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Abstract

Frequent subgraph mining is a fundamental task in the analysis of collections

of graphs that aims at Ąnding all the subgraphs that appear with more than

a user-speciĄed frequency in the dataset. While several exact approaches

have been proposed to solve the task, it remains computationally challenging

on large graph datasets due to the complexity of the subgraph isomorphism

problem inherent in the task and the huge number of candidate patterns even

for fairly small subgraphs.

In this thesis, we study two statistical learning measures of complexity,

VC-dimension and Rademacher averages, for subgraphs, and derive efficiently

computable bounds for both. We then show how such bounds can be applied

to devise efficient sampling-based approaches for rigorously approximating

the solutions of the frequent subgraph mining problem, providing sample sizes

which are much tighter than what would be obtained by a straightforward

application of Chernoff and union bounds. We also show that our bounds

can be used for true frequent subgraph mining, which requires to identify

subgraphs generated with probability above a given threshold using samples
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from an unknown generative process.

Moreover, we carried out an extensive experimental evaluation of our

methods on real datasets, which shows that our bounds lead to efficiently

computable and high-quality approximations for both applications.
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1. Introduction

Chapter 1

Introduction

In many scientiĄc domains, graphs are the key structure to represent complex

data. For example, in chemistry and biology, structures as molecules can be

effectively represented as graphs by representing the atoms as nodes and the

bonds as edges, while proteins can be encoded by considering the amino-acids

as nodes and peptide bonds as edges. As another example, in the analysis

of social networks, graphs are used to grasp the relationships between users

by means of likes, follows and friendships. Finding recurrent patterns in

these types of graph-encoded data is of paramount importance to better

understand the processes that generate such data, as they may highlight some

unexpectedly frequent structures that are linked to the inner-workings of the

domain.

This need is addressed by the frequent subgraph mining task, which is

a fundamental data mining task that requires to identify small connected

subgraphs appearing frequently in a collection of graphs. As stated before,

it Ąnds applications in a large number of domains, including social media

marketing [FWWX15], graph classiĄcation and clustering [DKWK05,GK01],
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recommendation systems for video games [ALA19], and computational biol-

ogy [MMB+18].

The discovery of frequent subgraphs is a challenging task, due mostly

to two reasons. First, to assess whether a subgraph appears in a graph

requires to solve the subgraph isomorphism problem, which is, in general,

NP-complete. Second, the number of candidate subgraphs is huge even for

relatively small patterns. As a consequence, a number of exact approaches

have been proposed [IWM00,YH02,NK05,KK01,BB02,WWP+04]. However,

such exact approaches do not scale to large datasets.

Random sampling is a simple yet powerful technique to speed-up pattern

mining, which has been applied to obtain approximate solutions for several

patterns, such as itemsets [RU14], subgroups [RV20], and sequential pat-

terns [STV20]. The major challenge in sampling approaches is to rigorously

relate the results obtained from the analysis of the sample with the results

that would be obtained analyzing the whole dataset, identifying sample sizes

that provide rigorous guarantees on the quality of the approximation obtained

analyzing the sample.

Recently, advanced tools from statistical learning theory, such as the

Vapnik-Chervonenkis (VC) dimension [Vap98] and Rademacher averages [KP00],

have been successfully used to obtain meaningful sample size required by

random sampling for several pattern mining tasks [RU14, RU15, SSRZ20,

STV20,PCVR20]. These tools improve over the use of standard approaches

(e.g., using a Chernoff or Hoeffding bound for a single pattern followed by a

union bound on all patterns), which often lead to sample sizes that are larger

than the original dataset. To the best of our knowledge, tools from statistical

learning theory have not been applied to mining frequent subgraphs from a

collection of graphs.

1.1 Related work

In this Section we review the works related to this thesis. Subsection 1.1.1

provides an overview of the results of statistical learning theory related
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to uniform deviation bounds. Subsection 1.1.2 reviews some works where

approximation algorithms have been developed for patter mining problems,

while Subsection 1.1.3 provides a summary on the state-of-the-art solvers for

the frequent subgraph mining problem.

1.1.1 Statistical Learning Theory and Uniform Devia-

tion Bounds

In the context of machine learning, a classical way to select the predictor

(i.e. the trained machine learning model) is via empirical error minimization,

that is to select the model that minimizes the loss function over the training

set, in the hope that its loss over the unknown data generating distribution,

which is the quantity that the user is really interested in, is not signiĄcantly

worse. A common statistical learning tool to investigate whether such a hope

is satisĄed or not is uniform convergence, which informally is the property

that, for each possible predictor in the chosen hypothesis class, for a high

enough number of training samples, the empirical loss over the training

dataset can be made arbitrarily close to the expected loss over the generating

distribution [SSBD14, BBL05]. This problem can be seen, in general, as

Ąnding uniform (i.e. not depending on the speciĄc hypothesis) deviation

bounds of empirical averages of functions (in this case, losses) from their

expectations, a formulation that is useful to apply this framework outside of

machine learning.

If the hypothesis class is Ąnite, the rate of uniform convergence can be

bounded making use of standard tail bounds such as HoeffdingŠs inequality

and an union bound over all hypotheses [SSBD14]. If the hypothesis class in

inĄnite though, this analysis falls apart. In the seminal work of Vapnik and

Chervonenkis [VC13,VC82], the authors deĄned the concept of VC dimension

and its relation with uniform convergence, which was initially applied only to

the convergence of probability distributions. Later, it was applied to the Ąeld

of machine learning [BEHW89], showing that even when working with inĄnite

hypothesis classes, provided that they are simple enough, one can obtain the

uniform convergence property. Since then, the VC dimension has been widely
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used to develop approximation algorithms in the Ąelds of computational

geometry [HS11], clustering [FL11,FSS20], database management [RAÇ+11]

and pattern mining, which is covered in detail in the next section.

More advanced results on the rate of convergence in statistical learning

are based on Rademacher averages [SSBD14,BBL05], which were introduced

in the context of classiĄcation in [KP00]. Recently, Rademacher averages

were used for developing approximate algorithms in the context of graph

analytics [RU18] and pattern mining [RU15].

1.1.2 Approximate Pattern Mining

The problem of frequent pattern mining was introduced by Agrawal [AIS93]

in the context of itemsets, and a wide variety of exact algorithms for solving

the problem has risen over the years, the most well-known ones being Apriori

[AS94] and FPGrowth [HPYM04].

Since the frequent itemset problem is computationally expensive, almost

immediately some approximate algorithms were proposed to speed the compu-

tation up. Mannila et al. [MTV94] proposed an approximate mining algorithm

based on sampling uniformly the transactions of the dataset, and used a com-

bination of Chernoff bounds and union bounds to analyze the quality of

the approximate solution in function of the number of samples. Since the

quality of these theoretical bounds was quite unsatisfactory, other subsequent

works [JL96,CB11] focused on developing heuristic progressive sampling al-

gorithms, that work by enlarging a random sample until a simple to test

termination condition is met. The main downside of these algorithms though

is that the termination conditions on which they are based are heuristic, and

thus do not offer any guarantee on the quality of the Ąnal solution.

The seminal work of Riondato et al. [RU14] introduced the use of tools

from statistical learning theory in the context of frequent itemset mining,

in particular by using the VC dimension to get a tighter analysis on the

quality of the solution which avoided the use of union bound. They also

provide polynomial-time algorithms to compute a tight upper bound on the

VC dimension of the transaction dataset, as computing it exactly would be
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extremely expensive. Indeed, they show that the VC dimenson of the dataset

is upper bounded by the so-called d-index, that is the maximum number d

such that there are d transactions in the dataset, each with at least d items,

such that they form an anti-chain, i.e. that no such transaction is a subset

of another one. While this quantity can be found in polynomial time, in

modern datasets it is still too computationally expensive to compute, so the

authors propose a linear time algorithm to Ąnd a looser upper bound, where

the constraint on the transactions being an anti-chain is removed.

In a subsequent article [RU15], they developed a progressive sampling

algorithm that uses another tool from machine learning theory, Rademacher

averages, to provide guarantees when testing the termination condition. In-

deed, using Rademacher averages they are able to bound the maximum

deviation of the itemset frequencies in the sample from their true frequencies

in the entire dataset. This approach allows to avoid processing the entire

dataset, but rather only a small sample of it, and still obtain rigorous guar-

antees on the quality of the solution, which previous progressive sampling

algorithms were not able to achieve. Since the Rademacher average computa-

tion is very computationally expensive, as in the case of frequent itemsets

it involves computing the support for all the itemsets, they develop sharp

bounds based on a reĄnement of the well-known MassartŠs lemma, which can

be computed in time linear in the size of the sample.

In [RV14], the authors tackled the problem of Ąnding frequent itemset in a

slightly different setting. In particular, they consider the dataset as a sample

from a unknown generating distribution π, and are interested in Ąnding the

itemsets that are generated frequently, that is with frequency at least θ, by

π (i.e. the true frequent itemsets), rather than the ones that are frequent in

the sample itself. Indeed, the set of frequent itemsets in the sample, due to

the stochasticity of the generating process, contains many false positives, i.e.

itemsets that are not really frequent in the generating distribution. Using

an analysis based on the VC dimension of the dataset, they obtain rigorous

bounds on the maximum deviation of the sample frequencies from the true

ones, ad infer a reĄned threshold θ′, as a function of the number of samples in

the dataset, at which to mine the itemsets to avoid obtaining false positives.
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Sampling has successfully used to obtain approximation algorithms for a

wide variety of other pattern mining tasks. In a recent work [STV20], the

authors employed a sampling approach to approximate frequent sequential

pattern mining, which is a generalization of frequent itemset mining as

sequential patterns are Ąnite ordered sequences of itemsets, which have

applications in domains such as e-commerce and biology. The analysis of the

quality of the solutions follows the previously cited works, as it uses both the

VC dimension and Rademacher averages to bound the maximum deviation of

pattern frequencies in the subsampled dataset.

Yet another variation of pattern mining is interesting subgroups mining,

that is to Ąnd all the subsets of a dataset for which the distribution of a speciĄc

target feature differs signiĄcantly from the distribution of such feature in the

entire dataset. In [RV20], a random sampling algorithm is proposed to provide

approximate solutions while speeding up the computation signiĄcantly. The

analysis of the algorithm relies on yet another tool from statistical learning

theory, the pseudodimension [Pol12], which is a generalization of the VC

dimension to real-valued functions.

To the best of our knowledge, there is no work on rigorously approximating

the frequent subgraph mining problem using sampling approaches. In the

next subsection, we describe some of the exact algorithms for this problem.

1.1.3 Frequent Subgraph Mining

Driven by applications in Ąelds such as computational chemistry and bioinfor-

matics, the task of mining subgraphs from graph datasets has recently seen a

lot of attention from the data mining community.

Overall, all frequent subgraph miners follow an approach similar to frequent

itemset miners, that is they test the appearance of subgraphs in the dataset

by exploring gradually the lattice formed by all possible patterns, pruning

the branches of the search space that are not needed to be explored (e.g.,

thanks to the antimonotonicy property of frequency) along the way. The

various miners differ in the order in which they explore the search space, in

how they generate and represent the candidate patterns, and in how they
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test the appearance of a pattern in the transactions of the dataset. We now

describe brieĆy some of the most frequently used frequent subgraph miners

up to date.

