
c© 2017 Nicholas Christensen

This thesis is released into the public domain under the CC0 code. To the extent possible

under law, the author waives all copyright and related or neighboring rights to this work.

This work is published in the United States.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158324167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://creativecommons.org/publicdomain/zero/1.0/

EFFICIENT PROJECTION SPACE UPDATES FOR THE APPROXIMATION OF
ITERATIVE SOLUTIONS TO LINEAR SYSTEMS WITH SUCCESSIVE RIGHT HAND

SIDES

BY

NICHOLAS CHRISTENSEN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

with a concentration in Computational Science and Engineering
in the Graduate College of the

University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Professor Paul Fischer

ABSTRACT

Accurate initial guesses to the solution can dramatically speed convergence of iterative

solvers. In the case of successive right-hand sides, it has been shown that accurate initial

solutions may be obtained by projecting the newest right hand side vector onto a column

space of recent prior solutions. We propose a technique to efficiently update the column

space of prior solutions. We find this technique can modestly improve solver performance,

though its potential is likely limited by the problem step size and the accuracy of the solver.

ii

ACKNOWLEDGMENTS

I offer sincere gratitude to Professor Paul Fischer for his invaluable insights and advice.

Under his tutelage and direction I have become a much better mathematician, programmer,

and scientist. Without him this thesis would not have been possible.

I also thank members of the Spectral Element Analysis Lab for their encouragement and

assistance, particularly in helping me understand Nek5000’s finer details.

Finally, I thank James Lottes, a note from whom served as the kernel for this thesis.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Background . 1
1.2 Prior work . 2
1.3 Outline . 4

CHAPTER 2 SOLUTION APPROXIMATION BY PROJECTION 5
2.1 A-orthogonal basis . 5
2.2 Gram-Schmidt projection space update . 9
2.3 Efficient projection space update . 14

CHAPTER 3 NUMERICAL EXPERIMENTS . 26
3.1 Case 1: 3D vortex breakdown . 27
3.2 Case 2: 3D flow past a hemisphere . 32
3.3 Case 3: 3D flow in a carotid artery . 35

CHAPTER 4 ANALYSIS AND CONCLUSION . 39
4.1 Summary . 42

BIBLIOGRAPHY . 43

iv

CHAPTER 1

INTRODUCTION

1.1 Background

Iterative methods are among the most powerful means of solving linear systems, particu-

larly when a linear system is large, sparse, and non-diagonalizable. Such systems may occur,

for example, when solving partial differential equations (PDEs) numerically, an important

task for many in science, engineering, and applied mathematics.

Iterative methods evolve an initial guess to the solution towards the numerical solution,

stopping after reaching some desired accuracy. The number of iterations required for an

iterative method to converge to the solution significantly decreases if the initial guess is

already close (in a minimized residual sense) to the numerical solution. In the case of

solving (implicitly) smoothly time-evolving PDEs - towards which we orient the following

discussion - such an initial guess is available.

Time-evolving PDEs are often modeled by solving the differential equation at discrete

points in time, separated by a time interval ∆t. Over very short periods of time the system

changes very little. Consequently, the solution at some time t resembles closely the solution

at a nearby previous time t−∆t. If the solution at this previous time is used as the initial

guess for the solution at time t, then the iterative solver needs only to calculate the difference

between the solution at the previous time step and the solution at the current time. We

not restricted to only solving for the change in the solution between timesteps, however. As

prior research has borne out,[1] we can save the solution at multiple previous time steps and

generate an initial guess to the solution using a linear combination (i. e. weighted sum) of

these solutions to obtain a better approximation.1

1While we approach this problem in the context of numerically solving partial differential equations, this
technique is applicable to any smoothly evolving problem with successive right hand sides.[1]

1

For accuracy and stability, it is better to generate the initial guess from a set of basis vec-

tors orthogonal in the A inner product than to use the prior solutions directly. This presents

a potential problem. As the system evolves in time, new solutions are generated necessitating

updating the A-orthogonal basis. The cost of doing this using a Gram-Schmidt procedure

grows quadratically with the number of saved solutions. Here we present a method that

uses Givens rotations or Householder reflections in addition to a Gram-Schmidt procedure

to accomplish the same task with a cost that scales linearly with the number columns. We

find, however, that the performance benefits are modest and Gram-Schmidt algorithms may

provide adequate performance.

1.2 Prior work

1.2.1 Projection onto prior solutions

Though most effort into improving iterative solvers has focused on developing lighter

and more rapidly converging preconditioners, several methods of improving initial solution

approximations have emerged.[2] The method sketched above and expounded on slightly more

in the next chapter was introduced by Fischer.[1,3] It has continued to find applications[4–8]

which in part motivates our efforts here. Löhner obtained good results using a simplified

version of Fischer’s approach that simply projects onto the column space of a few prior

solutions without orthogonalization.[9] The number of usable prior solutions is presumably

limited by ill-conditioning, but performance comparison may be warranted in future work.

Other approximation methods are known. One related set of methods forms the solution

approximation by projecting onto a (potentially augmented) set of orthogonal Krylov bases.

We refer to Saad and to Chan and Wan for overview of these methods, although this area of

research has advanced considerably since their analyses were published.[10,11] Another active

area of research examines use of Proper Orthogonal Decomposition for generating accurate

initial guesses.[2,12–14] In other work, Grinberg and Karniadakis studied a high-order spectral

extrapolation method[2] and Sayed and and Sadkane applied the Petrov-Galerkin method to

obtain a solution approximation.[15]

2

Techniques have been developed for the case of a changing A matrix in addition to a

changing right hand side. We do not consider this case here and instead content ourselves

that for a slowly changing matrix, the oldest solution may be removed from the projection

space before the cumulative deviation becomes significant.2 Work by de Sturler, Parks, and

Kilmer on Krylov subspace recycling pertains to this problem.[16,17]

1.2.2 Efficient QR updates

Efficient ways of updating a QR factorization have been studied since the 1970s. Gill,

Golub, Murray, and Saunders examined updates for the full orthogonal QR factorization.[18]

Daniel, Gragg, Kaufman, and Stewart (DGKS) later extended these techniques to the re-

duced orthogonal QR factorization.[19] Implementation of DGKS’s algorithms were notably

absent from LINPACK,[20] but a Fortran implementation was eventually published by Buck-

ley in 1981.[21,22] Reichel and Gragg subsequently improved on DGKS’s algorithm in a later

Fortran implementation.[23] More recently, Hammarling, Higham, and Lucas developed al-

gorithms for certain block updates to QR factorizations and generalized the updating algo-

rithms to handle the underdetermined case.[24,25] Updating algorithms are now frequently

covered in numerical methods textbooks[26–29] and libraries for the task of updating orthog-

onal QR factorizations are available in several programming languages.[30–33]

The oblique QR factorization, of interest for the current problem, has received less atten-

tion. Afriat wrote on the topic of oblique projections in 1957[34] and in subsequent decades

strong use for oblique projections was found in signal processing.[35,36] Work on general

oblique QR factorization traces to Thomas in the 1990s.[37] More recently, excellent work

has been done on stability and error analysis of oblique QR factorization algorithms.[38–41]

Pioneering work by Rebollo-Neira[35] and Stewart[38] on updating oblique QR factorizations

using the Gram-Schmidt procedure is relevant to our discussion here.

2But see also the discussion in section 2.1.1.

3

1.3 Outline

The remainder of this work is organized as follows. Section 1 of chapter 2 presents the

more straight-forward approach to updating the projection space using Gram-Schmidt or-

thogonalization. Section 2 of the chapter explores the mathematical theory of the efficient

update method accompanied by several algorithms for implementations based on Givens

rotations and Householder reflections. Chapter 3 presents the results of numerical experi-

ments with the algorithms in Nek5000, a computational fluid dynamics program. We close

in chapter 4 with some final analysis and discussion.

4

CHAPTER 2

SOLUTION APPROXIMATION BY PROJECTION

2.1 A-orthogonal basis

Let A be an n×n symmetric positive definite matrix and consider the system of equations

Axi = bi where the superscript denotes the solution vector and right hand side vectors at

the ith discrete time step.1 In this system, bi is a vector of knowns and xi is a vector of

unknowns for which the system is solved.

Suppose we solve Axi = bi using an iterative method (e. g. CG, GMRES). The iterative

solver initiates with a guess to the solution vector x̂i. If the system is well-conditioned and

the iterative method is stable, then after each round of the iterative method, x̂i is updated

with the goal of making the norm of the residual, ‖Ax̂i − bi‖2, smaller than at the previous

iteration. Over the course of iteration x̂i converges toward xi, the numerical solution to the

system.[42]

We cease applying the iterative method after the norm of the residual is reduced below

some pre-determined tolerance. The number of iterations needed to decrease the residual

below this point depends on the convergence rate of the iterative method and the initial

residual. The latter is the focus of the discussion here. To reduce the number of iterations to

convergence, we desire an initial x̂i close to the solution xi so ‖Ax̂i − bi‖2 is small compared

to ‖bi‖2.

If the system changes little between time steps, then the solution vector for the current time

step, xi, resembles the solution vector at a recent time step such as xi−1. With a sufficiently

small step size, the amount of change itself also likely changes little between time steps.

Using an additional recent data point, say the solution xi−2, we can obtain information about

1Partial differential equations are frequently formulated as linear systems with symmetric positive definite
matrices and we restrict our treatment here to these systems.

5

the expected change in the solution and adjust our solution approximation accordingly. As

the change in the change in the solution and so forth may differ little between time steps,

we may persist with this scheme until the higher order changes are no longer smooth. In

this fashion, we may use the solutions at several previous time steps to make higher order

improvements to the initial guess. Hence, a reasonable initial x̂i may be constructed from

some linear combination of the solution vectors of previous time steps.

x̂i =
k∑

j=1

wjx
i−j. (2.1)

If we maintain a set of the solution vectors and right hand side vectors at the previous

k time steps,2 then at the ith time step we have a system AX = B where, for example,

X = [xi−k xi−k+1 . . . xi−2 xi−1] and B = [bi−k bi−k+1 . . . bi−2 bi−1].3 The above expression

for x̂i can then be restated in matrix form as

x̂i = Xw (2.2)

where w is a k × 1 vector that weights the contribution of each column of X.

The above formulation of x̂i is problematic for two reasons. First, computing w requires

solving the least squares problem

AXw = Bw ≈ bi (2.3)

at each time step. This procedure scales like nk2 procedure and it may become costly if n

or k are large. Second, because computers have finite precision and because right hand side

vectors of the system change little between consecutive time steps, the columns of B are

likely to be nearly linearly dependent. This makes the least squares problem above quite ill-

conditioned. Consequently, a direct linear combination of many previous solutions is likely

not a much more accurate approximation to xi than a linear combination of only a few. This

2While we use an unbroken sequence of vectors, this is not a requirement. Any set of successive right
hand side and solution vectors suffices, though one’s choice of saved vectors can affect the utility of the
projection.

3We are not committed to this ordering of vectors and will find a different ordering can be advantageous.

