn rows of length n. This
matrix can be used to produce sign sequences. This results in the pairwise independence of
any two different sign sequences, as is explained in the proof of [25, Th. 6.2.1]. Inspection of
the proof of our Theorem 3.1 shows that only the pairwise independence of sign sequences
is needed. Therefore, achievability can also be obtained with a binary linear code. Note that
our linear code can also be seen as a systematic code that generates parity. The code rate of
the corresponding systematic code is m/(m + 1). For BMD, similar reasoning shows that
linear codes lead to achievability, and also for modified sign-coding achievability follows for
binary linear codes. The rate of the systematic code that corresponds to the modified setting
is (m+ γ)/(m+ 1).

3.5.2.1 Proof of Theorem 3.3

For the error of the first kind, we can write:

P e(1) =
∑
ma

1

Ma

∑
s

p(s)
∑
y

p(y|b(ma), s) (3.66)

·1

[
m⋃
i=1

((bi(ma), y) /∈ Anε )
⋃

((s, y) /∈ Anε )

]
≤
∑
ma

1

Ma

∑
s

∑
y

p(s, y|b(ma))1[(b(ma), s, y) /∈ Anε ] (3.67)

=
∑
ma

1

Ma
Pr
{

(b(ma), S, Y ) /∈ Anε
∣∣B = b(ma)

}
(3.68)

≤
∑
ma

ε

Ma
(3.69)

= ε, (3.70)
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where we used b(ma) to denote (b1(ma), b2(ma), . . . , bm(ma)) in (3.66) and B to denote
(B1, B2, . . . , Bm) in (3.68). Then, we used p(s)p(y|b(ma), s) = p(s, y|b(ma)) in (3.67).
Here, (3.67) follows from the fact that if at least one of b1(ma), b2(ma), . . . , bm(ma) or s
is not jointly typical with y, then (b(ma), s, y) is not jointly typical. Then, (3.69) is a direct
consequence of Definition 3.1 since b(ma) ∈ BnSY,ε(B1B2 · · ·Bm) for ma = 1, 2, · · · ,Ma.

For the error of the second kind, we can write:

P e(2)

≤
∑
ma

1

Ma

∑
s

p(s)
∑
y

p(y|b(ma), s)

·
∑

ka 6=ma

∑
s̃

p(s̃)1

[
m⋂
i=1

((bi(ka), y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]

= Ma

∑
ma

∑
s

p(s)

Ma

∑
y

p(y|b(ma), s)

·
∑

ka 6=ma

∑
s̃

p(s̃)

Ma
1

[
m⋂
i=1

((bi(ka), y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]
≤Ma26nε

∑
ma

∑
s

p(b(ma))p(s)
∑
y

p(y|b(ma), s) (3.71)

·
∑

ka 6=ma

∑
s̃

p(s̃)p(b(ka))1

[
m⋂
i=1

((bi(ka), y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]
≤Ma26nε

∑
b∈{0,1}mn

∑
s

p(b)p(s)
∑
y

p(y|b, s) (3.72)

·
∑

b̃∈{0,1}mn

∑
s̃

p(s̃)p(b̃)1

[
m⋂
i=1

((bi, y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]

= Ma26nε
∑
y

p(y)
∑
b̃,s̃

p(b̃, s̃)1

[
m⋂
i=1

((bi, y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]
(3.73)

≤ 2n(H(B)+7ε)|Anε (Y )|2−n(H(Y )−ε)

(
m∏
i=1

|Anε (Bi|y)|

)
|Anε (S|y)|2−n(H(B,S)−ε) (3.74)

≤ 2n(H(B)+7ε)2n(H(Y )+ε)2−n(H(Y )−ε)

·2n((
∑m

i=1H(Bi|Y ))+H(S|Y )+2(m+1)ε)2−n(H(B,S)−ε) (3.75)

= 2n((H(B)−H(B,S)+(
∑m

i=1H(Bi|Y ))+H(S|Y )+(12+2m)ε) (3.76)

where we used b to denote (b1, b2, . . . , bm) and b̃ to denote (b̃1, b̃2, . . . , b̃m) in (3.72). We
also used B to denote (B1, B2, . . . , Bm) in (3.74). Finally, we simplified the notation by
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replacing b̃ ∈ {0, 1}mn by b̃ in (3.73). Then

(3.71) follows for n sufficiently large and for b ∈ BnSY,ε(B) from 1/Ma ≤ 23nεp(b),
which can be shown in a similar way to (3.43),

(3.72) follows from summing over b ∈ {0, 1}mn instead of over b(ma) ∈ Bnε , and over
b̃ ∈ {0, 1}mn instead of over b(ka) ∈ Bnε for ka 6= ma,

(3.73) is obtained by working out the summations over b1, b2, . . . , bm, and s,

(3.74) follows from Ma = |Bnε (B)| ≤ 2n(H(B)+ε), i.e., the B-typicality property P3,
from (3.6), and from (3.11), and

(3.75) follows from (3.5) and (3.13).

The conclusion from (3.76) is that for

H(B) < H(B, S)−H(S|Y )−

(
m∑
i=1

H(Bi|Y )

)
− (12 + 2m)ε

= RBMD(p(b, s))− (12 + 2m)ε,

the error probability of the second kind

P e(2) ≤ ε (3.77)

for n large enough. Using (3.70) and (3.77) in (3.25), we find that the error probability
averaged over all sign-codewords in the sign-codebook, and averaged over all sign-codebooks
P e ≤ 2ε for n large enough. This implies the existence of a sign-code with total error
probability Pe = Pr{M̂a 6= Ma} ≤ 2ε. This holds for all ε > 0, and thus, the rate

R = H(B) ≤ RBMD (3.78)

is achievable with sign-coding and BMD, which concludes the proof of Theorem 3.3.
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3.5.2.2 Proof of Theorem 3.4

For the error of first kind, we can write:

P e(1) =
∑
ma

1

Ma

∑
ms

1

2n1

∑
s′′

p(s′′)
∑
y

p(y|b(ma), s′(ms)s
′′)

·1

[
m⋃
i=1

((bi(ma), y) /∈ Anε )
⋃

((s′(ms)s
′′, y) /∈ Anε )

]
=
∑
ma

1

Ma

∑
ms

∑
s′′

2−n
∑
y

p(y|b(ma), s′(ms)s
′′)

·1

[
m⋃
i=1

((bi(ma), y) /∈ Anε )
⋃

((s′(ms)s
′′, y) /∈ Anε )

]
(3.79)

≤
∑
ma

1

Ma

∑
ms

∑
s′′

∑
y

p(s′(ms)s
′′, y|b(ma))

·1[(b(ma), s′(ms)s
′′, y) /∈ Anε ] (3.80)

=
∑
ma

1

Ma
Pr{(b(ma), S, Y ) /∈ Anε |B = b(ma)}

≤
∑
ma

ε

Ma
(3.81)

= ε. (3.82)

Here, to obtain (3.79), we used the fact that S′′ is uniform, more precisely, p(s′′) = 2−n2 .
Then, we used 2−np(y|b(ma), s′(ms)s

′′) = p(s′(ms)s
′′, y|b(ma)) in (3.80). Furthermore,

(3.80) also follows from the fact that if at least one of b1(ma), b2(ma), . . . , bm(ma) or
s′(ms)s

′′ is not jointly typical with y, then (b(ma), s′(ms)s
′′, y) is not jointly typical. Then,

(3.81) is a direct consequence of Definition 3.1 since b(ma) ∈ BnSY,ε(B1B2 · · ·Bm) for
ma = 1, 2, · · · ,Ma.
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For the error of second kind, we can write:

P e(2)

≤
∑
ma

1

Ma

∑
ms

1

2n1

∑
s′′

p(s′′)
∑
y

p(y|b(ma), s′(ms)s
′′)

·
∑

(ka,ks)6=(ma,ms)

∑
s̃′′

p(s̃′′)1

[
m⋂
i=1

((bi(ka), y) ∈ Anε )
⋂

((s′(ks)s̃
′′, y) ∈ Anε )

]

= Ma2n1

∑
ma,ms,s′′

2−n

Ma

∑
y

p(y|b(ma), s′(ms)s
′′) (3.83)

·
∑

(ka,ks)6=(ma,ms)

∑
s̃′′

2−n

Ma
1

[
m⋂
i=1

((bi(ka), y) ∈ Anε )
⋂

((s′(ks)s̃
′′, y) ∈ Anε )

]

= Ma2n1

∑
ma,ms,s′′

2−n

Ma

∑
y

p(y|b(ma), s′(ms)s
′′)

·
∑

ka 6=ma,ks,s̃′′

2−n

Ma
1

[
m⋂
i=1

((bi(ka), y) ∈ Anε )
⋂

((s′(ks)s̃
′′, y) ∈ Anε )

]

+ 2n1

∑
ma,ms,s′′

2−n

Ma

∑
y

p(y|b(ma), s′(ms)s
′′) (3.84)

·
∑

ks 6=ms,s̃′′

2−n1

[
m⋂
i=1

((bi(ma), y) ∈ Anε )
⋂

((s′(ks)s̃
′′, y) ∈ Anε )

]
,

≤ Ma2n126nε
∑

ma,ms,s′′

p(b(ma))p(s′(ms)s
′′)
∑
y

p(y|b(ma), s′(ms)s
′′)

·
∑

ka 6=ma,ks,s̃′′

p(b(ka))p(s′(ks)s̃
′′)1

[
m⋂
i=1

((bi(ka), y) ∈ Anε )
⋂

((s′(ks)s̃
′′, y) ∈ Anε )

]
+ 2n123nε

∑
ma,ms,s′′

p(b(ma))p(s′(ms)s
′′)
∑
y

p(y|b(ma), s′(ms)s
′′)

·
∑

ks 6=ms,s̃′′

p(s′(ks)s̃
′′)1

[
m⋂
i=1

((bi(ma), y) ∈ Anε )
⋂

((s′(ks)s̃
′′, y) ∈ Anε )

]
(3.85)

where (3.83) follows from n = n1 +n2 and from the fact that S′′ is uniform, more precisely,
p(s′′) = 2−n2 . Then, (3.84) is obtained by splitting (ka, ks) 6= (ms,ms) into {ka 6= ms, ks}
and {ka = ma, ks 6= ms}. Next, (3.85) follows for n sufficiently large and for b ∈ BnSY,ε(B)

from 1/Ma ≤ 23nεp(b) and from p(s′s′′) = 2−n.
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From (3.85), we obtain:

P e(2)

≤ Ma2n126nε
∑

b,s′s′′

p(b)p(s′s′′)
∑
y

p(y|b, s′s′′)
∑

b̃,s̃′s̃′′

p(b̃)p(s̃′s̃′′)

·1

[
m⋂
i=1

((b̃i, y) ∈ Anε )
⋂

((s̃′s̃′′, y) ∈ Anε )

]
+ 2n123nε

∑
b,s′s′′

p(b)p(s′s′′)
∑
y

p(y|b, s′s′′)
∑
s̃′s̃′′

p(s̃′s̃′′)

·1

[
m⋂
i=1

((bi, y) ∈ Anε )
⋂

((s̃′s̃′′, y) ∈ Anε )

]
(3.86)

= Ma2n126nε
∑
b,s

p(b)p(s)
∑
y

p(y|b, s)
∑
b̃,s̃

p(b̃)p(s̃)

·1

[
m⋂
i=1

((b̃i, y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]
+ 2n123nε

∑
b,s

p(b)p(s)
∑
y

p(y|b, s)
∑
s̃

p(s̃)

·1

[
m⋂
i=1

((bi, y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]
, (3.87)

= Ma2n126nε
∑
y

p(y)
∑
b̃,s̃

p(b̃, s̃)1

[
m⋂
i=1

((b̃i, y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]

+ 2n123nε
∑
b,y

p(b, y)
∑
s̃

p(s̃)1

[
m⋂
i=1

((bi, y) ∈ Anε )
⋂

((s̃, y) ∈ Anε )

]
(3.88)

where

(3.86) follows from summing over b ∈ {0, 1}mn instead of over b(ma) ∈ Bnε and over
b̃ ∈ {0, 1}mn instead of b(ka) ∈ Bnε for ka 6= ma. Moreover, it follows from
summing over s′ ∈ Sn1 instead of s′(ks) for ks = 1, 2, · · · ,Ms and ks 6= ms,

(3.87) follows from substituting s for s′s′′ and s̃ for s̃′s̃′′, and

(3.88) is obtained by working out the summations over b1, b2, . . . , bm, s in the first part
and s in the second part.
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Finally, from (3.88), we obtain:

P e(2) ≤ 2n(H(B)+ε)2nγ26nε|Anε (Y )|2−n(H(Y )−ε)

·

(
m∏
i=1

|Anε (Bi|y)|

)
|Anε (S|y)|2−n(H(B1B2···BmS)−ε)

+ 2nγ23nε|Anε (Y )|2−n(H(BY )−ε)2−n(H(S)−ε)

·

(
m∏
i=1

|Anε (Bi|y)|

)
|Anε (S|y)| (3.89)

≤ 2n(H(B)+ε)2nγ26nε2n(H(Y )+ε)2−n(H(Y )−ε)

·

(
m∏
i=1

2n(H(Bi|Y )+2ε)

)
2n(H(S|Y )+2ε)2−n(H(BS)−ε)

+ 2nγ23nε2n(H(Y )+ε)2−n(H(BY )−ε)2−n(H(S)−ε)

·

(
m∏
i=1

2n(H(Bi|Y )+2ε)

)
2n(H(S|Y )+2ε) (3.90)

= 2n(H(B)+γ+(
∑m

i=1H(Bi|Y ))+H(S|Y )−H(BS)+(12+2m)ε)

+ 2n(γ+H(Y )−H(BY )−H(S)+(
∑m

i=1H(Bi|Y ))+H(S|Y )+(8+2m)ε). (3.91)

Here, we substituted n1 = nγ in (3.89). Then

(3.89) is obtained using for the first part that Ma = |Bnε (B)| ≤ 2n(H(B)+ε), i.e., the B-
typicality property P3, (3.6) for p(y), and (3.11) for p(b̃, s̃). For the second part,
we used (3.6) for p(s̃) and (3.11) for p(b, y), and

(3.90) follows from (3.5) and (3.13).

The conclusion from (3.91) is that for n large enough, for

H(B) + γ ≤ RBMD − (12 + 2m)ε (3.92)

and for

γ ≤ H(BY ) +H(S)−H(Y )−

(
m∑
i=1

H(Bi|Y )

)
−H(S|Y )− (8 + 2m)ε, (3.93)

the error probability of the second kind

P e(2) ≤ ε. (3.94)
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The second constraint (3.93) is already implied by the first constraint (3.92) since

γ ≤ H(BY ) +H(S)−H(Y )−

(
m∑
i=1

H(Bi|Y )

)
−H(S|Y )− (8 + 2m)ε

= H(BY ) +H(S)−H(Y )−

(
m∑
i=1

H(Bi|Y )

)
−H(S|Y )

+H(BS)−H(BS)− (8 + 2m)ε

= H(BY ) +H(S)−H(Y ) +RBMD −H(B)−H(S)− (8 + 2m)ε

= H(B|Y ) +RBMD −H(B)− (8 + 2m)ε. (3.95)

Using (3.82) and (3.94) in (3.25), we find that the error probability averaged over all sign-
codewords in the modified sign-codebook, and averaged over all modified sign-codebooks
P e ≤ 2ε for n large enough. This implies the existence of a modified sign-code with total
error probability Pe = Pr{(M̂a, M̂s) 6= (Ma,Ms)} ≤ 2ε. This holds for all ε > 0, and thus,
the rate

R = H(B) + γ ≤ RBMD (3.96)

is achievable with modified sign-coding, which concludes the proof of Theorem 3.4.

3.6 Wachsmann Curves: Parameter Selection for PAS
In the previous sections of this chapter, we introduced random sign-coding arguments and
showed that sign-coding, and hence PAS, achieve the capacity of any memoryless channel,
given that the capacity-achieving distribution is symmetric. In this section, we study the
optimum shaping and FEC coding rates for PAS using AIRs. Therefore, we consider the case
where N →∞, which implies (for asymptotically optimum amplitude shaping architectures
that will be discussed in Ch. 4) that the input blocklength of the shaper k = NH(A), and
consequently, Rt = H(A) + γ.

3.6.1 Shaping and Coding Redundancy

In the PAS architecture, to obtain a target rate Rt = H(A) + γ using the 2m-ASK constella-
tion, a total of N(m − Rt) redundant bits are added to a channel input sequence by shaping
and coding operations combined. Shaping is responsible for N(m − 1 − H(A)) redundant
bits, whereas coding adds N(H(A) + 1 − Rt) = N(1 − γ). This is illustrated in Fig. 3.6
where the content of a channel input sequence that is produced by the PAS architecture of
Fig. 3.1 (top) is shown. The striped areas represent the information carried in signs (red)
which is γN bits, and in amplitudes (blue) which is k = NH(A) bits. Dotted areas show the
redundant bits in a sequence. When γ = 0, i.e., Rc = (m − 1)/m, all signs are selected by



3

58 Random Sign-coding Arguments

data on
amplitudes

shaping
redundancy

coding
redundancy

data on
signs

k = NH(A) bits N(m− 1)− k bits N(1− γ) bits γN bits

N amplitudes: N(m− 1) bits N signs: N bits

N symbols: Nm bits

Figure 3.6: Content of a channel input sequence produced by PAS.

parity bits and thus, the striped red area in Fig. 3.6 vanishes. When H(A) = m− 1, the am-
plitudes are uniformly distributed, i.e., there is no shaping, and thus, the dotted blue area in
Fig. 3.6 disappears. We note that a similar illustration was provided for a single ASK symbol
in [93, Fig. 9]. In Table 3.2, the content of a sequence at the output of a PAS transmitter (in
accordance with Fig. 3.6) is tabulated for Example 2.1 where N = 216.

Table 3.2: Content of an amplitude sequence as in Fig. 3.6 based on Example 2.1

Parameter Formula
(per N -sequence)

Value per 1-D
(Example 2.1)

Value per 216-D
(Example 2.1)

Data on amp. NH(A) 1.75 378
Data on sign Nγ 0.50 108

Shap. redundancy N(m− 1−H(A)) 0.25 54
Cod. redundancy N(1− γ) 0.50 108

Redundancy N(m−Rt) 0.75 162
Data, NRt N(H(A) + γ) 2.25 486

3.6.2 Gap-to-capacity

When the input is constrained to be MB-distributed, H(X) = H(A) + 1 can be used as
a design parameter which tunes the balance between shaping and coding redundancies at a
fixed rate Rt. More specifically, the entropy H(A) of the MB distribution is controlled by λ
as in (2.24). Thus by changing λ, the amount of shaping redundancy in an amplitude can be
adjusted. The question is then how to choose the optimum λ. Following Wachsmann, Fischer
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and Huber [27, 94], we use the gap-to-capacity, i.e., normalized SNR,

∆SNR = 10 log (SNR)

∣∣∣∣
RBMD=Rt

− 10 log (SNR)

∣∣∣∣
C=Rt

= 10 log

(
required SNR such that RBMD = Rt

22Rt − 1

)
(3.97)

as the metric to be minimized when searching for the optimum MB distribution for a fixed
transmission rate and constellation size.4 The only difference with respect to [27, eq. (55)] is
that we use RBMD instead of MI in (3.97). The numerator in (3.97) is the SNR value at which
RBMD = Rt for a given p(x), and the denominator is the SNR value at which the capacity
C = Rt. Observing that γ = Rt −H(A), the rate of the FEC code that should be employed
in PAS to obtain a transmission rate Rt for a given constellation entropy H(X) is

Rc =
m− 1 + γ

m

=
m− 1 +Rt −H(A)

m

=
m+Rt −H(X)

m
. (3.98)

Example 3.2 (Optimal PAS parameters: The AWGN Channel). In Fig. 3.7, the entropy
H(X) of an MB-distributed 8-ASK input X vs. ∆SNR is plotted for Rt = 2.25 bit/1-D.
On the top horizontal axis, the corresponding FEC code rates in (3.98) are also shown. The
rightmost point (indicated by a square) corresponds to uniform signaling where the target rate
of 2.25 bit/1-D is obtained by using an FEC code of rate Rc = Rt/m = 3/4. In this trivial
case, all 0.75 bits of redundancy are added by the coding operation, and the gap-to-capacity
∆SNR is 1.04 dB. The leftmost part of the curve where H(X) goes to Rt belongs to the
uncoded signaling case, i.e., Rc = 1, where Rt is attained by shaping the constellation such
that H(X) = R. Here ∆SNR is infinite, since without coding, reliable communication is
only possible over a noiseless channel. The minimum ∆SNR in Fig. 3.7 is obtained with
H(X) = 2.745, which corresponds to Rc = 0.835 from (3.98). In DVB-S2 [77] and IEEE
802.11 [16], the code rate that is closest to 0.835 is 5/6 ≈ 0.833. Accordingly, the best
performance is expected to be provided by the FEC rate 5/6, with an SNR gain over uniform
signaling that amounts according to this analysis to approximately 0.82 dB.5

To provide more insight into how the gap-to-capacity curve is plotted in Fig. 3.7, we
now consider the distribution p(x) that leads to the minimum (circle marker) in Fig. 3.7

4In general, gap-to-capacity can be computed for any parametric family of distributions. Here we only consider
the MB distributions since they have been shown to perform very close to the capacity of ASK constellations over
the AWGN channel [23] and maximize the energy efficiency [47].

5We note here that it is not always possible to have an FEC code with the desired rate, especially in cases
where existing codes are reused. In such cases, the FEC code rate which is closest to the optimum value should
be employed. However, we argue that the loss due to this suboptimal parameter selection will be negligible since
∆SNR differs only slightly around the minimum in Fig. 3.7.
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Figure 3.7: Channel input entropy vs. gap-to-capacity for 8-ASK at the target rate of Rt =
2.25 bit/1-D. The x-axis above shows the corresponding FEC code rates.

where H(X) = 2.745 bits. In Fig. 3.8, RBMD is plotted vs. SNR for this distribution, along
with the curve that corresponds to uniform signaling. The (blue) shaped curve converges to
RBMD = H(X) = 2.745 bit/1-D for asymptotically large SNR, while the (red) uniform curve
converges to RBMD = m = 3 bit/1-D. The 0.255 bit/1-D difference between these values is
the shaping redundancy. The difference H(X) − Rt = 2.745 − 2.25 = 0.495 bit/1-D is the
coding redundancy. The difference in SNR required to obtain RBMD = Rt = 2.25 bit/1-D for
uniform and shaped signaling is 0.82 dB. The remaining gap-to-capacity for shaped signaling
is 0.22 dB, which corresponds to the ∆SNR value at H(X) = 2.745 bit/1-D (circle marker)
in Fig. 3.7. All these parameters or values are indicated both in Fig. 3.7 and Fig. 3.8.

Example 3.3 (Optimal PAS parameters: Fading Channels). In Fig. 3.9, gap-to-capacity is
plotted for 8-ASK atRt = 1.5 bit/1-D for the AWGN channel, the Rician fading channel with
K = 10, and the Rayleigh fading channel, see Sec. 2.2.2. Again, on the top horizontal axis,
the corresponding FEC code rates in (3.98) are shown. We see that as the channel becomes
more and more dynamic, i.e., changes first to Rician and then to Rayleigh, (1) the optimum
point shifts towards uniform signaling, and the required coding redundancy increases, and
(2) the maximum capacity gain decreases. For instance, in the Rayleigh fading case, the
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Figure 3.8: SNR vs. RBMD for the MB-distributed 8-ASK with H(X) = 2.745 bit/1-D, and
for uniform 8-ASK.

optimum point is around H(X) = 2.65 and thus, the optimum FEC code rate is Rc = 0.62.
Whereas the optimum code rate is around 0.75 for the AWGN channel. The corresponding
capacity gain is 0.56 dB for the Rayleigh fading channel, which is 0.41 dB smaller than that
of the AWGN channel. Therefore, we conclude that although the gains are smaller, shaping
increases the maximum AIR over fading channels as well. Besides, in such cases, the total
redundancy should be distributed more in favor of coding and less in favor of shaping.

3.7 Conclusion
In this chapter, we searched for an answer to the following research question.

RQ-1 What are the AIRs of PAS for symbol-metric decoding (SMD) and bit-metric
decoding (BMD)? Is it possible to achieve the capacity of memoryless chan-
nels with PAS? What are the optimum shaping and coding rates in PAS that
maximize AIR gains?

