4 research outputs found

    Frequent Subgraph Mining via Sampling with Rigorous Guarantees

    Get PDF
    Frequent subgraph mining is a fundamental task in the analysis of collections of graphs that aims at finding all the subgraphs that appear with more than a user-specified frequency in the dataset. While several exact approaches have been proposed to solve the task, it remains computationally challenging on large graph datasets due to the complexity of the subgraph isomorphism problem inherent in the task and the huge number of candidate patterns even for fairly small subgraphs. In this thesis, we study two statistical learning measures of complexity, VC-dimension and Rademacher averages, for subgraphs, and derive efficiently computable bounds for both. We then show how such bounds can be applied to devise efficient sampling-based approaches for rigorously approximating the solutions of the frequent subgraph mining problem, providing sample sizes which are much tighter than what would be obtained by a straightforward application of Chernoff and union bounds. We also show that our bounds can be used for true frequent subgraph mining, which requires to identify subgraphs generated with probability above a given threshold using samples from an unknown generative process. Moreover, we carried out an extensive experimental evaluation of our methods on real datasets, which shows that our bounds lead to efficiently computable and high-quality approximations for both applications.Frequent subgraph mining is a fundamental task in the analysis of collections of graphs that aims at finding all the subgraphs that appear with more than a user-specified frequency in the dataset. While several exact approaches have been proposed to solve the task, it remains computationally challenging on large graph datasets due to the complexity of the subgraph isomorphism problem inherent in the task and the huge number of candidate patterns even for fairly small subgraphs. In this thesis, we study two statistical learning measures of complexity, VC-dimension and Rademacher averages, for subgraphs, and derive efficiently computable bounds for both. We then show how such bounds can be applied to devise efficient sampling-based approaches for rigorously approximating the solutions of the frequent subgraph mining problem, providing sample sizes which are much tighter than what would be obtained by a straightforward application of Chernoff and union bounds. We also show that our bounds can be used for true frequent subgraph mining, which requires to identify subgraphs generated with probability above a given threshold using samples from an unknown generative process. Moreover, we carried out an extensive experimental evaluation of our methods on real datasets, which shows that our bounds lead to efficiently computable and high-quality approximations for both applications

    Efficient projection space updates for the approximation of iterative solutions to linear systems with successive right hand sides

    Get PDF
    Accurate initial guesses to the solution can dramatically speed convergence of iterative solvers. In the case of successive right hand sides, it has been shown that accurate initial solutions may be obtained by projecting the newest right hand side vector onto a column space of recent prior solutions. We propose a technique to efficiently update the column space of prior solutions. We find this technique can modestly improve solver performance, though its potential is likely limited by the problem step size and the accuracy of the solver
    corecore