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Abstract
We study variants of the classic s-t cut problem and prove the following improved hardness results
assuming the Unique Games Conjecture (UGC).

For Length-Bounded Cut and Shortest Path Interdiction, we show that both problems are
hard to approximate within any constant factor, even if we allow bicriteria approximation. If
we want to cut vertices or the graph is directed, our hardness ratio for Length-Bounded Cut
matches the best approximation ratio up to a constant. Previously, the best hardness ratio
was 1.1377 for Length-Bounded Cut [4] and 2 for Shortest Path Interdiction [24].
For any constant k ≥ 2 and ε > 0, we show that Directed Multicut with k source-sink pairs
is hard to approximate within a factor k − ε. This matches the trivial k-approximation
algorithm. By a simple reduction, our result for k = 2 implies that Directed Multiway Cut
with two terminals (also known as s-t Bicut) is hard to approximate within a factor 2 − ε,
matching the trivial 2-approximation algorithm.
Assuming a variant of the UGC (implied by another variant of Bansal and Khot [6]), we
prove that it is hard to approximate Resource Minimization Fire Containment within any
constant factor. Previously, the best hardness ratio was 2 [28]. For directed layered graphs
with b layers, our hardness ratio Ω(log b) matches the best approximation algorithm [3, 9].

Our results are based on a general method of converting an integrality gap instance to a
length-control dictatorship test for variants of the s-t cut problem, which may be useful for other
problems.
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1 Introduction

One of the most important implications of the Unique Games Conjecture (UGC, [25]) is the
results of Khot et al. [26] and Raghavendra [40], which say that for any maximum constraint
satisfaction problem (Max-CSP), an integrality gap instance of the standard semidefinite
programming (SDP) relaxation can be converted to the NP-hardness result with the same
gap. These results initiated the study of beautiful connections between power of convex
relaxations and hardness of approximation, from which surprising results for both subjects
have been discovered.
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While their results hold for problems in Max-CSPs, the framework of converting an
integrality gap instance to hardness has been successfully applied to covering and graph cut
problems. For graph cut problems, Manokaran et al. [34] showed that for Undirected Multiway
Cut and its generalizations, an integrality gap of the standard linear programming (LP)
relaxation implies the hardness result assuming the UGC. Their result is further generalized
by Ene et al. [16] by formulating them as Min-CSPs. In addition, Kumar et al. [29] studied
Strict CSPs and showed the same phenomenon for the standard LP relaxation.

One of the limitations of the previous CSP-based transformations from LP gap instances
to hard instances is based on the fact that they do not usually preserve the desired structure
of the constraint hypergraph.1 For example, consider the Length-Bounded Edge Cut problem
where the input consists of a graph G = (V,E), two vertices s, t ∈ V , and a constant l ∈ N,
and the goal is to remove the fewest edges to ensure there is no path from s to t of length
less than l. This problem can be viewed as a special case of Hypergraph Vertex Cover (HVC)
by viewing each edge as a vertex of a hypergraph and creating a hyperedge for every s-t path
of length less than l. While HVC is in turn a Strict CSP, its integrality gap instance cannot
be converted to hardness using Kumar et al. [29] as a black-box, since the set of hyperedges
created in the resulting hard instance is not guaranteed to correspond to the set of short s-t
paths of some graph.

For Undirected Multiway Cut, Manokaran et al. [34] bypassed this difficulty by using
2-ary constraints so that the resulting constraint hypergraph becomes a graph again. For
Undirected Node-weighted Multiway Cut, Ene et al. [16] used the equivalence to Hypergraph
Multiway Cut [38] so that the resulting hypergraph does not need to satisfy additional
structure. These problems are then formulated as a Min-CSP by using many labels which
are supposed to represent different connected components. However, these Min-CSP based
techniques often require nontrivial problem-specific ideas and do not seem to be easily
generalized to many other cut problems.

We study variants of the classical s-t cut problem in both directed and undirected graphs
that have been actively studied. We prove the optimal hardness or the first super-constant
hardness for them. See Section 1.1 for the definitions of the problems and our results. All
our results are based on the general framework of converting an integrality gap instance
to a length-control dictatorship test. The structure of our length-control dictatorship tests
allows us to naturally convert an integrality gap instance for the basic LP for various cut
problems to hardness based on the UGC. Section 1.2 provides more detailed intuition of
this framework. We believe that our framework is general and will be useful to prove tight
inapproximability of other cut problems.

1.1 Problems and Results
Length-Bounded Cut and Shortest Path Interdiction. The Length-Bounded Cut problem
is a natural variant of s-t cut, where given a graph (directed or undirected), s, t ∈ V , and an
integer l, we only want to cut s-t paths of length strictly less than l.2 Its practical motivation
is based on the fact that in most communication / transportation networks, short paths are
preferred to be used to long paths [32].

Lovász et al. [31] gave an exact algorithm for Length-Bounded Vertex Cut (l ≤ 5) in
undirected graphs. Mahjoub and McCormick [32] proved that Length-Bounded Edge Cut

1 One of notable exceptions we are aware is the result of Guruswami et al. [21], using Kumar et al. [29] to
show that k-Uniform k-Partite Hypergraph Vertex Cover is hard to approximate within a factor k

2 − ε
for any ε > 0.