We developed the random sign-coding framework to compute achievable rates of PAS.
We demonstrated that it is possible to obtain achievability results for all PAS settings in this
framework. We showed that PAS achieves the capacity of memoryless channels with symmet-
ric capacity-achieving distributions. Furthermore, unlike most proofs of Shannon’s channel
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Figure 3.9: Channel input entropy vs. gap-to-capacity for 8-ASK at the target rate of Rt =
1.5 bit/1-D. The x-axis above shows the corresponding FEC code rates. Filled circles specify
the minima of their corresponding curves.

coding theorem, most of the code that is used to prove achievability is generated construc-
tively in our random sign-coding experiment. Thus, random sign-coding proofs can at least
partially be used to identify “good” codes. We also showed that capacity can be achieved
using binary linear codes in PAS. Finally, we used gap-to-capacity plots, i.e., Wachsmann
curves [27], to obtain the optimum combination of shaping and coding rates in PAS. We ob-
served that this optimum shifts in favor of increased coding redundancy for fading channels.
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4.1 Introduction

In Chapter 3, we derived achievable rates for PAS by using random sign-coding arguments,
and we showed that PAS achieves capacity. For our proofs, we assumed that the shaping
layer produces i.i.d. amplitudes, and the signaling blocklength N → ∞. In this chapter,
we will search for an answer to the research question RQ-2: What is the “best” amplitude
shaping strategy for finite blocklengths? We will focus on the shaping layer of PAS, and we
will investigate the performance of several amplitude shaping methods for practical values
of N , which are often very small. For this purpose, we will define two performance criteria:
rate loss and shaping gain.

As introduced in Sec. 2.6.3, the function of an amplitude shaper is to map k-bit strings to
N -amplitude sequences in an invertible manner. This can be accomplished by first specifying
a set of amplitude sequences, which we call the shaping set. Then an algorithm that maps
binary strings to these sequences assuming a specific way of ordering, which is called the
shaping algorithm, must be defined. In this chapter, we restrict our attention to the selection
of shaping sets. Shaping algorithms and their complexity will be discussed in Chapter 7.

In PAS, channel inputs are created by adding signs to the amplitudes outputted by the
shaper. These signs are either produced by the channel code in the form of parity bits, or they
are information bits. In both cases, we assume that the signs are uniform. Consequently, the
properties of the amplitude sequences, such as their symbol distribution or average energy,
determine the performance of PAS. A careful selection of the set of amplitude sequences that
can be outputted by the shaper, i.e., the shaping set or shaping code, may result in improve-
ment in overall performance. The shaping set can be constructed with the aim of matching
a target distribution (direct method) or obtaining an energy-efficient signal space (indirect
method). We will consider both methods in this chapter. The direct method, we refer to as
constant composition coding. The indirect method, we refer to as sphere coding. In the re-
mainder of this section, we will define the parameters and metrics that will be used throughout
this thesis to assess the performance of amplitude shaping architectures.

4.1.1 Fundamental Parameters & Performance Metrics

LetAs be a shaping code which consists of amplitude sequences aNj = (aj,1, aj,2, · · · , aj,N )
where aj,n ∈ A for n = 1, 2, · · · , N and j = 1, 2, · · · , J . Here J = |As| is the number
of codewords, i.e., sequences of length N , in the code. We assume that all codewords occur
uniformly, i.e., each with probability 1/J . Therefore, the shaping rate of the code As is

Rs =
log2 J

N
(4.1)

in bit/1-D.
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The energy of a codeword aN is defined as

e
(
aN
)

=

N∑
n=1

a2
n. (4.2)

The energy Eav averaged over all codewords in As and over all time indices n is

Eav =
1

NJ

J∑
j=1

e
(
aNj
)

=
1

J

J∑
j=1

1

N

N∑
n=1

a2
j,n. (4.3)

The shaping gain of the code As over uniform signaling is defined as

Gs = 10 log10

(
22(Rs+1) − 1

3Eav

)
(4.4)

in dB. Similar to [56, Sec. II-A], we assumed in (4.4) that the average symbol energy ex-
pression (22m − 1)/3 for uniform 2m-ASK constellations works as a good approximation
for noninteger m. The shaping rate Rs is increased by one in (4.4) to account for the signed
combinations of codewords.

The composition of a codeword aN is defined as C = [n1, n2, · · · , n|A|], where ni de-
notes the number of times the ith element of A occurs in aN , i.e.,

ni =

N∑
n=1

1[an = A(i)] (4.5)

for i = 1, 2, · · · , |A| where obviously,
∑
i ni = N . Then the empirical distribution, i.e., the

type, of aN is given by

paN (A(i)) =
ni
N

(4.6)

for i = 1, 2, · · · , |A|. The number of codewords with the same composition C is given by
the multinomial coefficient (MC)

MC(C) =
N !∏|A|
i=1 ni!

. (4.7)

The marginal distribution pn(a) averaged over all codewords in As and over the time
index n is defined as

pn(a) =
1

J

J∑
j=1

1 [aj,n = a] , (4.8)
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for n = 1, 2, · · · , N and for a ∈ A. The distribution p(a) averaged over all codewords in As
and over all time indices n is defined as

p(a) =
1

J

J∑
j=1

1

N

N∑
n=1

1[aj,n = a]

=
1

N

N∑
n=1

pn(a) (4.9)

for a ∈ A. We note that in general, pn(a) 6= pl(a) for n 6= l.
Consider a shaping code As with rate Rs, average distribution p(a), and average energy

Eav. It can be shown for a random variableAwith distribution p(a) and for an MB-distributed
random variable AMB with E[|AMB|2] = Eav that

H(AMB)
(a)
≥ H(A)

(b)
≥ Rs (4.10)

where (a) is due to the fact that the MB distribution maximizes entropy for a fixed average
energy [26, Ch. 12], and (b) is due to the finite blocklength N . The inequalities in (4.10) will
be discussed in detail in Sec. 4.4.1, and they show that the finite length rate loss

Rloss = H(AMB)−Rs (4.11)

is always nonnegative for finite N .
Consider again a shaping code As with rate Rs and average energy Eav. Furthermore,

consider an MB-distributed random variable AMB, now with H(AMB) = Rs. In [95], Cho
defined the energy gap

Egap =
Eav

E [A2
MB]

(4.12)

to evaluate the performance of variable length shaping codes that he proposed.

Definition 4.1 (Optimum shaping codes). A shaping codeAs is called asymptotically opti-
mum if

Rloss → 0 for N →∞, (4.13)

or equivalently, if
Egap → 1 for N →∞. (4.14)

As we discussed in Sec. 2.5.1, the slope of the SNR (in dB) versus capacity curve for the
AWGN channel is approximately 6 dB/bit. Thus for optimum shaping codes, Egap and Rloss
can be related as 10 log10Egap ≈ 6Rloss.
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4.2 Constant Composition Distribution Matching

Definition 4.2 (Constant composition codes). A code is a constant composition code if for
a given composition C, all codewords with the same composition C are in the code, and no
other codewords.

For the initial proposal of PAS, constant composition distribution matching (CCDM) was
used as the amplitude shaping architecture [28]. CCDM is a direct method where the aim
is to mimic a target distribution p(a∗). The basic principle of CCDM is to utilize amplitude
sequences having a fixed empirical distribution, which is information-theoretically close to
the target distribution. To this end, first a target distribution p(a∗) is obtained. This is usually
accomplished by finding the MB distribution that maximizes the AIR at a given SNR. Then
this distribution is quantized to obtain p(a) such that Np(a) is an integer for a ∈ A. The
distributions of this form are called N -type. This quantization can be accomplished either by
a simple rounding or by minimizing the Kullback–Leibler (KL) divergence between p(a∗)
and p(a) as in [96]. Finally, the constant composition code with C = Np(a) is considered
as the shaping code. We denote this constant composition code by Acc

s where its cardinality
is |Acc

s | = MC(C) as in (4.7). The set Acc
s is called the type class of p(a). It is shown

in [28] that as N →∞, the KL divergence between p(a∗) and p(a) vanishes. Consequently,
constant composition codes are optimum according to Definition 4.1, i.e., both (a) and (b) in
(4.10) are satisfied with equality when N → ∞. We note that due to symmetry with respect
to time indices n, pn is the same for n = 1, 2, · · · , N for constant composition codes.

Example 4.1 (CCDM). Consider a target shaping rate of 1.75 bit/1-D withA = {1, 3, 5, 7}.
We use the target MB distribution p(a∗) = [0.3918, 0.3117, 0.1972, 0.0993] with H(A∗) =
1.8466 at N = 96. The composition that is obtained with the quantization rule proposed
in [96, Algorithm 2] is C = [37, 30, 19, 10]. The rate and the average energy of the corre-
sponding constant composition code are Rs = 1.7575 bit/1-D and Eav = 13.25, respectively.
The rate loss is Rloss = 0.0955 bit/1-D. At N = 216, we use the target MB distribution
p(a∗) = [0.4140, 0.3169, 0.1857, 0.0833] with H(A∗) = 1.8019. The composition that is
obtained with the quantization rule proposed in [96, Algorithm 2] isC = [89, 69, 40, 18]. The
rate and the average energy of the corresponding constant composition code areRs = 1.7507
and Eav = 12.00, respectively. The rate loss is Rloss = 0.0516 bit/1-D. We observe that at
this target rate, the rate loss is nearly halved when N is increased from 96 to 216, and the
average energy is reduced by 0.43 dB.

4.3 Sphere Shaping

Definition 4.3 (Sphere codes). A code is a sphere code if there exist no sequences, not in
the code, with energy smaller than the energy of a codeword. More precisely, we define the
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sphere code as

A• =

{
aN = (a1, a2, · · · , aN )

∣∣∣∣ N∑
n=1

|an|2 ≤ E•
}

(4.15)

for a ∈ A where E• is the maximum sequence energy.

Sphere shaping where a sphere code is considered as the shaping code As is an indirect
method where the aim is to construct the codebook with the least average energy for a given
shaping rate Rs. We will show in Sec. 4.4 that the sphere codes are also optimum according
to Definition 4.1. This hints that p(a) approaches an MB distribution asymptotically for large
N for sphere codes, which will also be shown in Sec. 4.4. Moreover, we will show that the
sphere codes have the smallest rate loss for a fixed shaping rate of Rs at any blocklength N .

Example 4.2 (Sphere shaping). As in Example 4.1, we target a shaping rate of 1.75 bit/1-D
with A = {1, 3, 5, 7}. At N = 96, we use the maximum energy E• = 1120. The rate and
the average energy of the corresponding sphere code are Rs = 1.7503 and Eav = 11.4263,
respectively. The rate loss is Rloss = 0.0232 bit/1-D. At N = 216, we use the maximum
energy E• = 2456. The rate and the average energy of the corresponding sphere code are
Rs = 1.7520 and Eav = 11.2649, respectively. The rate loss is Rloss = 0.0129 bit/1-D. In
comparison to the constant composition codes in Example 4.1, sphere codes are 0.6 and 0.28
dB more energy efficient at N = 96 and 216, respectively.

4.4 Achievability of Shaping Rates

Definition 4.4 (Achievability). The rate-energy pair (R,E) is called achievable if for each
ε > 0 and for all N large enough, there exists a code with shaping rate and average energy
satisfying

Rs ≥ R− ε, (4.16)
Eav ≤ E + ε. (4.17)

Finally we define the rate-energy function as follows:

R(E)
∆
= max{R : (R,E) is achievable}. (4.18)

Theorem 4.1. The maximum achievable rate for average energy E is

R(E) = max
A:E[A2]≤E

H(A). (4.19)

The proof consists of a converse part and the corresponding achievability proof.
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4.4.1 Converse
Consider a shaping code As. The shaping rate can be upper-bounded as

Rs
(4.1)
=

log2 J

N
=

1

N
H (A1A2 · · ·AN )

(c)
=

1

N

N∑
n=1

H(An|An−1, · · · , A1)

(d)
≤ 1

N

N∑
n=1

H (An)

(e)
≤ H(A)
(e)
≤ H(AMB) (4.20)

where (c) is an application of the chain rule for entropy [26, Th. 2.5.1], (d) follows from the
fact that conditioning cannot increase entropy [26, Th. 2.5.6], and (e) is due to (4.9) and the
convexity of entropy. We note that (e) in (4.20) implies (b) in (4.10). Next, we observe that

1

J

J∑
j=1

1

N

N∑
n=1

|aj,n|2 =
1

N

N∑
n=1

∑
a∈A

pn(a)|a|2 =
∑
a∈A

p(a)|a|2 = E[|A|2]. (4.21)

We now conclude that for an achievable rate-energy pair (R,E), for all ε > 0, and for all
large enough N , there exists a random variable A distributed over A such that

R ≤ log2 J

N
+ ε ≤ H(A) + ε, (4.22)

E ≥ 1

J

J∑
j=1

1

N

N∑
n=1

a2
j,n − ε = E[A2]− ε. (4.23)

If we let, ε ↓ 0 we obtain that

R(E) ≤ max
A:E[A2]≤E

H(A). (4.24)

4.4.2 Achievability Based on Constant Composition Codes
Fix an energyE and assume that the random variableA∗ maximizes the entropyH(A∗) while
satisfying the energy constraint E[(A∗)2] ≤ E. Denote by {p(a∗), a ∈ A} the distribution—
which is MB—corresponding to this random variable. For all large enough N , we now take
a composition C that satisfies

|C −Np(a∗)| ≤ 1 (4.25)

where nj ≥ 0 for all j = 1, 2, · · · , |A|, and
∑
j nj = N .
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It can be shown that the probabilities p(a∗) > 0, see [26, Example 12.2.3]. Therefore,
the normalized composition {C/N, a ∈ A} approaches entropy H(A∗) for increasing N .

Now for fixed N , consider a code consisting of all sequences having the composition
{C, a ∈ A}. It can be shown that the rate of this constant composition code approaches the
entropy H(C/N) of the normalized composition for increasing N , see again [26, Example
12.2.3], where Stirling approximation is used.

We conclude that the rate of the constant composition code approaches the entropy of the
normalized composition, which approaches entropy H(A∗), for N large. Therefore,

R(E) = max
A:E[A2]≤E

H(A) (4.26)

is achievable for all E.

4.4.3 Achievability Based on Sphere Codes

Theorem 4.2. For each code with rate R and average energy E, there is a sphere code with
rate R◦ and average energy E◦ such that

R◦ = R and E◦ ≤ E. (4.27)

Proof. Just replace codewords by sequences outside the code with lower energy until the
code is a sphere code.

Theorem 4.2, along with the optimality of constant composition codes, leads to the con-
clusion that sphere codes achieve the maximum rate as well.

4.4.4 Maxwell-Boltzmann Distribution

The distribution that achieves maximum entropy under an energy constraint is the MB distri-
bution [26, Ch. 12]. It is straightforward to show that the maximum entropy distribution is
unique. This follows directly from the strict convexity of the entropy function. Since sphere
codes result in maximum entropy under an energy constraint, the corresponding average dis-
tribution p(a) approaches the MB distribution as N →∞. This shows that the sphere codes
are optimum according to Definition 4.1. Furthermore, it is shown in [97] that at a finite
blocklength N , a sphere code of rate R and average distribution p(a) has the minimum KL
divergence between p(a) and the MB distribution with entropy R among all possible codes,
see [98, Corollary 4.6].
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4.5 Comparison
For comparison purposes, we define an additional shaping code.

Definition 4.5 (Single-shell codes). A code is a single-shell code if all codewords with en-
ergy NEav are included, and no other codewords.

Example 4.3 (Single-shell shaping). As in Examples 4.1 and 4.2, we consider a target
shaping rate of 1.75 bit/1-D with A = {1, 3, 5, 7}. At N = 96, we use NEav = 1176.
The rate of the corresponding single-shell code is Rs = 1.7534 bit/1-D. The rate loss is
Rloss = 0.0568 bit/1-D. At N = 216, we use NEav = 2496. The rate of the corresponding
single-shell code is Rs = 1.7506 bit/1-D. The rate loss is Rloss = 0.0277 bit/1-D. When
compared to Examples 4.1 and 4.2, single-shell codes have larger rate loss than sphere codes
and smaller rate loss than constant composition codes. This is because sphere codes include
all sequences on all possible N -shells, while constant composition codes include only some
of the sequences on a singleN -shell since there are other compositions with the same energy.

4.5.1 Finite Length Rate Loss
In Fig. 4.1, we have compared constant composition, single-shell, and sphere codes for short
blocklengths in terms of the rate loss. We fix the target shaping rate Rs = 1.75 bit/1-D, and
for each N , we choose the composition C, the sequence energy NEav, and the maximum
sequence energy E• for constant composition, single-shell, and sphere codes, respectively,
such that these codes contain at least 2NRs codewords in the most energy efficient manner.
We use the amplitude alphabet A = {1, 3, 5, 7} of 8-ASK. Our observation is twofold.

• As discussed in Sec. 4.4, the rate loss decreases with increasingN (vanishes whenN →
∞) for both constant composition and sphere codes. This also holds for single-shell
codes, which can be shown straightforwardly. Therefore, all these codes are optimum
according to Definition 4.1.

• Sphere codes, since they construct the most energy-efficient codebook, have the mini-
mum rate loss at any blocklength N . Equivalently, for a given rate loss, sphere codes
require the minimum blocklength N . As an example, for a target rate loss of 0.05 bit/1-
D, constant composition codes require approximately 7 times larger blocklengths than
sphere codes as shown in Fig. 4.1.

4.5.2 Shaping Gain & Signal Space Structure
In Fig. 4.2, we visualize the signal space structures that correspond to constant composition,
single-shell, and sphere codes to comprehend their energy efficiency. For constant compo-
sition codes, each codeword in Acc

s has the same energy Ecc = NEav, and consequently,
they all are located on the N -shell of squared radius Ecc. However, since there are multiple
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Figure 4.1: Rate loss in (4.11) (solid) and shaping gain in (4.4) (dashed) versus blocklength
N for constant composition, single-shell and sphere codes.

compositions that have the same energy, the N -shell is only partially utilized by the constant
composition code as shown in Fig. 4.2. On the other hand, single-shell codes consist of all
signal points on the N -shell of square radius NEav. Finally, sphere codes A• consists of all
codewords located in or on the surface of the N -sphere of squared radius E•.

We see from Fig. 4.2 that for a given rate, i.e., a fixed number of codewords, sphere
codes are the most energy-efficient, while constant composition codes are the least energy-
efficient among the codes discussed in this chapter. This can also be deducted by observing
their shaping gains, which is a metric directly related to Eav from (4.4) and thus, to energy
efficiency. In Fig. 4.1, shaping gains of constant composition, single-shell, and sphere codes
are also plotted. We see that similar to their rate loss minimizing behavior, sphere codes
maximize the shaping gain, and thus energy efficiency, at any dimension N as discussed in
Theorem 4.2. As an example, for a target shaping gain of 0.8 dB, constant composition codes
require approximately 10 times larger blocklengths than sphere codes as shown in Fig. 4.1. In
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Figure 4.2: The illustration of the employed N -D signal points by constant composition,
single-shell, and sphere codes. Each circle represents an N -D shell. Colored portions of the
shells indicate the signal points which are included in the corresponding shaping code.

Table 4.1: Parameters Computed in Examples 4.1, 4.2, and 4.3

N Shaping Code Rs Eav Rloss Gs

96
Constant composition 1.7575 13.2500 0.0995 0.5124

Single-shell 1.7534 12.2500 0.0568 0.8280
Sphere 1.7503 11.4263 0.0232 1.1112

216
Constant composition 1.7507 12.0000 0.0516 0.9009

Single-shell 1.7506 11.5556 0.0277 1.0642
Sphere 1.7520 11.2649 0.0129 1.1834

the following example, we focus on the blocklengths used in the IEEE 802.11 standard [16].

Example 4.4 (Shaping codes for IEEE 802.11). There are two modes in the IEEE 802.11
standard where there are N = 96 or 216 real dimensions reserved for data in a single OFDM
symbol [16]. In Table 4.1, parameters of the shaping codes discussed in Examples 4.1, 4.2,
and 4.3 are tabulated which were computed at these blocklengths. The corresponding markers
are filled in Fig. 4.1. AtN = 96, sphere codes are 0.6 dB more energy-efficient than constant
composition codes. At N = 216, the advantage of sphere codes over constant composition
codes drops to 0.28 dB. Since both codes are optimum, this difference will vanish asN →∞.

4.6 Conclusion
In this chapter, we searched for an answer to the following research question.

RQ-2 What is the “best” amplitude shaping strategy for finite values of the block-
length N? What are the metrics to be used to assess the “goodness” of different
amplitude shaping approaches?
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We demonstrated through rate loss and shaping gain analyses that sphere shaping is the
best amplitude shaping strategy, especially for short blocklengths, i.e., smaller than a couple
of hundred symbols. Motivated by this, we will discuss how to realize sphere shaping in the
following chapters.
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CHAPTER 5
Enumerative Sphere Shaping
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5.1 Introduction
In Chapter 4, sphere shaping is shown to be an efficient solution to the problem of amplitude
shaping for finite (especially for short) blocklengths. This efficiency is in the sense that sphere
shaping minimizes the rate loss, or equivalently, minimizes the average energy of the shaping
set for a given shaping rate at any blocklength. However, realizing sphere shaping is not a
straightforward task since the problem of mapping information bits to channel inputs is mul-
tidimensional. We note that this problem, i.e., symbol mapping, is solved straightforwardly
in a dimension-by-dimension manner with LUTs of negligible size for uniform signaling.

Example 5.1 (IndexingN -D sequences). Consider a PAS-based transmission strategy where
shaping blocklength is N = 16, employed modulation is 8-ASK, i.e., A = {1, 3, 5, 7}, and
the target shaping rate is Rs = 1.5 bit/1-D. The output set of the corresponding amplitude
shaper consists of 2NRs = 224 amplitude sequences, each of which is of 16-symbols-long.
Since each amplitude in A can be represented using log2 |A| = ma = 2 bits, a LUT-based
shaper implementation would require 67.11 megabytes (MB) of dedicated memory.

We conclude from Example 5.1 that even at very small blocklengths, using a LUT for
shaping is impractical due to very large storage requirements, and thus, we need constructive
algorithms. In this chapter, we will investigate the research question RQ-3 which deals with
the algorithmic implementation and end-to-end decoding performance of sphere shaping.
We will introduce enumerative sphere shaping (ESS) as an efficient solution. Building upon
the foundation established in [29], we will investigate the performance of ESS in the PAS
framework for both the AWGN channel and frequency selective channels. Furthermore, the
required storage and computational complexity of ESS will be analyzed and compared to
alternative sphere shaping algorithms proposed by Laroia, Farvardin, and Tretter in [30].

5.2 Enumerative Sphere Shaping (ESS)

5.2.1 Lexicographical Ordering
ESS starts from the assumption that the amplitude sequences (in a sphere code A•) can be
ordered lexicographically.

Definition 5.1 (Lexicographical ordering). A sequence aN = (a1, a2, · · · , aN ) ∈ A• is
“larger” than bN = (b1, b2, · · · , bN ) ∈ A• if there exists an integer n such that aj = bj for
1 ≤ j < n and an > bn. Then we write aN > bN , and define the index

i
(
aN
) ∆

=
∣∣{bN ∈ A• : aN > bN

}∣∣ . (5.1)

The mapping from sequences in A• to indices is one-to-one, and thus,

aN (i) = aN if i
(
aN
)

= i. (5.2)
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Table 5.1: Sphere Shaping Set for N = 4, A = {1, 3, 5, 7} and E• = 28 as Ordered by ESS,
LA1 and SM

Lexicographical Energy-Based
ESS LA1 LA2 (SM)

index i aN (i) e aN (i) e aN (i) e

0 (1, 1, 1, 1) 4 (1, 1, 1, 1) 4 (1, 1, 1, 1) 4
1 (1, 1, 1, 3) 12 (1, 1, 1, 3) 12 (1, 1, 1, 3) 12
2 (1, 1, 1, 5) 28 (1, 1, 3, 1) 12 (1, 1, 3, 1) 12
3 (1, 1, 3, 1) 12 (1, 3, 1, 1) 12 (1, 3, 1, 1) 12
4 (1, 1, 3, 3) 20 (3, 1, 1, 1) 12 (3, 1, 1, 1) 12
5 (1, 1, 5, 1) 28 (1, 1, 3, 3) 20 (1, 1, 3, 3) 20
6 (1, 3, 1, 1) 12 (1, 3, 1, 3) 20 (1, 3, 1, 3) 20
7 (1, 3, 1, 3) 20 (1, 3, 3, 1) 20 (1, 3, 3, 1) 20
8 (1, 3, 3, 1) 20 (3, 1, 1, 3) 20 (3, 1, 1, 3) 20
9 (1, 3, 3, 3) 28 (3, 1, 3, 1) 20 (3, 1, 3, 1) 20

10 (1, 5, 1, 1) 28 (3, 3, 1, 1) 20 (3, 3, 1, 1) 20
11 (3, 1, 1, 1) 12 (1, 1, 1, 5) 28 (1, 1, 1, 5) 28
12 (3, 1, 1, 3) 20 (1, 1, 5, 1) 28 (1, 1, 5, 1) 28
13 (3, 1, 3, 1) 20 (1, 3, 3, 3) 28 (1, 3, 3, 3) 28
14 (3, 1, 3, 3) 28 (1, 5, 1, 1) 28 (3, 1, 3, 3) 28

2k − 1 = 15 (3, 3, 1, 1) 20 (3, 1, 3, 3) 28 (3, 3, 1, 3) 28
16 (3, 3, 1, 3) 28 (3, 3, 1, 3) 28 (3, 3, 3, 1) 28
17 (3, 3, 3, 1) 28 (3, 3, 3, 1) 28 (1, 5, 1, 1) 28
18 (5, 1, 1, 1) 28 (5, 1, 1, 1) 28 (5, 1, 1, 1) 28

We can use lexicographical ordering to create a mapping that transforms a message (in-
dex) into a sequence, and vice versa, as shown in Example 5.2.