6

limits the accuracy of the approximation.

With some modifications to the problem, both of these issues are surmountable. The

former problem is the study of following sections. The latter problem is largely addressed

by forming x̂i as a linear combination of columns of a matrix Qx that has the same column

space as X but is orthogonal in the A inner product (i. e. if qi and qj are columns of Qx

then 〈qi, Aqj〉 = qTi Aqj = δij).
4 This gives us

x̂i = Qxr (2.4)

where r is a vector of weights.

Substituting this expression for x̂i into Ax̂i = bi, we have AQxr = bi. Multiplying both

sides by QT
x , we then obtain QT

xAQxr = QT
xb

i. Because Qx is orthogonal in the A inner

product (A-orthogonal), QT
xAQx = I and we obtain

r = QT
xb

i. (2.5)

Consequently by (2.4) and (2.5),

x̂i = QxQ
T
xb

i. (2.6)

Because QxQ
T
xb

i = QxQ
T
xAx

i, we note (2.6) constitutes an oblique projection of xi (the

desired solution vector) onto the column space of Qx (the space of the k prior solutions).5

QxQ
T
x is symmetric which implies Qx is normal. Therefore, the conditioning of (2.6) depends

only on the ratio in modulus of the maximum and minimum eigenvalues of QxQ
T
x .6 This is

an improvement over finding x̂i using

x̂i = Xw = X(BTB)−1BTbi. (2.7)

The matrix X(BTB)−1BT has the same eigenvalues as QxQ
T
x but is not normal so here

4The Dirac delta function is defined such that δij = 1 if i = j and δij = 0 if i 6= j.
5(QxQ

T
xA)(QxQ

T
xA) = Qx(QTxAQx)QTxA = QxQ

T
xA so QxQ

T
xA is a projector.

6This result follows from the singular value decomposition of QxQ
T
x .

7

∣∣∣λmax

λmin

∣∣∣ is only a lower bound for its condition number.7

So far we have focused on modifying the initial guess to the solution vector to reduce

the initial residual while leaving the system we are solving, Ax = b, intact. However, an

equivalent and occasionally useful way of reducing the initial residual is to instead set the

initial guess to 0 and to solve a modified problem A∆xi = ∆bi where

∆xi = xi − x̂i = xi −Qxr. (2.8)

and

∆bi = A(∆xi) = Axi − AQxr = bi −Qbr. (2.9)

Afterward, we may calculate the desired solution vector as xi = x̂i + ∆xi. In the case of

solving either system, we require the same Qx (and Qb) so our discussion here is relevant to

both formulations.

2.1.1 Error of the initial guess

Following Chan and Wan,[11] we estimate the scaling of the approximation error as a

function of a ∆t and k. Assuming the right hand side vector b varies smoothly in time, then

there exist extrapolation factors χj such that

bi =
k∑

j=1

χjb
i−j +O(∆tk) e, (2.10)

7 The proof is as follows. The condition number κ(A) = ‖A‖
∥∥A−1

∥∥ = max
‖x‖=1

‖Ax‖ × max
‖y‖=1

∥∥A−1y
∥∥.

However, max
‖x‖=1

‖Ax‖ ≥ ‖Ax‖ = |λi|‖x‖ = |λi| and likewise max
‖y‖=1

∥∥A−1y
∥∥ ≥

∥∥A−1y
∥∥ =

∣∣∣ 1
λj

∣∣∣‖y‖ =
∣∣∣ 1
λj

∣∣∣. If

we choose λi = λmax and λj = λmin, then we see κ(A) = ‖A‖
∥∥A−1

∥∥ ≥
∣∣∣λmax

λmin

∣∣∣.

8

where e is an error vector. From (2.6), the projected solution at the ith time step is x̂i =

QxQ
T
xb

i. By substituting the expression in (2.10) for bi,

x̂i = QxQ
T
xb

i

=
k∑

j=1

χjQxQ
T
xb

i−j +O(∆tk)QxQ
T
xe

=
k∑

j=1

χjx̂
i−j +O(∆tk) e′

.

(2.11)

Equation 2.11 states we can extrapolate x̂i, the solution approximation at the ith timestep,

from a set of approximations at prior timesteps while incurring an error that scales as O(∆tk).

However, in projecting x̂i we do better because we use the actual previous solutions. There-

fore, the error in the projection approximation scales at least like O(∆tk) and potentially

scales better. Note this result still holds if the matrix A also evolves smoothly in time. Our

decision to largely ignore the case of changing A consequently does not severely curtail the

applicability of the present discussion.

2.2 Gram-Schmidt projection space update

Equation 2.6 improves the accuracy of computing x̂i, but leaves us with the problem of

computing Qx at every time step. We discuss in this section the straightforward approach to

computing Qx using Gram-Schmidt orthogonalization and discuss a more efficient approach

in the following section.

As its name suggests, Qx can be generated from an (oblique) QR factorization of X.

Because we require Qx be A-orthogonal, the QR algorithms available for this are largely

limited to versions of Gram-Schmidt orthogonalization. No algorithms analogous to House-

holder transformations or Givens rotations exist for QR factorization in an oblique inner

product.[40] As the Givens and Householder algorithms depend on the property that prod-

ucts of orthogonal matrices are also orthogonal, direct use of these methods in the oblique

9

case may not be possible.[43]

Algorithms for oblique Gram-Schmidt orthogonalization are available in the literature

(e. g. [19,37,41,44,45]). The Gram-Schmidt algorithms we present below are tailored to our use

case. In particular, the algorithms reflect our need to simultaneously orthogonalize X and

B where B already exists and does not need to be recalculated as the product of AX. We

use reverse ordered iterations to reduce data movement.8

If at each time step we have X, the set of k previous solution vectors, and B, the set

of k previous right hand side vectors, then the column-oriented classical Gram-Schmidt

procedure (CGS) orthogonalizes X in the A norm (i. e. orthogonalizes X and B) using the

process shown in Algorithm 2.1. The vectors qi are columns of Qx and the vectors si are

columns of Qb = AQx.

Algorithm 2.1 A-Orthogonal Classical Gram-Schmidt

1: for i = k to 1 do
2: qi ← xi
3: si ← bi
4: for j = i+ 1 to k do
5: rji ← (qTj bi + bTj si)/2
6: end for
7: for j = i+ 1 to k do
8: qi ← qi − rjiqj
9: si ← si − rjisj

10: end for
11: rii ←

√
sTi qi

12: if rii > tolerance then
13: qi ← qi/rii
14: si ← si/rii
15: else
16: remove qi and si
17: end if
18: end for

Calculating rji as the average of qTj bi and bTj xi may seem peculiar. It is mathematically

valid because

bTj xi = (Axj)
Txi = xTj A

Txi = xTj Axi = xTj bi = rji. (2.12)

8We assume we are not tracking the index of the oldest column. By orthogonalizing in this order we
avoid shifting columns when k < kmax.

10

The motivation calculating rji in this way is that x may not be solved for exactly within the

iterative method. Instead, x is found to some tolerance, with the effect that Ax = b is only

true to within some tolerance. Consequently, neither xTj bi nor bTj xi is inherently a better

way of calculating rji and the best determination we can make is to average both.

A value of rii close to zero (within some set tolerance) indicates the ith columns of X and

B are nearly linearly dependent with the columns that have already been orthogonalized.

The contributions of such a column to x̂ are redundant, so we can safely remove these

columns from X and B (and in fact must do so to prevent the algorithm from breaking

down when dividing by rii). The removal procedure is to shift the position of columns with

indices greater than i to the position of their index less one. Following this, k is updated to

reflect the removal of the column. Choice of tolerance is up to the user, though a functional

approach is to set it to some small number relative to
√
xTb.

The largest costs of this algorithm is the inner loops from j = i+1 to k. Because i changes

from k to 1, the total number of iterations in the inner loop is 0 + 1 + 2 + . . . + k − 1 =
∑k−1

l=0 l = k(k−1)
2

. As the vectors have length n, the total work of the Gram-Schmidt algorithm

is O(nk
2

2
). The algorithm also requires storing X, B, Qx, and Qb for a total storage cost of

4nk.

A known problem with CGS is the loss of significant figures in subtraction, which can

destroy the orthogonality of Qx and Qb. This typically motivates use of the modified Gram-

Schmidt procedure (MGS) instead.[46] The row oriented modified Gram-Schmidt procedure -

shown in Algorithm 2.2 - does not prevent subtractive cancellation. However, it does better

enforce orthogonality by orthogonalizing against the error introduced by cancellation.

The required work of MGS is similar to that of CGS. However, in distributed memory

systems, MGS may be costly due to communication costs. Computing the inner products

requires global communication if the vectors are distributed across multiple processes. In

CGS, communication can be agglomerated into two global sum calls per outer loop iteration

with a resulting O(2k) communication cost. (We place the inner products in a separate

for-loop for this reason.) MGS requires re-computing the inner product at each iteration of

the inner loop and consequently has an O(k2) communication cost.

The loss of orthogonality of CGS is canonically fixed by applying a second round of CGS to

11

Algorithm 2.2 A-Orthogonal Modified Gram-Schmidt

1: for i = k to 1 do
2: rii ←

√
xTi bi

3: if rii > tolerance then
4: qi ← xi/rii
5: si ← bi/rii
6: for j = i− 1 to 1 do
7: rij ← (qTi bj + sTi xj)/2
8: qj ← xj − rijqi
9: sj ← bj − rijsi

10: end for
11: else
12: remove qi and si
13: end if
14: end for

the output of a first round of CGS.[19] Stewart has found this generally applies in the oblique

case as well.[47] While two rounds of CGS (CGS2) doubles the computational cost, it requires

only O(4k) global sums. If communication is sufficiently expensive and k is sufficiently large,

then CGS2 may have better performance despite this additional work. If the values rji must

be saved then values in each round are summed to obtain the final rji values.

At each time step we append the latest solution and right hand side vectors to X and

B respectively. The order of iteration over the columns in the Gram-Schmidt algorithms

presented here ensures the contributions of the oldest solution vectors are exclusively in

the first columns. The number of columns we maintain in X and B is usually constrained.9

When this kmax is reached it is reasonable to discard the oldest column as it likely contributes

least (or close to least) to the formation of x̂i.[1] This opens space in the last column, allowing

us to append the newest vectors as usual.

It is possible to avoid shifting entirely by tracking the location of the oldest column and

overwriting it directly with the new column. If k is large, the overall performance benefit of

doing this may be small compared with the cost of the Gram-Schmidt procedure. For small

k this optimization may be more useful.

9The constraint may be due to available system memory or - as is more often the case - the improvement
to x̂ may not offset the computational cost of an additional column.

12

2.2.1 Reducing storage cost

Assume we factor X into the product of Qx and R (the latter being a k×k upper-triangular

matrix of weights). We then have X = QxR. A similar decomposition can be made for B

as B = AX = (AQx)R = QbR. Eliminating R from both sides leaves us with a modified

system AQx = Qb.