AGM [IWM00], which stands for Apriori Graph Mining, was one of

the Ąrst subgraph miners and works similarly to Apriori, generating graph

candidates adding one vertex at a time and for each one computing the

frequency by scanning the dataset.

gSpan [YH02] explores the lattice in a dfs manner, using a canonical

representation for graphs based on the dfs-traversal of the graph that helps

in pruning the search space.

FFSM [HWP03] instead represents graphs by their adjaciency matrix,

with some precautions to ensure that isomorphic graphs have the same

representation. FFSM explores the lattice in a depth Ąrst search and stores

the previous embeddings to avoid explicit subgraph isomorphism testing on

the subsequent candidate patterns.

Gaston [NK05], which is reportedly the fastest subgraph miner up to

date [WMFP05], exploits the fact that many frequent subgraphs are actually

either paths or trees. Indeed, performing isomorphism checks on these graphs

can be done efficiently in polynomial time, making much faster a large fraction

of the mining process. Only at the end, when all acyclic frequent patterns

have been found, the cyclic subgraphs are tested.

Among other frequent subgraph miners, we mention FSG [KK01], which

improved on AGM, MoFa [BB02] which focuses mainly on molecular datasets,

and ADI-Mine [WWP+04], which was the Ąrst miner to work in a disk-based

setting, allowing to mine also datasets that could not Ąt in main memory.

Frequent subgraph mining is, in general, a harder task compared to

frequent itemset mining, both because the number of possible patterns to

be tested is larger and because each membership test involves a subgraph

isomorphism check, which is notoriously an NP-hard problem. It is then very

useful to develop approximation algorithms that, allowing for some slackness

in the frequency threshold, are able to signiĄcantly reduce the computation

time and the memory usage.

Another approach for dealing with the intrinsic complexity of the task
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is to develop parallel and distributed algorithms. SUBDUE [CHGM01] is a

shared-memory parallel frequent subgraph mining algorithm that uses a data

partitioning approach to distribute the load across workers. It uses a heuristic

beam search method that makes use of domain knowledge to prune the search

space, which is explored in a bfs traversal. In the MapReduce framework,

[HSS12] presented an algorithm that iteratively grows the candidate subgraph

size in each round, until all frequent patterns have been found. This though

results in a high number of rounds, and consequently in a high communication

cost. Later, [LXG14] presented another MapReduce-based miner that works

in 2 rounds by partitioning the transactions among the workers and computing

locally frequent subgraphs in the Ąrst round and then reĄning the output in

the second one.

The frequent subgraph mining problem has also a variant where we are

given a single large graph and we are interested in Ąnding the subgraphs that

appear frequently within the large graph. Several exact and approximate

algorithms have been developed also for this version of the problem [EASK14,

GC02]. Recently, the VC dimension has been used to produce approximate

solutions for this variant of the problem [PDFMR21], focusing on the Minimum

Node Image (MNI) frequency measure for subgraphs. The techniques applied

in [PDFMR21] though cannot be easily adapted to our scenario of a collection

of graphs and its related notion of frequency for subgraphs.

1.2 Contributions

The contributions of this work are the following:

• We review in detail the known results in the literature on uniform

deviation bounds, proposing a point of view that uniĄes the theory of

range spaces and ε-approximations, which is well-known in the compu-

tational geometry community, an the one of Rademacher-average-based

uniform convergence, which is more widespread in the machine learning

community.

• We derive rigorous bounds on the VC-dimension of the class of subgraph
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patterns that are efficiently computable for large datasets, improving the

results that can obtained adapting the techniques previously proposes

for other types of patterns. The computation of the bound requires

only a single scan of the dataset and can be implemented in a streaming

fashion, making its memory consumption negligible.

• We prove rigorous bounds on Rademacher averages for subgraph pat-

terns, deriving different bounds speciĄcally tailored for labelled graphs

and for unlabelled graphs making use of a reĄned version of MassartŠs

lemma.

• We show how our bounds on the VC-dimension can be used to design

an effective algorithm to obtain approximate solutions with rigorous

guarantees for the frequent subgraph mining problem, guaranteeing

no false positives in the output (or no false negatives, depending on

the userŠs choice). In a Ąrst step the algorithm derives the bound and

samples the dataset, and in a second step it mines the sample, which

can be carried out with any subgraph mining solver.

• Making use of our bound on Rademacher averages of subgraphs, we

present a progressive sampling algorithm for the frequent subgraph

mining problem, which builds incrementally a random sample of the

dataset. This allows to avoid processing the entire dataset, making

it possibly advantageous when its size is extremely large. As for the

previous algorithm, in a Ąrst step it derives the bound and samples the

dataset, and then it mines the sample with any subgraph mining solver.

• Using both the VC dimension and Rademacher averages, we develop two

methods for mining true frequent subgraphs from an unknown generating

distribution, a variant which requires to identify the subgraphs appearing

with probability greater than a given threshold in a generative process

having as input a set of samples from the process.

• For all of the algorithms above, we performed an experimental evaluation

on real-life graph datasets to test the usability of the methods in a

13
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practical environment. From the experiments it emerges that, when we

allow for a mere 1% of slackness in the value of the frequency threshold,

we gain up to a 40x improvement in terms of execution time.

1.3 Roadmap

The thesis is organized as follows. Chapter 2 provides all the preliminaries

necessary to tackle the problem, and in particular reviews in detail the results

on uniform deviation bounds, Chapter 3 presents an efficiently computable

bound on the VC dimension of subgraphs, while Chapter 4 details a novel

bound on Rademacher averages of frequent subgraphs. Chapter 5 presents

two applications of our novel bounds, for the tasks of frequent subgraph

mining (Section 5.1) and of true frequent subgraph mining (Section 5.2). In

Chapter 6 some experiments on the proposed methods are presented, along

with a discussion of the results.

14



2. Preliminaries

Chapter 2

Preliminaries

In this chapter we introduce all the notions needed to tackle the problem

at hand. In particular, Section 2.1 deĄnes formally the problem of frequent

subgraph mining. Section 2.2 describes the notions of range spaces, of

VC-dimension and how it is applied to sampling to obtain approximation

algorithms. Finally, Section 2.3 deals with Rademacher averages, another tool

from statistical learning theory that can be employed to obtain approximation

algorithms in data mining problems.

2.1 Frequent Subgraph Mining

We deĄne a dataset D as a collection of unweighted, undirected and labelled

graphs G = (V,E, LV , LE), where LV and LE are functions that map nodes

and edges respectively to Ąxed labels. We refer to such graphs as transactions

of the dataset. Two graphs G and G′ are isomorphic if there exists a bijection

µ from the nodes of the Ąrst one to the ones of the second one that preserves
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the node labels and s.t. (u, v) ∈ E ⇐⇒ (µ(u), µ(v)) ∈ E ′ and LE(u, v) =

LE(µ(u), µ(v)). We say that graph H is isomorphic to an induced subgraph

of G if there is an induced subgraph of G isomorphic to H. In D there can

be isomorhpic graphs.

Let P be the pattern set, that is a set of connected graphs whose frequency

in the dataset is of interest. The set P can be the set of all connected graphs,

the set of all connected graphs with up to k nodes, or a speciĄc language

of patterns of interest, although the mining algorithms have to be suitably

modiĄed for this last case. We say that G contains P , denoted with P ⊆ G,

if P is isomorphic to an induced subgraph of G.

Given a pattern P ∈ P , the support set TD(P ) of P is the set of transac-

tions in D that contain the pattern P . The frequency of P is the fraction of

transactions that contain P , fD(P ) = ♣TD(P )♣/♣D♣.

DeĄnition 1. Given a frequency threshold θ, the frequent subgraph mining

task is to Ąnd all patterns with frequency above the threshold, along with their

frequencies, that is

FG(D,P , θ) = ¶(P, fD(P )) : P ∈ P and fD(P ) ≥ θ♢.

Since often the threshold θ is chosen arbitrarily, one often can sacriĄce

solving the problem exactly and settle for an approximate solution. A com-

monly used [CPS09] notion of approximation for frequent pattern mining,

which guarantees no false negatives, is the following.

DeĄnition 2. Given a parameter ε > 0, an absolute ε-close solution to

FG(D,P , θ) is a set C = ¶(P, f̂(P )) : P ∈ P and f̂(P ) ∈ [0, 1]♢ such that

1. FG(D,P , θ) ⊆ C

2. C contains no pattern P with frequency fD(P ) < θ − ε

Actually, since in general it is useful to know the (approximate) frequency

of the frequent patterns, we focus on a slightly more restrictive deĄnition

[RU14] of approximate solution for the frequent subgraph mining problem.
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DeĄnition 3. Given a parameter ε > 0, an absolute ε-close approximation

to FG(D,P , θ) is a set C = ¶(P, f̂(P )) : P ∈ P and f̂(P ) ∈ [0, 1]♢ such that

1. FG(D,P , θ) ⊆ C

2. C contains no pattern P with frequency fD(P ) < θ − ε

3. for each (P, f̂(P )) it holds ♣f̂(P ) − fD(P )♣ ≤ ε

Note that the deĄnitions above produce approximate solutions with no

false negatives, but we can easily deĄne a notion of approximation with no

false positives. For the sake of clarity and brevity, in the subsequent chapters

we will only focus on the deĄnition with no false negatives.

Another problem we consider is the mining of true frequent subgraphs,

which adapts the problem of true frequent itemsets mining [RV14] to subgraphs.

In this scenario, the dataset D consists of a number of graphs obtained

from an unknown generative process, described by an (unknown) generating

distribution π, with pπ(G) being the probability that graph G is the graph

generated by π. The probability that a subgraph P is in a sample from the

distribution π is then pπ(P ) =
∑

G:P ⊆G pπ(G).

DeĄnition 4. Given a frequency threshold θ, the true frequent subgraph

mining task is to Ąnd all subgraphs with probability at least θ of appearing in

the sample, along with such probabilities, that is

FG(π,P , θ) = ¶(P, pπ(P )) : P ∈ P and pπ(P ) ≥ θ♢.

This problem is highly relevant when one is analyzing a datasets obtained

as a sample from an underlying process and needs guarantees on the underlying

process (instead that on the dataset). Note that the true frequent subgraph

mining problem cannot be solved exactly without full knowledge of π. For

true frequent subgraph mining, the deĄnition of ε-close approximation is a

simple adaptation of Def. 3, obtained replacing FG(D,P , θ) with FG(π,P , θ)
and fD(P ) with pπ(G).
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2.2 Range Spaces and ε-approximations

The VC dimension is a measure of the complexity of a family of indicator

functions over a space of points which has been widely used in the context

of machine learning. In this section we describe how to exploit this quantity

to obtain approximate solutions to hard computational problems by using

random sampling.

DeĄnition 5. We deĄne a range space as a pair (X,R) where X is a set

and R is a family of subsets of X. The projection of R on A ⊆ X is

PR(A) = ¶r ∩ A : r ∈ R♢. If PR(A) = 2A we say that A is shattered by R.