Example 5.2 (Lexicographically ordered sphere shaping set). Consider the parameters
N = 4, A = {1, 3, 5, 7} and E• = 28. In Table 5.1, we see the corresponding aN ∈ A•
lexicographically ordered, and their index i. We note that the amplitude 7 never occurs in
Table 5.1 since E• = 28 does not allow any sequence to include it.

5.2.2 Backward Amplitude Trellis

To represent lexicographically-ordered amplitude sequences from within a sphere, we build a
trellis as shown in Fig. 5.1 for the same set of parameters used in Example 5.2. In this trellis,
nodes in column n = 0, 1, 2, · · · , N represent accumulated energy of amplitude sequences
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Reference
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Figure 5.1: Enumerative (backward) trellis for N = 4, A = {1, 3, 5, 7}, and E• = 28.

over the first n dimensions, more precisely,

e (a1, a2, · · · , an) =

n∑
j=1

a2
j . (5.3)

These energy values are shown by black numbers in Fig. 5.1. We use the pair (n, e) to address
a specific node. Branches connecting a node in column n − 1 with a node in column n are
the nth components of the amplitude sequences an ∈ A for n = 1, 2, · · · , N . Amplitudes are
differentiated by color-coding and indicated for n = 1 in Fig. 5.1. Each amplitude sequence is
represented by a path that consists of N branches, starts in the zero-energy node (the bottom
left), and ends in a final node (from the rightmost column, n = N ). As an example, the
sequence (1, 3, 1, 3) is shown with dashed lines in Fig. 5.1.

The number written in red in a node (n, e) is the number of possible ways to reach a final
node starting from (n, e), and it is denoted by T en. These can be computed in a recursive
manner for n = N − 1, N − 2, · · · , 0 as

T en
∆
=

∑
a∈A:e+a2≤E•

T e+a
2

n+1 (5.4)

where the initialization is1

T eN =

{
1 : e ≤ E•,
0 : otherwise . (5.5)

Note that we only consider states with energy levels that can be reached. For ASK alphabets
as in 2.7, possible states in column n have energy values n + 8(l − 1) for l = 1, 2, · · · , L,

1Since the trellis computation starts from n = N , i.e., from the final column, this trellis is also called the
enumerative backward trellis.
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not exceeding E•. Then the maximum energy can be written as

E• = N + 8(L− 1) (5.6)

where L is the number of possible energy levels at n = N , or equivalently, the number of
N -shells that are represented in the trellis.

According to the definition of T en, the number of sequences represented in the trellis is
given by |A•| = T 0

0 , and for Fig. 5.1, T 0
0 = 19, which is consistent with Table 5.1. As

defined in (4.1), the shaping rate of this trellis is

Rs =
log2 |A•|

N
=

log2 T
0
0

N
(5.7)

in bit/1-D, and for Fig. 5.1, Rs = 1.06 bit/1-D.

Lemma 5.1 (Distribution symmetry). In an enumerative backward trellis, consider all
T en sequences (an+1(i), an+2(i), · · · , aN (i)) starting from (n, e) that are indexed by i =
0, 1, · · · , T en − 1. For this set of sequences and for j = n+ 1, n+ 2, · · · , N ,

pj(a)
∆
=

1

T en

T e
n−1∑
i=0

1 [aj(i) = a] , for a ∈ A. (5.8)

Then again for this set of sequences and for a ∈ A,

pn+1(a) = pn+2(a) = · · · = pN (a) =
T e+a

2

n+1∑
a T

e+a2

n+1

(5.4)
=

T e+a
2

n+1

T en
(5.9)

i.e., the distribution of amplitudes is the same for all time indices n + 1, n+ 2, · · · , N . The
reason for this symmetry is that the set of sequences is permutation invariant.

Lemma 5.1 implies that the average amplitude distribution p(a) of the sphere codebook
A• (as defined in (4.9)) is given by

p(a) =
T a

2

1∑
b∈A T

b2
1

, for a ∈ A. (5.10)

For the trellis in Fig. 5.1, p = [T 1
1 , T

9
1 , T

25
1 , T 49

1 ]/T 0
0 = [11/19, 7/19, 1/19, 0].

Example 5.3 (The amount of shaping). For a given N and A, decreasing E•, i.e., decreas-
ing the radius of the N -spherical signal structure, leads to a “more shaped” p(a) that has
smaller entropy, and vice versa. In Table 5.2, the induced distribution is tabulated for dif-
ferent values of E• while N = 4 and A = {1, 3, 5, 7}. Here, the third row corresponds to
Example 5.2 and Fig. 5.1, and the last row to uniform signaling.

Remark 5.1 (The relation between L and E•). We see from the sphere-hardening result
which is discussed, e.g., by Wozencraft and Jacobs in [35, Sec. 5.5], that for large N , E• ≈
NEav. Following Laroia et al. [30, Sec. III-A] and approximating the required average
energy to transmit R bit/1-D by c22R, we can write E• ≈ Nc22R where c is some constant.
Therefore, as seen from (5.6), L is a linear function of N for fixed Rs.
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Table 5.2: Average Distribution for N = 4, A = {1, 3, 5, 7}

E• p(1) p(3) p(5) p(7) H(A)
4 1 0 0 0 0

12 0.8 0.2000 0 0 0.7219
28 0.5789 0.3684 0.0526 0 1.2108
60 0.4268 0.3171 0.2073 0.0488 1.7329

196 0.2500 0.2500 0.2500 0.2500 2

5.2.3 Shaping Algorithms

Assuming lexicographical ordering, finding the index i of a sequence aN is equivalent to
count the number of sequences that are lexicographically smaller than aN . This can be real-
ized by considering the path representing aN in the backward trellis and counting the number
of paths that branch off to “lower” nodes. This leads to Cover’s indexing formula for se-
quences in a sphere [99]

i
(
aN
)

=

N∑
n=1

∑
b<an

T
b2+

∑n−1
j=1 a

2
j

n . (5.11)

Example 5.4 (Enumerative indexing). Consider aN = (1, 3, 1, 3) which has the path pass-
ing through nodes (0, 0), (1, 1), (2, 10), (3, 11) and (4, 20) in Fig. 5.1, i.e., the path drawn
with dashed lines. At each transition for which there is a possible transition with a smaller
amplitude, i.e., the second and the fourth transitions, we add the red numbers in the corre-
sponding lower nodes, i.e., T 2

2 = 6 and T 12
4 = 1, to find the index i(aN ) which is 7. This

mapping is consistent with Table 5.1.

Algorithm 5.1: Enumerative Shaping

1 Given that i < T 0
0 , initialize the algorithm by setting the local index I1 = i.

2 For n = 1, 2, · · · , N , take an be such that∑
b<an

T
b2+

∑n−1
j=1 a

2
j

n ≤ In <
∑
b≤an

T
b2+

∑n−1
j=1 a

2
j

n (5.12)

and
In+1 = In −

∑
a<an

T
b2+

∑n−1
j=1 a

2
j

n . (5.13)

3 Finally output aN .
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The indexing formula (5.11), i.e., the procedure of finding the index of an amplitude
sequence, is called deshaping. The inverse function that determines from a message index
the sequence in a sphere is called shaping. These shaping and deshaping algorithms can be
implemented recursively, and they are outlined in Algorithms 5.1 and 5.2, respectively.

Algorithm 5.2: Enumerative Deshaping

1 Given aN , initialize the algorithm by setting the local index JN+1 = 0.
2 For n = N,N − 1, · · · , 1, update the local index as

Jn =
∑
b<an

T
b2+

∑n−1
j=1 a

2
j

n + Jn+1. (5.14)

3 Finally output i = J1.

5.3 Laroia’s Sphere Shaping Algorithms

5.3.1 Energy-based Ordering

Laroia, Farvardin, and Tretter provided two algorithms to realize sphere shaping in [30], both
of which sort the sequences in a sphere based on their energy, i.e., based on the index l of the
N -D shell that they are located on for l = 1, 2, · · · , L. Sequences on the same shell can then
be ordered in different ways, e.g., lexicographically as done by Laroia et al. in [30, Algorithm
1] which is shown in the middle column of Table 5.1. We denote this algorithm by LA1 here.

5.3.2 Forward Amplitude Trellis

To represent energy-based-ordered amplitude sequences from within a sphere, again a trellis
is constructed as shown in Fig. 5.2 for the same set of parameters used in Fig. 5.1. Similar
to the backward trellis, black numbers represent energy levels, branches indicate amplitudes,
and we use the pair (n, e) to indicate a specific node in Fig. 5.2

The red number written in a node (n, e) is the number of n-sequences with energy e for
n = 1, 2, · · · , N and e ≤ E•, and it is denoted by F en. These can be computed in a recursive
manner for n = 1, 2, · · · , N as

F en
∆
=

∑
a∈A:e−a2≤E•

F e−a
2

n−1 (5.15)
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Reference

e = n+ 8(l − 1)

F e
n

∣∣e

1
∣∣0 1

∣∣1
1
∣∣9

1
∣∣25

1
∣∣2

2
∣∣10
1
∣∣18
2
∣∣26

1
∣∣3

3
∣∣11
3
∣∣19
4
∣∣27

1
∣∣4

4
∣∣12
6
∣∣20
8
∣∣28

1

5

11

19

F e
N+1

1

3

5

n = 0 n = 1 n = 2 n = 3 n = 4

l = 1

l = 2

l = 3

l = 4

Figure 5.2: Enumerative (forward) trellis for N = 4, A = {1, 3, 5, 7}, and E• = 28.

where the initialization is2

F e0 =

{
1 : e = 0,
0 : otherwise . (5.16)

In this forward amplitude trellis, the numbers F eN in the last column are the number of se-
quences located on the N -shell of squared radius e = N,N + 8, · · · , E•. For Fig 5.2, and
consequently for Fig. 5.1, there are 1 sequence of energy 4, 4 sequences of energy 12, 6
sequences of energy 20, and 8 sequences of energy 28 as shown in Table 5.1.

Remark 5.2 (Alternative way of computing the forward trellis). If N is an integer power
of two, the nth column of the forward trellis can be computed for n = 1, 2, 4, · · · , N as

F en =
∑
b≤e

F bn/2F
e−b
n/2 (5.17)

where the initialization is still as in (5.16). We note that unlike (5.15), multiplications are
necessary when (5.17) is used. This way of computing some columns of the forward trellis
will be particularly useful when we discuss shell mapping in Sec. 5.3.3.4.

Following [30, Sec. II-B], we define an additional column for the forward trellis in which
the number of sequences with energy no greater than e

F eN+1 =
∑
b≤e

F bN (5.18)

2Since the trellis computation starts from n = 0, i.e., from the zero-energy node, this trellis is also called the
enumerative forward trellis.
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is stored for e ≤ E•. Clearly, FE
•

N+1 = T 0
0 , from which the shaping rate can be computed as

in (5.7). Similar to (5.10), the average distribution can be computed as3

p(a) =

∑L
l=1 F

N+8(l−1)−a2
N−1∑

b∈A
∑L
l=1 F

N+8(l−1)−b2
N−1

, for a ∈ A. (5.19)

5.3.3 Shaping Algorithms
To realize the energy-based ordering, first the N -shell that the output sequence is located on,
then the index of the sequence within this shell must be found during shaping. We call the
former; extra step, the latter; shaping within the N -shell. Both of these steps can be realized
in two different ways.

5.3.3.1 Finding the N -shell: The Extra Step with No Storage

The extra step can be realized by successive comparisons of the index i to F eN for e =
N,N + 8, · · · , E•−8, and updating the index by subtracting F eN from it whenever the index
is larger. In this way of implementing the extra step, there can be up to L−1 comparisons and
subtractions, and F eN+1 is not required to be stored. Since a high portion of the sequences
is located near the surface of the N -sphere due to sphere hardening, the average number of
comparisons required to find the N -shell is very close to L− 1 with this approach.

Example 5.5 (Extra step with no storage). Consider the forward trellis in Fig. 5.2 and input
index i = 9. To determine which N -shell the corresponding amplitude sequence is located
on, we first compare i to FNN = F 4

4 = 1 which is the number of sequences on the first,
i.e., innermost, shell. Since i > F 4

4 , we update i ← i − F 4
4 = 8. Then we compare i to

FN+8
N = F 12

4 = 4 which is the number of sequences on the second shell. Since i > F 12
4 , we

update i ← i − F 12
4 = 4. Then we compare i to FN+16

N = F 20
4 = 6 which is the number

of sequences on the third shell. Since i < F 20
4 , we decide that our sequence is located on the

third shell of squared radius 20, and its index within this shell is IN (aN ) = 4.

5.3.3.2 Finding the N -shell: The Extra Step with Storage

The extra step can also be realized by successive comparisons of the index i to F eN+1 for
e = E• − 8, E• − 16, · · · , N , and only updating the index by subtracting F eN+1 the first
time the index is larger. In this way of implementing the extra step, there can be up to L− 1
comparisons, but only a single subtraction. Since a high portion of the sequences is located
near the surface of the N -sphere due to sphere hardening, only a couple of comparisons are
required on average to find the N -shell with this approach. However, F eN+1 must be stored.

3To write (5.19), we used the fact that when rotated 180o, the forward trellis in Fig. 5.2 represents L separate
single shell backward trellises as discussed in Example 5.7.
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Figure 5.3: The subtrellis of Fig. 5.2 that belongs to the shell of squared radius 20.

Example 5.6 (Extra step with storage). Consider again the forward trellis in Fig. 5.2 and
input index i = 9. To determine which N -shell the corresponding amplitude sequence is
located on, we first compare i to FE

•−8
N+1 = F 20

5 = 11 which is the number of sequences on
the three innermost shells. Since i < F 20

5 , we compare the index to FE
•−16

N+1 = F 12
5 = 5

which is the number of sequences on the two innermost shells. Since i > F 12
5 , we decide

that our sequence is located on the third shell of squared radius 20, and its index within this
shell is IN (aN ) = i− F 12

5 = 4.

5.3.3.3 Shaping within the N -shell: Laroia’s Algorithm 1

LA1 is similar to ESS from both algorithmic and complexity perspectives. After the index
l of the N -shell that the output sequence is located on, and the local index IN (aN ) within
this shell are found, enumerative shaping procedure in Algorithm 5.1 is run for IN (aN ) over
the part of the forward trellis that corresponds to the lth N -shell as explained in the following
example. With this algorithm, the sequences on the same shell are sorted lexicographically
as shown in Table 5.1. We note that F en must be stored in memory for n = 0, 1, · · · , N and
e ≤ E• to realize shaping and deshaping algorithms based on LA1.

Example 5.7 (LA1: Shaping within the N -shell). Consider again the forward trellis in
Fig. 5.2 and input index i = 9. We found in Examples 5.5 and 5.6 that the corresponding
sequence is on the third shell of squared radius 20, and it has index IN (aN ) = 4 within
this shell. Then Algorithm 5.1 is run with the backward trellis shown in Fig. 5.3 to find that
the sequence in this shell with index 4 is (3, 1, 3, 1) which is shown with dashed lines. This
(rotated) backward subtrellis is the part of the forward trellis in Fig. 5.2 that represents only
the sequences located on the third shell.
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5.3.3.4 Shaping within the N -shell: Shell Mapping

The second sphere shaping algorithm that is based on the forward trellis provided by Laroia
et al. in [30, Algorithm 2] is the well-known shell mapping (SM). We also denote SM by LA2
to be consistent with our denotation of LA1. SM is based on the divide-and-conquer (D&C)
principle as used in [100]. The sequences on a given N -shell are ordered with respect to the
index of their first half, and the ones having identical first halves with respect to the index of
their second half as shown in Table 5.1. This principle is applied recursively such that the n-D
problem is successively divided into two n/2-D problems. In the end, the 2-D problem can
be solved easily by a LUT [101, Example 8.2]. Here we assume that N is an integer power
of two. An efficient way of implementing SM as discussed in [30] and [101] is formulated in
Algorithms 5.3 and 5.4. We note that F en must be stored in memory for n = 0, 1, 2, 4, · · · , N
and e ≤ E• to realize shaping and deshaping based on SM. These columns of the forward
trellis can be computed using (5.17).

Algorithm 5.3: SM Shaping
For n = N,N/2, · · · , 4:

1 The energy e1 of the first half an1 of an (and consequently the energy e2 of the second
half an2 ) is determined by taking e1 such that∑

b<e1

F bn/2F
e(an)−b
n/2 ≤ In(an) <

∑
b≤e1

F bn/2F
e(an)−b
n/2 , (5.20)

and then setting e2 = e(an)− e1.
2 Residual offset Ds follows from

Ds = In (an)−
∑
b<e1

F bn/2F
e(an)−b
n/2 . (5.21)

3 The local offsets In/2 (an1 ) and In/2 (an2 )

In/2 (an1 ) =

⌊
Ds

F e2n/2

⌋
, (5.22a)

In/2 (an2 ) = Ds − In/2 (an1 )F e2n/2 (5.22b)

are computed.
Finally, mapping from depth-2 offsets to symbols is straightforward [101].
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Algorithm 5.4: SM Deshaping

Note that J1

(
a2

1

)
= J1

(
a2

2

)
= 0.

1 For n = 2, 4, · · · , N :

Dd = Jn/2 (an1 )F
e(an2 )

n/2 + Jn/2 (an2 ) , (5.23a)

Jn (an) =
∑

k<e(an1 )

F kn/2F
e(an)−k
n/2 +Dd. (5.23b)

Finally output IN (aN ) = JN .

5.4 Required Storage and Computational Complexity

5.4.1 Operational Input Length
In most practical systems, information that is to be transmitted, and thus, a data string to
be inputted to the amplitude shaper is binary. Accordingly, we define the operational input
length of a sphere shaper as

k
∆
= blog2 |A•|c = bNRsc (5.24)

in bits. Then sphere shaping creates an invertible mapping from k-bit strings to N -amplitude
sequences. We note that this means only the first 2k sequences on the lexicographical or
energy-based list are transmitted, and the rest is unused. For ESS, these sequences are not
necessarily from the outermost shell as shown in Table 5.1. Therefore, the operational average
energy for the first 2k sequences can be smaller, but also larger than Eav. For Laroia’s sphere
shaping, the unused sequences are from the outermost shell as shown in Table 5.1, and the
operational average energy is smaller than Eav. Furthermore, due to the same reasoning,
Laroia’s algorithms construct the most energy efficient signal set for a given k. However,
as it will be discussed in Chapter 7, the difference in operational average energy for ESS
and Laroia’s algorithms is negligible for blocklengths larger than a few dozen. Moreover,
the backward trellis can be modified using the ideas presented in Sec. 7.2.3 such that ESS
constructs roughly the most energy efficient signal set also for very small N .

Remark 5.3 (Exact operational amplitude distribution for sphere shaping). Sphere shap-
ing considers the innermost L shells of an N -D ASK lattice which consists of 2NRs signal
points. We call the amplitude distribution averaged over all these sequences the sphere dis-
tribution. However, only 2k sequences are transmitted by a communication system. The
amplitude distribution averaged over these 2k sequences—which we call the operational
distribution—obviously depends on which subset of sequences are used from the initial com-
plete sphere. Therefore, to obtain this distribution, we first need to specify a sphere shaping
algorithm that creates an ordering for the amplitude sequences. Then we need to consider
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the first 2k sequences. However, in Fig. 4.1, we assumed that the sphere distribution is an
accurate approximation for the operational distribution, and we computed the rate loss ac-
cordingly. It will be shown in Chapter 7 that this assumption is valid for N > 50, and it
creates a negligible difference in rate loss for smaller blocklengths. However, in the context
of demonstrating the superiority of sphere shaping over CCDM, it plays no significant role.

5.4.2 Enumerative Sphere Shaping
To realize ESS as explained in Sec. 5.2.3, the backward trellis T en must be stored for n =
0, 1, · · · , N and e ≤ E•. This trellis can be stored in the form of an L-by-(N + 1) array
T where its nth column tn consists of T en for e ≤ E•, and each element is at most dNRse-
bit long. Therefore, the required storage is upper-bounded by L(N + 1) dNRse bits, or
equivalently, L(N + 1)(k + 1) bits, as shown in Table 5.3. Considering Remark 5.1, we see
that the storage complexity is O(N3) as a function of N for a fixed shaping rate Rs.

Table 5.3: Required Storage and Computational Complexity of Sphere Shaping

Technique Storage (bits) Bit Oper./1-D
ESS L(N + 1)(k + 1) (na − 1)(k + 1)
LA1 L(N + 1)(k + 1) + Λsto (na − 1) (k + 1) + Λcomp
SM L (log2N + 1) (k + 1) + Λsto L(k + 1)2 + Λcomp

To compute the backward trellis with (5.4), we need to compute LN numbers, each of
which requires at most (|A| − 1) additions. Therefore, at most LN(na − 1)(k + 1) bit
operations4 (bit/oper.) must be carried out as shown in Table 5.4.

Table 5.4: Complexity of Computing Forward and Backward Trellises

Technique Bit Operations
Backward Trellis with (5.4) LN(na − 1)(k + 1)
Forward Trellis with (5.15) LN(na − 1)(k + 1)
Forward Trellis with (5.17) L2 log2N(k + 1)2

Shaping and deshaping algorithms of ESS demand at most (na − 1) subtractions and
additions of numbers from the backward trellis per dimension, respectively.5 Therefore, their
computational requirement is upper-bounded by (na − 1)(k + 1) bit oper./1-D as shown in

4We assume that k-bit additions and subtractions are k-bit operations, and k-bit multiplications and divisions are
k2-bit operations similar to [30].

5For Algorithm 5.1, before each subtraction, first a comparison must be carried out. Then depending on the
result of the comparison, a subtraction may be necessary. We assume that this can be implemented by realizing a
subtraction, and outputting the minuend if the output is negative, and the difference if the output is nonnegative.



5

94 Enumerative Sphere Shaping

Table 5.3. Considering Remark 5.1, we see that the computational complexity behaves as
O(N) as a function of N for a fixed shaping rate Rs.

Example 5.8 (Complexity of ESS for the IEEE 802.11 Standard). The backward trellis
constructed with N = 96, A = {1, 3, 5, 7}, and L = 129 has Rs = 1.7503 bit/1-D and
k = 168 bits. To store this trellis, L(N + 1)(k + 1) = 264.34 kilobytes (kB) of memory is
required. The corresponding shaping and deshaping algorithms require 507 bit oper./1-D.

5.4.3 Laroia’s Sphere Shaping

To compute the forward trellis with (5.15), we need the same amount of bit oper. as comput-
ing the backward trellis with (5.4) as shown in Table 5.4. When on the other hand (5.17) is
used to compute it, L log2N numbers must be computed, where each computation requires
at most L multiplications and additions. Therefore (neglecting the complexity of additions),
at most L2 log2N(k + 1)2 bit oper. must be carried out as shown in Table 5.4. Here we also
neglected the complexity of computing F eN+1 in case the extra step is realized with storage
as explained in Sec. 5.3.3.2, since it only requires additions.

5.4.3.1 The Extra Step

The extra step with no storage requires at most L − 1 comparisons and subtractions (or
additions) of numbers from the trellis per N -D, and thus, its computational requirement is at
most (L− 1)(k + 1)/N bit oper./1-D as shown in Table 5.5.

Table 5.5: Complexity of the Extra Step

Λcomp Λsto

With no storage (L− 1)(k + 1)/N 0
With storage (L− 1)(k + 1)/N L(k + 1)

The extra step with storage requires at most L− 1 comparisons and 1 subtraction (or ad-
dition) of numbers from the trellis per N -D, and thus, its computational requirement is also
at most (L − 1)(k + 1)/N bit oper./1-D. However, an additional column needs to be stored
using L(k + 1) bits along with the part of the forward trellis that is stored for the subsequent
shaping algorithm. The additional computational requirement and (possible) increase in re-
quired storage due to the extra step are indicated by Λcomp and Λsto in Tables 5.3 and 5.5,
respectively.

Remark 5.4 (Complexity of the extra step). From Table 5.5, it seems that the extra step
should be realized using the approach with no storage. However, we note that the compu-
tational requirements tabulated in Table 5.5 are the worst-case values. The extra step with
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no storage starts processing the number of sequences on the innermost shell, working out-
wards. On the other hand, the extra step with storage starts from the outermost shell, working
inwards. Therefore, since—due to sphere hardening—most sequences are on the outermost
shell, the extra step with no storage requires more computations on the average.