2 It is more conventional to cut s-t paths of length at most l. We use this slightly nonconventional way to
be more consistent with Shortest Path Interdiction.
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admits an exact polynomial time algorithm for l ≤ 4 in undirected graphs. Baier et al. [4]
showed that both Length-Bounded Vertex Cut (l > 5) and Length-Bounded Edge Cut (l > 4)
are NP-hard to approximate within a factor 1.1377. They presented O(min(l, nl )) = O(

√
n)-

approximation algorithm for Length-Bounded Vertex Cut and O(min(l, n
2

l2 ,
√
m)) = O(n2/3)-

approximation algorithm for Length-Bounded Edge Cut, with matching LP gaps. Length-
Bounded Cut problems have been also actively studied in terms of their fixed parameter
tractability [19, 15, 8, 17].

If we exchange the roles of the objective k and the length bound l, the problem becomes
Shortest Path Interdiction, where we want to maximize the length of the shortest s-t path
after removing at most k vertices or edges. It is also one of the central problems in a broader
class of interdiction problems, where an attacker tries to remove some edges or vertices to
destroy a desirable property (e.g., short s-t distance, large s-t flow, cheap MST) of a network
(see the survey of [42]). The study of Shortest Path Interdiction started in 1980’s when the
problem was called as the k-most-vital-arcs problem [14, 33, 5] and proved to be NP-hard [5].
Khachiyan et al. [24] proved that it is NP-hard to approximate within a factor less than 2.
While many heuristic algorithms were proposed [23, 7, 35] and hardness in planar graphs [39]
was shown, whether the general version admits a constant factor approximation was still
unknown.

Given a graph G = (V,E) and s, t ∈ V , let dist(G) be the length of the shortest s-t path.
For V ′ ⊆ V , let G \ V ′ be the subgraph induced by V \ V ′. For E′ ⊆ E, we use the same
notation G \ E′ to denote the subgraph (V,E \ E′). We primarily study undirected graphs.
We first present our results for the vertex version of both problems (collectively called as
Short Path Vertex Cut onwards).

I Theorem 1. Assuming the Unique Games Conjecture, for infinitely many values of constant
l ∈ N, the following three tasks are NP-hard: Given an undirected graph G = (V,E) and
s, t ∈ V where there exists C∗ ⊆ V \ {s, t} such that dist(G \ C∗) ≥ l,
1. Find C ⊆ V \ {s, t} such that |C| ≤ Ω(l) · |C∗| and dist(G \ C) ≥ l.
2. Find C ⊆ V \ {s, t} such that |C| ≤ |C∗| and dist(G \ C) ≥ O(

√
l).

3. Find C ⊆ V \ {s, t} such that |C| ≤ Ω(l ε2 ) · |C∗| and dist(G \ C) ≥ O(l 1+ε
2 ) for some

0 < ε < 1.

The first result shows that Length Bounded Vertex Cut is hard to approximate within a
factor Ω(l). This matches the best O(l)-approximation [4] when l is a constant. The second
result shows that Shortest Path Vertex Interdiction is hard to approximate with in a factor
Ω(
√

OPT), and the third result rules out bicriteria approximation – for any constant c, it is
hard to approximate both l and |C∗| within a factor of c.

The above results hold for directed graphs by definition. Our hard instances will have a
natural layered structure, so it can be easily checked that the same results (up to a constant)
hold for directed acyclic graphs. Since one vertex can be split as one directed edge, the same
results hold for the edge version in directed acyclic graphs.

For Length-Bounded Edge Cut and Shortest Path Edge Interdiction in undirected graphs
(collectively called Short Path Edge Cut onwards), we prove the following theorems.

I Theorem 2. Assuming the Unique Games Conjecture, for infinitely many values of constant
l ∈ N, the following three tasks are NP-hard: Given an undirected graph G = (V,E) and
s, t ∈ V where there exists C∗ ⊆ E such that dist(V \ C∗) ≥ l,
1. Find C ⊆ E such that |C| ≤ Ω(

√
l) · |C∗| and dist(G \ C) ≥ l.

2. Find C ⊆ E such that |C| ≤ |C∗| and dist(G \ C) ≥ l 2
3 .

3. Find C ⊆ E such that |C| ≤ Ω(l 2ε
3 ) · |C∗| and dist(G \C) ≥ O(l 2+2ε

3 ) for some 0 < ε < 1
2 .

ICALP 2017
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Our hardness factors for the undirected edge versions, Ω(
√
l) for Length-Bounded Edge

Cut and Ω( 3
√

OPT) for Shortest Path Edge Interdiction, are slightly weaker than those for
their vertex counterparts, but we are not aware of any approximation algorithm specialized
for the undirected edge versions. It is an interesting open problem whether there exist better
approximation algorithms for the undirected edge versions.

Directed Multicut and Directed Multiway Cut. Given a directed graph and two vertices
s and t, one of the most natural variants of s-t cut is to remove the fewest edges to ensure
that there is no directed path from s to t and no directed path from t to s. This problem
is known as s-t Bicut and admits the trivial 2-approximation algorithm by computing the
minimum s-t cut and t-s cut.

