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Abstract: This paper examines the problem of selecting a suitable subset of data to be labelled when
building pattern classifiers from labelled and unlabelled data. The selection of representative set is
guided by a clustering information and various options of allocating a number of samples within clus-
ters and their distributions are investigated. The experimental results show that hybrid methods like
Semi-supervised clustering with selective sampling can result in building a classifier which requires
much less labelled data in order to achieve a comparable classification performance to classifiers built
only on the basis of labelled data.
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1 Introduction

In many domains labelled data is difficult or expensive to obtain as it may require manual work
or be computationally expensive. Therefore it is not surprising that there has been much interest
in applying techniques that incorporate knowledge from unlabelled data into a supervised learning
system [4, 5, 6, 9, 11, 12, 13, 14]. The task is to minimize the overall cost of the classification process,
which depends both on the classifier accuracy and the cost of obtaining labelled data as discussed in [2].

In a number of publications discussing hybrid methods for coping with labelled and unlabelled data,
the use of additional unlabelled data has been shown to offer improvements in comparison to classi-
fiers generated only on the basis of labelled data [4, 5, 6, 9, 11, 13]. However it was not clear whether
the improved performance of the classifiers supplemented by unlabelled data was mainly due to rep-
resentativeness of the original labelled set or to the specific combined methods.

In order to answer this question we had conducted extensive experimental analysis of different com-
bined approaches (shortly summarised in Section 4) for different ratios of labelled to unlabelled
samples [5]. One of the main findings of that study was that the final classification performance
depends more on the specific labelled subset used rather than on the combined classification method.
Additionally, as a result of random selection of samples to be labelled from the initial pool of unla-
belled data, a high variability of the classifier performance was commonly observed.

In this paper a continuation of the previous study is presented with a focus on methods for selecting
samples to be labelled rather than choosing them randomly. It is hoped that a suitable selection of
samples to be labelled could reduce the variance of the final solutions and improve mean classification
performance obtained from random selection.

The rest of the paper is organised as follows: In Section 2 a general problem statement is given.
This is followed by description of two selective sampling methods in Section 3 and a summary of the
investigated combined methods in Section 4. Section 5 presents the experimental results. And finally
conclusions are given in the last section.
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2 General Problem Statement

Let D = {L,U} be the training data set with L = {(xi, ti) | i = 1 . . .M}, representing a set of
M labelled samples and U = {(xj , 0) | j = 1 . . . N}, representing a set of N unlabelled samples
where x = (x1, x2, . . . , xn) ∈ Rn is an n-dimensional feature vector and t ∈ {1, . . . , p} is a class label
representing one of p classes with 0 used to denote an unlabelled sample. As in the conventional
cases of designing a classifier on the basis of a training data set the main goal is to find a function
transforming a feature vector x into one of the p classes, which can be formally written as:

CD : x → t or t = CD(x) (1)

where CD is a classifier C designed on the basis of the data set D. However, depending on the ratio

r =
M

(M + N)
(2)

of the labelled samples to the total number of samples in D the problem ranges from the pure super-
vised learning for r = 1 to the pure unsupervised learning for r = 0. In [5] various hybrid methods
for coping with cases for r ∈ (0, 1) with random selection of the labelled samples, in order to obtain
L have been examined.

But since the use of specific labelled subset has been found to be of crucial importance our main effort
in this study will concentrate on selecting representative samples to be labelled rather than creating
sophisticated methods for coping with both types of data.

3 Selective Sampling Methods

In the context of pattern classification systems selective sampling techniques have been most fre-
quently used in active learning approaches [8], where samples for labelling are selected in a dynamic
manner (one at a time). In the research presented here the preliminary selection techniques will
be examined. In contrast to the active selection, the preliminary selection operates on the basis of
selecting whole batches of data to be labelled (i.e. all M samples forming the labelled subset L).

Trying to find representative samples when working with unlabelled data means that one has to make
decisions based only on clustering information. If the clusters are already available one needs just to
select the samples from the clusters. However, the immediate question is: How many samples and
from which clusters? The following two distinctive approaches of allocating the number of samples
per cluster have been investigated: a) proportional allocation - samples for labelling are allocated pro-
portionally to the cardinality of the cluster which means more samples for bigger clusters and some
of the small clusters may have no samples selected; b) consecutive allocation - samples for labelling
are allocated uniformly disregarding clusters’ sizes. Furthermore, the actual selection of the samples
to be labelled per cluster have been done in two ways - a) by selecting cluster prototypes and b) by
trying to describe a cluster by selecting samples close to its boundary. A short description of both
methods is presented bellow.