5.4.3.2 Laroia’s Algorithm 1 (LA1)

The procedure of shaping within the N -shell by LA1 has the same required storage and
computational complexity as ESS. Considering the extra step, LA1 is slightly more complex
than ESS as indicated in Table 5.3 with Λcomp. Depending on the way the extra step is
realized, LA1 may also require more storage than ESS as shown in Table 5.3 with Λsto.

5.4.3.3 Shell Mapping (LA2)

SM demands the storage of log2N + 1 columns of the forward trellis, and thus, the required
storage is upper-bounded by L(log2N+1)(k+1) bits excluding Λsto, as shown in Table 5.3.
Considering Remark 5.1, we see that the storage complexity isO(N2 logN) as a function of
N for a fixed shaping rate Rs.

Shaping and deshaping algorithms of SM require up to L multiplications (or divisions) of
numbers from the forward trellis at each step [102]. Unlike ESS, the SM algorithm consists
of log2N steps. However, due to the nature of the D&C principle, SM repeats the nth step
2n−1 times for n = 1, 2, · · · , log2N . Therefore, as shown in Table 5.3, the computational
complexity of SM is upper-bounded by

1

N

log2N∑
n=1

2n−1L dNRse2 =
1

N
L dNRse2 (N − 1) ≤ L dNRse2 = L(k + 1)2 (5.25)

bit oper./1-D excluding Λcomp, which has complexity O(N3) as a function of N for a fixed
shaping rate Rs.

Example 5.9 (Complexity of SM for the IEEE 802.11 standard). To implement SM for
the same parameters as in Example 5.8 where N = 96, the required number of bit oper./1-D
is on the order of millions. Thus, we consider N = 32 with L = 48 which leads to a shaping
rate of Rs = 1.7557 bit/1-D and an input length of k = 56 bits. Three parallel shell mappers
can be used shape over 96 dimensions in this case, however with a small loss of efficiency.
With these parameters, SM requires at most 155952 bit oper./1-D. The part of the forward
trellis that needs to be stored in this case requires 2.05 kB of memory.

5.4.4 Conclusion: Which Algorithm to Use?
To choose among ESS, LA1, and SM, we first consider the computational complexity. Al-
though SM requires smaller storage than the other algorithms, a very large number of mul-
tiplications and divisions are necessary, which makes it impractical to implement SM for
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blocklengths larger than a few dozen. For instance in the V.34 high speed modem stan-
dard [11], SM is realized for N = 16. This leaves us with a choice between ESS and LA1.

ESS and LA1 have the same required storage in principle. Due to the extra step necessary
to find the N -shell the sequence is located on, LA1 is slightly more complex than ESS. To be
fair, we note that LA1 constructs a more energy-efficient signal set than ESS in general. How-
ever, this difference in energy efficiency can only be significant for very short blocklengths,
and thus, we base our comparison only on complexity. We conclude from this discussion that
ESS is an efficient way of realizing sphere shaping, and we prefer to use it.

5.5 End-to-end Decoding Performance

5.5.1 Simulation Settings

5.5.1.1 General Parameters

In this section, we evaluate the performance of ESS in the PAS framework by Monte Carlo
simulations. For comparison, uniform signaling, CCDM, and LA1 are also simulated. We
note that SM is not simulated, since we expect that it will perform identically to LA1 for
the AWGN channel. As the channel input constellation, 4-, 8- and 16-ASK are considered,
i.e., m ∈ {2, 3, 4}. However, before transmission over the communication channel, two
ASK symbols are combined to a single quadrature amplitude modulation (QAM) symbol. At
the PAS transmitter, the BRGC is applied by the symbol mapper, and the same mapping is
used to label amplitudes at the output of the amplitude shaper. As the FEC code, rate-Rc
systematic LDPC codes of length nc bits are used from the IEEE 802.11 standard [16], where
Rc ∈ {1/2, 2/3, 3/4, 5/6} and nc ∈ {648, 1296}. Each LDPC codeword corresponds to
Ntotal = nc/m real symbols. At the PAS receiver, the soft-demapper computes LLRs using
(2.8). For FEC decoding, the built-in LDPC decoder of MATLAB is used with at most 50
iterations. To assess the performance, frame error rate (FER) curves are plotted where a frame
is equivalent to an LDPC codeword, and we declare a frame error when at least one of the
information bits is estimated incorrectly. For simulations over the AWGN channel, single
carrier transmission is realized whereas, over fading channels, OFDM is implemented.

5.5.1.2 Fair Comparison

Our objective is to compare uniform and shaped signaling structures fairly as discussed
in [103], i.e., at a fixed transmission rate Rt. Shaping decreases the entropy H(X) of the
constellation, and consequently, the transmission rate. Therefore, to compensate for this
effect and to operate at the same transmission rate Rt as the compared uniform signaling
scheme, either the constellation size 2m and/or the FEC code rate Rc of the PAS structure
must be higher as discussed in the following example.
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Example 5.10 (Fair comparison). Consider a uniform signaling system that employs a rate
Rc = 3/4 FEC code followed by an 8-ASK symbol mapper. The transmission rate of this
system is Rt = mRc = 2.25 bit/1-D. To obtain the same transmission rate with PAS, one of
the following approaches can be taken. First, the constellation size can be increased to 16-
ASK while keeping the FEC code rate fixed at 3/4, which leads to γ = mRc − (m− 1) = 0.
Then the parameters of the amplitude shaper can be adjusted such that k/N = 2.25 < m− 1
and consequently, Rt = k/N + γ = 2.25. Second, the FEC code rate can be increased to 5/6
while keeping the constellation size fixed atm = 3, which leads to γ = mRc−(m−1) = 0.5.
Then the parameters of the amplitude shaper can be selected such that k/N = 1.75 < m− 1
and consequently, Rt = k/N + γ = 2.25.

5.5.1.3 Amplitude Shaping

Shaping is realized over N real dimensions. Note that when Ntotal = N , shaping and FEC
coding blocklengths are the same. When on the other handNtotal = αN for some integer α >
1, each FEC frame consists of α shaped sequences. At each target rate Rt and constellation
size 2m, we choose an FEC code rate Rc for the PAS based on the discussion in Sec. 3.6, i.e.,
on Wachsmann curves. This FEC code rate results in γ = mRc − (m− 1). Then for sphere
shaping, E• is selected as the smallest value that satisfies k/N + γ ≥ Rt. For CCDM, the
most energy-efficient composition that has at least 2k sequences is selected.

5.5.1.4 Frequency-selective Channels

Frequency-selective fading realizations are produced using the type-D HiperLAN/2 channel
model which is based on a Rician-modeled tapped delay line [104]. Doppler spread is taken
to be zero. Perfect CSI is assumed to be available at the receiver. For simulations over
fading channels, OFDM is used as the modulation format as specified in the IEEE 802.11
standard. The bandwidth is set to 40 MHz, and it is separated into 128 subcarriers among
which 108 are used for data, 6 are occupied by pilots, and the remaining 14 are empty,
see [16, Sec. 21.3.7.2] for the actual subcarrier mapping. The cyclic prefix length is taken
to be 25 % of an OFDM symbol duration. As the constellation, 4- and 8-ASK are used
which leads to Ntotal ∈ {648, 432} for nc = 1296 bits, respectively. Thus a codeword, i.e.,
a frame, consists of three or two OFDM symbols for schemes based on 4-ASK and 8-ASK,
respectively. Shaping is always realized over an OFDM symbol, i.e., N = 216.

5.5.2 The AWGN Channel
5.5.2.1 Performance of ESS at Different Blocklengths

In Fig. 5.4, FER is plotted versus SNR for PAS and uniform signaling with 16-ASK and nc =
648 bits. The transmission rate isRt = 3 bit/1-D. For this constellation and transmission rate,
the FEC code rate that minimizes ∆SNR in (3.97) is 0.85 which should be combined with
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Table 5.6: Parameters of ESS for Fig. 5.4 and 5.5

N E• k/N (bit/1-D) Rloss (bit/1-D) Eav Gs (in dB)
6 374 2.667 0.1181 46.83 0.57
54 2302 2.667 0.0365 41.02 1.15

162 6514 2.667 0.0169 39.69 1.29
486 19086 2.667 0.0073 39.10 1.36

20 20.5 21 21.5 22 22.5

10−3

10−2

10−1

1.31 dB

SNR (in dB)

FE
R

Uniform
CCDM (N = 162)
ESS (N = 6)
ESS (N = 54)
ESS (N = 162)
LA1 (N = 162)

Figure 5.4: 648-bit LDPC-coded FER vs. SNR with 16-ASK at Rt = 3 bit/1-D.

the MB distribution that has H(X) = 3.6. Therefore, we combine ESS and CCDM with the
rate-5/6 FEC code which is the closest to 0.85 in the IEEE 802.11 standard [16]. This leads
to γ = Rcm − (m − 1) = 1/3. Shaping is realized over N ∈ {6, 54, 162} dimensions for
ESS leading to α = {27, 3, 1} shaping blocks inside a single FEC codeword, respectively. In
Table 5.6, corresponding parameters and metrics for ESS are tabulated. Uniform signaling is
realized with the FEC code of rate Rc = Rt/m = 3/4.

We see from Fig. 5.4 that at an FER of 10−3 and at N = 6, 54, and 162, ESS is 0.59,
1.16, and 1.31 dB more power-efficient than uniform signaling, respectively. The first obser-
vation is that these improvements are in agreement with the shaping gain results in Table 5.6.
Secondly, ESS provides more than half a dB gain even at a very small blocklength of N = 6
which enables a trade-off between shaping gain and complexity. More precisely, when the
primary objective is not to maximize the gain but to provide a granular set of transmission
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rates, one can achieve this with ESS over only a couple of dimensions while still having
a significant SNR improvement. For comparison, multiset-partition distribution matching
(MPDM) [93] needs at least 20 16-ASK symbols to only perform as good as uniform signal-
ing where CCDM requires even more [105]. Finally, we note that 95 % of the gain achieved
at N = 162 can be reaped already at N = 54 which exhibits diminishing returns. There-
fore, performance-wise, it is possible to secure most of the possible shaping gain with sphere
shaping, without increasing the blocklength well above a couple of hundreds. Finally, the
performance of PAS using LA1 for amplitude shaping at N = 162 is also shown in Fig. 5.4.
We see that ESS and LA1 perform virtually identical since the difference in their energy
efficiency is negligible as discussed in Sec. 5.4.1.6

Remark 5.5 (Sphere shaping at N = 6 using a LUT). To realize sphere shaping at N = 6
which is shown to provide 0.59 dB gain over uniform signaling in Fig. 5.4, a LUT which
consists of 2k = 216 entries is necessary. Considering that each entry includes 6 amplitudes,
and amplitudes of 16-ASK can be represented with 3 bits, the size of the LUT is computed to
be more than 147 kB. However, if the corresponding backward amplitude trellis is computed
using (5.4), only 5593 bits of memory is required by ESS for storage.

5.5.2.2 Performance of CCDM at Different Blocklengths

In Fig. 5.5, FER is plotted versus SNR for the same set of parameters as in Fig. 5.4, except
the LDPC codeword length is nc = 1944 bits now, and consequently, Ntotal = 486. Both
CCDM and ESS are considered at blocklengths N = 162 and N = 486. In the former
case, there are three shaped codewords inside a single FEC frame, whereas, in the latter,
shaping and FEC blocklengths are the same. The first observation from Fig. 5.5 is that when
N increased from 162 to 486, the performance of ESS improves by less than 0.1 dB. This is
because, for sphere shaping, the shaping gain already approaches the maximum at relatively
small N , and further increasing it provides only marginal improvement due to diminishing
returns. Secondly, we see that the same increase in blocklength improves the performance
of CCDM by more than 0.5 dB. This is because CCDM performs poorly for relatively small
N , and it requires larger blocklengths than sphere shaping to have its shaping gain approach
the maximum. For the AWGN channel, the performance of CCDM will converge to that of
sphere shaping as N →∞.

5.5.2.3 Transmission Rate Granularity with ESS

One important advantage of PAS is that the rate adaptation is handled in the amplitude shap-
ing block. This way, instead of having many different strong FEC codes with different coding
rates to obtain rate granularity, one can fix the FEC code, and adapt the transmission rate by
modifying the outer shaping code. For sphere shaping, the transmission rate can be changed

6As will be discussed in Chapter 7, LA1 is at least as energy efficient as ESS. Thus, for the same set of parameters,
we do not expect its SNR efficiency in the PAS framework to be worse than that of ESS.
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Figure 5.5: 1944-bit LDPC-coded FER vs. SNR with 16-ASK at Rt = 3 bit/1-D.

easily by changing E•, and consequently, k/N . The granularity of this rate adaptation is
1/N which is the best possible.

In Fig. 5.6, FER is plotted versus SNR for ESS-shaped 8-ASK (top) and 16-ASK (bottom)
at various transmission rates. As the FEC code, the 648-bit rate-Rc = 5/6 LDPC code from
the IEEE 802.11 standard is used. For 8-ASK transmission, N = 216, while for 16-ASK
transmission, N = 162. The performance of uniform signaling with FEC codes of rate
{1/2, 2/3, 3/4, 5/6} is also shown (black). For comparison, ESS-shaped signaling with 16-
ASK at Rt = 2 bit/1-D is also shown (dashed) in the top figure. We see that by fixing the
FEC code with a coding rate of Rc = 5/6, and only using two constellations, it is possible to
operate at a large interval of transmission rates, i.e., Rt < 3.33 bit/1-D, only by changing the
parameters of the amplitude shaper.

Remark 5.6 (Performance prediction for shaped signaling). Consider a uniform signaling
strategy that combines 2m-ASK with rate-Rc FEC coding. The corresponding signal structure
has the shape of an N -D cube. Now consider PAS with ESS using the same constellation and
FEC code, with average energy Eav. The corresponding signal structure can be thought of
as the same N -D cube, with corners removed such that it reduces to an N -sphere, enclosing
a smaller amount of signal points, and hence, having a smaller rate. Consequently, shaping
does not change the “distance profile” of the signal set which is determined by the FEC code
but rather leaves out high-energy signal points. We define the reduction in average energy
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Figure 5.6: 648-bit rate-Rc = 5/6 LDPC-coded FER vs. SNR with 8-ASK (top, red) and with
16-ASK (bottom, blue) at indicated transmission rates (in bit/1-D). Uniform transmission
with code rates Rc ∈ {1/2, 2/3, 3/4, 5/6} are shown in black in both figures.

due to shaping with respect to uniform signaling (in dB) as

∆Eav = 10 log10

(
22m − 1

3

1

Eav

)
, (5.26)

and we expect the FER vs. SNR behavior of the shaped scheme to be roughly the behavior
of the unshaped scheme, shifted towards left by ∆Eav dB. As an example, consider ESS of
16-ASK with rate-Rc = 5/6 FEC code at rate Rt = 3 bit/1-D shown in Fig. 5.6 (bottom).
Here ∆Eav = 3.31 dB, and the improvement in performance with respect to the uniform
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Figure 5.7: SNR values at which the FER of 10−3 is achieved by ESS. Shaped 8- and 16-ASK
are combined with the Rc = 5/6 LDPC code. Shaped 4-ASK is followed by the Rc = 3/4
code. The codes are of length nc = 648. This corresponds to N = 324, N = 216, and
N = 162 for 4-, 8-, and 16-ASK, respectively. Values for uniform signaling are also shown
for Rc ∈ {2/3, 3/4, 5/6}.

scheme is 3.1 dB, which are roughly in agreement.

Finally, we see from Fig. 5.6 (top) that at Rt = 2 bit/1-D, ESS of 8-ASK performs better
than that of 16-ASK. This observation can be explained considering the difference in N , in
∆Eav, and coding gains of the same FEC code combined with different constellations. This
explanation is beyond the scope of this thesis, but as a thumb rule, we propose to use the
smallest possible constellation which is large enough to transmit at a given rate.

5.5.2.4 SNR Gap to Polyanskiy’s Approximation

In Fig. 5.7, we show the SNR values at which an FER of 10−3 is obtained over the AWGN
channel by ESS of 4-, 8-, and 16-ASK at different transmission rates. ESS of 16- and 8-
ASK employs the rate-5/6 code whereas ESS of 4-ASK is combined with the rate-3/4 code.
We note that nc = 648 corresponds to N = 324, 216, and 162 for 4-, 8-, and 16-ASK,
respectively. In the same figure, we also present the SNR values for uniform signaling with
different FEC code rates. For comparison, we show the normal approximation to the maximal
achievable rate (2.5) for the AWGN channel at finite blocklengths, i.e., N ∈ {162, 216, 324},
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Figure 5.8: FER versus SNR behavior of ESS and uniform signaling over the HiperLAN/2-
D channel. LDPC codes of length nc = 1296 are employed. Shaping is over one OFDM
symbol, i.e., N = 216.

which was derived by Polyanskiy et al. in [37]. We observe that for rates Rt ∈ [1, 3] bit/1-
D, it is possible to operate less than 1.5 dB away from this approximation. For instance, at
Rt = 2.67 bit/1-D, ESS performs 1.58 dB more efficiently than uniform signaling, and it
is 1.4 dB away from the approximation at N = 162. Figure 5.7 can be applied to predict
the performance of an ESS-shaped scheme at a given rate which may help the upper layers
in a communication system selecting Rt depending on the channel conditions. It becomes
unnecessary to apply FEC codes of different rates to provide rate granularity by moving this
functionality to the shaping block and tuning E•.

5.5.3 Frequency-selective Channels

In Fig. 5.8, FER is plotted versus SNR for PAS and uniform signaling for the fading channel
modeled by type-D HiperLAN/2 [104]. PAS uses 8-ASK whereas the uniform scheme uses
both 4- and 8-ASK. Length nc = 1296-bit LDPC code is employed from the IEEE 802.11.
We argued in Sec. 3.6 that as the channel starts to have a fading nature, the coding redundancy
should be increased relative to the shaping redundancy. Therefore, we only used the smallest
possible FEC code rate for the PAS scheme based on 8-ASK which is Rc = 2/3.

We see from Fig. 5.8 that at rate Rt = 1.5 bit/1-D, PAS with ESS is 0.2 dB more efficient
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than uniform 8-ASK with Rc = 1/2. Furthermore, it outperforms uniform 4-ASK with
Rc = 3/4 by 1.7 dB. At rateRt = 1.33 bit/1-D, PAS with ESS requires 0.7 dB less SNR than
uniform 4-ASK with Rc = 2/3. We note that the IEEE 802.11 standard does not provide any
modulation order - coding rate combination that leads toRt = 1.33 [16]. The increase in gain
here as Rt decreases is because the FEC code rate Rc of the corresponding uniform setting
also increases from 1/2 to 2/3, which degrades its performance with respect to the shaped
scheme. From Fig. 5.8, we can conclude that shaping provides gains in fading scenarios as
well.

Remark 5.7 (Allowed m - Rc combinations in the IEEE 802.11 standard). In Fig. 5.8,
we provide FERs of two different uniform signaling settings at Rt = 1.5. Among these, ESS
provides 1.7 dB gain over the rate-3/4-coded uniform 4-ASK which is a combination that is
supported by the IEEE 802.11 standard [16]. On the other hand, the gain is 0.2 dB over the
rate-1/2-coded uniform 8-ASK which is a combination that the IEEE 802.11 standard does
not allow, but is simulated in this work for the sake of fairness.

5.6 Conclusion
In this chapter, we searched for an answer to the following research question.

RQ-3 How can sphere shaping be realized algorithmically? Which algorithm provides
high performance with low complexity? What is the end-to-end decoding per-
formance of PAS using sphere shaping over the AWGN and frequency selective
channels?

We explained enumerative sphere shaping (ESS), an efficient algorithm to realize sphere
shaping, and we compared ESS with two competitive algorithms: LA1 [30, Algorithm 1] and
SM. We demonstrated that SM is significantly more complex than ESS, while LA1 is slightly
more complex. Then we demonstrated using end-to-end decoding results that PAS with ESS
provides more than 1 dB gains in power-efficiency over uniform signaling for the AWGN
channel for a large range of transmission rates. Furthermore, if the shaping redundancy is
kept limited, it is also possible to obtain gains up to 0.7 dB using PAS with ESS for frequency-
selective channels.
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6.1 Introduction
In this chapter, we will study the research question RQ-4 which is about the use of nonsys-
tematic FEC codes in the PAS framework. One of the prominent advantages of PAS is that
it allows amplitude shaping to be included in existing communication systems as an outer
code. However, the way amplitude shaping is combined with channel coding in PAS requires
a systematic FEC code. In what follows, we will explain how the nonsystematic convolu-
tional code applied in the IEEE 802.11 standard can be used in PAS, together with an outer
amplitude shaping block. To the best of our knowledge, this is the only work in which a
nonsystematic code is used in PAS.

Shaper
message ?

Modulator

aN xN = sN ⊗ aN

Figure 6.1: Functional diagram of the basic PAS structure explained in Sec. 2.6.3.1. The
modulator must include FEC capability.

As illustrated in Fig. 6.1, the fundamental goal of PAS is to generate a channel input xN ,
of which the amplitudes aN are pre-determined by a shaping block. In the most common
approach, the modulator in Fig. 6.1 consists of a systematic FEC encoder and a symbol
mapper as shown in Fig. 2.6. This way, the input amplitude sequence is mapped to the
unique channel input sequence in the encoder’s codebook that has identical amplitudes.1

With this way of perceiving the functionality of the modulator in Fig. 6.1, we can reformulate
the problem at hand: We need to devise a method to map the input amplitude sequence to a
unique channel input sequence in a nonsystematic FEC encoder’s codebook. In this chapter,
we explain how to achieve this for the nonsystematic convolutional codes (CCs) from the
IEEE 802.11 standard [16].

6.2 PAS with a Nonsystematic FEC Code
The physical layer (PHY) of the IEEE 802.11 standard is based on BICM where interleaving
is over a single orthogonal frequency-division multiplexing (OFDM) symbol, not over a FEC
frame which may span multiple OFDM symbols [16].2 Gray-coded M2-QAM symbol map-

1Since symbol mapping {0, 1}mN → {±1,±3, · · · ,±(2m − 1)}N is a one-to-one function, we consider the
image of the encoder’s codebook under the symbol mapping function as the codebook of the encoder.

2The reason behind this is to be able to start Viterbi decoding as soon as the first OFDM symbol arrives, and thus,
to limit the latency. Interleaving over frequency is necessary to avoid the detrimental effect resulting from adjacent
coherent subcarriers being in deep fade [31, Sec. 3.3.2].
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ping is used which is in the form of the Cartesian product of two M -ASK constellations. For
FEC, both nonsystematic CCs and systematic LDPC codes are included. In this chapter, our
focus is on the CCs.

The nonsystematic 64-state mother CC used in the IEEE 802.11 standard has rate Rc =
1/2, and the corresponding encoder outputs the pair (v1[t], v2[t]) at time instance t for the
input bit u[t]. Generator polynomials of this code are g0 = 1338 and g1 = 1718. Here
the subscript “8” indicates that the polynomials are expressed in octal. Examining [16, Fig.
17-8] where the structure of the corresponding encoder is shown, the output equations can be
written as

v1[t] = u[t]⊕ u[t− 2]⊕ u[t− 3]⊕ u[t− 5]⊕ u[t− 6], (6.1)
v2[t] = u[t]⊕ u[t− 1]⊕ u[t− 2]⊕ u[t− 3]⊕ u[t− 6] (6.2)

where ⊕ denotes the XOR operation.
The finite state machine (FSM) model of this CC shows that in a given state, the output

pair either belongs to the set {(0, 0), (1, 1)} or to {(0, 1), (1, 0)} depending on the input bit
u[t] of the encoder. Thus, by inverting the input bit, the output pair will also be inverted. This
enables us to make half of the outputs equal to pre-determined values, i.e., the amplitude bits
and the extra information bits which are used as some of the signs. We explain how this is
achieved through three different cases.

6.2.1 Rate-1/2 Encoding

The only constellation that can be combined with the rate-Rc = 1/2 CC in the PAS frame-
work is 4-ASK. In this case γ = 0. We consider the 4-ASK alphabet labeled with the BRGC,
and we neglect the interleaver present in the IEEE 802.11 standard for now. As shown in
Fig. 6.2, the output pairs of the encoder consist of a sign bit and an amplitude bit (B1, B2)
for t ≥ 1.3 We aim to set half of the outputs to the prescribed amplitude bits, i.e., V2 = B2.
From (6.2) , we get

u[t] = v2[t]⊕ u[t− 1]⊕ u[t− 2]⊕ u[t− 3]⊕ u[t− 6]

= b2 ⊕ u[t− 1]⊕ u[t− 2]⊕ u[t− 3]⊕ u[t− 6]

= f(b2, s) (6.3)

where s and b2 are the encoder state and the amplitude bit at time t, respectively. We call f(·)
the input select function. Using this function, for each amplitude bit b2, the input selector in
Fig. 6.2 finds the input u[t] to the convolutional encoder that will make the encoder output
the prescribed amplitude bit in its corresponding position, i.e., on the v2 branch. The other
output is determined by (6.1), and it is used as the sign bit B1 = V1.