Because Qx has the same column space as X and Qb has the same column space as B,

it is sufficient to store only Qx and Qb, using their columns in place of the columns of X

and B in the Gram-Schmidt algorithms. Rather than appending to X and B, the latest

solution and right hand side vectors are instead appended to Qx and Qb. This may be an

important improvement when solving very large systems, but we will also make use of it in

the following section. Algorithm 2.3 and Algorithm 2.4 show the reduced storage versions

of CGS and MGS respectively.

Algorithm 2.3 Reduced Memory A-Orthogonal Classical Gram-Schmidt

1: for i = k to 1 do
2: for j = i+ 1 to k do
3: rji ← (qTj si + sTj qi)/2
4: end for
5: for j = i+ 1 to k do
6: qi ← qi − rjiqj
7: si ← si − rjisj
8: end for
9: rii ←

√
sTi qi

10: if rii > tolerance then
11: qi ← qi/rii
12: si ← si/rii
13: else
14: remove qi and si
15: end if
16: end for

Note that even though most columns in Qx and Qb are already A-orthogonal, orthogo-

nalizing against the newest columns destroys this prior orthogonality. Straight application

of the Gram-Schmidt procedure consequently requires (re-)orthogonalizing the entire set of

columns, even if only a single column is changed.

Despite this improvement in memory use, the O(nk2) cost of Gram-Schmidt may become

13

Algorithm 2.4 Reduced Memory A-Orthogonal Modified Gram-Schmidt

1: for i = k to 1 do
2: rii ←

√
qTi si

3: if rii > tolerance then
4: qi ← qi/rii
5: si ← si/rii
6: for j = i− 1 to 1 do
7: rij ← (qTi sj + sTi qj)/2
8: qj ← qj − rijqi
9: sj ← sj − rijsi

10: end for
11: else
12: remove qi and si
13: end if
14: end for

prohibitively expensive as n and k increase. A means of decreasing the cost of orthogonal-

ization is the therefore desirable and is the subject of the next section.

2.3 Efficient projection space update

The Gram-Schmidt procedures outlined above do not make use of the fact that the major-

ity of the vectors in Qx and Qb are already A-orthogonal. Instead, after adding new solution

and right hand side vectors, Qx and Qb are completely reorthogonalized at every time step.

This section presents a technique for reorthogonalizing a set of vectors in the A-norm with

O(nk) work by using this prior orthogonality. The resulting algorithm uses Givens rotations

or Householder transformations in addition to Gram-Schmidt.10

2.3.1 Derivation

We begin by defining, in the same fashion as (2.8), a vector δxi as the difference between

xi - the numerical solution at the ith time step - and x̃i - our approximation to xi in the

column space of Qx.

δxi = xi − x̃i = xi −Qxr. (2.13)

10A personal communication from James Lottes assisted in the presentation of this section.

14

It immediately follows that

δbi = bi −Qbr. (2.14)

We assume here that k < kmax so there is room to append a column to Qx and Qb. This

condition may be enforced by removing a column from Qx and Qb with the consequence that

x̃i may not be equivalent to x̂i. This also implies ∆xi is not necessarily equivalent to δxi.

We define r as before: r = QT
xb

i. The vector δxi can be factored as a product of a scalar ρ

and a vector q such that δxi = qρ. This allows us to express xi as

xi = x̃i + δxi = Qxr + qρ =
[
Qx q

]

r
ρ

 . (2.15)

We are interested in adding xi to the column space of Qx and begin by considering the

addition of xi to the column space of X. If we append xi directly to X then we have a new

set of solution vectors [X xi]. Substituting QxR for X and xi −Qxr for xi, we see

[
X xi

]
=
[
QxR (Qx + qρ)

]
=
[
Qx q

]

R r

0T ρ

 . (2.16)

If we require ‖q‖A = 1, then because ‖δxi‖A = ‖qρ‖A = |ρ|‖q‖A = |ρ|, we have ρ =

‖δxi‖A =
√
〈δxi, δbi〉. Knowing ρ, we then determine q = δxi

ρ
.

A consequence of our definition of ρ and q is that [Qx q] is A-orthogonal. It may appear

here that our work is finished. We have a new matrix - Q′x = [Qx q] - that is orthogonal in

the A inner product, the matrix contains xi in its column space, and (assuming a reasonable

implementation of x̃i = QxQ
T
xb

i) we computed it with O(nk) work.

Unfortunately, this is not an adequate formulation of Q′x. At the next time step î = i+ 1,

if k = kmax we will desire to remove from Q′x the components of xî−k. This corresponds to

throwing away the first column of Q′x. However, throwing away this column has the side

effect of removing from the column space components of vectors xî−1, xî−2, . . . xî−(k−1).11

After removing the first column of Q′x and [X xi], Span(Q′x) ⊂ Span([X xi]), so the best-fit

11We can see this is the case from the upper triangular format of

[
R r
0T ρ

]
.

15

projection onto Span(Q′x) is no longer also a best-fit projection onto Span([X xi]). This

results in sub-optimal approximate solution vectors.

This difficulty is not limited to the first column. Throwing away any column besides

the last (which only contains components of xi) has this side effect. It is thus tempting to

avoid the problem by throwing away the last column instead. However, this column contains

components of the latest solution vector. Throwing it away would cause Qx to maintain a

column space of stale solution vectors (i. e. solution vectors older than xi−k) which may not

generate approximate solutions with small residuals. One could remove all or most columns

of Qx and rebuild the column space when the approximation x̂i becomes poor or the matrix

becomes full. However, this would still result in suboptimal projections at many time steps

(as Qx would either be stale or in the rebuilding phase much of the time).

With a small alteration to the above formulation and an additional constant factor of

work, it is possible to avoid these adverse effects. Rather than append the latest solution

vector, we instead prepend it. This gives us

[
xi X

]
=
[
(Qx + qρ) QxR

]
=
[
Qx q

]

r R

ρ 0T

 . (2.17)

Note that
[
Qx q

]

r R

ρ 0T

is an incomplete oblique QR factorization of the matrix [xi X]. We can complete the QR

factorization by applying an orthogonal transformation via a matrix H to zero all but the

first entry of the leading vector

r
ρ

 so H

r
ρ

 =

α
0

 = αe1. The product H

R
0T

 is upper

Hessenberg, from which it follows H

r R

ρ 0T

 = R′ is upper triangular.

16

If we let Q′x = [Qx q]HT , then because

(Q′x)
TAQ′x =

([
Qx q

]
HT
)T

A
[
Qx q

]
HT

= H
[
Qx q

]T
A
[
Qx q

]
HT

= HTH = I,

(2.18)

we see Q′x is A-orthogonal. Further noting

[
xi X

]
=
[
Qx q

]

r R

ρ 0T

=
[
Qx q

]
HTH

r R

ρ 0T

= Q′xR
′,

(2.19)

we see Q′xR
′ constitutes a complete QR factorization (in the A-norm) of [xi X].

A subtle side effect of our decision to prepend xi is that the structure of X changes. When

appending, we recursively define Xj := [Xj−1 xj] with base case Xj−k := [xj−k]. By this

definition, [X xi] = [xi−k xi−(k−1) . . . xi−1 xi]. Prepending, by contrast, recursively defines

Xj := [xj Xj−1] with base case Xj−k := [xj−k], so the ordering of columns in the resulting

matrix, [xi X] = [xi xi−1 . . . xi−(k−1) xi−k], is reversed.

A result of this ordering is that xi = qR′11 = qα. More generally, the jth column of [xi X]

is a linear combination of the 1st through the jth column of Q′x. Crucially, only xi−k depends

on the last column of Q′x. This means components of xi−k, the oldest solution vector in the

column space of Q′x, can be removed while keeping the remaining k − 1 solution vectors in

the column space. Consequently, if k = kmax, we can update the column space at every time

step by simply overwriting the final vector with δxi/‖δxi‖A and performing the action of

right multiplying the resulting matrix by HT .

Because

A
[
Qx q

]
= A

[
Qx q

]
HTH =

[
Qb

δbi

ρ

]
, (2.20)

17

it follows that

Q′b = AQ′x = A
[
Qx q

]
HT =

[
Qb

δbi

ρ

]
HT (2.21)

so we can use the same procedure to obtain Q′b.

Beyond the derivation here, R and R′ are never used and we can avoid forming them

explicitly. The product QxR is useful for error analysis, however, and may be recovered as

the product QxQ
T
xB by extension of (2.4) and (2.5).12

The matrix H can be found using Householder transformations or Givens rotations. The

multiplication [Qx q]HT apparently has cost O(nk2). However, we shall see in the following

sections it is possible to perform the action of this multiplication with only O(nk) work. To

conserve memory we update [Qx q] in place rather than allocate a separate matrix to store

Q′x.

2.3.2 Givens rotations

A Givens rotation, also known as a plane rotation, rotates a vector in a plane such that a

component of the vector in the plane is annihilated, but the Euclidean norm of the resulting

vector is equal to that of original vector.[26] In two dimensions, the system appears in one

form as

G

v1

v2

 =

 c s

−s c

v1

v2

 =

r

0

 , (2.22)

where s and c are the sine and cosine of the angle of rotation respectively. More generally,

the rotation

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . c . . . s . . . 0
...

...
. . .

...
...

0 . . . −s . . . c . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1

v1

...

vi
...

vj
...

vn

=

v1

...

r
...

0
...

vn

(2.23)

12Perhaps more straightforwardly, QxQ
T
xB = QxQ

T
xAX = QxQ

T
xAQxR = QxR.

18

annihilates the jth component of a vector while modifying the ith component (i 6= j) so the

norm stays constant. GTG = I so a Givens rotation is an orthogonal transformation.

Solving the system in (2.22) while imposing the constraints r2 =
√
v2

1 + v2
2 and c2 +s2 = 1

gives us

c =
v1√
v2

1 + v2
2

, s =
v2√
v2

1 + v2
2

as solutions. However, the negatives of c, s, or r are also valid solutions. This flexibility

has resulted in a great deal of variance in implementations of Givens rotation. We adopt

the sign conventions of Bindel, Demmel, and Kahan for our pseudocode in Algorithm 2.5.[48]

Givens rotation breaks down in the case vi = vj = 0 so this case must be handled separately.

Algorithm 2.5 Givens Rotation

1: function givens(vi, vj)
2: if vj 6= 0 then
3: h← hypot(vi, vj)
4: hinv ← 1/h
5: c← |vi|hinv
6: s← copysign(hinv, vi) vj
7: r ← copysign(1, vi)h
8: else
9: c← 1

10: s← 0
11: r ← vi
12: end if
13: return c, s, r
14: end function

Algorithm 2.5 differs slightly from the Givens rotation algorithm suggested by Bindel,

Demmel, and Kahan. The three case Givens algorithm they formulate is faster if an input,

vi or vj here, is frequently zero. This is a rare occurrence in our context so we opt to

eliminate a redundant branch while still ensuring division by zero does not occur.