The deĄnition of range spaces is very general and allows to be suitably

adapted to a wide variety of applications. For example, in the context of

computational geometry, the set X is usually a subset of Rd and R is a family

of simple shapes such as halfspaces, axis-aligned boxes or balls. In the context

of machine learning, the set X is often yet again R
d, the feature space of

the samples, and the ranges are the functions of the hypothesis class H of

interest, which can be as simple as the family of halfplanes for hard SVMs,

but for models such as neural networks it can be very complex.

Range spaces can be endowed with a notion of complexity, the VC dimen-

sion, which captures how rich the family of ranges R is.

DeĄnition 6. Let (X,R) be a range space. The VC-dimension V C(X,R) of

(X,R) is the largest cardinality of a subset of X which is shattered by R. If R

can shatter arbitrarily large subsets of X, then we deĄne V C(X,R) = +∞.

If one has access only to a subset of the set X, one can resort to a slightly

weaker notion of complexity, the empirical VC dimension.

DeĄnition 7. Let (X,R) be a range space and let Y ⊂ X. Then the

empirical VC dimension of (X,R) on Y , denoted as EV C((X,R), Y ), is the

VC dimension of the range space (Y,R′), with R′ = ¶Y ∩ r : r ∈ R♢.

A type of query on range spaces that is very relevant for the problem

of frequent pattern mining is range counting, that is to return, for a range

18
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although it is not clear a priori how the number of samples should be chosen.

In the case that R is Ąnite, we have the following theorem.

Theorem 1. Let (X,R) be a range space with Ąnite R. If A ⊂ X is a Ąnite

subset and 0 < ε, δ < 1, then a bag B of elements of A, taken uniformly at

random and with replacements, of cardinality

m = min

{

♣A♣, 1

2ε2
ln

(

2♣R♣
δ

}

is an ε-approximation for A with probability 1 − δ. If m = ♣A♣ we assume

B = A.

Proof. HoeffdingŠs inequality states that, if X1, . . . , Xn are i.i.d. random

variables that take values in [a, b] almost surely, then

P

∣

∣

∣

∣

∣

1

m

m
∑

i=1

Xi − E[X1]

∣

∣

∣

∣

∣

> ε

]

≤ 2 exp

(

− 2mε2

(b− a)2



.

Let B = (b1, . . . , bn). For a Ąxed range r ∈ R, let Xi = 1 if bi ∈ r and 0

otherwise. Then we have that Xi ∈ [0, 1], E[Xi] = ♣A∩r♣
♣A♣

and 1
m

∑m
i=1 Xi = ♣B∩r♣

♣B♣
.

Then we have

P

∣

∣

∣

∣

∣

1

m

m
∑

i=1

Xi − E[X1]

∣

∣

∣

∣

∣

> ε

∣

∣

∣

∣

r

]

≤ 2 exp
(

−2mε2


.

Taking union bound over all r ∈ R we have

P

∣

∣

∣

∣

∣

1

m

m
∑

i=1

Xi − E[X1]

∣

∣

∣

∣

∣

> ε

]

≤ 2♣R♣ exp
(

−2mε2


.

Therefore, if we take m ≥ 1
2ε2 ln

(

2♣R♣
δ



samples from A, we have, with proba-

bility at least 1 − δ, that
∣

∣

∣

♣A∩r♣
♣A♣

− ♣B∩r♣
♣B♣

∣

∣

∣ ≤ ε, that is B is an ε-approximation

for A.

In our setting, the theorem above has limited utility, since in most cases

the set R is huge or even inĄnite. The next theorem [HS11] links the notion
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of VC-dimension and ε-approximations, providing much tighter bounds.

Theorem 2. There is an absolute positive constant c such that if (X,R)

is a range space of VC dimension at most v, A ⊂ X is a Ąnite subset and

0 < ε, δ < 1, then a bag B of elements of A, taken uniformly at random and

with replacements, of cardinality

m = min


♣A♣, c
ε2

(v + log(1/δ))
}

is an ε-approximation for A with probability 1 − δ. If m = ♣A♣ we assume

B = A.

Although no theoretical result upper bounding c is known as of now,

thanks to some experimental evidence presented in [LP09], the constant c is

usually considered to be close to 0.5.

Actually, we can deĄne a more general notion of ε-approximation that

works with distributions on X.

DeĄnition 9. Let (X,R) be a range space and let π a distribution on X.

For 0 < ε < 1, a bag B of elements of X is an ε-approximation for (X, π) if,

for all r ∈ R we have

∣

∣

∣

∣

∣

pπ(r) − 1

♣B♣
∑

x∈B

1r(x)

∣

∣

∣

∣

∣

≤ ε

where pπ(r) =
∑

x∈r pπ(x) and 1r is the indicator function for the range r.

The results of Theorem 2 hold even for this general deĄnition of ε-

approximations, albeit with the caveat that sampling has to be performed

according to π rather than uniformly at random.

2.3 Rademacher Averages

Rademacher averages are a tool from statistical learning theory widely used

to characterize the rate of uniform convergence in PAC learning. We now
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expose some of the central bounds on uniform deviations of empirical means

from their expected values which use this tool.

Let X1, ..., Xn be i.i.d. random variables taking values in a set X and let F
be a family of bounded functions f : X −→ [0, 1]. Let f̂(X) = 1

n

∑n
i=1 f(Xi).

We wish to bound the maximum deviation

sup
f∈F

∣

∣

∣E[f(X1)] − f̂(X)
∣

∣

∣ .

WeŠll make use of the following concentration inequality, which is also

known as McDiarmidŠs inequality [McD89].

Theorem 3 (Bounded differences inequality). Let g : X n −→ R be a function

such that, for some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,x′

i
∈X

♣g(x1, . . . , xn) − g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)♣ ≤ ci, 1 ≤ i ≤ n.

Let X1, ..., Xn be independent random variables. Then the random variable

Z = g(X1, . . . , Xn) satisĄes

P[♣Z − E[Z]♣ > t] ≤ 2 exp

(

− −2t2
∑n

i=1 c
2
i



.

Equivalently, we have that with probability at least 1 − δ,

♣Z − E[Z]♣ <
√

∑n
i=1 c

2
i

2
ln


2

δ



.

As a consequence of the bounded difference inequality, if we let Z =

supf∈F

∣

∣

∣E[f(X1)] − f̂(X)
∣

∣

∣, which satisĄes the inequality with ci = 1/n, we

have that, for any δ ∈]0, 1[, with probability at least 1 − δ,

sup
f∈F

∣

∣

∣E[f(X1)] − f̂(X)
∣

∣

∣ ≤ E



sup
f∈F

∣

∣

∣E[f(X1)] − f̂(X)
∣

∣

∣

]

+

√

ln 1
δ

2n
.

We then proceed to bound the right hand side of the inequality. We Ąrst

deĄne Rademacher averages.
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DeĄnition 10. Let A ⊂ R
n be a set of bounded vectors a = (a1, . . . , an)T ,

ai ∈ [0, 1]. Then let σi be a Rademacher random variable, i.e. taking value 1

or −1 with probability 1/2, for each 1 ≤ i ≤ n. Let also the σiŠs be independent.

The (sample) conditional Rademacher average, also known as the empirical

Rademacher average, is the quantity

R(A) = Eσ



sup
a∈A

1

n

n
∑

i=1

σiai

]

where Eσ denotes the expectation taken only with respect to the σiŠs, condi-

tionally on the sample A.

In particular, if we call F(X) = ¶(f(X1), . . . , f(Xn))T : f ∈ F♢, then

we have the following lemma [BBL05], which is based on a symmetrization

argument.

Lemma 1.

E



sup
f∈F

∣

∣

∣E[f(X1)] − f̂(X)
∣

∣

∣

]

≤ 2EX [R(F(X))] .

In turn, noticing that R(F(X)) satisĄes the bounded differences inequal-

ity, this yields the following result1, that removes the need to compute an

expectation over X.

Theorem 4. With probability at least 1 − δ,

sup
f∈F

∣

∣

∣E[f(X1)] − f̂(X)
∣

∣

∣ ≤ 2R(F(X)) + 3

√

ln 2
δ

2n
.

Proof. We have that the random variable R(F(X)) = g(X1, . . . , Xn) satisĄes

the bounded differences inequality with ci = 1/n. Then we have, with

1In [BBL05], the theorem has a 1 rather than a 3 as the constant multiplying the square
root. The paper is missing the details of the proof and we were not able to replicate the
result.
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probability 1 − 2δ,

sup
f∈F

∣

∣

∣E[f(X1)] − f̂(X)
∣

∣

∣ ≤ E



sup
f∈F

(

E[f(X1)] − f̂(X)


]

+

√

ln 1
δ

2n
≤

≤ 2E [R(F(x))] +

√

ln 1
δ

2n
≤

≤ 2R(F(x)) + 3

√

ln 1
δ

2n
.

The above theorem gives a data-dependent bound on the maximum

deviation of the empirical average of f from the true expected value, over all

possible f ∈ F .

The following theorem, which is the main result of this Section, then links

the notion of ε-approximations with Rademacher-averages-based bounds on

uniform deviations of empirical averages from their expectations.

Theorem 5. Consider a range space (X , R) and let π be a distribution over

X . Consider then as the function set F the set ¶fr : r ∈ R♢ of indicator

functions for the ranges of R. Let X1, . . . , Xn be i.i.d. random variables with

distribution π and let B = (x1, . . . , xn) be the bag of realizations of the random

variables. Let

ε = 2R(F(X)) + 3

√

ln 2
δ

2n
.

Then, with probability at least 1 − δ, B is an ε-approximation for X w.r.t. π.

Proof. Then we have that E[fr(X1)] = pπ(r) and f̂r(X) = 1
♣B♣

∑

x∈B 1r(x).

Then, if we are able to bound the maximum deviation of the functions in F
as supf∈F

∣

∣

∣E[fr(X1)] − f̂r(X)
∣

∣

∣ ≤ ε, we can say that B is an ε-approximation

for X w.r.t. π, by DeĄnition 9. Indeed, thanks to Theorem 4, we have that

with probability 1 − δ, choosing ε = 2R(F(X)) + 3

√

ln 2
δ

2n
yields the above

property.
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2.3.1 Bounding Rademacher Averages

Note that computing the quantity R(F(X)) is not a straightforward task, as

it involves both computing a supremum over F , which can be a very hard task

to solve, and computing an expectation over the σiŠs, which usually requires

some sort of Monte Carlo integration, which is in itself quite demanding. We

then resort to developing upper bounds to it.

In the subsequent analysis, we use the well-known Jensen inequality. The

probabilistic formulation of the inequality is as follows.

Lemma 2 (Jensen inequality). Let ψ : R −→ R be a convex function and let

X be a random variable taking values in R. Then we have

ψ (E[X]) ≤ E (ψ(X)) .

We then now present a powerful tool to bound Rademacher averages,

namely Massart lemma [BBL05].

Lemma 3. Let A ⊂ R
n be a Ąnite set. Let w : R+ → R

+ be the function

w(s) =
1

s
ln

(

∑

a∈A

exp
(

s2 ∥a∥2 /(2n2)




.