3In Figures 6.2, 6.3, and 6.4, bi,j denotes the ith bit-level of the jth ASK symbol xj .
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· · ·x1 x2 x3 x4

Figure 6.2: Block diagram of the PAS architecture employing the rate-1/2 nonsystematic CC
of the IEEE 802.11 standard [16]. The encoder is preceded by the proposed input selector
that realizes (6.3). Combined, these two operate as a systematic encoder, i.e., the input stream
appears unchanged at the positions that correspond to amplitude bits at the output.

6.2.2 Rate-(m− 1)/m Encoding

The minimum code rate that can be combined with 2m-ASK form > 2 in the PAS framework
is Rc = (m − 1)/m > 1/2. In this case, possible FEC code rates in the 802.11 standard
are Rc ∈ {2/3, 3/4, 5/6}. These code rates are obtained by puncturing the mother code,
and thus, the bits that will be punctured after encoding must also be taken into account. We
explain this through the following example.

Example 6.1 (Input select functions for 8-ASK and Rc = 2/3 CC). We consider the 8-
ASK alphabet labeled with the BRGC, and the CC with rate Rc = 2/3, i.e., γ = 0. The
puncturing pattern is [1, 1, 1, 0]. As shown in Fig. 6.3, the output pairs of the encoder consist
of a sign bit and an amplitude bit (B1, B2) for odd time indices t. The pairs consist of an
amplitude bit and a bit that will be punctured (B3, P ) for even time indices. We aim to set
half of the outputs to the prescribed amplitude bits, i.e., V2 = B2 and V1 = B3 for odd and
even time indices, resp. From (6.2) and (6.1), we get

u[t] = b2 ⊕ u[t− 1]⊕ u[t− 2]⊕ u[t− 3]⊕ u[t− 6] = fo(b2, s) (6.4)
u[t] = b3 ⊕ u[t− 2]⊕ u[t− 3]⊕ u[t− 5]⊕ u[t− 6] = fe(b3, s) (6.5)

for odd and even t, resp. We call fo(·) and fe(·) the odd and even input select functions, resp.
Using these functions, for each amplitude bit b2 or b3, the input selector in Fig. 6.3 finds
the input u[t] to the convolutional encoder that will make the encoder output the prescribed
amplitude bits in their corresponding positions, i.e., on the v2 branch for odd t, on the v1

branch for even t. The other output is determined either by (6.1) or by (6.2), and it is used as
the sign bit B1 = V1 or punctured for odd and even time indices, resp.
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Systematic Encoder

Amplitude Bits Input Selector

u =

{
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fe(b3, s), t even
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Figure 6.3: Block diagram of the PAS architecture employing 8-ASK and the rate-2/3 non-
systematic CC of the IEEE 802.11 standard [16]. The encoder is preceded by the proposed
input selector that realizes (6.4) and (6.5). Combined, these two operate as a systematic en-
coder, i.e., the input stream appears unchanged at the positions that correspond to amplitude
bits at the output.

6.2.3 Rate-(m− 1 + γ)/m Encoding
When a rate Rc > (m − 1)/m FEC code is combined with 2m-ASK, i.e., γ > 0, some of
the signs are selected directly by information bits. In this case, the increase in the number
of punctured bits (with respect to the rate Rc = (m − 1)/m code) should be used to make
these sign bits appear at the output of the FEC encoder as well. We explain this through the
following example.

Example 6.2 (Input select functions for 8-ASK and Rc = 5/6 CC). We consider the 8-
ASK alphabet labeled with the BRGC, and the CC with rate Rc = 5/6, i.e., γ = 1/2. The
puncturing pattern is [0, 0, 0, 1, 1, 0, 0, 1, 1, 0]. As shown in Fig. 6.4, the output pairs of the
encoder always consist of a bit that we need to set to a pre-determined value (amplitude bits
B2 or B3, or sign bits B1 for t = 3, 8, · · · that are equal to information bits), and a bit
that we do not care about (a bit that will be punctured P, or sign bits B1 for t = 1, 6, · · ·
that are parity). Again using (6.4) and (6.5) for each amplitude bit b2 and b3, and for each
(information) sign bit b1, the input selector in Fig. 6.4 finds the input u[t] to the convolutional
encoder that will make the encoder output the prescribed amplitude bits or (information) sign
bits in their corresponding positions. The other output is determined either by (6.1) or by
(6.2), and used as the (parity) sign bit B1 = V1 for t = 1, 6, · · · or it is punctured.

Remark 6.1 (On the universality of input-select and input-deselect). For other combi-
nations of m and Rc, the puncturing pattern and the positions of the amplitude bits and
(information) sign bits at the encoder output may change. For such settings, the input select
functions can be modified straightforwardly. For some combinations, it may be necessary to
consider not only the current input bit and the encoder state but also the next ones. For some
other combinations, it may also be necessary to feed the shift register in [16, Fig. 17-8] from
the opposite direction. However, it is possible to obtain input-select functions for all com-
binations of modulation formats and coding rates (the ones which are possible to combine
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Figure 6.4: Block diagram of the PAS architecture employing 8-ASK and the rate-5/6 non-
systematic CC of the IEEE 802.11 standard [16]. The encoder is preceded by the proposed
input selector that realizes (6.4) and (6.5). Combined, these two operate as a systematic en-
coder, i.e., the input stream appears unchanged at the positions that correspond to amplitude
bits and (information) sign bits at the output.

in PAS) specified in the IEEE 802.11 standard. The block that realizes the inverse function
of the input selector at the receiver can be implemented similarly. This block, given that
the preceding FEC decoder correctly estimated the complete frame, does not introduce any
errors.

Remark 6.2 (On the availability of encoder state s in the input selector). We note that
since the FSM model of the encoder and its starting state (zero) are known to the input se-
lector, the feedback links that carry the encoder state s in Figures 6.2, 6.3 and 6.4 are un-
necessary in practice, and they are only included here to emphasize that the selection process
depends on s.

Remark 6.3 (On the definition of systematic codes). A systematic, rate k/n convolutional
encoder is usually defined to have k of its n output branches reserved for systematic bits
as in [106, Sec. 2.10], [107, Sec. 11.1], and [108, Sec. 8.1.9]. Since in our proposal, the
systematic bits may appear in different branches during encoding, the effective systematic
encoders in Figures 6.2, 6.3 and 6.4 differ from the common systematic encoders in the
literature in general.

6.2.4 Effect of Interleaving
The bit-level interleaver present in 802.11 permutes coded bits in a pre-determined way be-
fore the symbol mapping. Due to the deterministic nature of the interleaver, we can determine
which output bits of the encoder will be used by the following mapper as amplitude and sign
bits. As an example in Fig. 6.5, whether the bits at the output of the encoder are amplitude
or sign bits, and the index of the channel inputs that they belong are shown for 8-ASK and
Rc = 2/3. In this case, the bits at the input of the input selector should be shuffled accord-
ing to the pre-interleaver order of the bits shown in Fig. 6.5. We note here that the specific
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Figure 6.5: The functions of the bits at the output of the encoder which will be punctured
to rate Rc = 2/3, interleaved, and mapped onto 8-ASK symbols. Here, aj and sj represent
amplitude bits and sign bits of the jth QAM symbol by the mapper (after puncturing and
interleaving).

interleaver defined in [16, Sec. 17.3.5.7] permutes the coded bits in a way that their function,
i.e., amplitude or sign bit, does not change, while adjacent coded bits are mapped to non-
adjacent subcarriers as shown in Fig. 6.5. With another type of interleaver which leads to a
pre-interleaver coded bit order that has long runs of a certain bit-level, deriving input-select
functions would not be possible.

6.2.5 Effect of Code Termination

In the IEEE 802.11 standard, trellis termination is realized during convolutional encoding by
appending 6 zeros to the end of the encoder input to make sure that the encoder returns to
state zero [16, Sec. 17.3.5.3]. This can be taken into account during input-select by allowing
a negligible decrease in shaping gain. In this case, a couple of symbols (the exact number
depending on the constellation size) at the end of the frame stay uniform due to zero padding
which terminates the trellis.

6.3 End-to-end Decoding Performance

In this section, Monte Carlo simulation results are provided to evaluate the performance of
PAS using the nonsystematic CCs of the IEEE 802.11 standard [16]. FEC codes are of rate
Rc and length nc-bits.

For amplitude shaping, ESS is combined with the input-select functions explained in
Sec. 6.2. Shaping is always over an OFDM symbol, i.e., N = 96. For a given target trans-
mission rate Rt, constellation size 2m, and FEC code rate Rc, E• is selected as the smallest
value that satisfies k/N + γ ≥ Rt. Here again, γ = Rcm− (m− 1).

For the simulations over frequency-selective channels, the bandwidth is now set to 10
MHz [16, Table 17-5], and it is separated into 64 subcarriers among which 48 are used for
data, 4 occupied by pilots, and the remaining 12 are empty [16, Sec. 17.3.5.10]. All other
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Figure 6.6: FER vs. SNR for ESS, CCDM, and uniform signaling with 8-ASK at Rt =
2.25 bit/1-D.

parameters and settings related to simulations over fading channels are the same as that of
Sec. 5.5.

Encoding with trellis termination, puncturing, and interleaving are implemented as in the
IEEE 802.11 standard [16, Sec. 17.3.5]. The BRGC is applied by the symbol mapper. The
same mapping is used to label the amplitudes at the output of the shaper. At the receiver side,
the demapper computes LLRs using (2.8), and then Viterbi decoding is realized.

6.3.1 The AWGN Channel

In Fig. 6.6, FER is plotted versus SNR for PAS and uniform signaling with 8-ASK. The
transmission rate is Rt = 2.25 bit/1-D. For this constellation and transmission rate, the FEC
code rate that minimizes ∆SNR in (3.97) is approximately 5/6 which should be combined
with the MB distribution that has H(X) = 2.75. Thus, ESS and CCDM are combined with
the rate-5/6 code. This leads to γ = Rcm − (m − 1) = 1/2 with k/N = 1.75 bit/1-D.
We take 8 shaping blocks of 96 amplitudes, i.e., 8 OFDM symbols, inside a single FEC
codeword which consists of nc = 2304 bits. The ESS is realized with E• = 1120 which
leads to Rs = 1.7503 bit/1-D and Eav = 11.4264. For this shaping scheme, rate loss Rloss =
0.0234 bit/1-D and shaping gain Gs = 1.11 dB. Uniform signaling is realized with the CC
of rate Rc = Rt/m = 3/4 We see from Fig.6.6 that at an FER of 10−3, ESS is 1.2 dB
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Figure 6.7: FER vs. SNR for ESS and uniform signaling at Rt = 1.5 bit/1-D.

more power-efficient than uniform signaling. This is in rough agreement with the computed
shaping gain. In this setting, ESS outperforms CCDM by 0.55 dB.

6.3.2 Frequency Selective Channels

In Fig. 6.7, the FER is plotted versus the SNR for PAS and uniform signaling for the frequency
selective fading channel which is modeled by type-D HiperLAN/2 [104]. PAS uses 8-ASK
whereas the uniform scheme uses both 4- and 8-ASK. CCs from IEEE 802.11 are employed
where for each combination of modulation formats and coding rates, nc is selected such
that 12 OFDM symbols are filled. We see from Fig. 6.7 that rate-2/3 coded ESS is almost
0.6 dB more efficient than uniform 8-ASK with Rc = 1/2. Furthermore, it outperforms
uniform 4-ASK with Rc = 3/4 by almost 1.5 dB. Here, we attribute the increase in gain
to the increased code rate for 4-ASK which degrades the performance over fading channels.
Another observation is that when the code rate increases, the efficiency of ESS is immediately
lost. This is in agreement with our discussion in Sec. 3.6.2 and observations in Sec. 5.5.3 in
which we stated the coding redundancy should be kept relatively high for fading channels.

6.4 Conclusion
In this chapter, we searched for an answer to the following research question.
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RQ-4 Can PAS be incorporated into existing communication systems that are based
on the IEEE 802.11 standard? Can PAS be combined with the nonsystem-
atic convolutional codes used in 802.11 [16] which are a mandatory part of
the standard?

We devised an input-select block that shuffles the amplitude bits generated by the shaper.
When placed in between the shaper and the nonsystematic channel encoder of the IEEE
802.11 standard, this block preserves the temporal structure of the shaped amplitudes through
the nonsystematic channel encoding. Thus, it enables PAS to be realized also with convolu-
tional codes of the IEEE 802.11 (in addition to the LDPC-coded mode discussed in Chap-
ter 5), and it completes the integration of PAS into the 802.11.
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CHAPTER 7
Practical Implementation Aspects

“In theory, there is no difference between theory and practice,
while in practice, there is.”

Parts of this chapter are published in:

Y. C. Gültekin, F. M. J. Willems, W. J. van Houtum, and S. Şerbetli, “Approximate enumer-
ative sphere shaping,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, June
2018, pp. 676-680.

Y. C. Gültekin and F. M. J. Willems, “Building the optimum enumerative shaping trellis,” in
Proc. Symp. on Inf. Theory and Signal Process. in the Benelux (SITB), Gent, Belgium, May
2019, p. 34. (Abstract & poster presentation)

Y. C. Gültekin, F. M. J. Willems, W. J. van Houtum, and S. Şerbetli, “Approximate enumer-
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7.1 Introduction
In this chapter, we will examine the research question RQ-5 which revolves around the prob-
lem of “implementing ESS as effectively as possible”. This effectiveness can be evaluated
through 5 fundamental qualities that are not necessarily independent: Energy efficiency, stor-
age complexity, computational complexity, latency, and required arithmetic precision.

In Chapter 4, we showed that at any blocklength N , sphere shaping minimizes the rate
loss and maximizes the shaping gain for a fixed rate. Later in Chapters 5 and 6, we demon-
strated through end-to-end decoding results that PAS with sphere shaping indeed provides
significant performance improvements over uniform signaling. In Chapter 5, we provided
three algorithms to realize sphere shaping: ESS, LA1, and SM. We then concluded in Sec. 5.4.4
that ESS is the efficient solution for sphere shaping due to the facts that: (1) SM is remark-
ably more complex than ESS since it requires a huge number of multiplications, although
ESS requires larger storage, and (2) LA1 is slightly more complex than ESS due to an extra
algorithmic step, although ESS is marginally less energy-efficient. As a matter of fact, in
Sec. 5.4.4, we avoid discussing the dynamics of the trade-offs in (1) and (2) for the sake of
clearly demonstrating the potential of sphere shaping. We left a thorough discussion on the
practical effectiveness of ESS and the explanation of implementation ideas to this chapter.

In Sec. 7.2, we will first investigate the energy-efficiency. We will differentiate between
the sphere shaping set which consists of all signal points within a sphere, and the operational
shaping set which is a size-2k subset that only includes the sequences which are transmitted.
Then we will provide a method to compute the amplitude distribution for the operational
shaping set of ESS. Using this method, we will show that ESS is marginally less energy-
efficient than LA1 and SM for practical purposes. Then we will introduce an optimization
routine to modify the backward trellis, such that the energy-efficiency of ESS is improved, if
not maximized.

In Sec. 7.3, we will investigate the storage complexity. We will introduce a bounded
precision (BP) implementation technique for ESS, LA1, and SM where the numbers in their
corresponding trellises are represented with a fixed number of bits, resulting in a significant
reduction in the required storage to realize these algorithms.1 We will show that even if they
are realized with this BP technique, these algorithms keep working properly and suffer only
from a negligible rate loss. Consequently, storage complexity will not be a dominant factor
influencing the choice among ESS, LA1, and SM.

In Sec. 7.4, we will investigate computational complexity, latency, and required arithmetic
precision. We will introduce sliding window shaping (SWS) which is enabled by the BP pre-
cision implementation. With SWS, ESS and LA1 can be implemented with short, fixed-length
arithmetic operations, where the part of the input index on which these operations are realized
shifts from the most significant bit (MSB) to the least significant bit (LSB) gradually. Conse-
quently, for ESS and LA1, (1) the computational load decreases, (2) shaper/deshaper blocks
can start outputting symbols as soon as the shaping/deshaping procedures start, which limits

1A similar bounded precision implementation approach was considered for constrained coding in [109].
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the latency, and (3) the required arithmetic precision becomes both fixed and independent of
the blocklength. We stress that SWS is an extension of the BP implementation, and thus,
these improvements can at least partially be attributed to the BP technique.

Finally in Sec. 7.5, we will introduce the on-the-fly (OtF) trellis computation technique
which further decreases the required storage to realize ESS and LA1 at the expense of in-
creased computational complexity. By storing a single column from the trellis (and a few bits
per node for the rest of the trellis in the BP case), we will demonstrate how to compute the
remaining columns OtF.

7.2 ESS Optimized for Binary Transmission

A sphere shaping function, i.e., algorithm, creates a one-to-one mapping

f : {0, 1, · · · , |A•| − 1} → aN ∈ A• =
{
aN
∣∣∣e (aN) ≤ E•} . (7.1)

Consequently, the only objective of f is to create an ordered list of aN ∈ A•. As discussed
earlier in Sec. 5.4.1, sphere shaping algorithms are used to map k-bit information strings
to amplitude sequences in the PAS framework where k = blog2 |A•|c. Thus, only the first
2k = K sequences in the corresponding ordered list are subject to transmission, i.e., E =
f({0, 1, · · · ,K − 1}) ⊆ A•. We call this set the operational shaping set. Although the
completeN -sphere considered by different sphere shaping algorithms is the same, they might
have different operational sets due to algorithmic differences, e.g., in the way they order
sequences as shown in Table 5.1. Since shaping functions fLA1 and fSM of LA1 and SM,
respectively, order sequences based on their energy, their operational shaping sets have the
minimum possible average sequence energy Emin ≤ Eav. However, shaping function fESS of
ESS orders sequences lexicographically, and its operational shaping set has average energy
EESS ≥ Emin.

In this section, we will propose a method to compute the frequencies of the amplitudes for
the K sequences aN ∈ E considered by ESS. This way, the exact channel input distribution
can be computed, which is required (1) for an accurate calculation of the transmit power, and
(2) for a precise likelihood computation by the demapper at the receiver, see (2.8). A sketch
of this method was provided by [110], and it applies directly for LA1 [30, Algorithm 1]. We
note that in [111], a method to compute amplitude frequencies was proposed for SM. Next,
we will demonstrate that ESS is slightly less energy-efficient than SM and LA1 for ultra-short
blocklengths (N < 20). However, we note that ESS has smaller complexity than LA1 and
SM as we discussed in Sec. 5.4. Then we will introduce a heuristic optimization technique
for backward trellises such that the operational energy efficiency of ESS is improved, or
maximized. Finally, we will demonstrate using end-to-end decoding results that with this
optimization, ESS provides similar performance as SM and LA1 for the AWGN channel for
ultra-short blocklengths.
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7.2.1 Computing the Operational Amplitude Distribution
The average distribution p(a) for the sequences in the complete sphere shaping setA• can be
computed using T a

2

1 for a ∈ A as discussed in Lemma. 5.1. To compute the distribution for
the sequences in the operational shaping set, consider the sequence zN = (z1, z2, · · · , zN ) ∈
A• which has index f−1

ESS(zN ) = K. This sequence is the first sequence on the lexicograph-
ical list that is not in the operational shaping set E . Then E = fESS({0, 1, · · · ,K − 1}) can
also be defined as

E ∆
=
{
xN = (x1, x2, · · · , xN ) : f−1

ESS(xN ) < K
}

E =

N⋃
n=1

⋃
a<zn

En(a) (7.2)

for a ∈ A where

En(a)
∆
= {xN : (x1, x2 · · · , xn−1) = (z1, z2 · · · , zn−1), xn = a} (7.3)

for a < zn. Intuitively, En(a) is the set of sequences which have their first n − 1 elements
identical to zN and which are lexicographically smaller than zN .

Now, we can write the number of times the amplitude a ∈ A occurs in the jth position of
the sequences in the operational shaping set E as

#j(a|E) =

N∑
n=1

∑
x<zn

#j(a|En(x)) (7.4)

=

j−1∑
n=1

∑
x<zn

#j(a|En(x)) +

N∑
n=j

∑
x<zn

#j(a|En(x))

=

j−1∑
n=1

∑
x<zn

T
a2+x2+

∑n−1
i=1 z2i

n+1

+
∑
x<zj

1[x = a]T
x2+

∑j−1
i=1 z

2
i

j

+

N∑
n=j+1

∑
x<zn

1[zj = a]T
x2+

∑n−1
i=1 z2i

n (7.5)

where x ∈ A, (7.4) follows from the partitioning of the operational shaping set in (7.2), and
(7.5) follows from Lemma 5.1. Then the distribution pop

n (a) averaged over the sequences in
the operational shaping set E and over the nth position is

pop
n (a) =

#n(a|E)

K
(7.6)

for a ∈ A and for 1 ≤ n ≤ N .
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Figure 7.1: Enumerative (backward) trellis for N = 4, A = {1, 3, 5, 7}, and E• = 28.

Example 7.1. Consider the trellis in Fig. 7.1 for which fESS(K) = zN = (3, 3, 1, 3), i.e., the
path which is shown with dashed lines, see also aN (K) in Table 5.1 for K = 24 = 16. We
can write E = E1(1) ∪ E2(1) ∪ E4(1) using (7.2). The sequences that are included in E1(1),
E2(1), and E4(1) branch off from zN to nodes (1, 1), (2, 10) and (4, 20), respectively, which
are drawn with circles in Fig. 7.1.

We now consider #2(a|E), i.e., the frequency of amplitude a for the second position.
The contribution of xN ∈ E1(1) is considered in the first line of (7.5). These sequences
branched off to a lower node than that of zN at position n = 1 < j = 2 in the trellis, i.e., all
permutations of (x2, x3, x4) can occur after position n = 1 satisfying energy constraint E•.
Thus, their contribution for the position j = 2 > n = 1 can be computed using the symmetry
discussed in Lemma 5.1. Then for E1(1), the frequencies of a ∈ {1, 3, 5} for the position
j = 2 are given by T a

2+1
2 which are (6, 4, 1) as shown in Table 7.1.

The contribution of xN ∈ E2(1) is considered in the middle line of (7.5). These sequences
differ from zN for the first time at position n = 2 = j, i.e., xj < zj , and thus, they only
contribute to the amplitudes a < zj at position j. Then for E2(1), the frequency of a = 1 for
the position j = 2 is given by T a

2+9
2 = T 10

2 which is 4 as shown in Table 7.1.
The contribution of the sequences in E4(1) is considered in the third line of (7.5). These

sequences differ from zN for the first time at position n = 3 > j = 2, i.e., they have xj = zj ,
and thus, they can only contribute to the amplitude a = zj at the position j. Then for E4(1),
the frequency of a = 3 for the position j = 2 is given by T 1+19

4 = T 20
4 which is 1 as shown

in Table 7.1.
Using (7.5), the frequencies and distributions of the amplitudes are computed and tab-

ulated in Table 7.1. We see that (1) pop(a) differs from p(a), and (2) pop
j (a) depends on j

unlike pj(a) of the sphere shaping set, see Lemma 5.1.

Remark 7.1 (Time-variant (time-var.) soft demapping for shaped signaling). To com-
pute LLRs, we assumed in (2.8) that the channel inputs are i.i.d for each channel use. As
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Table 7.1: Amplitude Frequencies and Distributions

#n(1|E) #n(3|E) #n(5|E) pop
n (a)

n = 1 11 4+1 0 (11/16, 5/16, 0/16)

n = 2 6+4 4+1 1 (10/16, 5/16, 1/16)

n = 3 6+2+1 4+2 1 (9/16, 6/16, 1/16)

n = 4 6+2+1 4+2 1 (9/16, 6/16, 1/16)

pop(a) 39/64 22/64 3/64 pop(a) =
∑
n p

op
n (a)/N

an alternative approach, at each time n, the corresponding distribution pn can be used for
demapping. In this case, (2.8) should be modified to

Lj,n = log

∑
x∈Xj,0

pop
n (x)p(yn|x)∑

x∈Xj,1
pop
n (x)p(yn|x)

(7.7)

where pop
n (x) = p(s)pop

n (a) for uniform p(s).

7.2.2 Comparison

In Fig. 7.2, the average energy EESS of the sequences in the operational shaping set E of
ESS is shown for k/N = 1.5 bit/1-D and A = {1, 3, 5, 7}. At each value of N , we choose
the minimum E• for which the corresponding trellis has at least 2k sequences. In the same
figure, the average energy Eav of the sequences in the corresponding sphere shaping set A•,
and the minimum average energy Emin that is obtained by fLA1 and fSM are also shown.