The copysign function, available in many programming languages, returns the magnitude

of the first argument with the sign of the second argument. In some programming languages

such as Fortran this function is simply called sign. Other languages such as Matlab/Octave

have a single argument sign function that is instead a signum function (i. e. it returns

−1, 0, or 1 for negative, zero, and positive inputs respectively). However, without special

19

handling of 0 case signum cannot be used in Algorithm 2.5. To prevent confusion we avoid

using sign here.

Calculating the Euclidean norm using the familiar form
√
a2 + b2 can lead to loss of accu-

racy in finite precision arithmetic due to underflow or overflow in the intermediate values a2

or b2.[49] The latter is potentially a concern in our context because values in [r ρ]T may be

small. The equivalent expressions, b
√

1 +
(
a
b

)2
and a

√
1 +

(
b
a

)2
, produce results accurate

to numerical precision for the cases |b| ≥ |a| and |a| ≥ |b| respectively (though the case

a = b = 0 must be specially handled). In many programming languages, an implementation

of accurate hypotenuse calculation is available under the function name hypot.

We can annihilate all but the first entry of [r ρ]T using a series of k Givens matrices so

H

r
ρ

 = GkGk−1 . . . G2G1

r
ρ

 =

α
0

 . (2.24)

The matrix H, formed as a product of Givens matrices, is Hessenberg at best[18] so the direct

matrix-matrix product [Qx q]HT is a costly O(nk2) operation. To avoid this, a tempting

alternative is to perform the action of multiplying by HT by forming each GT
i as a sparse

matrix and employing a series of sparse matrix-vector products to obtain Q′x.

Q′x =
(
. . .
(([

Qx q
]
GT

1

)
GT

2

)
. . . GT

k

)
. (2.25)

However, this still results in many unnecessary operations because - except for four entries

- each Gi is nearly the identity matrix. Instead, we take advantage of the structure of each

Givens matrix and directly modify only the columns each GT
i affects.[26] Algorithm 2.6 shows

the procedure. Initially Q = [Qx q]. We calculate each cj and sj as if annihilating z := [r ρ]T

from bottom to top. Subsequently, we modify Q in-place, performing the action of QGT
j

using only cj and sj and two columns of Q. At the end of the procedure, Q is equivalent to

Q′x. The c and s values could instead be calculated inside the second for-loop. We move the

calculation to a separate loop to make the procedure more readily parallelizable.

In terms of floating point operations, the cost of Algorithm 2.6 is dominated by the O(6nk)

operations in the nested for-loops. With fused multiply-add (FMA) operations, the cost may

20

Algorithm 2.6 Reorthogonalization by Givens Rotations

1: for j = k + 1, k, . . . 2 do
2: cj, sj, zj−1 ← Givens(zj−1, zj)
3: end for
4: for j = k + 1, k, . . . 2 do
5: l← j − 1
6: for i = 1 to n do
7: t← cj Qil + sj Qij

8: Qij ← −sj Qil + cj Qij

9: Qil ← t
10: end for
11: end for

be closer to O(4nk). Other potentially costly operations are the 2k divisions and k square

root operations in the first loop. However, if n >> k then the cost of these is relatively small.

Almost no additional storage is required for this algorithm except for two small vectors to

store each cj and sj (and even these can be reduced to two floating point variables by moving

the call to givens inside the second loop).

2.3.3 Householder reflections

Householder reflections, also known as Householder transformations, reflect a vector across

a hyperplane such that the resulting vector has the same norm as the original vector but

with all components except one annihilated.[26] The Householder matrix has the form

H = I − 2
vvT

vTv
. (2.26)

By inspection, we see H is orthogonal and symmetric. In our case, the Householder vector

v is chosen to to annihilate all but the first entry of z := [r ρ]T . It consequently takes the

form

v = z + αe1 (2.27)

where α is the Euclidean norm of z with the sign of z1 (i. e. α = copysign(‖z‖2, z1)). The

oppositely signed α is also a valid choice, but we make α have the same sign as z1 to avoid

cancellation if z1 and α are close in magnitude.

21

A consequence of the form of the Householder matrix is that the action of the matrix-

matrix product QHT can be computed with O(nk) work.[26] Observe

QHT = QH = Q

(
I − 2

vvT

vTv

)
= Q− 2

(Qv)vT

vTv
. (2.28)

The last expression in (2.28) requires only a matrix-vector product, inner-product, outer-

product, and matrix-matrix subtraction. Algorithm 2.7 shows the procedure for calculating

v and performing the action of QHT . Note that this algorithm does not correctly update z

as we avoid forming R′ anyway.

Algorithm 2.7 Reorthogonalization by Householder (version 1)

1: ω ← z1

2: z1 ← 0
3: γ ← zTz
4: h←

√
ω2 + γ

5: z1 ← ω + copysign(h, ω)
6: s← 2/(z2

1 + γ)
7: v← Qz
8: z← sz
9: M ← vzT

10: Q← Q−M . Equivalent to Q← Q− (Qz)(sz)T

In terms of floating point operations, the main costs of Algorithm 2.7 are the matrix-vector

product Qz, the vector-vector outer product vzT , and the matrix subtraction Q−M for a

total cost of O(4nk). This is a theoretical improvement over the Givens rotation algorithm.

The algorithm also requires only one square root and one division, which compares favorably

with the Givens rotation algorithm.

Householder transformations are normally applied to an entire vector at once. However,

if one entry in the vector is much larger than the others, then the sum of squares of the

components may lose digits of precision. This can result a less accurate projection. One can

ameliorate this loss of precision by applying a series of small Householder transformations

to annihilate components of [r ρ]T one at a time rather than a single large transformation.

In this form, the series of Householder transformation behaves similarly to the series of

Given’s transformations, annihilating entries from the bottom up. Algorithm 2.8 shows the

22

procedure.

Algorithm 2.8 Reorthogonalization by Householder (version 2)

1: for j = k + 1, k, . . . 2 do
2: l = j − 1
3: h← hypot(zl, zj)
4: α← copysign(h, zl)
5: ω ← zl + α
6: s← 2/(ω2 + z2

j)
7: νj ← ωs
8: uj ← zjs
9: zl ← −α

10: end for
11: for j = k + 1, k, . . . 2 do
12: l = j − 1
13: for i = 1 to n do
14: t← νjQil + ujQij

15: Qij ← Qij − tuj
16: Qil ← Qil − tνj
17: end for
18: end for

The theoretical cost of Algorithm 2.8 is nearly identical to that of Algorithm 2.6. The

nested for-loop, responsible for most of the work of the algorithm, has O(7nk) floating point

operations. As with the Givens algorithm, FMA operations may effectively reduce this

to O(4nk) floating point operations. The additional flop required for 2 × 2 Householder

reflections over 2 × 2 Givens rotations perhaps factored into the wider use of the latter.

However, adoption of FMA may have diminished this difference. A potentially favorable

feature of this Householder scheme over Givens rotation is that the update of Qil is no

longer dependent on the update of Qil. This may provide the compiler more opportunities

for pipelining.

Like the Givens rotation algorithm, The first for-loop requires 2k divisions and k square

root operations. Instead of explicit branching, the Householder algorithm uses a copysign,

though this is unlikely to significantly affect overall reorthogonalization performance.

23

2.3.4 Efficient re-orthogonalization algorithm

Having developed ways to perform the operation of [Q q]HT with O(nk) cost, we now

outline the overall procedure for updating the projection space. Algorithm 2.9 shows the

pseudo-code. The algorithm begins by checking if k = kmax and discarding the last column of

Qx and Qb if this is the case. The last column will soon be overwritten so it generally suffices

to soft delete the columns by decrementing k. In lines 7, 8, and 9 we calculate δx and δb

by subtracting from x and b their components already in Qx and Qb. In practice this must

be done using A-orthogonal MGS or A-orthogonal CGS2 to prevent loss of orthogonality.

Once we calculate δx and δb, we then calculate ρ as the square root of their inner product.

It is useful at this point to use ρ to ensure δx and δb still have substantial components.

This guards against performing useless work re-orthogonalizing Qx and Qb against vectors

that are nearly 0. If ρ exceeds some set tolerance, then δx and δb are linearly independent

of Qx and Qb. We proceed to form [r ρ],
[
Qx

δx
ρ

]
, and

[
Qb

δb
ρ

]
by appending to r, Qx and

Qb respectively. Finally, using one of Algorithms 2.6, 2.7, or 2.8 we re-orthogonalize Qx and

Qb.

We form δx and δb as separate vectors to align the algorithm more closely to the preceding

derivation. The algorithm may be simplified somewhat and the storage cost reduced by

storing x−Qxr and b−Qbr back into x and b. In particular, this eliminates the need for

the else block in the second if-statement.

From a communication standpoint the algorithm may be attractive as it requires only two

or three instances of global communication if lines 7, 8, and 9 are implemented with CGS2.

If implemented with MGS, the algorithm requires only k + 1 instances of global communi-

cation. In both implementations, this is a substantial communication reduction compared

with straightforward CGS2 or MGS. As an added benefit over Gram-Schmidt, this procedure

requires no explicit shifting of vectors. The propagation of information instead is incorpo-

rated into the action of the matrix-matrix product. A potential drawback of not performing

a complete orthogonalization procedure on Qx and Qb is eventual loss of orthogonality or

skewing of the projection space due to propagated numerical errors. If detected, a complete

Gram-Schmidt procedure applied to Qx and Qb could correct the former problem at a some-

24

Algorithm 2.9 Efficient A-orthogonal projection space update

1: if k = kmax then
2: Discard kth column of Qx

3: Discard kth column of Qb

4: k ← k − 1
5: end if
6: if k > 0 then
7: r← (QT

xb +QT
b x)/2

8: δx← x−Qxr
9: δb← b−Qbr

10: else
11: δx← x
12: δb← b
13: end if
14: ρ←

√
δxT δb

15: if ρ > tolerance then
16: Append ρ to r
17: Append δx/ρ to Qx

18: Append δb/ρ to Qb

19: Reorthogonalize Qx using r
20: Reorthogonalize Qb using r
21: k ← k + 1
22: end if

what increased overall cost. In our numerical experiments this has not been a problem and

in fact some of the efficient algorithms appear to better maintain orthogonality.

25

CHAPTER 3

NUMERICAL EXPERIMENTS

The efficient projection space updating algorithms (i. e. Algorithm 2.9 combined with one

of Algorithms 2.6, 2.7, or 2.8) were implemented in Nek5000 and the performance compared

with reorthogonalization using reduced memory Gram-Schmidt procedures (Algorithms 2.3

and 2.4). Comparisons were made using several Nek5000 test cases.

Nek5000 is a high-order solver for computational fluid dynamics. Written in Fortran 77

and C and using MPI for parallel computation, it has been successfully scaled to over one

million MPI processes. Nek5000 uses preconditioned conjugate gradients or GMRES as its

linear solvers.

Performances tests were run on the campus cluster of the Urbana campus of the University

of Illinois. The cluster consists of 312 nodes with two ten-core 2.5 GHz Intel E5-2670V2 (Ivy

Bridge) cores per node. Each node has at least 64 GB of RAM. Internode communication is

via an Intel i350 ethernet controller. The 2017-11-15 version of Nek5000 was compiled using

version 18.0 of Intel’s Fortran and C compilers and run using Intel’s MPI implementation.