Cluster Mean Selection - The subset of samples to be labelled is created from the prototypes of
the clusters of the dataset. The prototypes are selected as the closest samples to the means of the
clusters. If there are more than one sample per cluster to be selected the clusters are divided into
subclusters and their prototypes are selected. In case when the clusters are predefined the number
of data points for labelling per cluster has to be calculated as discussed above. Then the process of
selecting the samples can be applied to each cluster separately. If there are no defined clusters the
whole dataset can be considered as one cluster or the dataset can be divided into b clusters where b



is the number of samples to be selected.

Cluster Boundary Selection - The process of selection begins with a set of randomly picked b sam-
ples. Then the algorithm is optimising this initial set by removing from it the samples that are too
close to each other and by selecting outermost samples. Thus by maximizing the minimum distance
between the selected data points the algorithm is selecting them around the boundary of the cluster.
If there are many samples to be selected the method is placing some of them at the boundary and
when they become too close to each other it is selecting the rest of the samples spread within the
cluster.

4 Combined Learning Methods

Once the labelled subset has been generated, either using random selection or the approaches dis-
cussed in the previous section, one of a number of combined learning algorithms can be used to design
a classifier. A short description of the combined approaches used in the experiments and formally
defined in [5] follows.

The first most obvious way of dealing with situations when labelled and unlabelled data is available is
to ignore the unlabelled data (referred to as Labelled Only method) and build the classifier CL using
just the labelled subset L from D completely ignoring U . The classification process from the Eq.(1)
in this case becomes:

t = CL(x) (3)
Labelled Only method is implemented for comparison purposes. However, since using the unlabelled
data can be advantageous we used various combined learning methods falling into one of the following
three major groups (see [5] for more details):

Pre-labelling approaches - a) Static methods - The first of the considered approaches to utilising the
unlabelled data, referred to as Static Labelling approach in the later sections, is based on generating
an initial classifier on the basis of the labelled data only CL and labelling the remaining unlabelled
data U by applying the initial classifier so that W is the newly labelled set U . Finally the classifier is
redesigned using both the original L and the newly labelled W data sets; b) Dynamic methods - This
approach is a modification of the above whereas an initial classifier is generated on the basis of the
labelled data only CL but the unlabelled data U are iteratively labelled one sample at a time. The
newly labelled sample is added to the pool of labelled data and the classifier is redesigned at each
step. The samples which can be most confidently classified are chosen first. The process is continued
until all unlabelled samples have been labelled and the final classifier obtained. This will be referred
to as a Dynamic Labelling approach.

Post-labelling approaches - Majority Clustering - The considered method is based on clustering
all the data and using the labelled data for labelling the whole clusters by applying the majority
principle i.e. the label of the cluster is assigned on the basis of the largest number of samples from a
given class represented in the cluster. We will refer to this method as the Majority Clustering method.

Semi-supervised approaches - Semi-supervised Clustering - The detailed algorithm is presented
in [5]. In contrast to the standard clustering the labels are actively used for guiding the clustering
process. In result the algorithm is more robust in the sense of the number of created clusters and
their sizes which to a large extent is dependant on the relative placement of the labelled samples in
the input space. The idea is to split the initial clusters until there is an overwhelming presence of
one type of labelled samples in each of newly created sub-clusters. After splitting the clusters the
labelling process is carried out using Majority Clustering method.



5 Experimental Results and Analysis

Methods described in Section 4 are used in selective sampling experiments. As described in Section 3,
both proportional and consecutive distribution as well as Mean and Boundary Selection methods are
used. The nearest neighbour (NN) and pseudo-fisher support vector (PFSV) classifiers implemented
in [3] have been used as the base classifiers for labelling and testing purposes. A complete-linkage hi-
erarchical clustering has been used for Majority Clustering ([5]) and Semi-supervised Clustering ([5])
with the shortest Euclidean distance adopted for the cluster similarity measure. The user defined
parameter Θ used in the Semi-supervised Clustering has been set to 0.3.