We see from Fig. 7.2 that the average energy Eav of the sphere shaping set can be used
as an approximation for the average energy EESS of the operational shaping set of ESS. This
approximation is extremely accurate for N > 20. The reason behind this accuracy is that
usually, only a small fraction of sequences are left out, i.e., |E| ≈ |A•|. As an example atN =
28, among the 242.0144 sequences in the sphere shaping set, 242 sequences are transmitted,
i.e., less than 1% of the sequences are unused. Another important observation is that EESS
is never higher than Eav for this setting. This hints that the lexicographical ordering rarely
creates operational shaping sets where sequences with low energy are left out.

We also computed the KL divergence of pop(a) from p(a) of ESS found using (7.5) for
the set of parameters considered in Fig. 7.2. At all blocklengths, the divergence is smaller
than 0.001 bits. Therefore, p(a) is a very accurate approximation for pop(a) of ESS.

Finally, we see from Fig. 7.2 that the average energyEESS of ESS is higher than thatEmin

of LA1 and SM. As an example, this difference is 0.08 dB at N = 18. Furthermore, we see
that this difference decreases with increasing N as an overall trend. Therefore, we conclude
that ESS is slightly less energy-efficient than energy-based ordering methods, especially for
ultra-small N . However, ESS has a slightly smaller complexity than LA1 with comparable
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Figure 7.2: Energy efficiency of ESS and energy-based ordering methods. The minimum
possible is 7.54, obtained with a sampled Gaussian distribution.

storage requirements, and has much smaller complexity than SM with higher storage require-
ments as discussed in Sec. 5.4. In the next section, we will close the energy efficiency gap
between ESS and these algorithms.

7.2.3 Energy-optimum ESS
In Sec. 7.2.2, we observed that although slightly, ESS is less energy efficient than SM and
LA1 for ultra-small N . In this section, we will introduce a method to modify the backward
trellis in a rather heuristic manner such that the resulting operational shaping set will have
average energy very close to the minimum, i.e., EESS ≈ Emin, if not exactly minimum. A
sketch of this method was provided by [110].

To explain this modification method, we consider the trellis computed for N = 4, A =
{1, 3, 5, 7}, and E• = 60 as shown in Fig. 7.3 (top). There are T 0

0 = 82 sequences repre-
sented in this trellis, and consequently, k = blog2 82c = 6 bits. Average energy of the sphere
shaping set (82 sequences) per symbol Eav = 10.8537, while the average energy of the op-
erational shaping set (2k = 64 sequences) EESS = 10.1875. We note that in this setting,
the minimum average energy Emin = 9.6875 (0.22 dB less than that of ESS) which can be
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Figure 7.3: For N = 4, A = {1, 3, 5, 7}, and E• = 60: (Top) ESS trellis. (Bottom) An
optimized ESS trellis.

obtained using an energy-based ordering algorithm such as LA1 or SM.

The key idea here is that the paths in the trellis that correspond to sequences with the
highest energy (60 in this example) include at least a single branch that arrives at a node on
the topmost level of the trellis. As an example consider the path shown with red in Fig. 7.3
(top) which represents the sequence (7, 3, 1, 1) with energy 60. The transition that ensures
that this path will arrive at the node of energy level 60 is the one that connects the node
(1, 49) to (2, 58) which is drawn with a dashed line. Removing this branch would effectively
mean that the sequence (7, 3, 1, 1) is no longer represented in the trellis, and consequently,
cannot be outputted by ESS based on this modified trellis. We call branches that arrive at a
node on the topmost level the bad branches. We denote the set of bad branches by B whose
cardinality is at most N |A|. To remove the highest-energy sequences from the trellis, some
of the bad branches must be removed. We denote this set of removed branches by B̂ and the
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resulting trellis by T̂ . The selection of B̂ must ensure that

T̂ 0
0 ≥ 2k. (7.8)

There exists 2N |A| − 1 nonempty subsets B̂ ⊆ B, and we propose the following heuristic to
determine B̂:

min
B̂⊆B

T̂ 0
0 such that T̂ 0

0 ≥ 2k. (7.9)

If there are multiple B̂’s that satisfy (7.9), any one of them can be used since they all create
trellises, and hence, operational shaping sets, with the same number of sequences and the
same average energy. Alternatively, the corresponding operational distribution pop(a) can
be computed for each of them, and the one that is information-theoretically the best can be
selected. We note that to obtain the set of sequences with the minimum possible average
energy Emin for a given k, (7.8) must be satisfied with equality.

Now we consider Fig. 7.3 (bottom) where we show an optimized version of the initial
(complete) trellis. Nine branches from the initial trellis, which are now drawn with light gray,
are removed such that the number of sequences dropped from 82 to 64. All 18 removed
sequences have energy E• = 60. Therefore, the operational average energy is now EESS =
Emin = 9.6875 which is the minimum possible for k = 6.

7.2.4 End-to-end Decoding Results
To evaluate the performance of energy-optimum ESS and the effect of using time-var. demap-
ping (see Remark 7.1), end-to-end decoding is simulated with PAS using A = {1, 3, 5, 7}.
Both ESS and LA1 are considered. We expect that SM will perform identically to LA1 for the
AWGN channel since they both minimize the average energy. As the FEC code, nc = 648-bit
systematic LDPC codes from the IEEE 802.11 standard are used [16]. The transmission rate
is Rt = 2 bit/1-D. The uniform baseline uses the rate-2/3 code, while the shaped schemes
have k/N = 1.5 bit/1-D using the rate-5/6 code. An FEC codeword consists of 216 real
channel uses. Shaped schemes are simulated with N = 216, N = 18, and N = 12. For
N = 216, shaping and coding blocklengths are the same. For N = 18 and N = 12, there
are 12 and 18 shaped codewords inside an FEC codeword, resp. For N = 18, ESS is simu-
lated with both the complete trellis and with an optimized version of it. For N = 12, ESS
is simulated in three different settings: (1) with time-invariant demapping (2.8) using the av-
erage symbol distribution p(a) of the sphere shaping set, (2) with time-invariant demapping
(2.8) using the average symbol distribution pop(a) of the operational shaping set, and (3) with
time-var. demapping (7.7) using the symbol distributions pop

n (a) of the operational shaping
set for n = 1, 2, · · · , 12.

In Fig. 7.4, FER is shown versus SNR. At N = 216, PAS with ESS and LA1 perform
virtually the same, providing 1.05 dB gain over uniform signaling at an FER of 10−3. This
confirms our earlier observation that ESS and LA1 have identical energy efficiency for rela-
tively large blocklengths. However, at N = 18, LA1 outperforms ESS by almost 0.1 dB and
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Figure 7.4: 648-bit LDPC-coded FER vs. SNR with 8-ASK at Rt = 2 bit/1-D.

the uniform reference by 0.59 dB. We note that ESS was shown to be 0.08 dB less energy-
efficient than LA1 at this blocklength in Fig. 7.2, which is in rough agreement with the loss
in SNR efficiency seen from Fig. 7.4.

Then we simulated an optimized version of the ESS trellis at N = 18 such that some
sequences with energy E• are removed, and the number of sequences is decreased from
227.3042 to 227.0036. Here we note that the number of possible subsets B̂ that the minimiza-
tion in (7.9) should be done over is 272. To limit the computation time, we refrained from
searching for an optimum trellis that satisfies the inequality in (7.8). Instead, we successively
removed branches in B from the trellis starting from the rightmost column until (7.8) is not
satisfied. We see from Fig. 7.4 that ESS based on this optimized trellis overcomes the SNR
gap to LA1, and it operates virtually the same again.

Finally, time-invariant demapping (2.8) and time-var. demapping (7.7) are compared at
N = 12 in Fig. 7.4. We first see that for this set of parameters, using the operational average
distribution pop(a) provides no gain over the case where the distribution p(a) from the com-
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plete sphere is used. However, the time-var. demapping strategy (7.7) with pop
n (a) provides

improvement over time-invariant demapping strategies, although it is marginal, i.e., less than
0.05 dB. We believe that this is because the largest two amplitudes (a = 5 and a = 7 in this
case) do not occur at the first position for the sequences in the operational shaping set, i.e.,
pop

1 (5) = pop
1 (7) = 0. Since using this information in the demapping effectively reduces the

constellation to 16-QAM (instead of 64-QAM) for the first channel use, it provides somewhat
observable gains.

7.3 Bounded Precision Implementation

In Sec. 5.1, we motivated the need for constructive sphere shaping algorithms by computing
the required storage for a LUT-based implementation, and by demonstrating that it is imprac-
tically large. In general, for a fixed constellation and a given target shaping rateRs, the size of
the LUT that is needed to realize sphere shaping behaves as O(N2NRs) as a function of the
shaping blocklength N . On the other hand, the storage complexity of ESS is O(N3) which
is significantly smaller for blocklengths larger than a dozen symbols. However, this is still a
large memory demand for practical applications.

In this section, we will introduce a bounded precision (BP) sphere shaping implementa-
tion for ESS, LA1, and SM. In the BP implementation, numbers in an amplitude trellis will
be computed by rounding the result of each arithmetic operation down to nm bits and stored
with fixed-length mantissas and exponents. This way, the storage complexity of ESS will be
decreased toO(N2 logN), if a negligible rate loss is tolerated. A similar idea was considered
for constrained coding in [109].

7.3.1 Approximate Base-2 Number Representation

Any k-bit number c can be rounded down to nm bits and approximated as

c ≈ bccnm
= m2p (7.10)

where m is the nm-bit mantissa, p is the np-bit exponent, and

np = dlog2(k − nm)e (7.11)

in bits. Here nm ≥ 1. Approximation in (7.10) is rounding np LSBs of c down to zero, while
keeping nm MSBs unchanged. Then the number c can approximately be stored in the form
(m, p) using (nm +np) bits instead of k+1. We call numbers stored in this form BP numbers.
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7.3.2 Enumerative Sphere Shaping
7.3.2.1 Bounded Precision Backward Trellis

Based on the approximate base-2 representation in (7.10), we modify the backward trellis
computation (5.4) to

T en
∆
=

 ∑
a∈A:e+a2≤E•

T e+a
2

n+1


nm

. (7.12)

The result of (7.12) is then stored by a mantissa-exponent pair (m, p). We call T en computed
with (7.12) the BP backward trellis. We note that for nm ≥ k+1, BP trellis becomes identical
to the full precision (FP) trellis.

7.3.2.2 Proof of Invertibility

When the backward trellis is computed using (7.12), the invertibility of the shaping function,
i.e., the reproducibility of an index through shaping and deshaping, becomes questionable.2

We will now show that reproducibility based on Algorithms 5.1 and 5.2 is guaranteed if

T en ≤
∑

a∈A:e+a2≤E•
T e+a

2

n+1 (7.13)

is satisfied for n = 0, 1, · · · , N and e ≤ E•. We note that (7.12) satisfies this condition. The
proof will consist of two steps: a lemma and a theorem.

Lemma 7.1. If 0 ≤ In < T
e(an−1)
n−1 , then Algorithm 5.1 guarantees that 0 ≤ In+1 < T

e(an)
n .

This implies that if 0 ≤ i < T 0
0 , then all In for n = 1, 2, · · · , N satisfy 0 ≤ In < T

e(an−1)
n−1 .

Proof. Note that3

0 ≤ In < T
e(an−1)
n−1

(7.13)
≤

∑
a∈A

T e(a
n−1,a)

n . (7.14)

Therefore, Algorithm 5.1 will always find an an that satisfies (5.12). From (5.12) and (5.13),
we then find that

In+1 = In −
∑
a<an

T
e(an−1,a)
n (7.15)

<
∑
a≤an

T
e(an−1,a)
n −

∑
a<an

T
e(an−1,a)
n (7.16)

= T
e(an−1,an)
n , (7.17)

2In [112] where arithmetic codes are considered for constrained coding, the reproducibility is called “repre-
sentability”, and it is defined as the dual of the decodability in arithmetic coding.

3Notation is simplified by replacing a ∈ A : e + a2 ≤ E• into a ∈ A, and a ∈ A : a ≤ an into a ≤ an.
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and that

In+1 = In −
∑
a<an

T
e(an−1,a)
n (7.18)

≥
∑
a<an

T
e(an−1,a)
n −

∑
a<an

T
e(an−1,a)
n (7.19)

= 0. (7.20)

Theorem 7.1. Algorithms 5.1 and 5.2 guarantee that a local index 0 ≤ In < T
e(an−1)
n−1 in

state
(
n− 1, e

(
an−1

))
for n = 1, 2, · · · , N results in a sequence (an, an+1, · · · , aN ) that

has local index Jn = In. Note that we are interested in n = 1 in the end.

Proof. The proof is by induction.

• First consider the state (N − 1, e(aN−1)) at depth N − 1. The states at depth N to

which this state is connected are final states. Observe that there are at least T e(a
N−1)

N−1

such final states since (7.13) holds. Note that since IN < T
e(aN−1)
N−1 due to Lemma 7.1,

there exist IN final states below the state that corresponds to aN that was chosen during
shaping. These final states will lead to the local index JN = IN during deshaping from
(5.14).

• Next focus on the state (n − 1, e(an−1)) at depth n − 1, for n < N . During shaping,
based on the local index In, an an was chosen and this resulted in the next local index
In+1 from (5.13). The induction hypothesis now tells that in state (n, e(an)), the
corresponding sequence (an+1, an+2, · · · , aN ) will lead to a local index Jn+1 = In+1.
Therefore, the sequence (an, (an+1, an+2, · · · , aN )), by (5.14), and then by (5.13),
leads to

Jn =
∑
a<an

T
e(an−1,a)
n + Jn+1 (7.21)

=
∑
a<an

T
e(an−1,a)
n + In+1 (7.22)

= In. (7.23)

We have shown now that reproducibility is guaranteed as long as (7.13) holds. Note
that summations and subtractions in (5.12), (5.13), and (5.14) are assumed to be exact, more
precisely, not followed by rounding. However, since the subtrahend in (5.13) and the addend
in (5.14) are BP numbers, these exact arithmetic operations are only nm-bit long. We will
explain this in more detail as “sliding window shaping” in Sec. 7.4.
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Remark 7.2 (BP implementation of LA1). Since the procedure of shaping within the N -
shell explained in Sec. 5.7 is the same as ESS, proof of invertibility holds for LA1 as well.

7.3.3 Shell Mapping
7.3.3.1 Bounded Precision Forward Trellis

Based on the approximate base-2 representation in (7.10), we modify the forward trellis com-
putation (5.17) to

F en =

∑
b≤e

F bn/2F
e−b
n/2


nm

. (7.24)

The result of (7.24) is then stored by a mantissa-exponent pair (m, p). We call F en computed
with (7.24) the BP forward trellis.

7.3.3.2 Proof of Invertibility

We will now show that the reproducibility based on Algorithms 5.3 and 5.4 is guaranteed if

F en ≤
∑
b≤e

F bn/2F
e−b
n/2 (7.25)

is satisfied. We note that (7.24) satisfies this condition. The proof will again consist of two
steps: a lemma and a theorem.

Lemma 7.2. If 0 ≤ In(an) < F
e(an)
n , then Algorithm 5.3 guarantees that 0 ≤ In/2(ani ) <

F
e(ani )

n/2 for i = 1, 2.4 This implies that if 0 ≤ IN (aN ) < F
e(aN )
N , then all In(an) for

n = N/2, N/4, · · · , 2 satisfy 0 ≤ In(an) < F
e(an)
n . Note that there are two IN/2, four

IN/4, etc.

Proof. Note that

0 ≤ In (an) < F e(a
n)

n

(7.25)
≤

∑
b≤e(an)

F bn/2F
e(an)−b
n/2 . (7.26)

Therefore, Algorithm 5.3 will always find an e1 that satisfies (5.20). From (5.20) and (5.21),
we then find that

0 ≤ Ds < F e1n/2F
e(an)−e1
n/2 . (7.27)

4As in Algorithms 5.3 and 5.4, an1 denotes the first half of an with energy e1, while an2 denotes its second half
with energy e2.
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From (5.22a) and (5.22b), using e2 = e(an)− e1, we find that

0 ≤ In/2 (an1 ) < F e1n/2, (7.28)

0 ≤ In/2 (an2 ) < F e2n/2. (7.29)

Theorem 7.2. Algorithms 5.3 and 5.4 guarantee that a local offset 0 ≤ In(an) < F
e(an)
n for

n = 2, 4, · · · , N, results in a sequence an that has a local offset Jn(an) = In(an). We are
interested in n = N in the end.

Proof. The proof is by induction.

• First, consider depth 2. Observe that there are at least F e(a
2)

2 possible symbol pairs

since (7.25) holds. Note that since I2(a2) < F
e(a2)
2 due to Lemma 7.2, there exists

I2(a1, a2) pairs below the (a1, a2) which was chosen during shaping. These pairs will
lead to a local offset J2(a1, a2) = I2(a1, a2) during deshaping from (5.23b).

• Next focus on depth n for n > 2. During shaping, based on the local offset In(an),
an e1 was chosen and this resulted in the next local offsets In/2(an1 ) and In/2(an2 )
from (5.22). The induction hypothesis now tells that in depth n/2, the corresponding
sequences an1 and an2 will lead to local offsets Jn/2(an1 ) = In/2(an1 ) and Jn/2(an2 ) =
In/2(an2 ). Therefore, the sequence an = (an1 , a

n
2 ) by (5.23), and then by (5.21) and

(5.22), leads to

Jn (an) =
∑
b<e1

F bn/2F
e(an)−b
n/2 +Dd (7.30)

=
∑
b<e1

F bn/2F
e(an)−b
n/2 +Ds (7.31)

= In (an) . (7.32)

We have shown now that the reproducibility within a shell is guaranteed as long as (7.25)
holds. Along the same lines, we can show that (7.25) eventually implies that j = i. Here i
is the index from which first the shell is chosen, and then local index IN (aN ) that enters the
shell mapping procedure. Now j is the corresponding output index.

7.3.4 Required Storage
When a trellis is computed with BP, each element of the corresponding shaping matrix is
(nm +np)-bit long, instead of (k+ 1). Therefore, the required storage is now upper-bounded
by L(N +1)(nm +np) bits for ESS and LA1 as shown in Table 7.2. Considering Remark 5.1
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and (7.11), we see that their storage complexity is O(N2 logN) as a function of N . On
the other hand, the required storage is now upper-bounded by L(log2N + 1)(nm + np) bits
for SM. Its storage complexity is O(N log2N). In Table 7.2, we assumed that the extra
step preceding LA1 and SM is realized with no storage as explained in Sec. 5.3.3.1. We
will discuss the computational complexity of shaping with BP trellises in Sec. 7.4.1 after we
explain sliding window shaping.

Table 7.2: Required Memory to Store BP Trellises

Technique Memory (bits)
ESS L(N + 1)(nm + np)
LA1 L(N + 1)(nm + np)
SM L (log2N + 1) (nm + np)

Example 7.2 (Required storage for BP ESS for the IEEE 802.11 Standard). We revisit
the set of parameters used in Example 5.8: N = 96, A = {1, 3, 5, 7}, and L = 129.
When the backward trellis is computed with nm = 12 bits instead of FP (with np = 8), the
shaping rate drops from Rs = 1.7503 to 1.75001 bit/1-D, while the input length stays fixed
at k = 168 bits. Accordingly, the required storage decreases from 264.34 kB to 31.28 kB,
leading to an almost 9-fold decrease.

Example 7.3 (Required storage for BP SM for the IEEE 802.11 standard). We revisit the
set of parameters used in Example 5.9: N = 32, A = {1, 3, 5, 7}, and L = 48. When the
forward trellis is computed with nm = 6 bits instead of FP (with np = 6), the shaping rate
drops from Rs = 1.7557 to 1.7531 bit/1-D, while the input length stays fixed at k = 56 bits.
Accordingly, the required storage decreases from 2.05 kB to 0.43 kB, leading to an almost
5-fold decrease.

7.3.5 Bounded Precision Rate Loss
Numbers in a BP trellis T̃ en are smaller than their FP counterparts T en, which translates to a
decrease in shaping rate. We call this decrease the BP rate loss, and we denote it by Rloss,BP.
To quantifyRloss,BP, let c̃ be defined as c̃ = bccnm

. In the worst case, i.e., the case in which the
largest possible relative error due to rounding occurs, c̃ can be lower-bounded as c̃ ≥ (1−δ)c
where δ = 2−(nm−1). Using this bound, the BP rate loss of a forward or backward trellis can
be upper-bounded.

Proposition 7.1. In BP backward trellises, T̃ en ≥ T en(1− δ)(N−n) for n = 0, 1, · · · , N .

Proof. The proof is by induction.

• First consider n = N . Since T eN = 1 for e ≤ E• from (5.5), T̃ eN = T eN .
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• Next focus on depth n for n < N . The induction hypothesis tells that T̃ en+1 ≥
T en+1(1− δ)N−(n+1). From (7.12), we obtain

T̃ en =

⌊∑
a∈A

T̃ e+a
2

n+1

⌋
nm

≥ (1− δ)
∑
a∈A

T̃ e+a
2

n+1 (7.33)

≥ (1− δ)
∑
a∈A

(1− δ)N−n−1T e+a
2

n+1 (7.34)

= (1− δ)(N−n)T en. (7.35)

Then the BP rate loss of a backward trellis can be upper-bounded by

Rloss,BP =
1

N
log2

T 0
0

T̃ 0
0

≤ − log2(1− δ) = − log2

(
1− 2−(nm−1)

)
(7.36)

in bit/1-D.

Proposition 7.2. In BP forward trellises, F̃ en ≥ F en(1 − δ)(n−1) for n = 1, 2, 4, · · · , N ,
where F̃ en denotes the trellis computed with BP.

Proof. The proof is by induction.

• First consider n = 1. By definition, F e1 = 1 for e ∈ {1, 9, · · · , (2|A| − 1)2}. Thus,
F̃ e1 = F e1 .

• Next focus on depth n for n ∈ {2, 4, · · · , N}. The induction hypothesis tells that
F̃ en/2 ≥ F

e
n/2(1− δ)(n/2−1). Consider from (7.25) that

F̃ en ≥ (1− δ)
∑
b≤e

F̃ bn/2F̃
e−b
n/2 (7.37)

≥ (1− δ)
∑
b≤e

(1− δ)(n−2)F bn/2F
e−b
n/2 (7.38)

= (1− δ)(n−1)F en. (7.39)

Then the BP rate loss of a forward trellis can be upper-bounded by

Rloss,BP =
1

N
log2

∑
e≤E• F

e
N∑

e≤E• F̃
e
N

≤ − log2(1− δ) = − log2

(
1− 2−(nm−1)

)
(7.40)

in bit/1-D.
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Figure 7.5: BP rate loss for N = 64, L = 59, and A = {1, 3, 5, 7}.

Remark 7.3 (How to select nm?). With FP computation, for a given set of parameters N ,
A, and L, the rate of the sphere shaping set is Rs bit/1-D, and the input length of the corre-
sponding shaping algorithm is k = ktarget bits. More precisely, we assume that the parameters
are selected such that k satisfies a given target. In such a case, nm should be selected as the
smallest value that keeps k ≥ ktarget to minimize the required storage.

In Fig. 7.5, actual BP rate losses of ESS, LA1, and SM are shown as a function of mantissa
length nm, along with the upper bound− log2(1−δ) in bit/1-D. For LA1 and SM, we assume
that the preceding extra step is realized with no storage as explained in Sec. 5.3.3.1, which
causes no additional BP rate loss. Here N = 64, L = 59, and A = {1, 3, 5, 7}, for which
the FP shaping rate is Rs = 1.5097 bit/1-D. The corresponding input length is k = 96 bits.
We see from Fig. 7.5 that a small number of bits, e.g., a single byte, can be used to store
mantissas instead of k + 1 = 97 bits, while the BP rate loss is kept smaller than 10−2 bit/1-
D. Since SM computes the index of a sequence by concatenating multiple shorter sequences
successively, rounding error accumulation during recursion starts later than that of ESS and
LA1. Therefore, the BP rate loss of SM is smaller for the same nm. In case the goal is to
minimize nm while keeping k = 96 as discussed in Remark 7.3, a BP rate loss less than
1.5097− k/N = 0.0097 bit/1-D can be tolerated. As shown in Fig. 7.5, nm = 7 bits satisfy
this for ESS and LA1, while for SM, nm = 5 bits do. Thus, as a rule of thumb, we say that
BP does not incur a noticeable loss in performance for nm > 10 bits, which we designate as
typical mantissa lengths.
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Algorithm 7.1: BP Backward Amplitude Trellis Computation
Input: Blocklength N , alphabet A with na = |A|, and maximum energy E•

Output: Shaping matrix T, i.e., backward trellis T en for n = 0, 1, · · · , N and
0 ≤ e ≤ E•

1 Initialization: T eN = 1 for N ≤ e ≤ E•
2 for n = N − 1, N − 2, · · · , 0 do
3 for e = n+ 8(L− 1), n+ 8(L− 2), · · · , n do
4 j ← na, T en ← 0
5 while j > 0 do
6 if e+A(j)2 ≤ E• −N + n then
7 T en ←

⌊
T en + T

e+A(j)2

n+1

⌋
nm

8 j ← j − 1

9 else
10 j ← j − 1
11 end
12 end
13 end
14 end
15 return T

7.3.6 A More Realistic Bounded Precision Implementation

In (7.12), rounding is applied after all BP summands are added. BP backward trellis compu-
tation can also be realized by applying rounding after each addition. This approach is more
suitable for practical implementation, and it is formulated in Algorithm 7.1. We note that in
Algorithm 7.1, additions at the 7th line start with the nodes that correspond to transitions with
higher amplitudes, i.e., from top to bottom. Thus, the quantitative effect of rounding is the
same as in (7.12). This is because, with this approach, smaller BP numbers are added first
(see Property P1 below), while the larger ones are added later which do not change the bits
with lower significance in the outcome of the previous summation. The same idea can be
applied to BP forward trellis computation (7.24) and rounding can be applied to the result of
each multiplication and addition.