Directed Multiway Cut is a generalization of s-t Bicut that has been actively studied.
Given a directed graph with k terminals s1, . . . , sk, the goal is to remove the fewest number
of edges such that there is no path from si to sj for any i 6= j. Directed Multiway Cut also
admits 2-approximation [37, 11]. If k is allowed to increase polynomially with n, there is
a simple reduction from Vertex Cover that shows (2− ε)-approximation is hard under the
UGC [18, 27].

Directed Multiway Cut can be further generalized to Directed Multicut. Given a directed
graph with k source-sink pairs (s1, t1), . . . , (sk, tk), the goal is to remove the fewest number
of edges such that there is no path from si to ti for any i. Computing the minimum si-ti cut
for all i separately gives the trivial k-approximation algorithm. Chuzhoy and Khanna [13]
showed Directed Multicut is hard to approximate within a factor 2Ω(log1−ε n) = 2Ω(log1−ε k)

when k is polynomially growing with n. Agarwal et al. [2] showed Õ(n 11
23 )-approximation

algorithm, which improves the trivial k-approximation when k is large.
Chekuri and Madan [11] showed simple approximation-preserving reductions from Directed

Multicut with k = 2 to s-t Bicut (the other direction is trivially true), and (Undirected)
Node-weighted Multiway Cut with k = 4 to s-t Bicut. Since Node-weighted Multiway Cut
with k = 4 is hard to approximate within a factor 1.5 − ε under the UGC [16] (matching
the algorithm of Garg et al. [18]), the same hardness holds for s-t Bicut, Directed Multiway
Cut, and Directed Multicut for constant k. To the best of our knowledge, 1.5− ε is the best
hardness factor for constant k even assuming the UGC. In the same paper, Chekuri and
Madan [11] asked whether a factor 2− ε hardness holds for s-t Bicut under the UGC.

We prove that for any constant k ≥ 2, the trivial k-approximation for Directed Multicut
might be optimal. Our result for k = 2 gives the optimal hardness result for s-t Bicut,
answering the question of Chekuri and Madan.

I Theorem 3. Assuming the Unique Games Conjecture, for every k ≥ 2 and ε > 0, Directed
Multicut with k source-sink pairs is NP-hard to approximate within a factor k − ε.

I Corollary 4. Assuming the Unique Games Conjecture, for any ε > 0, s-t Bicut is hard to
approximate within a factor 2− ε.

I Remark. Chekuri and Madan [12] obtained an independent and different proof of Theorem 3.

RMFC. Resource Minimization for Fire Containment (RMFC) is a problem closely related
to Length-Bounded Cut with the additional notion of time. Given a graph G, a vertex s,
and a subset T of vertices, consider the situation where fire starts at s on Day 0. For each
Day i (i ≥ 1), we can save at most k vertices, and the fire spreads from currently burning
vertices to its unsaved neighbors. Once a vertex is burning or saved, it remains so from then
onwards. The process is terminated when the fire cannot spread anymore. RMFC asks to
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find a strategy to save k vertices each day with the minimum k so that no vertex in T is
burnt. These problems model the spread of epidemics or ideas through a social network, and
have been actively studied recently [9, 3, 1, 10].

RMFC, along with other variants, is first introduced by Hartnell [22]. Another well-
studied variant is called the Firefighter problem, where we are only given s ∈ V and want to
maximize the number of vertices that are not burnt at the end. It is known to be NP-hard
to approximate within a factor n1−ε for any ε > 0 [3]. King and MacGillivray [28] proved
that RMFC is hard to approximate within a factor less than 2. Anshelevich et al. [3]
presented an O(

√
n)-approximation algorithm for general graphs, and Chalermsook and

Chuzhoy [9] showed that RMFC admits O(log∗ n)-approximation in trees. Very recently,
the approximation ratio in trees has been improved to O(1) [1]. Both Anshelevich et al. [3]
and Chalermsook and Chuzhoy [9] independently studied directed layer graphs with b layers,
showing O(log b)-approximation.

Our final result on RMFC assumes a variant of the Unique Games Conjecture which is
not known to be equivalent to the original UGC. Given a bipartite graph as an instance of
Unique Games, it states that in the completeness case, all constraints incident on (1 − ε)
fraction of vertices in one side are satisfied, and in the soundness case, in addition to having
a low value, every 1

10 fraction of vertices on one side have at least a 9
10 fraction of vertices

on the other side as neighbors. Our conjecture is implied by the conjecture of Bansal and
Khot [6] that is used to prove the hardness of Minimizing Weighted Completion Time with
Precedence Constraints and requires a more strict expansion condition. See [30] for the exact
statement.

I Theorem 5. Assuming Conjecture 7.5 of [30], it is NP-hard to approximate RMFC in
undirected graphs within any constant factor.

Again, our reduction has a natural layered structure and the result holds for directed
layered graphs. With b layers, we prove that it is hard to approximate with in a factor
Ω(log b), matching the best approximation algorithms [9, 3].