Nek5000’s default optimization flags were used during compilation. Error and accuracy tests

were conducted on a 1.3 GHz Intel Xeon Phi 7210 with 64 cores, 16GB of MCDRAM, and

96 GB of DDR3 memory. In this environment, Nek5000 was compiled using version 4.8.5-11

of the GNU Compiler Collection with Nek5000’s default optimization flags and run using

the 2018 version of Intel’s MPI implementation.

26

0 5 10 15 20 25
Number of saved columns

60

75

90

105

120

It
er

at
io

ns
(a) Total iterations per step

0 5 10 15 20 25
Number of saved columns

1.2

1.5

1.8

2.1

2.4

2.7

Ti
m

e
(s

)

1e-2 (b) Total time per step

0 5 10 15 20 25
Number of saved columns

1.00

1.25

1.50

1.75

2.00

2.25

Ti
m

e
(s

)

1e-2 (c) Solve time per step

0 5 10 15 20 25
Number of saved columns

0.0

0.4

0.8

1.2

1.6

2.0

Ti
m

e
(s

)

1e-2 (d) Projection time per step

3D vortex breakdown: performance

CGS2 FH GV MGS SH

Figure 3.1: Performance of the reorthogonalization algorithms, as measured by average time per
step and average iterations per step, on a test case simulating a 3D vortex breakdown. The
projection time includes time required to calculate the appriximate solution and update the
projection space. The total time is the sum of the per step solve time and projection time.

3.1 Case 1: 3D vortex breakdown

3.1.1 Performance

Figure 3.1 compares the performance of the reorthogonalization algorithms on the 140

element 3D vortex breakdown problem for an increasing maximum number of saved columns

in Qx and Qb. The plots shown average over 200 time steps. The test case was run with

a solver tolerance of 10−13, a step size of 0.05 convective time units, and polynomial order

nine. As this is a smaller case, only two nodes and forty processors were used. In these

plots, and all plots that follow, MGS and CGS2 are the modified Gram-Schmidt and the

27

twice repeated classical Gram-Schmidt full reorthogonalization algorithms. GV, SH, and FH

are the efficient reorthogonalization algorithm with Givens rotations, small 2×2 Householder

transformations, and the full Householder matrix respectively.

Subfigure (a) shows the average number of solver iterations per step as the number of

columns increases. In our test cases, Nek5000 uses projection for solving both pressure and

velocity; the total number of solver iterations is the sum from these solves. We see here

that MGS, CGS2, SH, and GV have a similar number of per step solver iterations up to

about eight saved columns. After this point, SH and GV no longer significantly reduce their

iteration counts while the Gram-Schmidt algorithms reduce their iteration counts further by

a small amount. In contrast to these evidently effective algorithms, FH performs very poorly,

showing no improvement beyond in iteration counts beyond two saved columns. Subfigure

(c), showing the average time spend in the iterative solver, largely reflects the number of

solver iterations seen in (a).

Subfigure (d) shows the average time per time step required to project the approximate

solution and update the projection space. The Gram-Schmidt algorithms display a sharp

increase in the projection time beyond eight saved columns. Additionally, at this point the

reduced communication cost of CGS2 over MGS becomes apparent. In agreement with our

complexity analysis, FH, GV, and SH appear to exhibit only linear growth in time cost as

k increases.

The overall time required per step (the sum of the time spent in the iterative solver and

the time spend updating the projection space) is shown in subfigure (b). As with the solver

iteration counts, the projection time here is the sum of the projection times for pressure and

velocity. The GS algorithms in this case reduce the total solve time until about k = 6. After

this point, the cost appears to increase quadratically. As the solve time for these k values is

small, it is clear that the projection time comes to dominate the total cost in this region. GV

and SH improve in performance until about around eight columns are saved. After this point,

there is little reduction in the overall run time, which again aligns with our observations of

the per step solve time. Comparing their best cases, the relative improvement of GV and

SH over CGS2 and MGS is a 15% reduction in total time. FH, unable to reduce the number

of iterations per step, performs poorly in the total run time. Only at very high k when the

28

quadratic complexity of CGS2 and MGS is in full force does FH manage to perform within

the range of MGS.

3.1.2 Stability and accuracy

0 5 10 15
Number of saved columns

10−16

10−14

10−12

10−10

10−8

10−6

∥ ∥ I
−

Q
T x

Q
b∥ ∥ F

(a) Pres. A-orthogonality error

0 5 10 15
Number of saved columns

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ X
−

Q
xQ

T x
B
∥ ∥ F

/
‖X
‖ F

(b) Pres. column space error

0 5 10 15
Number of saved columns

10−4

10−3

10−2

10−1

100

101

∥ ∥ x
i
−

x̂i∥ ∥
2/
∥ ∥ x

i∥ ∥
2

(c) Pres. approximation accuracy

2x classical Gram-Schmidt
Full Householder
Givens rotation
Modified Gram-Schmidt
Small Householder

3D vortex breakdown: accuracy and stability

Figure 3.2: Stability and accuracy results for pressure projection from the 3D vortex breakdown
case as the number of saved columns increases. Subfigure (a) shows the average Frobenius norm
of the deviation from A-orthogonality of the pressure projection space. Subfigure (b) shows the
average Frobenius norm of the deviation of the orthogonalized column space from the original
column space. Subfigure (c) shows the average error of the pressure projection. Large errors at
the early time steps mask more impressive results here.

The quality of an A-orthogonal projection is assessed in several ways. Most significantly,

we assess the accuracy of the projection by calculating a norm of the relative difference

between it and the numerical solution. Using the two-norm, this is ‖xi − x̂i‖2/‖xi‖2. We

may also assess the quality of the projection space.[43] One way of doing this is to determine

29

0 500 1000 1500 2000
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ I
−

Q
T x

Q
b∥ ∥ F

(a) Pres. A-orthogonality error

0 500 1000 1500 2000
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ X
−

Q
xQ

T x
B
∥ ∥ F

/
‖X
‖ F

(b) Pres. column space error

0 500 1000 1500 2000
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ x
i
−

x̂i∥ ∥
2/
∥ ∥ x

i∥ ∥
2

(c) Pres. projection accuracy

0 500 1000 1500 2000
Time step

6
12
18
24
30
36
42

It
er

at
io

ns

(d) Pres. solve iterations

3D vortex breakdown: accuracy over time for k = 6

CGS2 FH GV MGS SH

Figure 3.3: Stability and accuracy of pressure projection over the course of 2000 time steps for
the 3D vortex breakdown case with k = 6. Data points are shown for every 64th time step.
Subfigure (a) shows the average Frobenius norm of the deviation from A-orthogonality of the
pressure projection space. Subfigure (b) shows the average Frobenius norm of the deviation of the
orthogonalized column space from the original column space. Subfigure (c) shows the average
error of the pressure projection. Subfigure (d) shows the number of iterations of the pressure
solver.

the extent to which A-orthogonality is maintained. As A-orthogonality requires QT
xAQx = I,

we can conveniently calculate this as
∥∥I −QT

xAQx

∥∥
F

=
∥∥I −QT

xQb

∥∥
F

. Another way of

assessing the projection space is to determine the extent to which column space of the

original matrix (X in this case) is preserved. Ordinarily this error in projection is calculated

as a norm of X −QxR. We do not maintain R so we instead use the equivalent expression
∥∥X −QxQ

T
xB
∥∥
F

as mentioned in 2.3.1. This is made a relative error by dividing by the

norm of X:
∥∥X −QxQ

T
xB
∥∥
F
/‖X‖F .

Figure 3.2 shows the average of these deviations over 2000 timesteps for the pressure

30

projection of the 3D vortex breakdown case. Most notably, the subfigure (a) shows FH

preverves A-orthogonality orders of magnitude better than the other algorithms. The trade-

off for this is revealed in subfigure (b), which shows FH maintains high a high measure of

A-orthogonality by altering the column space of Qx so it significantly diverges from X.

This is likely the case because the first entry of vector z in Algorithm 2.7 is the coefficient

corresponding to the contribution of the solution at the immediate previous time step. When

the solution at the current time step is similar to the solution at the previous time step, this

coefficient may be many orders of magnitude larger than the smallest component of z. In

forming v, this difference in magnitude has the effect of chopping off least significant digits

from columns with smaller coefficients. The resulting Q′x is A-orthogonal, but its column

space is altered (particularly with respect to the oldest solutions) so it contains X ′ to fewer

accurate digits. The end result is a poorer projection and more iterations in the solver. GV

and SM avoid this problem by operating on only two adjacent columns at a time. Adjacent

columns typically have coefficients that are closer together in magnitude which results in

fewer lost digits of precision.

Examining the remaining algorithms, we see MGS performs worse than CGS2, GV, and

SH in maintaining both the column space and A-orthogonality. Two iterations of CGS2

maintains the column space to near numerical precision, but trails GV and SH in maintaining

orthogonality. GV and SH perform nearly identically. The two algorithms maintain A-

orthogonality very well compared with the GS algorithms but trail CGS2 by a very small

amount in preserving the column space. All algorithms besides FH appear to converge in

the A-orthonality measure when k becomes large.

The plot of average approximation accuracy in subfigure (c) appears to show CGS2, MGS,

GV, and SH have nearly identical performance. However, the average masks performance

differences because the error at early timesteps is orders of magnitude larger than the error

at later time steps. The plot does confirm FH produces less accurate approximations. The

spike in the error of MGS at k = 16 is likely due to instability of the algorithm at high k.

Figure 3.3 shows measures of the stability and accuracy for the reorthogonalization algo-

rithms over 2000 time steps of the 3D vortex breakdown case with k = 6. Values at every

64th time step are shown. Results here largely reflect those in Figure 3.2. In subfigure (c),

31

we can now see the effectiveness of projection that was previously obscured by averaging.

CGS2 and MGS reduce the error of the initial approximation to the magnitude of 10−8 or

10−9. GV and SH fluctuate somewhat more widely, but have perhaps a factor of 10 larger

error. FH, as we previously observed, has error orders of magnitude larger still.

Overall, all algorithms display fairly stable behavior after around timestep 250. Presum-

ably this is when the algorithms have finished building out their projection spaces and the

problem has evolved past any initial transient. GV and SH display very similar behavior

at all time, though GS appears marginally better at maintaining the column space. FH in-

creases in projection accuracy over time, though this is likely due to the problem approaching

steady state.

3.2 Case 2: 3D flow past a hemisphere

3.2.1 Performance

Performance results of the reorthogonalization algorithms a 2,042 element test case simu-

lating three-dimensional fluid flow past a hemisphere are shown in Figure 3.4. The test case

was run for 200 time steps with a step size of 0.005 convective time units, polynomial order

5, and a solver tolerance of 10−14. Eight nodes and 160 total processors on the cluster were

used.