7.4 Sliding Window Shaping

When implemented with FP, ESS procedure in Algorithms 5.1 and 5.2 requires k-bit arith-
metic operations where k can be more than 64 bits, e.g., k = 168 in Example 7.2, which is
highly unfavorable for applications using 32- or 64-bit processors. However, as we hinted
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Algorithm 7.2: FP Enumerative Shaping (Extended Version of Algorithm 5.1)

Input: Index 0 ≤ I < T 0
0 , trellis T, alphabet A

Output: Sequence sN = (s1, s2, · · · , sN )
1 Initialization: I1 ← I
2 for n = 1, 2, · · · , N do
3 l← 1

4 while In ≥ T
A(l)2+

∑n−1
j=1 s

2
j

n do

5 In ← In − T
A(l)2+

∑n−1
j=1 s

2
j

n

6 l← l + 1

7 end
8 In+1 ← In
9 sn ← al

10 end
11 return sN = (s1, s2, · · · , sN )

in [102], the necessity to realize k-bit operations can be removed with the BP implementa-
tion by using sliding window shaping (SWS). SWS allows operations on the k-bit input index
to be carried out locally on its first nm + log2 na = nm + ma significant binary digits in a
sliding window manner where na = |A|. We explain SWS based on Algorithm 7.2 which
is an extended version of the shaping procedure in Algorithm 5.1 where we now emphasize
that comparisons/subtractions start with the nodes that correspond to transitions with lower
amplitudes, i.e., from bottom to top.

Before we explain SWS, we first provide two properties of backward trellises that will be
useful in the subsequent sections.

P1 It follows from (5.4) for the FP, and from Algorithm 7.1 for the BP implementation
that if e1 ≤ e2, then T e1n ≥ T e2n .

P2 It follows from Property P1 and (5.4) for the FP trellis, and from Property P1 and
Algorithm 7.1 for the BP trellis that

T en ≤ na max
a∈A

T e+a
2

n+1 = naT
e+1
n+1. (7.41)

Thus, T en is at most log2 na = ma bits longer than T e+1
n+1.

Now consider the enumerative shaping procedure in Algorithm 7.2. At the beginning of
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the nth iteration of Algorithm 7.2 (at the 4th line, l = 1, A(1) = 1), the following holds:

In < T
∑n−1

j=1 s
2
j

n−1 (7.42)

≤
∑
a∈A

T
a2+

∑n−1
j=1 s

2
j

n (7.43)

≤ na max
a∈A

T
a2+

∑n−1
j=1 s

2
j

n

= naT
1+

∑n−1
j=1 s

2
j

n . (7.44)

Here (7.42) follows from Lemma 7.1, (7.43) is by construction of the BP trellis in Algo-
rithm 7.1, and (7.44) is due to Property P1. Then, In can at most be ma = log2 |A| bits

longer than T
1+

∑n−1
j=1 s

2
j

n which has an nm-bit mantissa. Thus, the first comparison at the 4th

line of Algorithm 7.2 (l = 1, a1 = 1) concerns only the first nm +ma significant binary digits
of In.

If at the 4th line of Algorithm 7.2, In ≥ T
1+

∑n−1
j=1 s

2
j

n , the following subtraction occurs at
the 5th line:

In − T
1+

∑n−1
j=1 s

2
j

n

(d)
≤
∑
a∈A

T
a2+

∑n−1
j=1 s

2
j

n − T 1+
∑n−1

j=1 s
2
j

n (7.45)

=

na∑
l=2

T
A(l)2+

∑n−1
j=1 s

2
j

n

(e)
≤ (na − 1)T

9+
∑n−1

j=1 s
2
j

n . (7.46)

Here (7.45) is due to (7.43), and (7.46) follows from Property P1. Consequently, the result

of this subtraction can at most be dlog2(na − 1)e = ma bits longer than T
9+

∑n−1
j=1 s

2
j

n , which
has an nm-bit mantissa. Therefore, the second comparison at the 4th line of Algorithm 7.2
(l = 2, A(2) = 3) concerns only the first nm +ma significant binary digits of In (which was
updated by a subtraction at the 5th line). Following this reasoning recursively, we see that
each subtraction (or comparison) in Algorithm 7.2 considers only the first na +ma significant
binary digits of the local index In. Therefore, shaping operates on (nm +ma)-bit portions of
the input k-bit index, sliding from the MSB to the least significant one. In the following, we
give an example for SWS.

Example 7.4 (Sliding window shaping with a backward BP trellis). We consider the BP
trellis computed using N = 4, A = {1, 3, 5, 7}, and L = 8, i.e., E• = 60, with nm = 3-bit
mantissas. The corresponding shaping array T is given in (7.47). Here, each entry consists
of a binary mantissa m with MSB on the left, and a decimal exponent p. For this trellis,
T 0

0 = (m, p) = (100, 4), which means there arem2p = 64 amplitude sequences represented.
Therefore, possible k =

⌊
log2 T

0
0

⌋
= 6-bit input indices are i ∈ [0, 64).
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T =



(001, 0) (001, 0) (001, 0) (001, 0) (001, 0)
(101, 0) (100, 0) (011, 0) (010, 0) (001, 0)
(101, 1) (111, 0) (100, 0) (010, 0) (001, 0)
(100, 2) (101, 1) (110, 0) (011, 0) (001, 0)
(111, 2) (100, 2) (100, 1) (011, 0) (001, 0)
(101, 3) (101, 2) (100, 1) (011, 0) (001, 0)
(110, 3) (110, 2) (101, 1) (100, 0) (001, 0)
(100,4) (100, 3) (110, 1) (100, 0) (001, 0)


. (7.47)

Consider i = 59, i.e., I1 = (111011) as shown in Fig. 7.6. Following Algorithm 7.2,
shaping starts with comparing I1 to T 1

1 = (100, 3) to check whether s1 = 1 or not. Since
the exponent of T 1

1 is p = 3, its mantissa is shifted to the left by 3 binary digits. Then this
mantissa is compared with the first 3 significant binary digits of I1. Since I1 ≥ T 1

1 , we
subtract T 1

1 from I1 to update the local index I1 ← (011011). This subtraction is local and
concerns the first nm = 3 significant binary digits of I1.

Next, the updated local index I1 = (011011) is compared with T 9
1 = (110, 2) to check

whether s1 = 3 or not. Since the exponent of T 9
1 is p = 2, its mantissa is shifted to the left by

2 binary digits. Then this mantissa is compared with the first 3 significant binary digits of the
local index. Since I1 ≥ T 9

1 , we subtract T 9
1 from I1 to update the local index I1 ← (000011).

This subtraction is again local and concerns the first nm = 3 significant binary digits of I1.
Finally, the updated local index I1 = (000011) is compared with T 25

1 = (100, 2) to check
whether s1 = 5 or not. Since the exponent of T 25

1 is p = 2, its mantissa is shifted to the left
by 2 binary digits. Then this mantissa is compared with the first 3 significant binary digits
of the local index. Since I1 < T 25

1 , we set I2 = I1, and output s1 = 5. Then the shaping
procedure continues with the next step, i.e., n = 2, as shown in Fig. 7.6. We observe that
each subtraction (or comparison) deals only with the first nm = 3 significant binary digits of
the local index In, while the position of the operations gradually shifts towards the LSB.5

7.4.1 Computational Complexity
The computational requirement of SWS is at most (na − 1) arithmetic operations per output
symbol, each of which is (nm +ma)-bit long. Here na = |A| and ma = log2 |A|. Therefore,
as shown in Table 7.3, at most (na − 1)(nm + ma) bit oper./1-D are necessary to realize BP
ESS and LA1. Typically, nm is smaller than 16 [32, Example 8], and thus, ESS with 8-ASK
(na = 4) requires only three 16-bit operations per output symbol for most blocklengths.

Example 7.5 (Complexity of BP ESS with SWS for the IEEE 802.11 Standard). We
revisit the set of parameters used in Example 7.2: N = 96, A = {1, 3, 5, 7}, L = 129, and
nm = 12 bits. The corresponding sliding window shaping and deshaping algorithms require
36 bit oper./1-D instead of 507 as in Example 5.8, leading to a 14-fold decrease.

5We note that although all operations in Example 7.4 are carried out on the first nm = 3 significant binary digits
of the local index In, in general, they may affect the first nm +ma = 5 binary digits, e.g., when a borrow is needed.
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I1→ 1 1 1 0 1 1

1 0 0
p = 3

−s1
?
= 1

0 1 1 0 1 1

3-bit sbtr.

0 1 1 0 1 1

1 1 0
p = 2

−s1
?
= 3

0 0 0 0 1 1

3-bit sbtr.

s1 = 5

0 0 0 0 1 1

1 0 0
p = 2

3-bit comp.

s2 = 1

I2→ 0 0 0 0 1 1

1 0 0
p = 1

3-bit comp.

I3→ 0 0 0 0 1 1

0 1 1
p = 0

−s3
?
= 1

0 0 0 0 0 0

3-bit sbtr.

s3 = 3

s4 = 1 0 0 0 0 0 0

Figure 7.6: Sliding window shaping of I = (111011) based on the shaping array T in (7.47).
The output sequence is sN = (5, 1, 3, 1). In (7.47), subtracted values are written in blue
while compared values are written in red.
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Table 7.3: Computational Complexity of BP Sphere Shaping

Technique Complexity (Bit Oper./1-D)
ESS (na − 1)(nm +ma)
LA1 (na − 1) (nm +ma)
SM Ln2

m

Remark 7.4 (Complexity of BP SM). When SM is realized with BP (without SWS), at most
L multiplications of nm-bit numbers must be realized. Therefore, as shown in Table 7.3, at
most Ln2

m bit oper./1-D are necessary to realize BP SM.

Example 7.6 (Complexity of BP SM for the IEEE 802.11 Standard). We revisit the set
of parameters used in Example 7.3: N = 32, A = {1, 3, 5, 7}, L = 45, and nm = 6 bits.
The corresponding shaping and deshaping algorithms require 1728 bit oper./1-D instead of
155952 as in Example 5.9, leading to a 90-fold decrease.

7.5 On-the-fly Backward Trellis Computation

Both FP and BP ESS require that the shaping array T is precomputed and stored in memory.
In the FP case, each element of T can at most be

⌈
log2 T

0
0

⌉
= (k + 1)-bit long. In the BP

case, each element of T can at most be (nm + np)-bit long. Thus, the required storage for
FP ESS is L(N + 1)(k + 1) bits, while it is L(N + 1)(nm + np) for BP ESS as shown in
Tables 5.3 and 7.2, respectively. As an example, the size of the required memory to realize
ESS for the IEEE 802.11 standard with N = 96 was computed to be more than 264 kB with
FP in Example 5.8, and more than 32 kB with BP in Example 7.2. Therefore, storing the
shaping array T requires a relatively large allocated memory (usually more than 10 kB), even
in the BP case. To further reduce the required storage, only the first column of the trellis t0
can be stored after the initial computation, and the other columns can be computed when they
are needed during the shaping procedure. We call this the on-the-fly (OtF) backward trellis
computation.

In the FP case, OtF computation can be realized straightforwardly since the connections
in the trellis are enough to link a column tn+1 to its neighbour tn as in Fig. 7.1. However, in
the BP case, consecutive columns cannot be linked to each other using only the connections
due to the effect of the rounding operation at the 7th line of Algorithm 7.1. To examine this
effect, we consider the isolated part of a BP trellis in Fig. 7.7 (left) where the initial trellis
computation is considered for A = {1, 3, 5, 7}. We see from Algorithm 7.1 that during the
initial computation, T en is calculated as

T en =
⌊
T e+1
n+1 + γ

⌋
nm

(7.48)



7

7.5 On-the-fly Backward Trellis Computation 143

T en T e+1
n+1

T e+9
n+1

T e+25
n+1

T e+49
n+1

T en T e+1
n+1

T e+9
n+1

T e+25
n+1

T e+49
n+1

Figure 7.7: (Left) An instance of the initial trellis computation starting from n = N to
n = 0, i.e., right-to-left. (Right) An instance of the on-the-fly trellis computation starting
from n = 0 to n = N , i.e., left-to-right. Here na = |A| = 4. Dashed nodes filled with red
are to be computed using already-known solid nodes which are filled with green.

where
γ =

⌊
T e+9
n+1 +

⌊
T e+25
n+1 + T e+49

n+1

⌋
nm

⌋
nm

. (7.49)

Due to Property P2, at most ma = log2 |A| bits are affected from rounding in (7.48). We
call these ma bits the remainders and denote them by ren. More specifically, (7.48) can be
rewritten as

T en =
⌊
T e+1
n+1 + γ

⌋
nm

= T e+1
n+1 + γ − ren. (7.50)

Now consider Fig. 7.7 (right) where OtF trellis computation is considered, i.e., given tn,
tn+1 is to be computed. We assume that nodes of higher energy are computed before nodes
of lower energy. Consequently, when the node (n+1, e+1) is to be calculated, nodes (n, e),
(n+ 1, e+ 9), (n+ 1, e+ 25) and (n+ 1, e+ 49) have already been computed, and so does
γ in (7.49). Then the node (n+ 1, e+ 1) can be computed from (7.50) as

T e+1
n+1 = T en − γ + ren, (7.51)

which requires that ren was stored during the initial computation. Provided that ren is stored
for n = 1, 2, · · · , N and e ≤ E• along with the first column t0, BP OtF trellis computation
in (7.51) can be generalized as in Algorithm 7.3.

7.5.1 Required Storage and Computational Complexity
For BP OtF trellis computation, L(nm + np) bits are necessary to store t0. In addition,
LNma bits should be allocated to store the remainders ren for n = 0, 1, · · · , N − 1 and for
e ≤ E•. Thus, the storage requirement is L(nm + np + Nma) bits as shown in Table 7.4.
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Algorithm 7.3: On-the-fly BP Backward Amplitude Trellis Computation
Input: n, tn−1, A, and ren−1 for e ≤ E•
Output: tn

1 for l = L− 1, L− 2, · · · , 0 do
2 j ← na, γ ← 0, e← n+ 8l
3 while j > 2 do
4 if e+A(j)2 − 1 ≤ n+ 8(L− 1) then
5 γ ←

⌊
γ + T

e+A(j)2−1
n

⌋
nm

6 else
7 γ ← γ
8 end
9 j ← j − 1

10 end
11 T en ← T e−1

n−1 − γ + re−1
n−1

12 end
13 return tn

Table 7.4: Required Storage and Computational Complexity: Backward Trellis

Technique Storage (bits) Complexity (Bit Oper./1-D)
Table 5.3 FP Trellis L(N + 1)(k + 1) 0

OtF FP Trellis L(k + 1) L(na − 1)(k + 1)
Table 7.2 BP Trellis L(N + 1)(nm + np) 0

OtF BP Trellis L (nm + np +Nma) L(na − 1)nm

During BP OtF trellis computation, L numbers must be computed per column, i.e., per output
symbol.6 Each of these computations requires at most na − 2 additions and 1 subtraction of
nm-bit numbers, and a single ma-bit addition. Therefore, neglecting the ma-bit addition at
the 11th step of Algorithm 7.3, the computational requirement is at most L(na − 1)nm bit
oper./1-D as shown in Table 7.4.

Example 7.7 (Complexity of OtF BP ESS for the IEEE 802.11 Standard). We revisit
the set of parameters used in Example 7.2: N = 96, A = {1, 3, 5, 7}, L = 129, and
nm = 12 bits. With OtF computation, the required storage further decreases from L(N +
1)(nm + np) = 32.28 kB to L(nm + np + Nma) = 3.42 kB, leading to an almost 10-fold
decrease. The corresponding shaping and deshaping algorithms still require 36 bit oper./1-D.
However now, additional computational complexity is introduced due to OtF computation.

6Here we neglect the fact that in practice, some of the lower energy nodes might not need to be computed after
a certain point since lower rows of the trellis become irrelevant for the shaping procedure. Therefore, it may be
enough to compute less than L numbers.
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To compute the trellis OtF, at most L(na − 1)(nm + np) = 7740 bit oper./1-D are necessary.
Compared to BP SM at N = 32 in Example 7.3, BP OtF ESS requires slightly more storage
(3.42 kB instead of 0.43) with a much smaller computational requirement (7740+36 = 7776
bit oper./1-D instead of 111952).

7.6 Conclusion
In this chapter, we searched for an answer to the following research question.

RQ-5 Can we further improve the energy-efficiency of ESS for practical scenarios?
How can ESS be implemented with low storage complexity, minimal computa-
tional requirements, and limited latency?

We computed the symbol distribution for the operational shaping set of ESS, and we
showed that ESS is slightly less energy-efficient than LA1 and SM. We proposed a straightfor-
ward heuristic routine to optimize the ESS trellis such that its energy-efficiency is improved.
We then introduced a bounded precision computation and storage technique for ESS, LA1,
and SM which results only in a negligible rate loss. With this technique, the required storage
to realize these algorithms is significantly reduced. Then we devised a sliding-window shap-
ing (SWS) procedure for ESS and LA1 which only requires fixed- and short-length arithmetic
operations. This way, the computational complexity of shaping and the required arithmetic
precision are decreased. Furthermore, unlike regular enumerative shaping, SWS can start out-
putting symbols as soon as the procedure starts which leads to reduced and limited latency.
Finally, we introduced the on-the-fly trellis computation technique for ESS which further
decreases the storage complexity at the expense of increased computational load. All tech-
niques considered, ESS can be implemented for the IEEE 802.11 standard [16] at N = 96
either with (1) slightly more than 30 kB storage and 36 bit oper./1-D, or with (2) slightly
more than 3 kB storage and 7740 bit/oper./1-D.
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CHAPTER 8
Partial Enumerative Sphere
Shaping

Parts of this chapter are published in:
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USA, Sep. 2019.
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sphere shaping of multidimensional constellations,” U.S. Patent 10 523 480 B1, Dec., 31,
2019.



8

148 Partial Enumerative Sphere Shaping

8.1 Introduction
In this chapter, we will investigate the research question RQ-6 which arises naturally while
considering constellation shaping: How shaped the channel input distribution should be to
close most of the shaping gap? In the context of the direct method, i.e., DM, this question
can be reformulated as “How sensitive the MI (or the corresponding AIR) is to the changes
in p(x)?” On the other hand for the indirect method, i.e., sphere shaping, it is “How close
the signal structure should be to an N -sphere?” Our motivation to investigate these questions
stems from the following fact. If some type of a partially shaped input distribution is enough
to obtain most of the maximum shaping gain, it may be possible to decrease the storage space
and computational resources reserved for the shaping operation.

Here, we first define an approximation to the MB distribution. We demonstrate that am-
plitudes with these approximate distributions have some of their amplitude bit-levels uniform
and independent of the others. Then we evaluate gap-to-capacity (3.97) for these approximate
distributions. We show that when only some amplitude bit-levels are shaped, it is still possible
to reap most of the maximum shaping gain, especially for large constellations. Subsequently,
we propose an amplitude shaping architecture which we call partial ESS (P-ESS) to produce
channel inputs that have these approximate distributions. We evaluate the performance of
P-ESS in terms of rate loss (4.11) and end-to-end decoding results. Finally, we demonstrate
the reduction in required storage and computational complexity provided by P-ESS.

8.2 Effect of “Gaussianity” on Gap-to-capacity
To investigate how well the amplitude distribution p(a) has to resemble an MB distribution
to close the most of the shaping gap, we define a particular type of approximation which
we call partial MB distribution. We will later relate these approximate amplitude-level dis-
tributions to bit-level distributions. The basic idea here is to realize MB distributions over
amplitude pairs, quartets, etc., instead of individual amplitudes. These approximations can
be considered as quantized versions of the MB distribution. We now explain this with an
example.

Example 8.1 (Partially MB-distributed 16-ASK). We consecutively gather amplitudes of
16-ASK A = {1, 3, 5, 7, 9, 11, 13, 15} into groups of two, i.e., A1 = {1, 3}, A2 = {5, 7},
A3 = {9, 11}, and A4 = {13, 15}. Then we define the MB distribution (2.24) over these
pairs as

Pr {a ∈ Ai} = K (λ) exp
(
−λE

[
|Ai|2

])
(8.1)

where E[|Ai|2] is the average energy of a ∈ Ai assuming they are equiprobable, i.e.,

E
[
|Ai|2

]
=

1

2

∑
a∈Ai

a2, for i ∈ {1, 2, 3, 4}. (8.2)
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Figure 8.1: (Left) Fully, and (middle) 2-bit and (right) 1-bit partially MB-distributed p(a) for
16-ASK.

This approximation can be realized over symbol quartets {1, 3, 5, 7} and {9, 11, 13, 15}, and
so on. As discussed in Sec. 2.6.1, λ governs the variance of the distribution in (8.1) while
K(λ) is a normalization factor.

Table 8.1: Fully and Partially MB-Distributed p(a) for 16-ASK

p(1) p(3) p(5) p(7) p(9) p(11) p(13) p(15) Eav Gs (in dB)
0.2443 0.2225 0.1847 0.1396 0.0962 0.0603 0.0345 0.0180 38.66 1.40
0.2365 0.2365 0.1623 0.1623 0.0765 0.0765 0.0247 0.0247 39.57 1.30
0.2065 0.2065 0.2065 0.2065 0.0435 0.0435 0.0435 0.0435 43.27 0.92

In Table 8.1, a numeric approximate MB distribution example is tabulated for 16-ASK.
Here, the first row is the exact MB distribution, and the following are the approximations
over 2- and 4-symbol groups, respectively, all rounded to the nearest 4 decimal digits. The
entropy of the distribution H(A) = 2.667 bits in all three cases. The average energy Eav =
E[A2] and the shaping gain Gs with respect to uniform signaling (4.4) are also provided in
Table 8.1 assuming shaping rate of the distribution Rs = H(A). We see that as we apply the
MB distribution over symbols, pairs, and quartets for a fixed entropy, Eav increases which
indicates that energy efficiency is decreasing. This can also be verified by observing the
decreasing shaping gain. The distributions in Table 8.1 are also shown in Fig. 8.1.

When the amplitudes of the channel inputs have these approximate MB distributions and
BRGCs are used for labeling, some amplitude bit-levels become uniform and independent
of the others. Consider Example 8.1 and the amplitude bits of the BRGC for 16-ASK given
in Table 8.2. Pairing the amplitudes of 16-ASK and transmitting the elements of a group
equiprobably means that the bit-level B4 is now uniform and independent of the other two
amplitude bits. Similarly, assigning the same probability to each amplitude in a consecutive
group of four implies that the bit-levelsB3 andB4 are uniform and independent of the others.
We call these distributions s-bit shaped where s < m− 1 is the number of shaped amplitude
bit-levels. If s = m − 1, i.e., all amplitude bit-levels are shaped, we call the corresponding
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Figure 8.2: Constellation entropy H(X) vs. gap-to-capacity ∆SNR for 2m-ASK at rate
Rt = m − 1 bit/1-D for m = 3, 4, 5 and s = 1, 2, · · · ,m − 1: (Solid) s = m − 1, (dashed)
s = m− 2, (dotted) s = m− 3, and (dash-dotted) s = m− 4.

distribution fully-shaped.

Table 8.2: The Amplitude Bits of the BRGC for 16-ASK

A 1 3 5 7 9 11 13 15
B2 0 0 0 0 1 1 1 1
B3 0 0 1 1 1 1 0 0
B4 0 1 1 0 0 1 1 0

In Fig. 8.2, the gap-to-capacity (3.97) is plotted for 8-, 16-, and 32-ASK, and for s =
1, 2 · · · ,m− 1. The target transmission rate is Rt = m− 1 bit/1-D. Square markers indicate
the gap-to-capacity of uniform 2m-ASK at rate m− 1 bit/1-D. Circle markers denote H(X)
for which the corresponding MB distribution minimizes the gap-to-capacity at rate m − 1
bit/1-D. We call the vertical difference between the square and circle markers the maximum
shaping gain.

