26 research outputs found

    New Integrality Gap Results for the Firefighters Problem on Trees

    Full text link
    The firefighter problem is NP-hard and admits a (11/e)(1-1/e) approximation based on rounding the canonical LP. In this paper, we first show a matching integrality gap of (11/e+ϵ)(1-1/e+\epsilon) on the canonical LP. This result relies on a powerful combinatorial gadget that can be used to prove integrality gap results for many problem settings. We also consider the canonical LP augmented with simple additional constraints (as suggested by Hartke). We provide several evidences that these constraints improve the integrality gap of the canonical LP: (i) Extreme points of the new LP are integral for some known tractable instances and (ii) A natural family of instances that are bad for the canonical LP admits an improved approximation algorithm via the new LP. We conclude by presenting a 5/65/6 integrality gap instance for the new LP.Comment: 22 page

    Improved Hardness for Cut, Interdiction, and Firefighter Problems

    Get PDF
    We study variants of the classic s-t cut problem and prove the following improved hardness results assuming the Unique Games Conjecture (UGC). * For Length-Bounded Cut and Shortest Path Interdiction, we show that both problems are hard to approximate within any constant factor, even if we allow bicriteria approximation. If we want to cut vertices or the graph is directed, our hardness ratio for Length-Bounded Cut matches the best approximation ratio up to a constant. Previously, the best hardness ratio was 1.1377 for Length-Bounded Cut and 2 for Shortest Path Interdiction. * For any constant k >= 2 and epsilon > 0, we show that Directed Multicut with k source-sink pairs is hard to approximate within a factor k - epsilon. This matches the trivial k-approximation algorithm. By a simple reduction, our result for k = 2 implies that Directed Multiway Cut with two terminals (also known as s-t Bicut} is hard to approximate within a factor 2 - epsilon, matching the trivial 2-approximation algorithm. * Assuming a variant of the UGC (implied by another variant of Bansal and Khot), we prove that it is hard to approximate Resource Minimization Fire Containment within any constant factor. Previously, the best hardness ratio was 2. For directed layered graphs with b layers, our hardness ratio Omega(log b) matches the best approximation algorithm. Our results are based on a general method of converting an integrality gap instance to a length-control dictatorship test for variants of the s-t cut problem, which may be useful for other problems

    Approximation algorithms for network design and cut problems in bounded-treewidth

    Get PDF
    This thesis explores two optimization problems, the group Steiner tree and firefighter problems, which are known to be NP-hard even on trees. We study the approximability of these problems on trees and bounded-treewidth graphs. In the group Steiner tree, the input is a graph and sets of vertices called groups; the goal is to choose one representative from each group and connect all the representatives with minimum cost. We show an O(log^2 n)-approximation algorithm for bounded-treewidth graphs, matching the known lower bound for trees, and improving the best possible result using previous techniques. We also show improved approximation results for group Steiner forest, directed Steiner forest, and a fault-tolerant version of group Steiner tree. In the firefighter problem, we are given a graph and a vertex which is burning. At each time step, we can protect one vertex that is not burning; fire then spreads to all unprotected neighbors of burning vertices. The goal is to maximize the number of vertices that the fire does not reach. On trees, a classic (1-1/e)-approximation algorithm is known via LP rounding. We prove that the integrality gap of the LP matches this approximation, and show significant evidence that additional constraints may improve its integrality gap. On bounded-treewidth graphs, we show that it is NP-hard to find a subpolynomial approximation even on graphs of treewidth 5. We complement this result with an O(1)-approximation on outerplanar graphs.Diese Arbeit untersucht zwei Optimierungsprobleme, von welchen wir wissen, dass sie selbst in Bäumen NP-schwer sind. Wir analysieren Approximationen für diese Probleme in Bäumen und Graphen mit begrenzter Baumweite. Im Gruppensteinerbaumproblem, sind ein Graph und Mengen von Knoten (Gruppen) gegeben; das Ziel ist es, einen Knoten von jeder Gruppe mit minimalen Kosten zu verbinden. Wir beschreiben einen O(log^2 n)-Approximationsalgorithmus für Graphen mit beschränkter Baumweite, dies entspricht der zuvor bekannten unteren Schranke für Bäume und ist zudem eine Verbesserung über die bestmöglichen Resultate die auf anderen Techniken beruhen. Darüber hinaus zeigen wir verbesserte Approximationsresultate für andere Gruppensteinerprobleme. Im Feuerwehrproblem sind ein Graph zusammen mit einem brennenden Knoten gegeben. In jedem Zeitschritt können wir einen Knoten der noch nicht brennt auswählen und diesen vor dem Feuer beschützen. Das Feuer breitet sich anschließend zu allen Nachbarn aus. Das Ziel ist es die Anzahl der Knoten die vom Feuer unberührt bleiben zu maximieren. In Bäumen existiert ein lang bekannter (1-1/e)-Approximationsalgorithmus der auf LP Rundung basiert. Wir zeigen, dass die Ganzzahligkeitslücke des LP tatsächlich dieser Approximation entspricht, und dass weitere Einschränkungen die Ganzzahligkeitslücke möglicherweise verbessern könnten. Für Graphen mit beschränkter Baumweite zeigen wir, dass es NP-schwer ist, eine sub-polynomielle Approximation zu finden
    corecore