Then R(A) ≤ mins∈R+ w(s).

Proof. Hoeffding inequality states that if X is a zero-mean r.v. taking values

in [a, b], then for each s > 0, E [exp (sX)] ≤ exp(s2(b− a)2/8). Then we have

E



exp

(

s
1

n

n
∑

i=1

σiai

]

=
n
∏

i=1

E



exp


s
1

n
σiai



≤
n
∏

i=1

exp

(

s2a2
i

2n2



=

= exp

(

s2 ∥a∥2

2n2



.
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In particular, we can use the inequality above to obtain

exp(sR(A)) = exp

(

sE



max
a∈A

1

n

n
∑

i=1

σiai

]

≤ E



exp

(

smax
a∈A

1

n

n
∑

i=1

σiai

]

≤

≤
∑

a∈A

E



exp

(

s
1

n

n
∑

i=1

σiai

]

≤
∑

a∈A

exp

(

s2 ∥a∥2

2n2



.

The Ąrst inequality is obtained applying Jensen inequality, since ex is convex.

Taking the logarithm and dividing by s yields the result.

The lemma is mostly known in the following weaker form, which can be

easily obtained from the previous formulation.

Theorem 6 (MassartŠs Lemma).

R(A) ≤ max
a∈A

∥a∥
√

2 ln ♣A♣
n

Proof. We have that

w(s) =
1

s
ln

(

∑

a∈A

exp
(

s2 ∥a∥2 /(2n2)




≤

≤ 1

s
ln


♣A♣ exp


max
a∈A

∥a∥2 · s2/(2n2)


=

=
ln ♣A♣
s

+ s · maxa∈A ∥a∥
2n2

.

Taking the minimum of the right hand side of the inequality over s ∈ R
+ yields

w(s) ≤ maxa∈A ∥a∥
√

2 ln ♣A♣

n
, with the minimum taking place at s =

n
√

2 ln ♣A♣

maxa∈A∥a∥
.

Then, using Lemma 3 we have the claim.

2.3.2 Linking Rademacher Averages and VC Dimension

Consider a range space (X , R), a distribution π over X , and as F the set

¶fr : r ∈ R♢ of indicator functions for the ranges of R. Let X1, . . . , Xn be

i.i.d. random variables with distribution π and let B = (x1, . . . , xn) be the

realizations of the random variables.
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By Theorem 6, recalling that maxf∈F ∥f(x)∥ ≤ √
n, we have that R(F(X)) ≤

√

2 ln ♣F(B)♣
n

.

A trivial bound to ♣F(X)♣ is 2n. We show that if the VC dimension of the

range space is low, a better bound can be obtained. Let d = EV C((X,R), B)

be the empirical VC dimension of the range space (X , R) on the bag B =

(x1, . . . , xn) of realizations of the random variables X1, . . . , Xn.

Then, using SauerŠs Lemma [BBL05], which links the size of a set to its

VC dimension, we have

♣F(X)♣ ≤
d
∑

i=0

(

n

i



≤ (n+ 1)d

which yields ln ♣F(X)♣ ≤ d ln(n+ 1). Combining this result with Theorem 4,

we have the following.

Lemma 4. With probability at least 1 − δ,

sup
f∈F

∣

∣

∣E[f(X1)] − f̂(X)
∣

∣

∣ ≤ 2

√

2d ln(n+ 1)

n
+ 3

√

ln 1
δ

2n
.

This result can be then used to obtain, given a sample B = (x1, . . . , xn),

the value ε for which B is an ε-approximation for X w.r.t. π. Note that this

bound is weaker with respect to the one presented in Theorem 2, but it only

uses sample-dependent quantities, so it can be applied even if one has no

access to the VC dimension of (X , R).
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Chapter 3

VC Dimension of Subgraphs

As described in the previous chapters, the VC dimension is a measure of the

complexity of a family of indicator functions over a space of points which has

been widely used in the context of machine learning. In this section we exploit

this quantity to circumvent the use of union bound and obtain tighter bounds

on the number of samples necessary to obtain an ε-close approximation for

frequent subgraph mining.

We now deĄne a range space for the problem of frequent subgraph mining

and use it to determine sample sizes sufficient to obtain approximate solutions

within a desired slackness.

DeĄnition 11. Let D be a dataset of transactions and P a set of patterns.

We deĄne (D, RP) as the range space such that:

1. D is the set of transactions

2. RP = ¶rP = TD(P ) : P ∈ P♢ is a family of sets of transactions (i.e.,

graphs) s.t. for each pattern P ∈ P , TD(P ) is the set of transactions

containing P .
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From the above deĄnition we can clearly see that for a subset D′ of D,

the quantity ♣D′∩rP ♣
♣D′♣

= ♣D′∩TD(P )♣
♣D′♣

is fD′(P ), the frequency of P in D′.

3.1 Bounding the VC Dimension

Computing the VC dimension of a range space exactly is a very expensive

operation, as in general it takes O
(

♣R♣♣X♣log ♣R♣


time [LMR91]. We have then

to efficiently compute an upper bound to it in order to exploit Theorem 11.

We now deĄne a characteristic of the dataset called the d-index [RU14],

and show that it is an upper bound to the VC-dimension of the range space

associated to the dataset.

DeĄnition 12. Let D be a dataset. The d-index of D is the maximum

integer d such that D contains at least d different transactions (i.e., graphs)

Gi = (VGi
, EGi

) such that ♣VGi
♣ ≥ d and such that no one of them is isomorphic

to an induced subgraph of another, that is they form an anti-chain.

The following lemma is a simple adaptation of [RU14, Theorem 4.2] to a

dataset of graphs.

Lemma 5. Let D be a dataset of transactions and let (D, RP) be the associated

range space. Then V C(D, RP) ≥ v if and only if there exists a set A ⊆ D
of v transactions such that for each subset B ⊆ A, there exists a pattern PB

such that the support set of PB in A is exactly B, i.e. TA(PB) = B.

Proof. If: We have that TD(PB) ∩ A = B, for each of the 2♣A♣ subsets B of A.

Hence A is shattered by RP and V C(D, RP) ≥ v.

Only if: Let V C(D, RP) ≥ v. Then, there is a set A ⊆ D of v transactions

such that PRP
(A) = 2A. Hence, for each subset B of A, there exists a pattern

PB such that TD(PB) ∩ A = B.

Theorem 7. Let D be a dataset with d-index d and P the pattern set. Then

the range space (D, RP) has VC-dimension at most d.

Proof. Let l > d and assume that (D, RP) has VC-dimension l. Then there

is a set of A of l transactions of D that is shattered by RP , that is for each
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subset B ⊆ A, there exists a pattern PB such that TA(PB) = B. Then for

any two transactions G1, G2 ∈ A, neither one is isomorphic to an induced

subgraph of the other. In fact, if G1 ⊆ G2, then in all ranges where G1

appears, i.e. in all the sets T (P ) of transactions such that P ⊆ G1, also G2

appears. Indeed, if P ⊆ G1 and G1 ⊆ G2, then also P ⊆ G2, and hence

G2 ∈ T (P ). Then it would not be possible to shatter A, as there would be

no pattern PG1 such that TA(PG1) = ¶G1♢. Then A must be an anti-chain.

Therefore, A must contain a graph G such that ♣VG♣ ≤ d, or we would have

d-index > d.

This graph G is a member of 2l−1 subsets of A, which we call AiŠs, labelled

in any order. Since A is shattered by RP , we have that for each set Ai, there

exists a pattern Pi such that T (Pi) ∩ A = Ai. Note that since the AiŠs

are all different, then also the PiŠs must be all different. Since G ∈ Ai by

construction, we must have that G ∈ T (Pi) ∀1 ≤ i ≤ 2l−1. Then all patterns

Pi appear as an induced subgraph of G. But, since ♣VG♣ ≤ d < l, G can

contain at most 2d − 1 non-empty patterns (recall that an induced subgraph

is deĄned only by the subset of nodes of the original graph), while there are

2l−1 different patterns Pi. This is a contraddiction and hence A cannot be

shattered by RP , so V C(S) ≤ d.

The d-index can be computed exactly, with a number of subgraph isomor-

phism checks that is polynomial in ♣D♣ (i.e. in the number of transactions),

as follows. It requires Ąrst to build the inclusion graph for all the trans-

actions in the dataset, with O (♣D♣2) subgraph isomorphism checks (which

cannot be done in polynomial time, rendering impossible to complete the

task in time polynomial in the instance size unless P=NP). After this Ąrst

step, for each possible value of d, we need to Ąnd the size of the largest

anti-chain via a maximum matching problem on a suitably constructed bi-

partite graph with only the transactions of at least d nodes, which can be

done in in time O
(√

♣V ♣♣E♣


= O (♣D♣2.5), e.g. using DinicŠs algorithm. In

fact, the correct value of d can be binary searched for a total complexity of

O (♣D♣2.5 log ♣D♣).This complexity makes it impossible to Ąnd the exact value
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of the d-index on modern datasets, whose sizes easily exceed the millions of

transactions.

We can obtain an upper bound to the d-index by computing the d-bound,

that is the maximum number q such that there are at least q transactions

with at least q nodes (i.e. disregarding the condition that such transactions

must form an anti-chain), in a single scan of the dataset using Algorithm 1,

which is a simple adaptation of the one presented in [RU14].

Algorithm 1: ComputeD-Bound(D)

1 q = 0
2 T = ∅
3 while hasNextTransaction(D) do

4 G = nextTransaction(D)
5 if ♣VG♣ > q and ̸ ∃H ∈ T such that G = H then

6 T = T ∪ ¶G♢
7 if ∀H ∈ T, ♣VH ♣ > q then

8 q + +
9 else

10 remove from T the transaction H with minimum ♣VH ♣
11 return q

Note that although a set of labeled graphs might form an anti-chain,

their unlabeled counterparts might actually form some chains. Hence, labeled

datasets should exhibit a slacker bound on the VC-dimension. Nonetheless, an

important remark is that the deĄnition of the d-bound and the corresponding

bound on the VC-dimension of (D, RP) are independent of the node and edge

labels.

If we analyze the proof of Theorem 7, we can see that the condition

♣VGi
♣ ≥ d is needed to upper bound the number of patterns in Gi. By making

explicit this latter condition we can provide a stricter bound in the case where

the pattern set P is small.

DeĄnition 13. Let D be a dataset. The c-bound of D w.r.t. P is the

maximum integer c such that D contains at least c different transactions Gi

such that Gi contains at least 2c−1 distinct patterns from P.
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Theorem 8. Let D be a dataset with c-bound c w.r.t the pattern set P. Then

the range space (D, RP) has VC-dimension at most c.

Proof. Let l > c and assume that (D, RP) has VC-dimension l. Then there

is a set of A of l transactions of D that is shattered by RP , that is for each

subset B ⊆ A, there exists a pattern PB such that TA(PB) = B. Note that

there must be a graph G ∈ A that contains at most 2(c+1)−1 − 1 patterns

from P , or D would have c-bound at least c+ 1.