1.2 Techniques
All our results are based on a general method of converting an integrality gap instance to
a dictatorship test. This method has been successfully applied by Raghavendra [40] for
Max-CSPs, Manokaran et al. [34] and Ene et al. [16] for Multiway Cut and Min CSPs, and
Kumar et al. [29] for strict CSPs, and by Guruswami et al. [21] for k-uniform k-partite
Hypergraph Vertex Cover, and Chekuri and Madan [12] for Directed Multicut. As mentioned
in the introduction, the previous CSP-based results do not generally preserve the structure
of constraint hypergraphs or use ingenious and specialized tricks to reduce the problem to a
CSP.

We bypass this difficulty by constructing a special class of dictatorship tests that we
call length-control dictatorship tests. Consider a meta-problem where given a directed graph
G = (V,E), some terminal vertices, and a set P of desired paths between terminals, we want
to remove the fewest number of non-terminal vertices to cut every path in P . The integrality
gap instances we use in this work [41, 4, 32, 9] share the common feature that every p ∈ P is
of length at least r, and the fractional solution cuts 1

r fraction of each non-terminal vertex
so that each path p ∈ P is cut. This gives a good LP value, and additional arguments are
required to ensure that there is no efficient integral cut.

Given such an integrality gap instance, we construct our dictatorship test instance as
follows. We replace every non-terminal vertex by a hypercube ZRr and put edges such that

ICALP 2017
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for two vertices (v, x) and (w, y) where v, w ∈ V and x, y ∈ ZRr , there is an edge from
(v, x) to (w, y) if (1) (v, w) ∈ E and (2) yj = xj + 1 for all j ∈ [R]. The set of desired
paths P ′ is defined to be {(s, (v1, x1), . . . , (vl, xl), t) : (s, v1, . . . , vl, t) ∈ P} (s, t denote some
terminals). Note that each path in P ′ is also of length at least r. We want to ensure that in
the completeness case (i.e., every hypercube reveals the same influential coordinate), there
is a very efficient cut, while in the soundness case (i.e., no hypercube reveals an influential
coordinate), there is no such efficient cut.

In the completeness case, let q ∈ [R] be an influential coordinate. For each vertex
(v, x) where v ∈ V, x ∈ ZRr , remove (v, x) if xq = 0. Consider a desired path p =
(s, (v1, x1), . . . , (vl, xl), t) ∈ P ′ for some terminals s, t and some vj ∈ V, xj ∈ ZRr (1 ≤ j ≤ l),
and let yj = (xj)q. By our construction, yj+1 = yj + 1 for 0 ≤ j < l. Since p is desirable,
l ≥ r, so there exists j such that yj = (xj)q = 0, but (vj , xj) is already removed by our
previous definition. Therefore, every desired path is cut by this vertex cut. Note that this
cut is integral and cuts exactly 1

r fraction of non-terminal vertices. This corresponds to the
fractional solution to the gap instance that cuts 1

r fraction of every vertex.
For the soundness analysis, our final dictatorship test has additional noise vertices and

edges to the test defined above. If no hypercube reveals an influential coordinate, the standard
application of the invariance principle [36] proves that we can always take an edge between
two hypercubes unless we almost completely cut one hypercube. We can then invoke the
proof for the integrality gap instance to show that there is no efficient cut.

This idea is implicitly introduced by the work of Svensson [43] for Feedback Vertex Set
(FVS) and DAG Vertex Deletion (DVD) by applying the It ain’t over till it’s over theorem to
ingeniously constructed dictatorship tests with auxiliary vertices. Guruswami and Lee [20]
gave a simpler construction and a new proof using the invariance principle instead of the It
ain’t over till it’s over theorem. Our results are based on the observation that length-control
dictatorship tests and LP gap instances fool algorithms in a similar way for various cut
problems as mentioned above, so that the previous LP gap instances can be plugged into our
framework to prove matching hardness results.

This method for the above meta-problem can be almost directly applied to Directed
Multicut. For Length-Bounded Cut and RMFC in undirected graphs, we use the fact that
the known integrality gap instances have a natural layered structure with s in the first layer
and t in the last layer. Every edge is given a natural orientation, and the similar analysis
can be applied. For Length-Bounded Cut, another set of edges called long edges are added
to the dictatorship test. More technical work is required for edge cut versions in undirected
graphs (Short Path Edge Cut), and the notion of time (RMFC).

Our framework seems general enough so that they can be applied to integrality gap
instances to give strong hardness results. It would be interesting to further abstract this
method of converting integrality gap instances to length-bounded dictatorship tests, as well
as to apply it to other problems whose approximability is not well-understood.

2 Preliminaries

Graph Terminologies. Depending on whether we cut vertices or edges, we introduce weight
wt(v) for each vertex v, or weight wt(e) for each edge e. Some weights can be ∞, which
means that some vertices or edges cannot be cut. For vertex-weighted graphs, we naturally
have wt(s) = wt(t) =∞. To reduce the vertex-weighted version to the unweighted version,
we duplicate each vertex according to its weight and replace each edge by a complete bipartite
graph between corresponding copies. To reduce the edge-weighted version to the unweighted
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version, we replace a single edge with parallel edges according to its weight. To reduce to
simple graphs, we split each parallel into two edges by introducing a new vertex.