The important observation from Fig. 8.2 is that it is possible to obtain a large portion
of the maximum shaping gain even when only a couple of amplitude bits are shaped. As
an example, the maximum gain for 16-ASK drops from 1.08 dB to 1.03, and then to 0.76
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Figure 8.3: (Left) Block diagram of partial enumerative sphere shaper with rate Rs = k
N +

f bit/1-D. (Right) Output distributions of the enumerative shaper (red) and the P-ESS block
(blue) for s = 2-bit shaped 16-ASK, i.e., f = 1, with k/N = 1.667 at N = 216.

when 2 and 1 bits are shaped instead of 3, respectively. Motivated by this, next we will
build an amplitude shaping block based on ESS to realize output distributions resembling the
approximate, i.e., quantized, MB distributions (8.1). We note that a similar gap-to-capacity
analysis is provided in [81], only for product distributions.

8.3 Partial Enumerative Sphere Shaping
Our goal is to produce channel inputs with a distribution resembling the approximate MB
distributions defined in Example 8.1. This is equivalent to keeping some amplitude bits uni-
form and independent of the others. The number of shaped and uniform amplitude bit-levels
are denoted by s and f , respectively, where m− 1 = s+ f .

We propose to use an enumerative shaper that operates based on the 2s+1-ASK amplitude
alphabet as shown in Fig. 8.3. This shaper maps k-bit message indices uk to shaped amplitude
sequences ãN . The distribution of ãN is Gaussian-like over {1, 3, · · · , 2s− 1}. Accordingly,
corresponding binary amplitude labels b̃2b̃3 · · · b̃s+1 are also shaped. Therefore, we now have
s shaped bit-levels which are highlighted by red in Fig. 8.3. We will later show in Sec. 8.4.2
that a standard enumerative shaper can be used without any modification in P-ESS to obtain
partial MB distributions over ASK alphabets.

Then f additional N -bit data sequences uN1 , u
N
2 , · · · , uNf are used as the uniform am-

plitude bit-levels for 2m-ASK, and they are combined with the s shaped levels. The way
uniform and shaped amplitude bit-levels are combined depends on the employed binary la-
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Figure 8.4: Rloss vs. blocklength with 16-ASK for various shaping schemes.

beling strategies at the output of the shaper and in the symbol mapper. In this work, we
consider BRGCs. Thus, we connect the extra uniform data sequences to the last f bit-levels
of 2m-ASK. Shaped bit levels of 2s+1-ASK are connected to the bit-levels of 2m-ASK with
the same index as shown in Fig. 8.3. We give the following example to clarify this construc-
tion.

Example 8.2 (2-bit sphere shaped 16-ASK). Consider a transmission scheme based on 16-
ASK, i.e., m = 4. To have an s = 2-bit shaped output distribution, an enumerative sphere
shaper employing the 2s+1 = 8-ASK amplitude alphabet is used. Outputs ãN of this shaper
are then labeled with (b̃2, b̃3) using the mapping

1→ (0, 0), 3→ (0, 1), 5→ (1, 1), 7→ (1, 0). (8.3)

Then these bit levels (b̃2, b̃3) are used as the first and second amplitude bit levels (b2, b3)
of 16-ASK. Next, each label is concatenated with a uniform data bit (b4) and the result is
outputted as the label of an amplitude a from the 16-ASK alphabet as in Table 8.2. Note that
the shaped bits are (B2, B3) and the uniform bit is B4 in this setting. The distributions of
Ã and A at the outputs of the enumerative shaper and the overall P-ESS block are shown in
Fig. 8.3 for k/N = 1.667 bit/1-D at N = 216

Figure 8.4 shows the rate loss Rloss (4.11) versus shaping blocklength N for 1- and 2-bit
P-ESS, 3-bit ESS, and CCDM [28] for 16-ASK. For comparison, the same is plotted also for
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uniform signaling. The target shaping rate is Rs = 2.6667 bit/1-D with 16-ASK. As some
of the amplitude bits are kept uniform and independent of the others, Rloss converges to a
nonzero value for 1- and 2-bit P-ESS, i.e., 0.071 and 0.015 bit/1-D, respectively, unlike the
fully shaped schemes. Thus, P-ESS is not an asymptotically optimum shaping architecture
according to Definition 4.1. However for this example, although asymptotically optimum,
CCDM requires roughly N > 300 to surpass 1-bit P-ESS. This shows that shaping some
amplitude bits using ESS provides a better rate loss performance than CCDM in the short
blocklength regime.

Remark 8.1 (Alternative partial shaping techniques). PDM [81] and BL-DM [113] can
also be used to shape a subset of the amplitude bit-levels. In [81], the bit-level distributions
are optimized such that E[X2] is minimized.

8.4 Implementation Aspects and Complexity

8.4.1 Required Storage and Computational Complexity
A straightforward advantage of P-ESS is the decrease in required storage and computational
complexity of amplitude shaping. Consider a PAS-based transmission strategy where the rate
of the information that is carried by the amplitudes of the channel inputs is Rt − γ bit/1-D. If
ESS is employed as the amplitude shaping strategy, the rate of the shaper is k/N = Rt − γ.
If on the other hand P-ESS is employed such that f amplitude bits are kept uniform, the rate
of the shaper is k/N = Rt − γ − f . Due to Remark 5.1, the relation between the number of
energy levels Less and Lp-ess that are considered by ESS and P-ESS, resp., can be written as

Lp-ess ≈
Less

22f
. (8.4)

Consequently, observing the linear dependence of storage on L as shown in Tables 5.3
and 7.2, a decrease in required storage roughly by a factor of 22f can be expected when
P-ESS is used instead of ESS. Furthermore, in the BP case, the number of bits nm required
to store the mantissas may decrease with decreasing |A| (of the shaper) and L, leading to a
further decrease in required storage, and an additional decrease in computational complexity
from Table 7.3. In Sec. 8.5, we will provide a numeric example for these effects.

8.4.2 Compatibility of ESS and P-ESS Trellises
Consider the set of energies of the amplitudes from an M/2-ASK alphabet which is denoted
by E = {e1, e2, · · · , eM/4} where ei = (2i − 1)2. Based on the first-level approximation
proposed for M -ASK in Example 8.1, we define the set of average energies of the symbol
pairs as E1 = {e1,1, e2,1, · · · , eM/4,1} where ej,1 = (1/2) · {(4j − 3)2 + (4j − 1)2} noting
that ej,1 = E[|Aj |2]. It is then by definition that el,1 = 4 · el + 1 for l = 1, 2, · · · ,M/4. This
observation has two consequences:



8

154 Partial Enumerative Sphere Shaping

• The bounded-energy ESS trellises constructed based on E and E1 have the same struc-
ture, i.e., the connections relating two consecutive columns are identical.

• The MB distribution over
√
E for i = 1, 2, · · · ,M/4 and the MB distribution over

√
E1 for

j = 1, 2, · · · ,M/4 are the same given that they have the same entropy, where
√
E indicates the

set of square roots of the elements in E .

Thus, the shaper that is implemented to realize ESS can directly be reused for P-ESS.

8.4.3 PAS with Lower FEC Code Rates
In the PAS scheme, there is a lower bound on the FEC code rate that is Rc ≥ (m−1)/m [13,
Sec. IV]. This is because by prescribing the amplitudes at the output of the shaper, m −
1 bit/1-D are already fixed before FEC coding as shown in Fig. 2.8. Thus, the FEC encoder
can at most add 1 bit redundancy per symbol, making the smallest possible code rate (m −
1)/m. However, when P-ESS is used, only s < m − 1 of the amplitude bits are fixed by
the shaping process. Then, instead of using information bits for the remaining f bit-levels
as in Sec. 8.3, we can use the parity added by the encoder. Thus, we can relax the code rate
constraint to Rc > s/m. We note that this can also be achieved with bit-level DM [81, 113].

8.5 End-to-end Decoding Performance
In this section, we evaluate the performance of P-ESS in the PAS framework by Monte Carlo
simulations. For comparison, uniform signaling, CCDM, and ESS are also simulated. As
the channel input constellation, 16-ASK is considered. As in Chapter 5, before transmission
over the communication channel, two ASK symbols are combined to a single QAM symbol.
The BRGC which is given in Table 8.2 is used for labeling the symbols. As the FEC code,
rate-Rc systematic LDPC codes of length nc ∈ {648, 1944} bits are used from the IEEE
802.11 standard [16]. Each LDPC codeword corresponds to N = nc/m ∈ {162, 486} real
symbols where m = log2 16 = 4. Both 2- and 1-bit P-ESS are considered. The target trans-
mission rate is Rt = 3 bit/1-D. Shaping techniques are coupled with the rate-Rc = 5/6 FEC
code leading to γ = 1/3 where the uniform transmission is with the rate-Rc = 3/4 code.
The rate of the amplitude shaping block is k/N = Rt − γ = 2.667. For CCDM, the most
energy-efficient composition that has at least 2k sequences is selected. Corresponding shap-
ing parameters are tabulated for N = 162 and N = 486 in Tables 8.3 and 8.4, respectively.

In Figures 8.5 and 8.6, FER is plotted versus SNR for PAS and uniform signaling at
N = 162 and N = 486, respectively. At N = 162, we observe that at an FER of 10−3, ESS
performs 1.35 dB more power-efficiently than uniform signaling. Here 2- and 1-bit P-ESS
provide 1.27 and 0.95 dB improvement, respectively, while the gain is 0.45 dB for CCDM. At
N = 486, we observe that at an FER of 10−3, ESS performs 1.25 dB more power-efficiently
than uniform signaling. Here 2- and 1-bit P-ESS provide 1.20 and 0.9 dB improvement,
respectively, while the gain is 0.97 dB for CCDM. Firstly, all these values roughly match the
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Table 8.3: Shaping Parameters for m = 4, N = 162, γ = 1/3 and Rt = 3 bit/1-D

Method s E• or C k/N Eav Gs (in dB)
ESS 3 6514 2.667 39.69 1.29

P-ESS 2 1626 1.667 40.73 1.18
P-ESS 1 402 0.667 44.44 0.81
CCDM 3 (34, 32, 28, 23, 18, 13, 9, 5) 2.667 48.31 0.44

Table 8.4: Shaping Parameters for m = 4, N = 486, γ = 1/3 and Rt = 3 bit/1-D

Method s E• or C k/N Eav Gs (in dB)
ESS 3 19086 2.6667 39.10 1.36

P-ESS 2 4758 1.6667 40.01 1.26
P-ESS 1 1182 0.6667 43.84 0.86
CCDM 3 (112, 103, 88, 69, 50, 33, 20, 11) 2.6667 42.22 1.02

corresponding shaping gains Gs given in Tables 8.3 and 8.4. Secondly, as claimed following
the discussion in Sec. 8.2, 2-bit P-ESS operates very close to the 3-bit ESS, i.e., in its 0.1
dB vicinity. This provides operational evidence for our claim that not all amplitude bits have
to be shaped to close most of the shaping gap. We note that the relative performance of all
techniques is as predicted by their rate losses in Fig. 8.4.

Finally, the required storage and computational complexity of the ESS-based schemes
in Fig. 8.5, i.e., N = 162, are tabulated in Table 8.5. Here, the BP ESS implementation
explained in Sec. 7.3.2 is employed. We see that by shaping 2 amplitude bits instead of 3,
the required storage and computational complexity of shaping can be decreased by factors of
6 and 4, respectively. This reduction is accomplished in the expense of less than 0.1 dB in
decoding performance as shown in Figures 8.5 and 8.6. We note that although shaping just
1 amplitude bit provides limited gains, it can be implemented with less than 10 kB storage
and with 9 bit oper./1-D. Thus, we conclude that P-ESS provides design flexibility enabling
a trade-off between the shaping gain and shaping complexity.

Table 8.5: Required Storage and Computational Complexity

Shaping Technique Storage
L(N + 1)(nm + np)

Computation
(|A| − 1)(nm +ma)

3-bit ESS (nm = 17, np = 9) 421.15 kB 140 bit oper./1-D
2-bit P-ESS (nm = 10, np = 9) 71.23 kB 36 bit oper./1-D
1-bit P-ESS (nm = 8, np = 7) 9.47 kB 9 bit oper./1-D
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Figure 8.5: 648-bit LDPC-coded FER vs. SNR with 16-ASK at Rt = 3 bit/1-D. The corre-
sponding shaping blocklength N = 162.

8.6 Conclusion
In this chapter, we searched for an answer to the following research question.

RQ-6 How much do we need to shape the channel input to reap most of the possible
shaping gain? Is it possible to obtain a reduction in required storage and com-
putational complexity by realizing a “rough” shaping strategy? How can this
rough shaping be realized based on ESS?

We considered a family of approximate MB distributions for shaping the amplitudes,
which corresponds to keeping some amplitude bits uniform and independent of the others.
Based on these distributions, we demonstrated through a gap-to-capacity analysis that by
shaping a couple of amplitude bits of a constellation (as a rule of thumb, two amplitude bits),
most of the shaping gap can be closed. Then we proposed partial ESS, a technique to generate
amplitude sequences, to shape only a subset of the amplitude bits. We demonstrated using
end-to-end decoding simulations that partial ESS performs very close to ESS. This way, the
required storage and computational complexity of shaping are significantly reduced.
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Figure 8.6: 1944-bit LDPC-coded FER vs. SNR with 16-ASK at Rt = 3 bit/1-D. The
corresponding shaping blocklength N = 486.



8



9

CHAPTER 9
Summary and Conclusion



9

160 Summary and Conclusion

In this dissertation, we first studied the achievable information rates (AIRs) of the prob-
abilistic amplitude shaping (PAS) framework. Then we examined sphere shaping in PAS for
communication with short blocklengths. In particular, we investigated the enumerative sphere
shaping (ESS) technique, we compared ESS with other prominent sphere shaping algorithms,
and we proposed low-complexity implementation methods for ESS.

In Chapter 3, we addressed the following research question.

RQ-1 What are the AIRs of PAS for symbol-metric decoding (SMD) and bit-metric
decoding (BMD)? Is it possible to achieve the capacity of memoryless chan-
nels with PAS? What are the optimum shaping and coding rates in PAS that
maximize AIR gains?

We introduced random sign-coding arguments based on a modified version of weak typi-
cality (β-typicality) that enabled us to compute AIRs of PAS more simply than that followed
in the existing literature. In our random sign-coding experiment, the objective was to pro-
vide alternative proofs of achievability in which the codes are generated as constructively as
possible. Thus, only a fraction γ of the signs of the channel inputs are drawn from a code at
random, while their amplitudes and the remaining signs are produced constructively. Unlike
most proofs of Shannon’s channel coding theorem, how should the code be constructed is (at
least partially) self-evident from our proofs. Besides, random sign-coding provided a uni-
fied framework in which achievability results can be obtained for all possible PAS settings,
i.e., for SMD or BMD, and for basic PAS (γ = 0) or generalized PAS (0 < γ < 1). We
showed that when SMD is used, the mutual information between the input and output of a
memoryless channel is achievable for PAS with uniform signs. This demonstrated that PAS
achieves the capacity of memoryless channels if the capacity-achieving distribution is sym-
metric. When BMD is used, our AIR expression coincides with what was proposed in the
literature which is an instance of the so-called LM rate. Finally, we showed that achievability
can also be obtained with binary linear codes for both SMD and BMD. The main conclusions
of this chapter are as follows:

• Random sign-coding is a unified and simple framework to compute AIRs for
PAS.

• As demonstrated earlier by Böcherer [23], PAS is a capacity-achieving coded
modulation strategy for memoryless channels.

• AIRs of PAS can be achieved with binary linear codes.

In Chapter 4, we searched for an answer to the following research question.

RQ-2 What is the “best” amplitude shaping strategy for finite values of the block-
length N? What are the metrics to be used to assess the “goodness” of different
amplitude shaping approaches?
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We compared constant composition distribution matching (CCDM) with sphere shaping
for short blocklengths. We first showed that both techniques are average-energy-optimum
for asymptotically large blocklengths. This also implies that sphere shaping induces the
Maxwell-Boltzmann distribution over discrete constellations. We then demonstrated that for
finite blocklengths, sphere shaping has the minimum rate loss possible, or equivalently, has
the maximum shaping gain. Furthermore, the gap between CCDM and sphere shaping in rate
loss and in shaping gain becomes significant for short blocklengths. The main conclusion of
this chapter is as follows:

• Sphere shaping provides the smallest rate loss and the largest shaping gain at
any blocklength.

In Chapter 5, we investigated the following research question.

RQ-3 How can sphere shaping be realized algorithmically? Which algorithm provides
high performance with low complexity? What is the end-to-end decoding per-
formance of PAS using sphere shaping over the AWGN and frequency selective
channels?

We introduced ESS, and we demonstrated its efficiency. We first compared ESS with two
different sphere shaping techniques, namely an algorithm by Laroia et al. [30, Algorithm 1]
(LA1) and shell mapping (SM). We showed that ESS has a significantly smaller complexity
than SM due to the use of additions/subtractions instead of multiplications/divisions. ESS
also has a slightly smaller complexity than LA1 which requires an extra step to determine the
specific N -shell that the amplitude sequence is located on. Then we demonstrated via Monte
Carlo simulation that PAS with ESS provides more than 1 dB gain in power-efficiency over
uniform signaling for the AWGN channel for a large range of transmission rates and shaping
blocklengths. Finally, we showed that PAS with ESS also improves the power-efficiency for
frequency selective fading channels, if shaping redundancy is kept relatively small. The main
conclusions of this chapter are as follows:

• ESS is an effective amplitude shaping technique for short blocklengths.

• Shaping improves the bandwidth-efficiency of digital communication systems
not only for the linear AWGN channel but also for frequency-selective channels.

In Chapter 6, we studied the following research question.

RQ-4 Can PAS be incorporated into existing communication systems that are based
on the IEEE 802.11 standard? Can PAS be combined with the nonsystem-
atic convolutional codes used in 802.11 [16] which are a mandatory part of
the standard?
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We demonstrated how to combine amplitude shaping with the nonsystematic convolu-
tional codes used in the IEEE 802.11 standard [16]. We proposed an input selection layer
between the shaping and coding layers such that the temporal structure of the amplitude se-
quences is preserved through nonsystematic encoding. This layer uses the finite state machine
model of the following channel code to shuffle amplitude bits in a specific way. Simulation
results are then used to show that PAS with ESS and nonsytematic channel codes from 802.11
also provides more than 1 dB gain in power-efficiency for the AWGN channel and frequency
selective channels. The main conclusion of this chapter is as follows:

• The nonsystematic convolutional codes from the IEEE 802.11 can be used in
the PAS framework to transmit probabilistically shaped channel inputs.

In Chapter 7, we examined the following research question.

RQ-5 Can we further improve the energy-efficiency of ESS for practical scenarios?
How can ESS be implemented with low storage complexity, minimal computa-
tional requirements, and limited latency?

We first proposed an algorithm to compute the amplitude distribution for the operational
shaping set of ESS which is a size-2k subset of the complete sphere for integer k. Then
we used this algorithm to show that the difference in the average energy of the operational
shaping set is negligible for ESS, LA1, and SM at moderate to long blocklengths. Finally,
for short blocklengths where this difference is somewhat significant, we proposed a heuristic
method to optimize the ESS trellis. In this way, ESS constructs roughly the most energy-
efficient operational shaping set similar to LA1 and SM. We then studied low-complexity
implementations of sphere shaping. We first showed that ESS, LA1, and SM can be real-
ized by storing the numbers in their corresponding shaping trellises approximately, i.e., with
bounded precision (BP). In this way, the required storage for shaping is decreased. Next, we
described sliding-window shaping for BP ESS where only a small part of the input index is
required to be considered at any step of the shaping operation. In this way, both the com-
putational complexity of shaping is reduced, and the required arithmetic precision is made
fixed and independent of the blocklength. Furthermore, instead of outputting symbols af-
ter all input symbols are processed, the shaper/deshaper can now output symbols as soon
as the shaping/deshaping operation starts. Finally, we demonstrated that the ESS trellis can
be computed on-the-fly during the shaping operation, instead of precomputing and storing
it completely, which further decreases the required storage at the expense of increased com-
putational complexity. For this purpose, in the full precision scenario, only the first column
needs to be stored, while in the BP case, a few bits per node must additionally be stored for
the rest of the trellis. The main conclusions of this chapter are as follows:
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• ESS is slightly less energy inefficient with respect to LA1 and SM for short
blocklengths. This inefficiency can be removed using a straightforward opti-
mization routine for the ESS trellis.

• Sphere shaping implementation can be tailored to specific constraints imposed
by the available hardware resources and/or quality-of-service requirements such
as limited memory, restricted computational power, finite arithmetic precision,
bounded serialism, and minimal latency.

Finally in Chapter 8, we investigated the following research question.

RQ-6 How much do we need to shape the channel input to reap most of the possible
shaping gain? Is it possible to obtain a reduction in required storage and com-
putational complexity by realizing a “rough” shaping strategy? How can this
rough shaping be realized based on ESS?

We studied the effect of imperfect shaping in terms of AIRs. We showed for large constel-
lations that shaping a subset of the amplitude bits while keeping the remaining bits uniform
and independent of the others does not cause a significant penalty on the achievable rates.
Then we introduced partial ESS (P-ESS) where ESS is used to shape one or two most sig-
nificant amplitude bits in the binary labels of the channel input symbols. We showed that
for very short blocklengths, even 1-bit P-ESS achieves smaller rate losses than CCDM. We
demonstrated via Monte Carlo simulation that the end-to-end decoding performance of PAS
with P-ESS is virtually the same as PAS with ESS. The main conclusions of this chapter are
as follows:

• As a rule of thumb, shaping more than two amplitude bits of a constellation
provides diminishing returns in AIR-sense. Thus, the complexity of shaping
can be kept independent of the constellation size, which is especially important
for applications with very large constellations such as future digital subscriber
line standards [21].

• The ESS algorithm can be used to shape some amplitude bits (P-ESS) without
requiring any modification, and thus, single shaping hardware is compatible
with both ESS and P-ESS.
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[57] G. Böcherer and R. Mathar, “Matching Dyadic Distributions to Channels,” in Proc. Data Compression Conf.,
Snowbird, UT, USA, Mar. 2011, pp. 23–32.

[58] H. G. Batshon, M. V. Mazurczyk, J. Cai, O. V. Sinkin, M. Paskov, C. R. Davidson, D. Wang, M. Bolshtyan-
sky, and D. Foursa, “Coded modulation based on 56APSK with hybrid shaping for high spectral efficiency
transmission,” in Proc. Eur. Conf. Opt. Commun., Gothenburg, Sweden, Sep. 2017.

[59] J.-X. Cai, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. Wang, M. Paskov, W. W. Patterson, C. R.
Davidson, P. C. Corbett, G. M. Wolter et al., “70.46 Tb/s Over 7,600 km and 71.65 Tb/s Over 6,970 km
Transmission in C+L Band Using Coded Modulation With Hybrid Constellation Shaping and Nonlinearity
Compensation,” J. Lightw. Technol., vol. 36, pp. 114–121, Jan. 2018.

[60] J. Cai, H. G. Batshon, M. V. Mazurczyk, O. V. Sinkin, D. Wang, M. Paskov, C. R. Davidson, W. W. Patterson,
A. Turukhin, M. A. Bolshtyansky, and D. G. Foursa, “51.5 Tb/s Capacity over 17,107 km in C+L Bandwidth
Using Single-Mode Fibers and Nonlinearity Compensation,” J. Lightw. Technol., vol. 36, no. 11, pp. 2135–
2141, June 2018.

[61] D. Sommer and G. P. Fettweis, “Signal shaping by non-uniform QAM for AWGN channels and applications
using turbo coding,” in Proc. ITG Conf. on Source and Channel Coding, Munich, Germany, Jan. 2000.

[62] S. Y. Le Goff, “Signal constellations for bit-interleaved coded modulation,” IEEE Trans. Inf. Theory, vol. 49,
no. 1, pp. 307–313, Jan. 2003.

[63] M. F. Barsoum, C. Jones, and M. Fitz, “Constellation design via capacity maximization,” in Proc. IEEE Int.
Symp. Inf. Theory, Nice, France, June 2007, pp. 1821–1825.

[64] S. Y. Le Goff, B. S. Sharif, and S. A. Jimaa, “A new bit-interleaved coded modulation scheme using shaping
coding,” in Proc. IEEE Global Commun. Conf., Dallas, TX, USA, Nov.-Dec. 2004.

[65] D. Raphaeli and A. Gurevitz, “Constellation shaping for pragmatic turbo-coded modulation with high spectral
efficiency,” IEEE Trans. Commun., vol. 52, no. 3, pp. 341–345, Mar. 2004.

[66] S. Y. Le Goff, B. S. Sharif, and S. A. Jimaa, “Bit-interleaved turbo-coded modulation using shaping coding,”
IEEE Commun. Lett., vol. 9, no. 3, pp. 246–248, Mar. 2005.

[67] M. C. Valenti and X. Xiang, “Constellation shaping for bit-interleaved LDPC coded APSK,” IEEE Trans.
Commun., vol. 60, no. 10, pp. 2960–2970, Oct. 2012.

[68] S. Y. Le Goff, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif, “Constellation shaping for bandwidth-efficient
turbo-coded modulation with iterative receiver,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 2223–2233,
June 2007.
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