9,251 research outputs found

    Combining Labelled and Unlabelled Data in the Design of Pattern Classification Systems

    Get PDF
    There has been much interest in applying techniques that incorporate knowledge from unlabelled data into a supervised learning system but less effort has been made to compare the effectiveness of different approaches on real world problems and to analyse the behaviour of the learning system when using different amount of unlabelled data. In this paper an analysis of the performance of supervised methods enforced by unlabelled data and some semisupervised approaches using different ratios of labelled to unlabelled samples is presented. The experimental results show that when supported by unlabelled samples much less labelled data is generally required to build a classifier without compromising the classification performance. If only a very limited amount of labelled data is available the results show high variability and the performance of the final classifier is more dependant on how reliable the labelled data samples are rather than use of additional unlabelled data. Semi-supervised clustering utilising both labelled and unlabelled data have been shown to offer most significant improvements when natural clusters are present in the considered problem

    Selective sampling for combined learning from labelled and unlabelled data

    Get PDF
    This paper examines the problem of selecting a suitable subset of data to be labelled when building pattern classifiers from labelled and unlabelled data. The selection of representative set is guided by a clustering information and various options of allocating a number of samples within clusters and their distributions are investigated. The experimental results show that hybrid methods like Semi-supervised clustering with selective sampling can result in building a classifier which requires much less labelled data in order to achieve a comparable classification performance to classifiers built only on the basis of labelled data

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Learning Representations of Emotional Speech with Deep Convolutional Generative Adversarial Networks

    Full text link
    Automatically assessing emotional valence in human speech has historically been a difficult task for machine learning algorithms. The subtle changes in the voice of the speaker that are indicative of positive or negative emotional states are often "overshadowed" by voice characteristics relating to emotional intensity or emotional activation. In this work we explore a representation learning approach that automatically derives discriminative representations of emotional speech. In particular, we investigate two machine learning strategies to improve classifier performance: (1) utilization of unlabeled data using a deep convolutional generative adversarial network (DCGAN), and (2) multitask learning. Within our extensive experiments we leverage a multitask annotated emotional corpus as well as a large unlabeled meeting corpus (around 100 hours). Our speaker-independent classification experiments show that in particular the use of unlabeled data in our investigations improves performance of the classifiers and both fully supervised baseline approaches are outperformed considerably. We improve the classification of emotional valence on a discrete 5-point scale to 43.88% and on a 3-point scale to 49.80%, which is competitive to state-of-the-art performance

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Deep Generative Models for Reject Inference in Credit Scoring

    Get PDF
    Credit scoring models based on accepted applications may be biased and their consequences can have a statistical and economic impact. Reject inference is the process of attempting to infer the creditworthiness status of the rejected applications. In this research, we use deep generative models to develop two new semi-supervised Bayesian models for reject inference in credit scoring, in which we model the data generating process to be dependent on a Gaussian mixture. The goal is to improve the classification accuracy in credit scoring models by adding reject applications. Our proposed models infer the unknown creditworthiness of the rejected applications by exact enumeration of the two possible outcomes of the loan (default or non-default). The efficient stochastic gradient optimization technique used in deep generative models makes our models suitable for large data sets. Finally, the experiments in this research show that our proposed models perform better than classical and alternative machine learning models for reject inference in credit scoring
    • …
    corecore