This graph G is a member of 2l−1 subsets of A, which we call AiŠs, labelled

in any order. Since A is shattered by RP , we have that for each set Ai, there

exists a pattern Pi such that T (Pi) ∩ A = Ai. Note that since the AiŠs

are all different, then also the PiŠs must be all different. Since G ∈ Ai by

construction, we must have that G ∈ T (Pi) ∀1 ≤ i ≤ 2l−1. Then all such 2l−1

distinct patterns Pi appear as an induced subgraph of G. But, since l > c,

we have that 2l−1 ≥ 2c > 2c − 1, and we have a contradiction.

Note that the condition ŤGi contains at least 2c−1 distinct patterns from

PŤ is much more difficult to test compared to the condition ŤGi has at least

d nodesŤ. Hence, we provide a linear time algorithm to bound the c-bound

of a dataset D in the particular case where P is the set of subgraphs with

at most k nodes, which is a situation of interest in several subgraph mining

applications.

Consider a graph G ∈ D with nG nodes. Then G can contain at most

n̂G =
∑min(k,nG)

j=1 min
{(

nG

j



, ♣Pj♣
}

patterns from P, where ♣Pj♣ is the number

of patterns in P with j nodes.

Note that often
∑min(k,n)

j=1

(

n
j



≪ 2n, making this bound much tighter than

the d-bound. Also, note that in this case ♣Pj♣, although difficult to compute

in closed-form, can be precomputed using values from oeis.org/A001349.

Especially in the case of labelled graphs, though, ♣P♣ grows very quickly with

k and is rarely useful.

Let then cG = ⌊log2(n̂G)⌋ + 1 and let ĉ be the maximum integer c such

that at least c transactions G have cG ≥ c. This value can be computed in a

single scan of the dataset with a straightforward adaptation of Algorithm 1,

which we report for completeness in Algorithm 2.
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Algorithm 2: ComputeC-Bound(D)

1 q = 0
2 T = ∅
3 while hasNextTransaction(D) do

4 G = nextTransaction(D)

5 cG =
⌊

log
(

∑min(k,nG)
j=1 min

{(

nG

j



, ♣Pj♣
}⌋

+ 1

6 if cG > q and ̸ ∃H ∈ T such that G = H then

7 T = T ∪ ¶G♢
8 if ∀H ∈ T, cH > q then

9 q + +
10 else

11 remove from T the transaction H with minimum cH

12 return q

Note that, if the c-bound of D is c∗, then c∗ ≤ ĉ. Indeed, consider c∗

graphs such that each one of them has at least 2c∗−1 distinct patterns from

P. Then for each of such graphs we have 2c∗−1 ≤ n̂G, so cG ≥ c∗. Then,

since there are at least c∗ graphs such that each one has cG ≥ c∗, we have

ĉ ≥ c∗. Hence, computing ĉ provides an upper bound to the VC-dimension of

(D, RP).
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Chapter 4

Rademacher Averages of Subgraphs

We now deĄne Rademacher averages for subgraph patterns, specializing the

deĄnitions of Section 2.3 to the subgraph mining problem.

For each pattern (i.e. subgraph) P ∈ P, deĄne the indicator function

ϕP : D → ¶0, 1♢ as

ϕP (G) =











1 if P ⊆ G

0 otherwise.

Then we have fD(P ) = 1
♣D♣

∑

G∈D
ϕP (G).

Assume to take a random sample (uniformly and with replacement) S =

¶G1, . . . , Gn♢ of size n from D. Then let σi be a Rademacher random variable,

i.e. taking value 1 or −1 with probability 1/2, for each 1 ≤ i ≤ n. Let also

the σiŠs be independent. Then we deĄne the empirical Rademacher average

in the context of frequent subgraph mining as

RS = Eσ



sup
P ∈P

1

n

n
∑

i=1

σiϕP (Gi)

]
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where Eσ denotes the expectation taken only with respect to the σiŠs, condi-

tionally on the sample.

4.1 Bounding the Rademacher Average

In this section we show how to efficiently bound RS . Indeed, note that

computing RS directly is infeasible, as it involves computing the support of

all patterns, and we hence resort to bounds given by MassartŠs lemma, which

is the most widely used tool to bound Rademacher averages without resorting

to time-consuming Monte Carlo methods, as described in Section 2.3.

For any pattern P ∈ P, let vS(P ) be the n-dimensional binary vector

(ϕP (G1), . . . , ϕP (Gn))T . Then, let VS = ¶vS(P ), P ∈ P♢. Since VS is a set,

we may have ♣VS ♣ ≪ ♣P♣ in case many patterns exhibit the support in S.

Theorem 9 (MassartŠs Lemma, frequent subgraph mining formulation).

RS ≤ max
P ∈P

∥vS(P )∥
√

2 ln ♣VS ♣
n

= max
P ∈P

√

2fS(P ) ln ♣VS ♣
n

.

Actually, we can use the stronger version of the theorem, as formulated in

Lemma 3, as follows.

Theorem 10. Let w : R+ → R
+ be the function

w(s) =
1

s
ln





∑

v∈VS

exp
(

s2 ∥v∥2 /(2n2)




 .

Then RS ≤ mins∈R+ w(s).

Once again, computing w is infeasible as it would involve computing

all supports. We then devise a function w̃, computable with a single scan

of the sample, that upper bounds w and can hence be used to bound the

Rademacher average.

Observation 1. An important observation is that if we restrict P to the set

of patterns with strictly positive frequency P+, the maximum deviation of the
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frequency is unchanged. Hence, we can work with the set of all connected

induced subgraphs of all the transactions, which is a huge but Ąnite set, rather

that the inĄnite set of all possible connected graphs.

In the following paragraphs we show how to compute efficiently an upper

bound to the Rademacher average in different scenarios.

4.1.1 Labeled Graphs

In this section we show how to efficiently bound RS for datasets of node

labeled graphs.

Note that we can see the individual labeled nodes as the building blocks

of the transactions. Let L be the set of such labeled nodes. It is useful

to consider them as patterns, as it will help to transition from labeled to

unlabeled graphs.

We partition VS as follows. Let Ci = ¶P = (VP , EP ) ∈ P+ s.t. ♣VP ♣ = i♢
be the set of patterns with i nodes and Vi = ¶vP : P ∈ Ci♢.

Then, consider the following partitioning of the sets Vi, i ≥ 1. Assume

to sort the labels in increasing order by the frequency of their corresponding

pattern in S and let the resulting order be <ℓ (other orderings will work as

well, but might lead to worse bounds). Let vP ∈ Vi and let Q ∈ L be s.t. Q is

the Ąrst pattern in the ordering <ℓ such that Q ⊆ P . Note that there always

exists one such pattern, since transactions are non-empty. Then we assign vP

to the set Vi,Q.

Let TS(i, Q) be the set of transactions τ = (Vτ , Eτ ) ∈ S s.t. Q ⊆ τ and at

least i nodes have label ≥ℓ Q. Consider then a transaction τ = (Vτ , Eτ ) ∈
TS(i, Q). Let Mi,Q,τ be the set of all induced connected subgraphs H of τ

s.t. H has i vertices, it contains pattern Q, and it does not contain patterns

Q′ <ℓ Q. Let also mi,Q,τ = ♣Mi,Q,τ ♣. We then have the following lemma.

Lemma 6. We have ♣Vi,Q♣ ≤ ∑

τ∈TS(i,Q) mi,Q,τ .

Proof. We show that there exists an injective function f : Vi,Q −→
⋃

τ∈TS(i,Q) Mi,Q,τ . Let vP ∈ Vi,Q, and Ąrst of all note that P cannot con-

tain nodes Q′ <ℓ Q, as vP would belong to Vi,Q′ . Then the pattern P , since
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it has positive frequency, is isomorphic to a connected induced subgraph H

of some τ ∈ S, with τ containing at least a node Q and at least i nodes

with label ≥ℓ Q. Then H ∈ Mi,Q,τ , τ ∈ TS(i, Q). Let then f(vP ) = H.

In case of multiple possible HŠs, ties are broken arbitrarily. Since P and

f(vP ) are isomorphic, no two different patterns can be mapped to the same

connected induced subgraph H, and f is hence injective. Recalling that

♣⋃τ∈TS(i,Q) Mi,Q,τ ♣ ≤ ∑

τ∈TS(i,Q) mi,Q,τ , we have the claim.

A slack bound to mi,Q,τ is
(

♣Vτ ♣
i



. A better bound can be obtained noticing

that nodes Q′ <ℓ Q cannot be chosen, and that at least one node Q must

be chosen. Let ♣V (≥Q)
τ ♣ be the number of nodes in τ with label ≥ℓ Q and

♣V (>Q)
τ ♣ be the number of nodes with label >ℓ Q. Then we have mi,Q,τ ≤

(

♣V
(≥Q)

τ ♣
i



−
(

♣V
(>Q)

τ ♣
i



≤
(

♣V
(≥Q)

τ ♣
i



.

Note that in the bounds above we are not exploiting the fact that the

subgraphs have to be connected. Then, if one is willing to sacriĄce running

times for obtaining better bounds, an exact subgraph enumeration algorithm

can be suitably modiĄed to provide a tighter bound to mi,Q,τ . We describe

such an algorithm in Section 4.2.

We now provide a second bound on ♣Vi,Q♣, which exploits the fact that

many patterns might share the same support.

Lemma 7. We have ♣Vi,Q♣ ≤ 2♣TS(i,Q)♣ − 1.

Proof. Note that all transactions in S \ TS(i, Q) must have the corresponding

entry in vP set to 0 for all patterns P ∈ Vi,Q. Indeed, if a transaction has

less than i nodes with label ≥ℓ Q it cannot contain P , as it has i nodes and

does not contain any node with label <ℓ Q. Moreover, since Q is an induced

subgraph of P it is impossible for a transaction to contain P but not Q. Then

there are only 2♣TS(i,Q)♣ possible assignments, one of which is of all zeros.

Lemma 8. DeĄne mi,Q =
∑

τ∈TS(i,Q) mi,Q,τ and m′
i,Q = 2♣TS(i,Q)♣ − 1. Let also

χ be the maximum number of nodes in any transaction. Let then w̃ : R+ → R
+

be the function

w̃(s) =
1

s
ln





χ
∑

i=1

∑

Q∈L

min¶mi,Q,m
′
i,Q♢e

s2♣TS (i,Q)♣

2n2



.
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Then we have that w(s) ≤ w̃(s), ∀s ∈ R.

Proof. We can write w(s) as follows.

w(s) =
1

s
ln





∑

vP ∈VS

exp
(

s2 ∥vP ∥2 /(2n2)






=
1

s
ln





χ
∑

i=1

∑

Q∈L

∑

v∈Vi,Q

e
s2∥v∥2

2n2



.

Moreover, as shown in Lemma 7, all transactions in S \ TS(i, Q) must have

the corresponding entry in vP set to 0 for all patterns P ∈ Vi,Q. Then for

such patterns we have ∥vP ∥2 ≤ ♣TS(i, Q)♣. Then we have

∑

v∈Vi,Q

e
s2∥v∥2

2n2 ≤ e
s2♣TS (i,Q)♣

2n2 · ♣Vi,Q♣.