For the Length-Bounded Cut problems, we also introduce length len(e) for each edge e.
It can be also dealt with serially splitting an edge according to its weight. We allow weights
to be rational numbers, but as our hardness results are stated in terms of the length, all
lengths in this work will be a positive integer.

For a path p, depending on the context, we abuse notation and interpret it as a set of
edges or a set of vertices. The length of p is always defined to be the number of edges.

Gaussian Bounds for Correlated Spaces. We introduce the standard tools on correlated
spaces from Mossel [36]. Given a probability space (Ω, µ) (we always consider finite probability
spaces), let L(Ω) be the set of functions {f : Ω→ R} and for an interval I ⊆ R, LI(Ω)
be the set of functions {f : Ω→ I}. For a subset S ⊆ Ω, define measure of S to be
µ(S) :=

∑
ω∈S µ(ω). A collection of probability spaces are said to be correlated if there is a

joint probability distribution on them. We will denote k correlated spaces Ω1, . . . ,Ωk with a
joint distribution µ as (Ω1 × · · · × Ωk, µ).

Given two correlated spaces (Ω1×Ω2, µ), we define the correlation between Ω1 and Ω2 by

ρ(Ω1,Ω2;µ) := sup {Cov[f, g] : f ∈ L(Ω1), g ∈ L(Ω2),Var[f ] = Var[g] = 1} .

Given a probability space (Ω, µ) and a function f ∈ L(Ω) and p ∈ R+, let ‖f‖p :=
Ex∼µ[|f(x)|p]1/p.

Consider a product space (ΩR, µ⊗R) and f ∈ L(ΩR). The Efron-Stein decomposition of
f is given by

f(x1, . . . , xR) =
∑
S⊆[R]

fS(xS)

where (1) fS depends only on xS and (2) for all S 6⊆ S′ and all xS′ , Ex′∼µ⊗R [fS(x′)|x′S′ =
xS′ ] = 0. The influence of the ith coordinate on f is defined by

Infi[f ] := E
x1,...,xi−1,xi+1,...,xR

[Var
xi

[f(x1, . . . , xR)].

The influence has a convenient expression in terms of the Efron-Stein decomposition.

Infi[f ] = ‖
∑
S:i∈S

fS‖22 =
∑
S:i∈S

‖fS‖22.

We also define the low-degree influence of the ith coordinate.

Inf≤di [f ] :=
∑

S:i∈S,|S|≤d

‖fS‖22.

For a, b ∈ [0, 1] and ρ ∈ (0, 1), let

Γρ(a, b) := Pr[X ≤ Φ−1(a), Y ≥ Φ−1(1− b)],

where X and Y are ρ-correlated standard Gaussian variables and Φ denotes the cumulative
distribution function of a standard Gaussian. The following theorem bounds the product
of two functions that do not share an influential coordinate in terms of their Gaussian
counterparts.

I Theorem 6 (Theorem 6.3 and Lemma 6.6 of [36]). Let (Ω1 × Ω2, µ) be correlated spaces
such that the minimum nonzero probability of any atom in Ω1 × Ω2 is at least α and such
that ρ(Ω1,Ω2;µ) ≤ ρ. Then for every ε > 0 there exist τ, d depending on ε and α such
that if f : ΩR

1 → [0, 1], g : ΩR
2 → [0, 1] satisfy min(Inf≤di [f ], Inf≤di [g]) ≤ τ for all i, then

E(x,y)∈µ⊗R [f(x)g(y)] ≥ Γρ(Ex[f ],Ey[g])− ε.

ICALP 2017
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Organization. The dictatorship tests for Short Path Edge Cut and Short Path Vertex Cut
are presented in Section 3 and 4 respectively. Dictatorship tests for RMFC and Directed
Multicut, as well as the reduction from Unique Games based on these tests, will appear in
the full version of this paper [30].

3 Short Path Edge Cut

We propose our dictatorship test for Short Path Edge Cut that will be used for proving
Unique Games hardness. It is parameterized by positive integers a, b, r, R. It is inspired
by the integrality gap instances by Baier et al. [4] Mahjoub and and McCormick [32], and
made such that the edge cuts that correspond to dictators behave the same as the fractional
solution that cuts 1

r fraction of every edge. All graphs in this section are undirected.
For positive integers a, b, r, R, we construct DE

a,b,r,R = (V,E). Let Ω = {0, . . . , r − 1},
and µ : Ω 7→ [0, 1] with µ(x) = 1

r for each x ∈ Ω. We also define a correlated probability
space (Ω1 × Ω2, ν) where both Ω1,Ω2 are copies of Ω. It is defined by the following process
to sample (x, y) ∈ Ω2.

Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.
With probability 1− 1

r , output (x, y). Otherwise, resample x, y ∈ Ω independently and
output (x, y).

Note that the marginal distribution of both x and y is equal to µ. Given x = (x1, . . . , xR) ∈ ΩR
and y = (y1, . . . , yR) ∈ ΩR, let ν⊗R(x, y) =

∏R
i=1 ν(xi, yi). We define DE

a,b,r,R = (V,E) as
follows.