Results here are similar to the 3D vortex breakdown case. The performance improvement

provided by efficient reorthogonalization is here reduced to about 7%. As in the previous

test, FH is unable to decrease the number of iterations once more than three columns are

saved. The Gram-Schmidt algorithms once again appear slightly more effective at decreasing

the number of iterations at higher k. As the optimal k value for GS is once again six, this

does not appear helpful minimizing the total time per step.

In subfigure (d), we can now see the FH updating algorithm scales worse than GV and

SH. This is somewhat surprising as it theoretically has a lower flop count. However, as

previously noted, Algorithm 2.7 requires twice loading the entirety of Q from memory. If Q

cannot be stored in the cache, then these loads may be slow. While SH and GV access most

32

0 5 10 15
Number of saved columns

40

50

60

70

80

90

It
er

at
io

ns
(a) Total iterations per step

0 5 10 15
Number of saved columns

3.0

3.6

4.2

4.8

5.4

6.0

Ti
m

e
(s

)

1e-2 (b) Total time per step

0 5 10 15
Number of saved columns

2.4

3.2

4.0

4.8

5.6

6.4

Ti
m

e
(s

)

1e-2 (c) Solve time per step

0 5 10 15
Number of saved columns

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e
(s

)

1e-2 (d) Projection time per step

3D flow past a hemisphere: performance

CGS2 FH GV MGS SH

Figure 3.4: Performance results of the reorthogonalization algorithms on a test case simulating
three-dimensional flow past a hemisphere.

columns of Q twice (the first and last columns are accessed only once), they work with only

two columns at a time, one of which was used at the previous iteration of the inner loop.

Because less data is used, it is more likely this column is retained in cache.

3.2.2 Stability and accuracy

In contrast to the 3D vortex case, FH in this case is is unable to maintain A-orthogonality

of the pressure projection space. Figure 3.5 shows as the maximum number of saved columns

increases, the deviation grows to approach that of the other algorithms. The abrupt change

in column space error and the average approximation accuracy at k = 24 is due to FH

becoming unstable.

33

0 5 10 15 20 25
Number of saved columns

10−16

10−14

10−12

10−10

10−8

10−6

∥ ∥ I
−

Q
T x

Q
b∥ ∥ F

(a) Pres. A-orthogonality error

0 5 10 15 20 25
Number of saved columns

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ X
−

Q
xQ

T x
B
∥ ∥ F

/
‖X
‖ F

(b) Pres. column space error

0 5 10 15 20 25
Number of saved columns

10−4

10−3

10−2

10−1

100

101

∥ ∥ x
i
−

x̂i∥ ∥
2/
∥ ∥ x

i∥ ∥
2

(c) Pres. approximation accuracy

2x classical Gram-Schmidt
Full Householder
Givens rotation
Modified Gram-Schmidt
Small Householder

3D flow past a hemisphere: accuracy and stability

Figure 3.5: Measurements of the average accuracy of the reorthogonalization algorithms over
200 time steps of the flow past a hemisphere test case.

CGS2, GV, and SH appear to similarly maintain both the A-orthogonality of the column

space and its integrity as compared with the column space of X. In Figures 3.5 and 3.6

(the latter plotted at every 13th time step), the three algorithms again perform marginally

better than MGS in orthogonality and orders of magnitude better in preserving the original

column space. Here, this error not appear to affect the accuracy of projections made from the

MGS reorthogonalized basis. Once again, the averaging of the approximation error masks

important detail better shown in 3.6 subfigure (a), though it does inform us of the instability

in FH.

34

0 100 200 300 400
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ I
−

Q
T x

Q
b∥ ∥ F

(a) Pres. A-orthogonality error

0 100 200 300 400
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ X
−

Q
xQ

T x
B
∥ ∥ F

/
‖X
‖ F

(b) Pres. column space error

0 100 200 300 400
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ x
i
−

x̂i∥ ∥
2/
∥ ∥ x

i∥ ∥
2

(c) Pres. projection accuracy

0 100 200 300 400
Time step

30

45

60

75

90

It
er

at
io

ns

(d) Pres. solve iterations

3D flow past a hemisphere: accuracy over time for k = 6

CGS FH GV MGS SH

Figure 3.6: Accuracy measurements at every six time steps within a run of the flow past a
hemisphere case for k = 6.

3.3 Case 3: 3D flow in a carotid artery

3.3.1 Performance

Our tests on a 3D carotid artery fluid simulation are perhaps more indicative of the

capabilities of the efficient updating algorithms on real world problems. Containing 2,544

elements, we ran the fluid simulation at polynomial order 4 with a step size of 5 × 10−5

convective time units and a solver tolerance of 10−8. Tests were run on 8 nodes and 160

total processors.

Performance results from the carotid artery simulation shown in 3.7 and average over

200 time steps. The results appear generally consistent with the prior two test cases, with

35

0 5 10 15
Number of saved columns

60

70

80

90

100

110

It
er

at
io

ns

(a) Total iterations per step

0 5 10 15
Number of saved columns

2.0

2.4

2.8

3.2

3.6

Ti
m

e
(s

)

1e-2 (b) Total time per step

0 5 10 15
Number of saved columns

1.6

2.0

2.4

2.8

3.2

3.6

Ti
m

e
(s

)

1e-2 (c) Solve time per step

0 5 10 15
Number of saved columns

0.0

0.2

0.4

0.6

0.8

Ti
m

e
(s

)

1e-2 (d) Projection time per step

3D flow in a carotid artery: performance

CGS2 FH GV MGS SH

Figure 3.7: Performance of the reorthogonalization algorithms on a 3D simulation of blood flow
through a carotid artery with stenosis.

around six being the optimal number of saved columns for all algorithms except FH. One

notable difference is an elevation in the MGS solve time (though not the MGS iteration

count) for the three, eight and sixteen column cases. This was duplicated in several test

runs, though its cause remained elusive. Another difference we note is the stairstep pattern

of decreasing iteration counts. This seems to indicate that in this problem the information

of every other time step is more useful for projection. The overall improvement of efficient

reorthogonalization over Gram-Schmidt methods is about a 5% reduction in the total time

per step.

36

0 5 10 15 20 25
Number of saved columns

10−16

10−14

10−12

10−10

∥ ∥ I
−

Q
T x

Q
b∥ ∥ F

(a) Pres. A-orthogonality error

0 5 10 15 20 25
Number of saved columns

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ X
−

Q
xQ

T x
B
∥ ∥ F

/
‖X
‖ F

(b) Pres. column space error

0 5 10 15 20 25
Number of saved columns

10−4

10−3

10−2

10−1

100

101

∥ ∥ x
i
−

x̂i∥ ∥
2/
∥ ∥ x

i∥ ∥
2

(c) Pres. approximation accuracy

2x classical Gram-Schmidt
Full Householder
Givens rotation
Modified Gram-Schmidt
Small Householder

3D flow in a carotid artery: accuracy and stability

Figure 3.8: Accuracy measures of the reorthogonalization algorithms averaged over 200 time
steps in a simulation of blood flow through a carotid artery.

3.3.2 Stability and accuracy

Plots of the accuracy metrics over time for k = 6 in Figure 3.3 reveal no surprising

differences from the previous two cases. Data points here are shown for every sixth time

timestep. The behavior of the average errors over 200 time steps in 3.2 is also consistent at

low k. At higher k we see this case strenuously tests the stability of the reorthogonalization

algorithms: the Householder algorithms become unstable after more than eight columns are

saved, Givens loses some amount of accuracy with sixteen or higher saved columns, and the

Gram-Schmidt algorithms retain stability over all values of k tested here.

37

0 50 100 150 200
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ I
−

Q
T x

Q
b∥ ∥ F

(a) Pres. A-orthogonality error

0 50 100 150 200
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ X
−

Q
xQ

T x
B
∥ ∥ F

/
‖X
‖ F

(b) Pres. column space error

0 50 100 150 200
Time step

10−16

10−13

10−10

10−7

10−4

10−1

∥ ∥ x
i
−

x̂i∥ ∥
2/
∥ ∥ x

i∥ ∥
2

(c) Pres. projection accuracy

0 50 100 150 200
Time step

20

30

40

50

60

70

80

It
er

at
io

ns

(d) Pres. solve iterations

3D flow through a carotid artery: accuracy over time for k = 6

CGS2 FH GIV MGS SH

Figure 3.9: Accuracy measures of reorthogonalization algorithms over 200 time steps in a
simulation of blood flow through a carotid artery.

38

CHAPTER 4

ANALYSIS AND CONCLUSION

Retrospective analysis provides insight into why the efficient projection algorithms have

limited capability to improve performance. We model the total time as the sum of the time

spent in the iterative solver and the time spent updating the projection space, tt = tp + ts.

We know tp scales linearly with n and so represent it as tp = ckn where c is the per column

update cost (∼6 for the Givens rotation based updating algorithm), k is the number of

columns, and n is the number of entries per column.

We model the cost of the iterative solver as the product of the number of desired accurate

digits a and the cost per digit d.1 For example, if we desire sixteen accurate digits then

ts = 16d. Projection has the effect of increasing the number of accurate digits from the

outset, allowing us to subtract from ts the cost of solving for those digits. If the error in the

initial guess is e = x − x̂, then the number of accurate digits in x̂ is close to − log (‖e‖2).

This appears to break down if the projected solution is identical to the calculated solution,

however, the accuracy of the projection is limited by machine precision. Additionally, error

from numerical approximation (e. g. error from not solving Ax = b exactly or from a poorly

conditioned A) also induces some amount of error. Accounting for this intrinsic error ε,

the total number of accurate digits is − log (‖e‖2 + ε). Consequently, the total number of

digits to solve for after projection is a − log (‖e‖2 + ε), which reduces the solve cost to

ts = d(a+ log (‖e‖2 + ε)).

The per digit cost of the solver is likely related to the size of the problem, so we let

d = c2n
p. The error scaling of a projection approximation is at least good as the error

scaling of an approximation from polynomial extrapolation, which - as we saw in subsection

2.1.1 - scales as c3∆tk. We can therefore reasonably use this as an estimate for the projection

1This is somewhat simplistic as the convergence behavior can change dramatically depending on the
solver and preconditioner.

39

error. Altogether, this gives us a total time cost model of

tt = c1nk + c2n
p(a− log (c3∆tk + ε)) (4.1)

Setting the derivative with respect to k of (4.1) equal to zero and solving for k results in

an expression for the optimal number of columns in the projection space:

kopt =
log
(

−εc1n
c3∆tc1n+c3∆tc2np log ∆t

)

log (∆t)
=

log
(

−εc1
c3(c1+c2np−1 log ∆t)

)

log (∆t)
− 1 (4.2)

Equation (4.2) provides some interesting insights, the primary ones being that the optimal

k value is most sensitive to the step size ∆t and the precision limit ε. This makes sense

because high-order approximations are not necessary to maintain accuracy when the step

size is very small and because the magnitude ε places a very direct limit on the the usable

accuracy of the approximation. The model also shows kopt has dependence on the per digit

cost of the solver (and hence on the problem size n), though this grows only logarithmically.