Due to the space limitations only selected results are presented for one artificial (Normal mixtures)
and one real (Glass) datasets. Normal mixtures dataset (available at www.stats.ox.ac.uk/
∼ripley/PRNN) represents a two dimensional problem with two highly overlapping classes. The
training set consists of 250 samples and a separate testing set has 1000 samples. This dataset has
been constructed in such a way as to allow the best possible performance of around 8%. The Glass
dataset [1] consists of 214, 10 dimensional samples representing 6 classes of different glass types found
at the crime scenes and used during forensic investigations. Testing for Glass dataset is performed
using 5-fold cross-validation.

The experiments have been performed for different ratios r of labelled data to the total number of
data samples ranging from virtually unlabelled sets (∼ 0% of labelled data is one sample per class for
”random per class” selections and 3 samples for selective sampling methods) to the fully labelled data
sets (100% of labelled data). For the random selection the experiments have been repeated many
times at each level for collecting reliable statistical information. The same sets of labelled samples
have been used in all the experiments with different classification methods. Two types of random
selection have been performed - a) random selection but ensuring that at least one sample per class
is selected (referred to as ”random per class”) and b) completely random selection. The results for
random selection are compared with the results for selective sampling methods.
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Figure 1: Normal mixtures dataset - Left: Semi-supervised clustering - mean classification error and
standard deviation of Random selection method compared to Random selection per class and to
Proportional Boundary selection; Right: Proportional Boundary selection v Labelled Only NN.

As illustrated in the left parts of Fig.1 and Fig.2 the combined methods using selective sampling
have shown an improved performance in comparison to completely random selection methods. This
is especially evident for small values of r. However, it can also be noted (Fig.2 left) that the prior
information about the number of classes used in the ”random per class” selection method for the Glass
dataset resulted in much better performance for small r than when using selective sampling where
no information about the number of classes is used. This is common feature in multiclass problems



0  1  2  5  10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

5

10

15

20

25

30

35

40

45

50

55

60

Level of labelled data used in %

Mis
clas

sific
atio

n in
 %

Random Selection      
Radom per class       
Cons. Bound. Selection

0  1  2  5  10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

5

10

15

20

25

30

35

40

45

50

55

60

Level of labelled data used in %

Mis
clas

sific
atio

n in
 %

Labelled Only NN      
Cons. Bound. Selection

Figure 2: Glass dataset - Left: Semi-supervised clustering - mean classification error and standard
deviation of Random selection method compared to Random selection per class and to Proportional
Boundary selection; Right: Proportional Boundary selection v Labelled Only NN.

with uneven distribution (prior class probabilities) of samples from different classes. The right parts
of Fig. 1 and Fig. 2 illustrate the better performance when using selective sampling together with
Semi-supervised clustering in comparison to classifiers generated on the basis of labelled data only
selected randomly. In all the cases a high classification errors are observed when only a very limited
number of labelled data is used (small r). No consistent significant difference have been noted when
comparing the Boundary Selection with Mean Selection and/or consecutive and proportional alloca-
tion methods. The results depend on suitable choice of the number of clusters for different levels of
labelled data. In general, the better results have been obtained when using smaller number of clusters
for small r and increased number of clusters with an increase of available labelled samples.

In the patterns of change illustrated in Fig.1 and Fig. 2 the level after which there is no significant
improvement of the classifier performance is referred to as a sufficient level (SLLS - Sufficient Level
of Labelled Samples). This level is different for different datasets. In general, the more complex the
dataset distribution, the more labelled samples the algorithm needs to describe it so the SLLS will
be at a higher ratio r, i.e. when more labelled samples are used. This level indicates that generally
much less labelled data is needed for constructing a reliable classifier when unlabelled data is used in
addition. When using selective sampling methods the stable performance related to the the SLLS is
often achieved at lower values of r compared to the random sampling methods.

6 Conclusions

The random sampling methods analysed in [5] show that selection of a representative labelled subset
is more important than combining learning from labelled and unlabelled data. Therefore in this pa-
per we have concentrated our investigations on selective sampling methods. The preliminary results
presented here indicate an improvement of both the mean classifier performance and reduction of the
classification variance when using selective sampling methods in comparison to random selection of
samples to be labelled.

A distinct disadvantage of the discussed methods is that they assume preliminary selection. The
algorithms used that way cannot take advantage of any available class information in contrast to
the active learning approaches. Therefore our future research will extend to active learning as an
alternative to overcoming the disadvantages of the preliminary selection methods presented in this
paper.
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