V = {s, t} ∪ {vix}0≤i≤b,x∈ΩR . Let vi denote the set of vertices {vix}x∈ΩR .
For any x ∈ ΩR, there is an edge from s to v0

x and an edge from vbx to t, both with weight
∞ and length 1.
For 0 ≤ i < b, x ∈ ΩR, there is an edge (vix, vi+1

x ) of length a and weight ∞. Call it a
long edge.
For any 0 ≤ i < b x, y ∈ ΩR, there is an edge (vix, vi+1

y ) of length 1 and weight ν⊗R(x, y).
Note that ν⊗R(x, y) > 0 for any x, y ∈ ΩR. Call it a short edge. The sum of finite weights
is b.

Completeness. We first prove that edge cuts that correspond to dictators behave the same
as the fractional solution that gives 1

r to every short edge. Fix q ∈ [R] and let Eq be the set
of short edges defined by

Eq := {(vix, vi+1
y ) : 0 ≤ i < b, yq 6= xq + 1 mod R or (xq, yq) = (0, 1)}.

When (x, y) ∈ Ω1 × Ω2 is sampled according to ν, the probability that yq 6= xq + 1
mod R or (xq, yq) = (0, 1) is at most 2

r . The total weight of Eq is 2b
r .

I Lemma 7. After removing edges in Eq, the length of the shortest path is at least a(b−r+1).

Proof. Let p = (s, vi1x1 , . . . , v
iz
xz , t) be a path from s to t where ij ∈ {0, . . . , b} and xj ∈ ΩR

for each 1 ≤ j ≤ z. Let yj := (xj)q ∈ {0, . . . , r − 1} for each 1 ≤ j ≤ z.
For each 1 ≤ j < z, the edge (pj , pj+1) is either a long edge or a short edge, and either

taken forward (i.e., ij < ij+1) or backward (i.e., ij > ij+1). Let zLF, zSF, zLB, zSB be the
number of long edges taken forward, short edges taken forward, long edges taken backward,
and shot edges taken backward, respectively (zLF + zSF + zLB + zSB = z − 1). By considering
how ij changes,

zLF + zSF − zLB − zSB = b. (1)
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Consider how yj changes. Taking a long edge does not change yj . Taking a short edge
forward increases yj by 1 mod r, taking a short edge backward decreases yj by 1 mod r.
Since Eq is cut, yj can never change from 0 to 1. This implies

zSF − zSB ≤ r − 1. (2)

(1)− (2) yields zLF−zLB ≥ b−r+1. The total length of p is at least a ·zLF ≥ a(b−r+1). J

Soundness. We first bound the correlation ρ(Ω1,Ω2; ν). The following lemma of Wenner [44]
gives a convenient way to bound the correlation.

I Lemma 8 (Corollary 2.18 of [44]). Let (Ω1 × Ω2, δµ+ (1− δ)µ′) be two correlated spaces
such that the marginal distribution of at least one of Ω1 and Ω2 is identical on µ and µ′.
Then,

ρ(Ω1,Ω2; δµ+ (1− δ)µ′) ≤
√
δ · ρ(Ω1,Ω2;µ)2 + (1− δ) · ρ(Ω1,Ω2;µ′)2.

When (x, y) is sampled from ν, they are completely independent with probability 1
r . Therefore,

we have ρ := ρ(Ω1,Ω2; ν) ≤
√

1− 1
r . By Sheppard’s Formula,

Γρ(
1
2 ,

1
2) = 1

4 + 1
2π arcsin(−ρ) ≥ 1

4−
1

2π arccos( 1√
r

) =
∞∑
n=0

(2n)!
4n(n!)2(2n+ 1)( 1√

r
)2n+1 ≥ 1√

r
.

Apply Theorem 6 (ρ← ρ, α← 1
r3 , ε←

Γρ( 1
2 ,

1
2 )

3 ) to get τ and d. We will later apply this
theorem with the parameters obtained here.

Fix an arbitrary subset C ⊆ E of short edges. For 0 ≤ i < b, let Ci = C ∩ (vi × vi+1).
Call a pair (i, i+ 1) as the ith layer, and say it is blocked when ν⊗R(Ci) ≥

Γρ( 1
2 ,

1
2 )

2 . Let b′ be
the number of blocked layers. For 0 ≤ i ≤ b, let Si ⊆ vi be such that x ∈ Si if there exists a
path (s, p0, . . . , pi = vix) such that

For 0 ≤ i′ ≤ i, pi′ ∈ vi
′ .

For 0 ≤ i′ < i, (pi′ , pi′+1) is short if and only if the i′th layer is unblocked.

Let fi : ΩR 7→ [0, 1] be the indicator function of Si. We prove that if none of fi reveals
any influential coordinate, Sb is nonempty, implying that there exists a path using b′ long
edges and b− b′ short edges. Therefore, even after removing edges in C, the length of the
shortest path is at most 2 + ab′ + (b− b′).

I Lemma 9. Suppose that for any 0 ≤ i ≤ b and 1 ≤ j ≤ R, Inf≤dj [fi] ≤ τ . Then Sb 6= ∅.