The most significant unknown quantity is c3. We model c3 as a constant factor here for

simplicity. However, it is likely a function of k (e. g. 1/k! as in the case of Taylor expansion)

and may have a significant damping effect on kopt. A 3D surface plot of the function against

∆t and n is shown in Figure 4.1. The model assumes the behavior of the underlying problem

remains fairly smooth at arbitrarily large step sizes. If the behavior is not smooth then the

error estimate is likely no longer valid. Future refinement of the model may account for

reduced smoothness at larger step sizes.

Except for problems with very small solution tolerances and problems with long time steps,

the optimal number of saved solutions is apparently often small. Data from the numerical

experiments seem to agree with this. It so happens for small k the O(nk) efficient updating

algorithm and the O(nk2) Gram-Schmidt algorithms have nearly identical performance. The

efficient updating algorithm therefore likely offers little improvement above Gram-Schmidt

for many problems. In 3D problems, where relatively short time steps are needed to maintain

stability, this effect is likely particularly relevant. In the above problems, the optimal k was

always near six. It would be helpful to determine if this holds generally as this would be a

40

Figure 4.1: 3D plot showing one instance of the surface of optimal k values with varying n and
∆t according to (4.2). The non-varying model parameters in this plot are ε = 10−16, c1 = 6,
c2 = 5, c3 = 5× 10−7, and p = 3. Note the strong dependence on ∆t.

useful heuristic.

Although the performance benefits are modest, on programs that can run for thousands

or millions of core hours even a 5% to 15% improvement may be significant. The projection

scheme is applicable to almost any iterative solver for smoothly evolving problems and this

efficient updating algorithm is a “low hanging fruit” as coding Algorithm 2.9 is not much

more difficult than implementing A-orthogonal Gram-Schmidt (at least now that it has

been conveniently formulated). Additionally, the efficient updating algorithm broadens the

values of k for which the total time is near the minimum. In applications where the k may

be modified by the user, this broader minimum may significantly reduce the time lost due

to choosing a larger than optimal number of columns to save. Further, the reduction in

required communication may be a desireable quality of the efficient algorithm

In implementation, use of the full Householder matrix as formulated here should be

avoided. There does not appear to be a significant performance difference between use

of 2× 2 Givens matrices and 2× 2 Householder matrices, even with the theoretically higher

flop count of Householder. The numerical experiments suggest, for certain situations at

41

least, the Givens based reorthogonalization algorithm may have slightly better accuracy and

stability.

4.1 Summary

We have developed efficient algorithms for reorthogonalizing an A-orthogonal projection

space used for approximating an accurate initial guess for an iterative solver after a new

solution is added. We find use of full Householder matrices results in poor projection and

consequently very poor performance. The performance improvement using the Givens and

small Householder algorithms is likely highly dependent on the step size and solver tolerance,

among other factors. One 3D problem tested displayed run time reductions of ∼15% while

others showed reductions closer to 5%. When stable, the small Householder and small Givens

based updating algorithms did not ever appear to negatively affect performance in the cases

tested.

42

BIBLIOGRAPHY

[1] P. F. Fischer, “Projection techniques for iterative solution of Ax = b with successive

right-hand sides,” Computer Methods in Applied Mechanics and Engineering, vol. 163,

no. 1, pp. 193–204, 1998, issn: 0045-7825. doi: 10.1016/S0045-7825(98)00012-7.

[2] L. Grinberg and G. E. Karniadakis, “Extrapolation-Based Acceleration of Iterative

Solvers: Application to Simulation of 3D Flows,” Communications in Computational

Physics, vol. 9, no. 3, pp. 607–626, 2011. doi: 10.4208/cicp.301109.080410s.

[3] H. M. Tufo and P. F. Fischer, “Terascale Spectral Element Algorithms and Imple-

mentations,” in Proceedings of the 1999 ACM/IEEE Conference on Supercomputing,

ser. SC ’99, Portland, Oregon, USA: ACM, 1999, isbn: 1-58113-091-0. doi: 10.1145/

331532.331599.

[4] V. Mehrmann and C. Schröder, “Nonlinear eigenvalue and frequency response problems

in industrial practice,” Journal of Mathematics in Industry, vol. 1, no. 1, p. 7, Jul. 2011,

issn: 2190-5983. doi: 10.1186/2190-5983-1-7.

[5] V. Peiffer and S. Sherwin, “CFD Challenge: Solutions Using an In-House Spectral

Element Solver, NEKTAR,” in ASME 2012 Summer Bioengineering Conference, Parts

A and B, Jun. 2012, pp. 145–146. doi: 10.1115/SBC2012-80686.

[6] N. Jiang and W. Layton, “Numerical analysis of two ensemble eddy viscosity numerical

regularizations of fluid motion,” Numerical Methods for Partial Differential Equations,

vol. 31, no. 3, pp. 630–651, 2015, issn: 1098-2426. doi: 10.1002/num.21908.

[7] J. Szumbarski, “Numerical study of the Yosida method applied to viscous incompress-

ible internal flows with open boundary conditions,” Archives of Mechanics, vol. 68,

pp. 133–160, Jan. 2016. [Online]. Available: http://am.ippt.pan.pl/am/article/

view/v68p133.

43

https://doi.org/10.1016/S0045-7825(98)00012-7
https://doi.org/10.4208/cicp.301109.080410s
https://doi.org/10.1145/331532.331599
https://doi.org/10.1145/331532.331599
https://doi.org/10.1186/2190-5983-1-7
https://doi.org/10.1115/SBC2012-80686
https://doi.org/10.1002/num.21908
http://am.ippt.pan.pl/am/article/view/v68p133
http://am.ippt.pan.pl/am/article/view/v68p133

[8] N. Offermans et al., “On the Strong Scaling of the Spectral Element Solver Nek5000

on Petascale Systems,” in Proceedings of the Exascale Applications and Software Con-

ference 2016, ser. EASC ’16, Stockholm, Sweden: ACM, 2016, 5:1–5:10, isbn: 978-1-

4503-4122-6. doi: 10.1145/2938615.2938617. arXiv: 1706.02970 [cs.DC].

[9] R. Löhner, “Projective prediction of pressure increments,” Communications in Nu-

merical Methods in Engineering, vol. 21, no. 4, pp. 201–207, 2005, issn: 1099-0887.

doi: 10.1002/cnm.743.

[10] Y. Saad, “Analysis of Augmented Krylov Subspace Methods,” SIAM Journal on Ma-

trix Analysis and Applications, vol. 18, no. 2, pp. 435–449, 1997. doi: 10 . 1137 /

S0895479895294289.

[11] T. F. Chan and W. L. Wan, “Analysis of Projection Methods for Solving Linear Sys-

tems with Multiple Right-Hand Sides,” SIAM Journal on Scientific Computing, vol. 18,

no. 6, pp. 1698–1721, 1997. doi: 10.1137/S1064827594273067.

[12] S. Sirisup, G. E. Karniadakis, D. Xiu, and I. G. Kevrekidis, “Equation-free/Galerkin-

free POD-assisted computation of incompressible flows,” Journal of Computational

Physics, vol. 207, no. 2, pp. 568–587, 2005, issn: 0021-9991. doi: https://doi.org/

10.1016/j.jcp.2005.01.024.

[13] R. Markovinović and J. D. Jansen, “Accelerating iterative solution methods using

reduced-order models as solution predictors,” International Journal for Numerical

Methods in Engineering, vol. 68, no. 5, pp. 525–541, 2006, issn: 1097-0207. doi:

10.1002/nme.1721.

[14] D. Tromeur-Dervout and Y. Vassilevski, “POD acceleration of fully implicit solver

for unsteady nonlinear flows and its application on grid architecture,” Advances in

Engineering Software, vol. 38, no. 5, pp. 301–311, 2007, High Performance Computing

in Science and Engineering, issn: 0965-9978. doi: https://doi.org/10.1016/j.

advengsoft.2006.08.007.

[15] M. Al Sayed Ali and M. Sadkane, “Improved predictor schemes for large systems of

linear ODEs,” Electronic Transactions on Numerical Analysis, vol. 39, pp. 253–270,

44

https://doi.org/10.1145/2938615.2938617
http://arxiv.org/abs/1706.02970
https://doi.org/10.1002/cnm.743
https://doi.org/10.1137/S0895479895294289
https://doi.org/10.1137/S0895479895294289
https://doi.org/10.1137/S1064827594273067
https://doi.org/https://doi.org/10.1016/j.jcp.2005.01.024
https://doi.org/https://doi.org/10.1016/j.jcp.2005.01.024
https://doi.org/10.1002/nme.1721
https://doi.org/https://doi.org/10.1016/j.advengsoft.2006.08.007
https://doi.org/https://doi.org/10.1016/j.advengsoft.2006.08.007

2012, issn: 10689613. [Online]. Available: http://www.emis.ams.org/journals/

ETNA/vol.39.2012/pp253-270.dir/pp253-270.html.

[16] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti, “Recycling Krylov

Subspaces for Sequences of Linear Systems,” SIAM Journal on Scientific Computing,

vol. 28, no. 5, pp. 1651–1674, 2006. doi: 10.1137/040607277.

[17] M. E. Kilmer and E. de Sturler, “Recycling subspace information for diffuse optical

tomography,” SIAM Journal on Scientific Computing, vol. 27, no. 6, pp. 2140–2166,

2006. doi: 10.1137/040610271.

[18] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, “Methods for Modifying

Matrix Factorizations,” Mathematics of Computation, vol. 28, no. 126, pp. 505–505,

May 1974, issn: 1088-6842. doi: 10.1090/s0025-5718-1974-0343558-6.

[19] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, “Reorthogonalization and

Stable Algorithms for Updating the Gram-Schmidt QR Factorization,” Mathematics

of Computation, vol. 30, no. 136, p. 772, Oct. 1976. doi: 10.2307/2005398.

[20] J. Dongarra, J. Bunch, C. Moler, and G. Stewart, “Updating QR & Cholesky Decompo-

sitions,” in LINPACK Users’ Guide, Society for Industrial and Applied Mathematics,

Jan. 1979, ch. 10, p. 10.23, isbn: 978-1-61197-181-1. doi: 10.1137/1.9781611971811.

ch10.

[21] A. Buckley, “Algorithm 580: QRUP: A Set of FORTRAN Routines for Updating

QR Factorizations [F5],” ACM Transactions on Mathematical Software, vol. 7, no. 4,

pp. 548–549, Dec. 1981, issn: 0098-3500. doi: 10.1145/355972.355983.

[22] ——, “Remark on ‘Algorithm 580: QRUP: A Set of FORTRAN Routines for Updat-

ing QR Factorizations’,” ACM Transactions on Mathematical Software, vol. 8, no. 4,

p. 405, Dec. 1982, issn: 0098-3500. doi: 10.1145/356012.356021.

[23] L. Reichel and W. B. Gragg, “Algorithm 686: FORTRAN Subroutines for Updating

the QR Decomposition,” ACM Transactions on Mathematical Software, vol. 16, no. 4,

pp. 369–377, Dec. 1990, issn: 0098-3500. doi: 10.1145/98267.98291.