Combining the bounds on ♣Vi,Q♣ from Lemmas 6 and 7 we obtain the claim.

Note that, if one is interested in bounding the deviations of frequencies

only for subgraphs of size up to k, one can simply put χ = k and obtain a

tighter number of samples.

Observation 2. By design, the two quantities mi,Q and m′
i,Q are useful in

different transaction size ranges. Indeed, the former is more powerful for

small node counts i, where the cardinality of TS(i, Q) is very large and thus

not useful, while the number of connected subgraphs of size i is relatively small.

For large node counts i, instead, the number of connected subgraphs is huge,

but the size of TS(i, Q) is much smaller, as large transactions are hopefully

rare.

We can compute all the needed quantities in a single scan of the sample

S, provided that the order <ℓ is already available. Indeed, for each τ =

(Vτ , Eτ ) ∈ S, we check for the presence of patterns P ∈ L in τ . Then, for

each Q ∈ L in increasing order by <ℓ, if Q ⊆ τ , we upper bound the quantity

mi,Q,τ , either using the binomial formula or a subgraph enumeration algorithm.

Moreover, we update the size of TS(i, Q) for each i = 1, . . . , ♣V (≥ℓQ)
τ ♣.
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i > k. Assume again to sort patterns of Ck according to some ordering <k

(e.g. by frequency). Let vP ∈ Vi and let Q ∈ Ck be s.t. Q is the Ąrst pattern

in the ordering <k such that Q ⊆ P . Then we assign vP to the set Vi,Q.

Note that, since in the labeled case we treated individual nodes as patterns,

most of the analysis carries over to this case trivially, with the exception of

the bounds to mi,Q,τ .

Indeed, while it is still true that mi,Q,τ ≤
(

♣Vτ ♣
i



, it is not possible to exploit

the fact that patterns Q′ <k Q should not be chosen to obtain a closed form

bound. Similarly, a subgraph enumeration procedure should be adapted as

well.

We then have the following lemma, whose proof is akin to the one of

Lemma 8:

Lemma 9. Let mi,Q, m′
i,Q and χ be deĄned as before. Let then w̃ : R+ → R

+

be the function

w̃(s) =
1

s
ln





k
∑

i=1

∑

P ∈Ci

e
s2♣TS (Q)♣

2nn +

χ
∑

i=k+1

∑

Q∈Ck

min¶mi,Q,m
′
i,Q♢e

s2♣TS (i,Q)♣

2n2



.

Then we have that w(s) ≤ w̃(s), ∀s ∈ R.

4.2 Bounding the Number of Connected Sub-

graphs

As stated before, bounding mi,Q,τ with the binomial formula yields quite a

slack bound, since we are considering also disconnected graphs. We now

briefely describe a subgraph enumeration algorithm which only considers

connected graphs.

Given a graph τ , we perform a complete search incrementally growing

an induced subgraph cur by adding to it vertices from the ones we havenŠt

considered yet (which we store in left), intersected with the neighbors of the
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vertices in cur, which we store in neigh. Initially, we start with cur and neigh

empty and with left the set of nodes that can be used, namely the ones with

label ≥ℓ Q. To contain running times, we limit the recursion depth, using the

simpler bounds on nodes in left for the subtrees below the maximum depth.

Algorithm 4: CountSubgraphs(cur, left, neigh,Q, remDepth)

1 if remDepth == 0 then

2 cnt cur = # nodes in cur
3 cnt left = # nodes in left

4 for i = 0, . . . , cnt left do

5 m(cnt cur+i),Q,τ + =
(cnt left

i

)

6 return

7 if cur == ∅ then

8 cand = left

9 else

10 cand = left ∩ neigh

11 if cand ̸= ∅ then

12 pick Ąrst v from cand

13 CountSubgraphs(cur, left \ ¶v♢, neigh, Q, remDepth − 1)
14 CountSubgraphs(cur∪¶v♢, left\¶v♢, neigh∪N(v), Q, remDepth−1)

15 else

16 cnt cur = # nodes in cur
17 mcnt cur,Q,τ + = 1

ItŠs easy to see that, if we do not limit the recursion depth, all and only

the connected induced subgraphs of τ are counted in lines 15-17. Indeed,

consider a connected induced subgraph G = (V = ¶i1, . . . , il♢, E). Then i1

will be picked from cand and added to cur in the branch of the recursion

tree where all previous nodes were not added to cur. Afterwards, all vertices

i2, . . . , il will be added to cand at some point since they are connected (either

directly or indirectly) to i1. Hence, G will be created as a leaf of the recursion

tree. Conversely, a disconnected subgraph cannot be created since once the

Ąrst vertex is added to cur, the nodes in the other connected components

cannot be added to cand.

At each internal node of the recursion tree we perform O (♣V ♣) work (very

fast if implemented using bitmaps) and in the leaves we perform O (♣V ♣) work

as well. Then, since in a binary tree with k leaves we have k − 1 internal
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nodes, called z the number of connected induced subgraphs of τ , we have a

total time complexity of O (z · ♣V ♣).
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Chapter 5

Applications

This chapter describes two applications of the bounds on the VC-dimension

and on Rademacher averages for subgraphs. In particular, Section 5.1 de-

scribes their use for approximate frequent subgraph mining through sampling,

while Section 5.2 describes their use to solve the problem of true frequent

subgraph mining.

5.1 Approximate Frequent Subgraph Mining

with Guarantees

We now propose two algorithms, one based on the VC-dimension and one

based on Radamacher Averages, to compute ε-approximations of frequent

subgraphs by sampling. As with all sampling approaches, the main challenge

is to bound the number of samples required to have guarantees on the relation

between the results on the sample and the results on the whole dataset. In

particular, we are interested in obtaining ε-close approximations.
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As shown in Section 2.2, a straightforward application of HoeffdingŠs

inequality yields that, for a Ąxed pattern P , if we take a sample D′ of 1
2ε2 ln(2

δ
)

transactions, with probability 1 − δ we have that ♣fD′(P ) − fD(P )♣ ≤ ε. One

generally would then proceed to bound the probability of not obtaining a

ε-close approximations using union bound over all patterns. In the case of

frequent subgraph mining though this strategy fails due to the enormous

number of patterns in P , which is exponential in the square of the maximum

number of nodes in a pattern. We then exploit the bounds we derived in the

previous sections to develop better methods.

5.1.1 VC-dimension-based Algorithm

We now present our algorithm based on the VC-dimension. In particular,

the algorithm Ąrst computes the upper bound to the VC-dimension using

Algorithm 2. Then, it takes a random sample D′, taken uniformly at random,

of D and reports in output FG(D′,P , θ − ε), that is, all subgraphs with

frequency ≥ θ − ε in D′. The following theorem (whose proof is analogous

to the one in [RU14] for frequent itemsets mining) bounds on the number of

samples that D′ must contain for the output FG(D′,P , θ− ε) to be a 2ε-close

approximation of FG(D,P , θ) with probability at least 1 − δ.

Theorem 11. Let D be a dataset of transactions, P a set of patterns and

v an upper bound to the VC dimension of the range space associated with

them. Let 0 < ε, δ < 1. Let D′ be a random sample of D (taken uniformly at

random with replacements) of size

min


♣D♣, c

ε2



v + ln
1

δ

}

for some absolute constant c. If m = ♣D♣ we assume D′ = D. Then

FG(D′,P , θ− ε) is an absolute (2ε)-close approximation to FG(D,P , θ) with

probability at least 1 − δ.

Proof. From Theorem 2 we know that with probability at least 1 − δ, D′

is an ε-approximation for D, i.e. ♣fD′(P ) − fD(P )♣ ≤ ε for each P ∈ P. In

44



5. Applications Paolo Pellizzoni

particular, this happens for all P ∈ C = FG(D′,P , θ− ε), satisfying property

3 of DeĄnition 2. Moreover, for each P ∈ FG(D,P , θ), we have fD(P ) ≥ θ−ε,

so it appears in C, satisfying property 1. Finally, if P is s.t. fD(P ) < θ − 2ε,

then fD(P ) < θ − ε and it does not appear in C, satisfying property 2.

5.1.2 Rademacher-average-based Algorithm

As a second approach for obtaining ε-close approximations with guarantees is

to use a progressive sampling scheme [RU15], with Rademacher averages to

deĄne stopping conditions. This avoids to process the entire dataset, which

can be beneĄcial in extremely massive datasets, allowing to consider only a

small sample of it. The outline of the sampling algorithm is the following:

1. at iteration i, obtain the random sample Di from D;

2. compute εR such that maxP ∈P ♣fDi
(P ) − fD(P )♣ ≤ εR;

3. check if εR ≤ ε;

4. if so, return D′ = Di, else compute the sample size at iteration i + 1,

increase i and return to (1).

The computation of εR is performed using Rademacher averages. Indeed,

we have the following result, based on Theorem 4, bounding the maximum

deviation of pattern frequencies.

Theorem 12. Let S be a random sample (uniformly and with replacements)

of size n from D. Let also RS be the empirical Rademacher average of S, as

deĄned in Chapter 4. Then, with probability 1 − δ,

sup
P ∈P

♣fD(G) − fS(G)♣ ≤ 2RS + 3

√

ln 2/δ

2n
.

In particular, Lemma 8 (or Lemma 9, if the graphs are unlabelled) is

used to compute an upper bound w̃(s) to w(s) for each s ∈ R, which leads

to an upper bound to the Rademacher average RS using Theorem 10. Such

upper bound to RS is used to compute the probabilistic upper bound εR
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to maxP ∈P ♣fD′(P ) − fD(P )♣ according to Theorem 12, which holds with

probability at least 1−δ. Then, using the arguments employed in Theorem 11,

we can prove that FG(D′,P , θ−ε) is a 2ε-close approximation for FG(D,P , θ).
The last component in the progressive sampling algorithm to be described

is the choice of a sampling schedule, which is deĄned by the initial sample

size and by the growth rate of the number of samples.

As shown in [RU15], if the number of samples is smaller than S∗
0 = 9 ln(2/δ)

2ε2 ,

then the condition of Theorem 12 cannot be satisĄed, so we choose S∗
0 as the

initial sample size.

As for the growth rate, one possibility would be to choose a geometric

sampling schedule ♣Si+1♣ = α♣Si♣, with α a parameter to be chosen by the

user. In fact, as discussed in [RU15], a better sampling strategy is to use the

estimated maximum deviation at iteration i, εR = mins w̃(s) + 3
√

ln(2/δ)
2♣Si♣

, to

generate the next sample size. Indeed, since there is a quadratic dependency

between the sample size and the maximum deviation, a good guess for the

next sample size is ♣Si+1♣ =
(

εR

ε

2 ♣Si♣.

5.2 True Frequent Subgraph Mining

As described in Section 2.1, a common scenario in frequent pattern mining

is that the dataset D is not to be considered as the ground truth on the

underlying generating process, but rather as a sample from an unknown gen-

erating distribution π. In this setting then one would like to extrapolate, from

the sample D, the patterns that are frequent in the underlying distribution.

More formally, as deĄned in Section 2.1, the true frequent patterns are all the

patterns P such that
∑

G:P ⊆G pπ(G) ≥ θ, where pπ is the density function of

π.