Proof. Assume towards contradiction that Sb = ∅. Since S0 = ΩR and Si = Si+1 if the
ith layer is blocked (and we use long edges), there must exist i such that the ith layer is
unblocked and µ⊗R(Si) ≥ 1

2 , µ
⊗R(Si+1) < 1

2 . All short edges between Si and v
i+1 \ Si+1 are

in Ci. Theorem 6 implies that ν⊗R(Ci) > 2
3Γρ( 1

2 ,
1
2 ). This contradicts the fact that the ith

layer is unblocked. J

In summary, in the completeness case, if we cut edges of total weight k := k(a, b, r) = 2b
r ,

the length of the shortest path is at least l := l(a, b, r) = a(b− r + 1). In the soundness case,
even after cutting edges of total weight k′, at most 2k′

Γρ( 1
2 ,

1
2 ) ≤ 2k′

√
r layers are blocked, the

length of the shortest path is at most l′ = 2 + (b− 2k′
√
r) + 2ak′

√
r.
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Let a = 4, b = 2r − 1 so that k ≤ 4, l = 4r. Requiring l′ ≥ l results in k′ = Ω(
√
r),

giving a gap of Ω(
√
r) = Ω(

√
l) between the completeness case and the soundness case

for Length-Bounded Edge Cut.
Let a =

√
r, b = 2r − 1 so that k ≤ 4, l = r1.5. Requiring k′ ≤ 4 results in l′ = O(r),

giving a gap of Ω(
√
r) = Ω(l1/3) for Shortest Path Interdiction. Generally, k′ ≤ O(rε)

results in l′ ≤ O(r1+ε), giving an (O(rε), O(r1/2−ε))-bicriteria gap for any ε ∈ (0, 1
2 ).

4 Short Path Vertex Cut

We propose our dictatorship test for Short Path Vertex Cut that will be used for proving
Unique Games hardness. It is parameterized by positive integers a, b, r, R and small ε > 0. It
is inspired by the integrality gap instances by Baier et al. [4] Mahjoub and and McCormick [32],
and made such that the vertex cuts that correspond to dictators behave the same as the
fractional solution that cuts 1

r fraction of every vertex. All graphs in this section are
undirected.

For positive integers a, b, r, R, and ε > 0, define DV
a,b,r,R,ε = (V,E) be the graph defined as

follows. Consider the probability space (Ω, µ) where Ω := {0, . . . , r− 1, ∗}, and µ : Ω 7→ [0, 1]
with µ(∗) = ε and µ(x) = 1−ε

r for x 6= ∗.

V = {s, t} ∪ {vix}0≤i≤b,x∈ΩR . Let vi denote the set of vertices {vix}x.
For 0 ≤ i ≤ b and x ∈ ΩR, wt(vix) = µ⊗R(x). Note that the sum of weights is b+ 1.
For any 0 ≤ i ≤ b, there are edges from s to each vertex in vi with length ai + 1 and
edges from each vertex in vi to t with length (b− i)a+ 1.
For x, y ∈ ΩR, we call that x and y are compatible if

For any 1 ≤ j ≤ R: [yj = (xj + 1) mod r] or [yj = ∗] or [xj = ∗].
For any 0 ≤ i < b and compatible x, y ∈ ΩR, we have an edge (vix, vi+1

y ) of length 1
(called a short edge).
For any i, j such that 0 ≤ i < j − 1 < b and compatible x, y ∈ ΩR, we have an edge
(vix, vjy) of length (j − i)a (called a long edge).

Completeness. We first prove that vertex cuts that correspond to dictators behave the
same as the fractional solution that gives 1

r to every vertex. For any q ∈ [R], let Vq := {vix :
0 ≤ i ≤ b, xq = ∗ or 0}. Note that the total weight of Vq is (b+ 1)(ε+ 1−ε

r ).

I Lemma 10. After removing vertices in Vq, the length of the shortest path is at least
a(b− r + 2).

Proof. Let p = (s, vi1x1 , . . . , v
iz
xz , t) be a path from s to t where ij ∈ {0, . . . , b} and xj ∈ ΩR

for each 1 ≤ j ≤ z. Let yj := (xj)q ∈ {0, . . . , r − 1} for each 1 ≤ j ≤ z.
For each 1 ≤ j < z, the edge (vijxj , v

ij+1
xj+1) is either a long edge or a short edge, and either

taken forward (i.e., ij < ij+1) or backward (i.e., ij > ij+1). Let zLF, zSF, zLB, zSB be the
number of long edges taken forward, short edges taken forward, long edges taken backward,
and shot edges taken backward, respectively (zLF + zSF + zLB + zSB = z− 1). For 1 ≤ j ≤ zLF

(resp. zLB), consider the jth long edge taken forward (resp. backward) – it is (vij′
xj′
, v
ij′+1

xj′+1)
for some j′. Let sF

j (resp. sB
j ) be |ij′ − ij′+1|. The following equality holds by observing how

ij changes.

i1 +
zLF∑
j=1

sF
j + zSF −

zLB∑
j=1

sB
j − zSB = iz ⇒ i1 +

zLF∑
j=1

sF
j + zSF − zLB − zSB − iz ≥ 0. (3)
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Consider how yj changes. Taking any edge forward increases yj , and taking any edge
backward decreases yj . Since yj can never be 0 or ∗, we can conclude that

zLF + zSF − zLB − zSB ≤ r − 2. (4)

(3)− (4) yields

i1 − iz +
zLF∑
j=1

(sF
j − 1) ≥ 2− r ⇒ i1 − iz +

zLF∑
j=1

sF
j ≥ 2− r. (5)

The total length of p is

2 + a
(
i1 + b− iz +

zLF∑
j=1

sF
j +

zLB∑
j=1

sB
j ) + zSF + zSB

≥ a
(
i1 + b− iz +

zLF∑
j=1

sF
j )

≥ a(b− r + 2).

