2,367 research outputs found

    A Dichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs

    Get PDF
    We determine the computational complexity of approximately counting the total weight of variable assignments for every complex-weighted Boolean constraint satisfaction problem (or CSP) with any number of additional unary (i.e., arity 1) constraints, particularly, when degrees of input instances are bounded from above by a fixed constant. All degree-1 counting CSPs are obviously solvable in polynomial time. When the instance's degree is more than two, we present a dichotomy theorem that classifies all counting CSPs admitting free unary constraints into exactly two categories. This classification theorem extends, to complex-weighted problems, an earlier result on the approximation complexity of unweighted counting Boolean CSPs of bounded degree. The framework of the proof of our theorem is based on a theory of signature developed from Valiant's holographic algorithms that can efficiently solve seemingly intractable counting CSPs. Despite the use of arbitrary complex weight, our proof of the classification theorem is rather elementary and intuitive due to an extensive use of a novel notion of limited T-constructibility. For the remaining degree-2 problems, in contrast, they are as hard to approximate as Holant problems, which are a generalization of counting CSPs.Comment: A4, 10pt, 20 pages. This revised version improves its preliminary version published under a slightly different title in the Proceedings of the 4th International Conference on Combinatorial Optimization and Applications (COCOA 2010), Lecture Notes in Computer Science, Springer, Vol.6508 (Part I), pp.285--299, Kailua-Kona, Hawaii, USA, December 18--20, 201

    The complexity of approximating conservative counting CSPs

    Get PDF
    We study the complexity of approximately solving the weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, there is a classification known for the case in which the domain of functions in F is Boolean. In this paper, we give a classification for the more general problem where functions in F have an arbitrary finite domain. We define the notions of weak log-modularity and weak log-supermodularity. We show that if F is weakly log-modular, then #CSP(F)is in FP. Otherwise, it is at least as difficult to approximate as #BIS, the problem of counting independent sets in bipartite graphs. #BIS is complete with respect to approximation-preserving reductions for a logically-defined complexity class #RHPi1, and is believed to be intractable. We further sub-divide the #BIS-hard case. If F is weakly log-supermodular, then we show that #CSP(F) is as easy as a (Boolean) log-supermodular weighted #CSP. Otherwise, we show that it is NP-hard to approximate. Finally, we give a full trichotomy for the arity-2 case, where #CSP(F) is in FP, or is #BIS-equivalent, or is equivalent in difficulty to #SAT, the problem of approximately counting the satisfying assignments of a Boolean formula in conjunctive normal form. We also discuss the algorithmic aspects of our classification.Comment: Minor revisio

    The complexity of weighted and unweighted #CSP

    Get PDF
    We give some reductions among problems in (nonnegative) weighted #CSP which restrict the class of functions that needs to be considered in computational complexity studies. Our reductions can be applied to both exact and approximate computation. In particular, we show that a recent dichotomy for unweighted #CSP can be extended to rational-weighted #CSP.Comment: 11 page

    An approximation trichotomy for Boolean #CSP

    Get PDF
    We give a trichotomy theorem for the complexity of approximately counting the number of satisfying assignments of a Boolean CSP instance. Such problems are parameterised by a constraint language specifying the relations that may be used in constraints. If every relation in the constraint language is affine then the number of satisfying assignments can be exactly counted in polynomial time. Otherwise, if every relation in the constraint language is in the co-clone IM_2 from Post's lattice, then the problem of counting satisfying assignments is complete with respect to approximation-preserving reductions in the complexity class #RH\Pi_1. This means that the problem of approximately counting satisfying assignments of such a CSP instance is equivalent in complexity to several other known counting problems, including the problem of approximately counting the number of independent sets in a bipartite graph. For every other fixed constraint language, the problem is complete for #P with respect to approximation-preserving reductions, meaning that there is no fully polynomial randomised approximation scheme for counting satisfying assignments unless NP=RP
    • …
    corecore