A simple algorithm to compute a 2ε-close approximation of the set of true

frequent subgraphs with probability at least 1 − δ is analogous to the one

proposed in [RV14] for true frequent itemset mining, and works as follows:

using dataset D, compute an upper bound ε to maxP ∈P ♣pπ(P ) − fD(P )♣ that

holds with probability at least 1 − δ; report in output the set of patterns
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FG(D,P , θ − ε) with frequency at least θ − ε in the dataset D. The output

is then a 2ε-close approximation of the set of true frequent subgraphs with

probability at least 1 − δ (the proof is analogous to the one in [RV14]).

The upper bound ε to maxP ∈P ♣pπ(P )−fD(P )♣ that holds with probability

at least 1 − δ can be computed using either the VC-dimension (see Chap-

ter 3) or Rademacher averages (see Chapter 4), as described in the following

subsections.

5.2.1 Bounding Deviations using the Empirical VC

Dimension

In this context we have to use the more general notion of ε-approximation

we introduced in DeĄnition 9. While the results of Theorem 2 hold even

for the general deĄnition of ε-approximations that we are using in this

context, albeit with the caveat that sampling has to be performed according

to π rather than uniformly, it is impossible to bound the VC dimension

of the range space (Π, RP) associated with π directly, as the support Π

of π is in general unknown. We then have to resort to a weaker bound

based on the empirical VC dimension on the sample D. Indeed, if we let

d = EV C((Π, RP),D) = V C(D, RP), thanks to Lemma 4, we have that the

sample D, of size n, is an ε-approximation for Π w.r.t. π for

ε = 2

√

2d ln(n+ 1)

n
+ 3

√

ln(2/δ)

2n
.

The VC dimension of (D, RP) can be bounded using either the d-bound or

the c-bound, as described in Chapter 3, giving then a bound on the empirical

VC dimension of (Π, RP) on D. This immediately yields a bound on the

maximum deviation of the frequencies of patterns in D with respect to their

true frequencies in the generating distribution π. This can be in turn used

to obtain absolute (2ε)-close approximations to the true frequent subgraph

mining problem.

47



5. Applications Paolo Pellizzoni

5.2.2 Bounding Deviations using Rademacher Averages

While the bounds based on the VC dimension required information on the

entire range space of the instance, the Rademacher-averages-based bounds

require only sample dependent quantities, and can thus be directly used to

estimate the maximum deviation of frequencies even when the dataset D is

to be considered as a sample from an unknown generating distribution. In

Chapter 6 we provide experimental evidence that this approach signiĄcantly

outperforms the method based on the empirical VC dimension.
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Chapter 6

Experiments

In order to evaluate the effectiveness of our theoretical bounds, we imple-

mented the methods to compute the sample sizes described in this thesis and

tested them on a suite of proof-of-concept experiments. The main goals of

this experimental evaluation is to

• Compare the tightness of the bounds we presented both in the sampling

from a static dataset and in the sampling from a distribution version of

the problem

• Assess the precision, recall and maximum deviation of the approximate

mining algorithms derived from our sampling schemes, for both versions

of the problem.

• When sampling from a Ąxed dataset, show the performance beneĄts in

terms of running time and peak memory consumption

All experiments were performed on a server with a dual Intel Xeon 5220

processor with 72 cores and 1Tb of RAM. We implemented our algorithms
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Table 6.1: Key properties of datasets. See Section 2.1 for the deĄnition of
the properties.

Name ♣D♣ ♣LV ♣ ♣LE♣ avg. ♣V ♣ avg. ♣E♣
Akos 10000000 76 2 49.6 51.6

Pubchem 25000000 103 2 50.1 52.1
Reddit 203088 1 1 23.9 24.9

Alphafold 541374 20 3 353.8 373.8

in C++ and used no form of paralellism. Moreover, in order to perform the

subgraph isomorphism checks within our methods, we have implemented a

wrapper around the VF3Lib library [CFSV18], as it is reportedly one of the

fastest ones. As the nonlinear optimizer, we used the NLopt library [NLo]. For

what concerns the subgraph mining step, we used the Gaston library [NK05],

as again it is one of the most performant ones [WMFP05]. This mining

algorithm has two versions, one with occurrence lists, which is fast but uses

a signiĄcant amount of memory, and one without occurrence lists (Gaston

RE) that uses a small amount of memory but is signiĄcantly slower that the

other version. For labelled datasets, where the search space can be efficiently

pruned, we were able to use the former version, while for unlabelled datasets

the mining process on Gaston with occurrence lists exceeded one terabyte of

main memory even for small subgraph sizes and high frequency thresholds,

so we had to resort to the RE version of the miner.

6.1 Datasets

We used datasets from various Ąelds, including computational chemistry,

computational biology and social network analysis. The Akos and Pubchem

datasets are subsets of two well-known molecular databases1, and have already

been used for validating large-scale subgraph mining [LXG14]. Reddit2 is

a collection of graphs representing threads collected from Reddit in May

1http://akosgmbh.de/, https://pubchem.ncbi.nlm.nih.gov
2https://snap.stanford.edu/data

50



6. Experiments Paolo Pellizzoni

2018 and is the only unlabeled dataset. Moreover, we introduce a new graph

dataset Alphafold based on the protein structure predictions of DeepMindŠs

Alphafold on the SwissProt dataset3. Since many proteins feature a high

node count, this dataset can be considered a stress test for our methods, as

their performance should degrade as the average size of the graphs grows.

Table 6.1 enumerates the datasets as well as some of their key properties.

Most subgraph miners (e.g. Gaston [NK05] and gSpan [YH02]) use the

following format for encoding graph transactional datasets:

t # <graph−id>

v <vertex−id> <vertex−l abe l>

. . .

e <vertex−id> <vertex−id> <edge−l abe l>

. . .

We then had to convert the datasets from the format they were encoded

in to the format above. The next subsections describe the preprocessing steps

that that had to be performed for each dataset.

6.1.1 Molecular Datasets Preprocessing

The Akos and Pubchem databases can be dowloaded in SDF format, which

encodes information about the atoms, bonds, and coordinates of the atoms of

a molecule. First of all, since we only need connectivity information (and not

spatial information), we can efficiently store each molecule into its SMILES

string, which is a compact way of describing molecular graphs, saving a

signiĄcant amount of space. To do so we used the RDKit4 library in Python,

which is widely spread in computational chemistry. The same library allows

us to transform the molecules into the graph format we described above.

The following is a snipped of the code used to produce the transactional

datasets.

3https://alphafold.ebi.ac.uk/
4https://www.rdkit.org/
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import sys

from rdkit import Chem

count = 0

def converter(file_name ):

global count

sppl = Chem.SDMolSupplier(file_name)

smiles_file = open(out_path+"_smiles.txt", "w")

graphs_file = open(out_path+"_graphs.txt", "w")

for mol in sppl:

if mol is not None:# some compounds cannot be loaded .

smi = Chem.MolToSmiles(mol ,

allHsExplicit = True ,

allBondsExplicit = True)

smiles_file.write(f"{smi}\n")

atoms_info = [ (atom.GetIdx(), atom.GetAtomicNum ())

for atom in mol.GetAtoms(onlyHeavy=False)]

bonds_info = [(bond.GetBeginAtomIdx (),

bond.GetEndAtomIdx (),

int(bond.GetBondTypeAsDouble ()*2 - 2))

for bond in mol.GetBonds ()]

graphs_file.write(f"t␣#␣{count }\n")

for (id , lb) in atoms_info:

graphs_file.write(f"v␣{id}␣{lb}\n")

for (u, v, lb) in bonds_info:

graphs_file.write(f"e␣{u}␣{v}␣{lb}\n")

count += 1

print("Converted", count , "molecules")

smiles_file.close()

graphs_file.close()

6.1.2 Protein Dataset Preprocessing

DeepMind provides its database on the protein structures predicted by Al-

phaFold [JEP+21] on the SwissProt protein dataset. The protein structures

are stored in the PDB format. We generated the graphs, using the Graphein5

library, using the amino acids as nodes and peptide, hydrogen and aromatic

bonds as edges. The graphs obtained form this procedure are stores using

the NetworkX library6, which is easy to interface with Graphein. Once the

graphs were generated, we transformed them into the standard format we

decribed above.

5https://graphein.ai/
6https://networkx.org/
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The following is a snipped of the code used to produce the Alphfold

transactional dataset.

from graphein.protein.config import ProteinGraphConfig

from graphein.protein.graphs import construct_graph

from graphein.protein.edges.distance import add_hydrogen_bond_interactions ,

add_aromatic_interactions ,

add_peptide_bonds

from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot

new_funcs = {"edge_construction_functions":

[add_peptide_bonds ,

add_aromatic_interactions ,

add_hydrogen_bond_interactions],

"node_metadata_functions":

[amino_acid_one_hot]

}

config = ProteinGraphConfig (** new_funcs)

count = 0

for filename in os.listdir(inpath ):

filepath = os.path.join(inpath , filename)

if(not filename.endswith(".pdb.gz")):

continue

g = construct_graph(config=config , pdb_path=filepath)

names2id = {}

cnt = 0

for n, d in g.nodes(data=True):

names2id[n] = cnt

cnt += 1

out.write(f"t␣#␣{count }\n")

for n, d in g.nodes(data=True):

out.write(f"v␣{names2id[n]}␣{np.argmax(d[Šamino_acid_one_hot Š])}\n")

for n1, n2 , d in g.edges(data=True):

dd = 0

if ŠhbondŠ in d[ŠkindŠ]:

dd = 1

if Šaromatic Š in d[ŠkindŠ]:

dd = 2

if Špeptide_bond Š in d[ŠkindŠ]:

dd = 0

out.write(f"e␣{names2id[n1]}␣{names2id[n2]}␣{dd}\n")

out.flush()

count += 1

out.close ();

6.1.3 Reddit Dataset Preprocessing

The Reddit dataset is provided in json format as an edge list, which can be

easily transformed into our graph format with the following code.
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import json

maxn = 203088

with open(Š./ reddit_edges.json Š, ŠrŠ) as f:

data = json.load(f)

for i in range(maxn):

print("t #", i)

edges = data[str(i)];

n = 0

for (a,b) in edges:

n = max(n, max(a, b)+1)

for j in range(n):

print("v", j, "0")

for (a,b) in edges:

print("e", a, b, "0")

6.2 Approximate Frequent Subgraph Mining

In this section we explore the performance of our algorithms when sampling

transactions from a static dataset (e.g. in order to improve running times

and memory usage).

First of all, for each of the datasets described before, we obtained the

sample sizes using both the method based on the c-bound (for various maxi-

mum subgraph sizes) and the one based on the Rademacher averages. We

Ąxed δ = 0.05 (we also tested other values, but since it has only a logarithmic

dependency on the sample size, the results are almost not affected by it), and

let ε range in ¶0.1, 0.05, 0.02, 0.01♢. The comparison of the sample sizes is

shown in Fig. 6.1, which reports the mean values over 5 runs, together with

95% conĄdence interval (in shaded color). As shown in the plots, in all the

datasets we tested the methods on the VC-dimension-based bounds signiĄ-

cantly outperform the bounds based on Rademacher averages. This might

be due to the progressive sampling approach employed by the Rademacher

averages bound, which may lead to conservative (i.e., larger) estimates of the

required sample sizes, or by the fact that MassartŠs lemma produces a slack

bound to the Rademacher average.