J

Soundness. To analyze soundness, we define a correlated probability space (Ω1 × Ω2, ν)
where both Ω1,Ω2 are copies of Ω = {0, . . . , r − 1, ∗}. It is defined by the following process
to sample (x, y) ∈ Ω2.

Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.
Change x to ∗ with probability ε. Do the same for y independently.

Note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1
2r , the

minimum probability of any atom in Ω1 × Ω2 is ε2. Furthermore, in our correlated space,
ν(x, ∗) > 0 for all x ∈ Ω1 and ν(∗, x) > 0 for all x ∈ Ω2. We use the following lemma to
bound the correlation.

I Lemma 11 (Lemma 2.9 of [36]). Let (Ω1 × Ω2, µ) be two correlated spaces such that the
probability of the smallest atom in Ω1 × Ω2 is at least α > 0. Define a bipartite graph
G = (Ω1 ∪Ω2, E) where (a, b) ∈ Ω1 ×Ω2 satisfies (a, b) ∈ E if µ(a, b) > 0. If G is connected,
then ρ(Ω1,Ω2;µ) ≤ 1− α2

2 .

Therefore, we can conclude that ρ(Ω1,Ω2; ν) ≤ ρ := 1 − ε4

2 . Apply Theorem 6 (ρ ←
ρ, α← ε2, ε← Γρ( ε3 ,

ε
3 )

2 ) to get τ and d. We will later apply this theorem with the parameters
obtained here. Fix an arbitrary subset C ⊆ V , and Ci := C ∩ vi. For 0 ≤ i ≤ b, call vi
blocked if µ⊗R[Ci(x)] ≥ 1− ε. At most bwt(C)

1−ε c v
i’s can be blocked. Let k′ be the number of

blocked vi’s, and z = b+ 1− k′ be the number of unblocked vi’s. Let {vi1 , . . . , viz} be the
set of unblocked vi’s with i1 < i2 < · · · < iz.

For 1 ≤ j ≤ z, let Sj ⊆ vij be such that x ∈ Sj if there exists a path (p0 =
s, p1, . . . , pj−1, v

ij
x ) such that each pj′ ∈ vij′ \ C (1 ≤ j′ < j). For 1 ≤ j ≤ z, let

fj : ΩR 7→ [0, 1] be the indicator function of Sj .
We prove that if none of fj reveals any influential coordinate, µ⊗R(Sz) > 0. Since any

path passing vi1 , . . . , viz (bypassing only blocked vi’s) uses short edges at least b− 2k′ times,
so the length of the shortest path after removing C is at most 2 + (b− 2k′) + 2ak′.

I Lemma 12. Suppose that for any 1 ≤ j ≤ z and 1 ≤ i ≤ R, Inf≤di [fj ] ≤ τ . Then
µ⊗R(Sz) > 0.
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Proof. We prove by induction that µ⊗R(Sj) ≥ ε
3 . It holds when j = 1 since vi1 is unblocked.

Assuming µ⊗R(Sj) ≥ ε
3 , since Sj does not reveal any influential coordinate, Theorem 6 shows

that for any subset Tj+1 ⊆ vij+1 with µ⊗R(Tj+1) ≥ ε
3 , there exists an edge between Sj and

Tj+1. If S′j+1 ⊆ vij+1 is the set of neighbors of Sj , we have µ⊗R(S′j+1) ≥ 1− ε
3 . Since v

ij+1

is unblocked, µ⊗R(S′j+1 \ C) ≥ 2ε
3 , completing the induction. J

In summary, in the completeness case, if we cut vertices of total weight k := k(a, b, r, ε) =
(b+ 1)(ε+ 1−ε

r ), the length of the shortest path is at least l := l(a, b, r, ε) = a(b− r + 2). In
the soundness case, even after cutting vertices of total weight k′, the length of the shortest
path is at most 2 + (b− k′

1−ε ) + 2a( k′

1−ε ).

Let a = 4, b = 2r − 2 and ε small enough so that k ≤ 2, l = 4r. Requiring l′ ≥ l results in
k′ = Ω(r), giving a gap of Ω(r) = Ω(l) for Length Bounded Cut.
Let a = r, b = 2r − 2 and ε small enough so that k ≤ 2, l = r2. Requiring k′ ≤ 2 results
in l′ = O(r), giving a gap of Ω(r) = Ω(

√
l) for Shortest Path Interdiction. Generally,

k′ ≤ O(rε) results in l′ ≤ O(r1+ε), giving an (O(rε), O(r1−ε))-bicriteria gap for any
ε ∈ (0, 1).
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