Another interesting pattern that we see is that as the maximum sub-

graph size in the c-bound bound decreases, the sample size decreases as well.

Thanks to this property, when one wants to limit the mining process to small
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Table 6.2: Running time and peak memory usage to obtain the sample for
approximate frequent subgraph mining (ε = 0.1).

c-bound Rademacher (ε = 0.05)

Dataset Time (s) Mem. (MB) Time (s) Mem. (MB)
Akos 108 ± 2 23 ± 1 113 ± 13 36 ± 1

Pubchem 270 ± 1 102 ± 0 251 ± 3 47 ± 0
Reddit 1.2 ± 0.1 21 ± 0 34.6 ± 0.8 231 ± 1

Alphafold 95 ± 2 643 ± 0 1900 ± 11 55 ± 0

Table 6.3: Precision, recall and maximum deviation of approximate solutions

ε = 0.01 ε = 0.05

Dataset Prec. Recall Max dev. Prec. Recall Max dev.

Akos θ = 0.8 0.99 1.0 0.0012 0.81 1.0 0.0046
θ = 0.5 0.95 1.0 0.0019 0.77 1.0 0.0112
θ = 0.2 0.89 1.0 0.0025 0.51 1.0 0.0112

Pubchem θ = 0.8 0.85 1.0 0.0014 0.71 1.0 0.0050
θ = 0.5 0.96 1.0 0.0015 0.78 1.0 0.0113
θ = 0.2 0.90 1.0 0.0015 0.52 1.0 0.0113

Alphafold θ = 0.5 0.99 1.0 0.007 0.93 1.0 0.0084
θ = 0.2 0.90 1.0 0.0008 0.56 1.0 0.0091
θ = 0.1 0.87 1.0 0.0008 0.47 1.0 0.0091

space constraints, we noticed that computing the c-bound becomes faster as

k decreases, as the running times depend on the actual c-bound, and does

not depend on ε, as the entire dataset has to be considered anyways. On the

other hand, the Rademacher-based method performance grows quadratically

with 1/ε, as it depends on the the number of samples to be considered.

We then analyse the results of the frequent subgraph mining procedure

on the full datasets as well as on the subsampled datasets corresponding to

ε = 0.01, 0.05. Since the c-bound-based method has proven to be the best one

for this particular task, we use its bounds, using k = 10 for Alphafold and

k = 20 for the other datasets, which are conservative bounds to the maximum

size of a frequent subgraph. We run the mining procedure with multiple

frequency thresholds (θ = 0.8, 0.5, 0.2 for all datasets except Alphafold,
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Table 6.4: Performance of exact and approximate mining algorithms

Full dataset ε = 0.01

Dataset Samples Time (s) Mem. (GB) Samples Time (s) Mem. (GB)
Akos θ = 0.8 10 · 106 690 ± 2 93 ± 0 439979 30.8 ± 0.4 4.3 ± 0

θ = 0.5 2030 ± 297 105 ± 0 82 ± 2 4.8 ± 0
θ = 0.2 9160 ± 534 118 ± 0 462 ± 45 5.5 ± 0

Pubchem θ = 0.8 25 · 106 1400 ± 10 227 ± 0 684979 38 ± 0.4 6.3 ± 0
θ = 0.5 4303 ± 454 251 ± 0 105 ± 8 6.9 ± 0
θ = 0.2 14415 ± 713 279 ± 0 395 ± 25 7.7 ± 0

Reddit θ = 0.8 203088 - - 69979 - -
θ = 0.5 - - - -
θ = 0.2 - - - -

Alphafold θ = 0.5 541374 157 ± 4 9.3 ± 0 474979 144 ± 14 8.2 ± 0
θ = 0.2 310 ± 56 9.5 ± 0 302 ± 36 8.3 ± 0
θ = 0.1 542 ± 78 9.7 ± 0 436 ± 28 8.5 ± 0

ε = 0.05

Dataset Samples Time (s) Mem. (GB)
Akos θ = 0.8 17599 1.1 ± 0.1 0.1 ± 0

θ = 0.5 2.0 ± 0.1 0.2 ± 0
θ = 0.2 12.5 ± 1.1 0.2 ± 0

Pubchem θ = 0.8 27400 1.4 ± 0 0.2 ± 0
θ = 0.5 3.8 ± 0.3 0.3 ± 0
θ = 0.2 13.6 ± 0.9 0.3 ± 0

Reddit θ = 0.8 2800 32867 ± 3293 0.01 ± 0
θ = 0.5 46357 ± 11170 0.01 ± 0
θ = 0.2 81780 ± 18619 0.01 ± 0

Alphafold θ = 0.5 19000 4.6 ± 0.2 0.3 ± 0
θ = 0.2 9.2 ± 1.3 0.3 ± 0
θ = 0.1 14.8 ± 3.1 0.3 ± 0

We measured (see Table 6.3) the recall, i.e. the ratio of the number of true

positives and the number of actually frequent patterns, the precision, i.e. the

ratio of the number of true positives and the number of returned patterns, and

the maximum deviation of the reported frequency of the true positives. The

reported precisions and recalls are averages over 5 runs, and since the standard

deviation is always below 0.01, we omit it. The reported maximum deviations

are the maxima over the 5 runs. Remarkably, the number of false negatives,

throughout all of our tests, is always zero (and not only with probability

1 − δ), and hence our approximate mining method has always recall 1.0. For

what concerns the precision, we point out that our methods have no control

over it, as it depends on the number of subgraphs with frequency in [θ− ε, θ],

which is unknown a priori. Nonetheless, the experiments show that, especially

for ε = 0.01, the number of false positives is quite limited. Moreover, all

false positives are ŤacceptableŤ ones, in the sense that their frequencies are
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never more than 2ε lower than the threshold, as required by DeĄnition 3.

Finally, the maximum deviation of the frequency of truly frequent patterns is

noticeably smaller than the theoretical bound provided by the theory, and,

as shown in Fig. 6.2, the errors are quite concentrated around 0, especially

for high thresholds. This hints that tighter bounds might be possible to

obtain. We remark that for computing the above quantities, we Ąrst had to

solve the subgraph mining problem on the original full dataset, which is an

expensive computation that in some cases (e.g. on the Reddit dataset) is

basically impossible to carry out. In these latter cases the theoretical bounds

we provided are the only guarantees that one might have on the quality of

the solution on the sample.

Lastly, we investigate the performance gains in executing the mining

algorithm on the sampled datasets in terms of running times and peak memory

consumption. The performance of the mining algorithm not only depends on

the number of transactions in the dataset, but also on the number of frequent

patterns. Since in the sampled datasets we have to mine all patterns with

frequency θ − ε, the number of outputted patterns will be higher than the

number of true frequent patterns, and this could worsen running times and

memory consumption. Note that the performance beneĄts are the primary

reason to use the sampled datasets, hence we hope that the reduction in

the input size overcomes the increase in the output size in terms of impact

on the performance, and to hence see substantial improvements. Indeed, as

reported in Table 6.2, we see up to a 20x reduction in peak memory usage and

running times for ε = 0.01 and up to a 1000x reduction for ε = 0.05. This

makes it possible to run the subgraph mining procedure on a large dataset

such as Pubchem on a standard laptop with 8GB or RAM rather than

on a dedicated system with hundreds of gigabytes of RAM. Moreover, for

challenging datasets such as Reddit, the sampling scheme allows to conclude

the mining procedure in a few days of computation rather than in weeks or

months, making the problem from virtually impossible to solve to solvable.

We also report how the total computing time is subdivided among computing

the sample size and sampling the dataset, and running the mining procedure

on the sample. We remark that, especially for low values of ε, the time needed
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VC dimension rather than the full VC dimension, since the latter is unknown,

and this leads to much weaker bounds. The bounds based on Rademacher

averages instead are not based on information on the distribution, but rather

on the samples only, and hence are still valid. As shown in Fig. 6.4, in this

framework the Rademacher-complexity-based bounds signiĄcantly outperform

the empirical-VC-based ones. Moreover, limiting the maximum pattern size

helps produce sharper bounds. Once again, the reported quantities are

averages over 5 runs together with 95% conĄdence intervals.

Finally, we exploited the bounds derived from the Rademacher-averages-

based methods, since they are the best ones, to mine the samples ad a

lowered threshold and obtain an approximation to the true frequent itemsets

in the generating distribution. Since the distributions reĆects the datasets

of Table 6.1, we have access to the probability distribution and can thus

calculate the precision, recall and maximum deviation of the approximate

frequencies, which are reported in Table 6.5. As expected, as the bound

on the maximum deviation decreases with the increasing sample size, the

precision of the appriximate mining algorithm increases for all datasets and

thresholds. Moreover, as in the other variant of the problem, the recall of the

method is always 1.0, that is there are no false neagatives. It is interesting

to notice that the actual maximum deviations of the estimated frequencies

from the true ones are uch smaller that the bounds provided by Rademacher

averages. This suggests that sharper bounds might be found.
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Table 6.5: Precision, recall and maximum deviation when sampling from a
distribution

n = 104 n = 105

Dataset Bound Precis. Recall Max dev. Bound Precis. Recall Max dev.
Akos θ = 0.8 0.232 0.39 1.0 0.0064 0.075 0.62 1.0 0.0018

θ = 0.5 0.15 1.0 0.0124 0.62 1.0 0.0038
θ = 0.2 - - - 0.32 1.0 0.0040

Pubchem θ = 0.8 0.285 0.24 1.0 0.0051 0.091 0.58 1.0 0.0032
θ = 0.5 0.13 1.0 0.0165 0.69 1.0 0.0043
θ = 0.2 - - - 0.26 1.0 0.0053

Alphafold θ = 0.5 0.260 0.48 1.0 0.0077 0.083 0.91 1.0 0.0041
θ = 0.2 - - - 0.36 1.0 0.0041
θ = 0.1 - - - - - -

n = 106

Dataset Bound Precis. Recall Max dev.
Akos θ = 0.8 0.026 0.93 1.0 0.0008

θ = 0.5 0.84 1.0 0.0015
θ = 0.2 0.72 1.0 0.0015

Pubchem θ = 0.8 0.029 0.79 1.0 0.0012
θ = 0.5 0.89 1.0 0.0014
θ = 0.2 0.70 1.0 0.0016

Alphafold θ = 0.5 0.026 0.97 1.0 0.0010
θ = 0.2 0.74 1.0 0.0017
θ = 0.1 0.19 1.0 0.0017
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Chapter 7

Conclusions

In this thesis, we derived efficiently computable bounds on the VC-dimension

and on the Rademacher averages of subgraphs. We showed that bounds

can be used to obtain efficient approximations for two graph mining tasks:

frequent subgraph mining and true frequent subgraph mining. Our extensive

experimental evaluations shows that our bounds, and the corresponding

algorithms, result in high-quality approximations for both applications on

several real datasets.
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