45

http://www.emis.ams.org/journals/ETNA/vol.39.2012/pp253-270.dir/pp253-270.html
http://www.emis.ams.org/journals/ETNA/vol.39.2012/pp253-270.dir/pp253-270.html
https://doi.org/10.1137/040607277
https://doi.org/10.1137/040610271
https://doi.org/10.1090/s0025-5718-1974-0343558-6
https://doi.org/10.2307/2005398
https://doi.org/10.1137/1.9781611971811.ch10
https://doi.org/10.1137/1.9781611971811.ch10
https://doi.org/10.1145/355972.355983
https://doi.org/10.1145/356012.356021
https://doi.org/10.1145/98267.98291

[24] S. Hammarling, N. J. Higham, and C. Lucas, “LAPACK-Style Codes for Pivoted

Cholesky and QR Updating,” in Applied Parallel Computing. State of the Art in Sci-

entific Computing: 8th International Workshop, PARA 2006, Ume̊a, Sweden, June

18-21, 2006, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg,

2007, pp. 137–146, isbn: 978-3-540-75755-9. doi: 10.1007/978-3-540-75755-9_17.

MIMS EPrint: 2006.385. [Online]. Available: http://eprints.ma.man.ac.uk/689/

1/covered/MIMS_ep2006_385.pdf.

[25] S. Hammarling and C. Lucas, “Updating the QR factorization and the least squares

problem,” Nov. 14, 2008, issn: 1749-9097. MIMS EPrint: 2008.111. [Online]. Avail-

able: http://eprints.maths.manchester.ac.uk/1192.

[26] G. Golub and C. Van Loan, Matrix Computations, Fourth, ser. Johns Hopkins Studies

in the Mathematical Sciences. Johns Hopkins University Press, 2013, isbn: 978-1-

42140-794-4.

[27] Å. Björck, “Modified Least Squares Problems,” in Numerical Methods for Least Squares

Problems. 1996, pp. 127–152, isbn: 978-1-61197-148-4. doi: 10.1137/1.9781611971484.

ch3.

[28] W. Gander, M. J. Gander, and F. Kwok, “Least squares problems,” in Scientific Com-

puting - An Introduction using Maple and MATLAB. Cham: Springer International

Publishing, 2014, pp. 311–320, isbn: 978-3-319-04325-8. doi: 10.1007/978-3-319-

04325-8_6.

[29] Å. Björck, “Linear least squares problems,” in Numerical Methods in Matrix Compu-

tations. Cham: Springer International Publishing, 2015, pp. 305–311, isbn: 978-3-319-

05089-8. doi: 10.1007/978-3-319-05089-8_2.

[30] M. Galassi et al., “Linear Algebra,” in GNU Scientific Library Release 2.4 Reference

Manual, Jul. 14, 2017, ch. 14, p. 131. [Online]. Available: https://www.gnu.org/

software/gsl/doc/latex/gsl-ref.pdf.

46

https://doi.org/10.1007/978-3-540-75755-9_17
2006.385
http://eprints.ma.man.ac.uk/689/1/covered/MIMS_ep2006_385.pdf
http://eprints.ma.man.ac.uk/689/1/covered/MIMS_ep2006_385.pdf
2008.111
http://eprints.maths.manchester.ac.uk/1192
https://doi.org/10.1137/1.9781611971484.ch3
https://doi.org/10.1137/1.9781611971484.ch3
https://doi.org/10.1007/978-3-319-04325-8_6
https://doi.org/10.1007/978-3-319-04325-8_6
https://doi.org/10.1007/978-3-319-05089-8_2
https://www.gnu.org/software/gsl/doc/latex/gsl-ref.pdf
https://www.gnu.org/software/gsl/doc/latex/gsl-ref.pdf

[31] E. Jones, T. Oliphant, P. Peterson, et al., SciPy v1.0.0 Reference Guide, Oct. 25, 2017.

[Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/

scipy.linalg.qr_insert.html.

[32] J. Hajek, qrupdate, version 1.1.2. [Online]. Available: https://sourceforge.net/

projects/qrupdate (visited on 11/19/2017).

[33] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, “Matrix factorizations,”

in GNU Octave version 4.2.0 manual: a high-level interactive language for numerical

computations, 2016. [Online]. Available: https://www.gnu.org/software/octave/

doc/interpreter/Matrix-Factorizations.html#XREFqrinsert.

[34] S. N. Afriat, “Orthogonal and oblique projectors and the characteristics of pairs of vec-

tor spaces,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 53,

no. 4, pp. 800–816, 1957. doi: 10.1017/S0305004100032916.

[35] L. Rebollo-Neira, “Constructive updating/downdating of oblique projectors: a gen-

eralization of the Gram-Schmidt process,” Journal of Physics A: Mathematical and

Theoretical, vol. 40, no. 24, p. 6381, 2007. doi: 10.1088/1751-8113/40/24/007.

[36] S. Kayalar and H. L. Weinert, “Oblique projections: Formulas, algorithms, and error

bounds,” Mathematics of Control, Signals and Systems, vol. 2, no. 1, pp. 33–45, Mar.

1989, issn: 1435-568X. doi: 10.1007/BF02551360.

[37] S. J. Thomas, “A block algorithm for orthogonalization in elliptic norms,” in Parallel

Processing: CONPAR 92—VAPP V: Second Joint International Conference on Vector

and Parallel Processing Lyon, France, September 1–4, 1992 Proceedings. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 1992, pp. 379–385, isbn: 978-3-540-47306-0. doi:

10.1007/3-540-55895-0_434.

[38] G. W. Stewart, “On the numerical analysis of oblique projectors,” SIAM Journal on

Matrix Analysis and Applications, vol. 32, no. 1, pp. 309–348, Mar. 2011, issn: 0895-

4798. doi: 10.1137/100792093.

47

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr_insert.html
https://sourceforge.net/projects/qrupdate
https://sourceforge.net/projects/qrupdate
https://www.gnu.org/software/octave/doc/interpreter/Matrix-Factorizations.html#XREFqrinsert
https://www.gnu.org/software/octave/doc/interpreter/Matrix-Factorizations.html#XREFqrinsert
https://doi.org/10.1017/S0305004100032916
https://doi.org/10.1088/1751-8113/40/24/007
https://doi.org/10.1007/BF02551360
https://doi.org/10.1007/3-540-55895-0_434
https://doi.org/10.1137/100792093

[39] M. Rozložńık, M. Tůma, A. Smoktunowicz, and J. Kopal, “Numerical stability of or-

thogonalization methods with a non-standard inner product,” BIT Numerical Math-

ematics, vol. 52, no. 4, pp. 1035–1058, Dec. 2012, issn: 1572-9125. doi: 10.1007/

s10543-012-0398-9.

[40] B. R. Lowery and J. Langou, “Stability Analysis of QR factorization in an Oblique

Inner Product,” Jan. 2014. arXiv: 1401.5171 [math.NA].

[41] A. Imakura and Y. Yamamoto, “Efficient implementations of the modified Gram-

Schmidt orthogonalization with a non-standard inner product,” Mar. 2017. arXiv:

1703.10440 [math.NA].

[42] Y. Saad, Iterative Methods for Sparse Linear Systems, Second.: Society for Indus-

trial and Applied Mathematics, 2003, isbn: 978-0-89871-800-3. doi: 10 . 1137 / 1 .

9780898718003. [Online]. Available: http : / / www - users . cs . umn . edu / ~saad /

IterMethBook_2ndEd.pdf.

[43] A. D. Okano, “An Oblique QR Factorization of Tall and Skinny Matrices in Julia,”

Master’s thesis, 2015, isbn: 978-1-339-06575-5. [Online]. Available: https://search.

proquest.com/docview/1724033852.

[44] J. Q. Zhao, “S-Orthogonal QR Decomposition Algorithms on Multicore Systems,”

English, Master’s thesis, 2013, isbn: 978-1-30379-523-7. [Online]. Available: https:

//search.proquest.com/docview/1526494869.

[45] A. Ruhe, “Numerical Aspects of Gram-Schmidt Orthogonalization of Vectors,” Linear

Algebra and its Applications, vol. 52-53, no. Supplement C, pp. 591–601, 1983, issn:

0024-3795. doi: 10.1016/0024-3795(83)80037-8.

[46] L. Giraud, J. Langou, M. Rozložńık, and J. van den Eshof, “Rounding error analysis

of the classical Gram-Schmidt orthogonalization process,” Numerische Mathematik,

vol. 101, no. 1, pp. 87–100, Jul. 2005, issn: 0945-3245. doi: 10.1007/s00211-005-

0615-4.

48

https://doi.org/10.1007/s10543-012-0398-9
https://doi.org/10.1007/s10543-012-0398-9
http://arxiv.org/abs/1401.5171
http://arxiv.org/abs/1703.10440
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://search.proquest.com/docview/1724033852
https://search.proquest.com/docview/1724033852
https://search.proquest.com/docview/1526494869
https://search.proquest.com/docview/1526494869
https://doi.org/10.1016/0024-3795(83)80037-8
https://doi.org/10.1007/s00211-005-0615-4
https://doi.org/10.1007/s00211-005-0615-4

[47] G. W. Stewart, “When Is Twice Enough? (The Oblique Case),” in Householder Sym-

posium XVIII on Numerical Linear Algebra, Tahoe City, California, Jun. 2011, p. 220.

[Online]. Available: http://www.mims.manchester.ac.uk/~higham/conferences/

householder/HH11_Abstracts.pdf#page=232.

[48] D. Bindel, J. Demmel, W. Kahan, and O. Marques, “On Computing Givens Rotations

Reliably and Efficiently,” ACM Transactions on Mathematical Software, vol. 28, no. 2,

pp. 206–238, Jun. 2002, issn: 0098-3500. doi: 10.1145/567806.567809.

[49] M. Harris. (Apr. 29, 2014). CUDA Pro Tip: Fast and Robust Computation of Givens

Rotations, NVIDIA, [Online]. Available: https://devblogs.nvidia.com/parallelforall/

cuda-pro-tip-fast-robust-computation-givens-rotations.

49

http://www.mims.manchester.ac.uk/~higham/conferences/householder/HH11_Abstracts.pdf#page=232
http://www.mims.manchester.ac.uk/~higham/conferences/householder/HH11_Abstracts.pdf#page=232
https://doi.org/10.1145/567806.567809
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-fast-robust-computation-givens-rotations
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-fast-robust-computation-givens-rotations

	CHAPTER 1 Introduction
	1.1 Background
	1.2 Prior work
	1.2.1 Projection onto prior solutions
	1.2.2 Efficient QR updates

	1.3 Outline

	CHAPTER 2 Solution approximation by projection
	2.1 A-orthogonal basis
	2.1.1 Error of the initial guess

	2.2 Gram-Schmidt projection space update
	2.2.1 Reducing storage cost

	2.3 Efficient projection space update
	2.3.1 Derivation
	2.3.2 Givens rotations
	2.3.3 Householder reflections
	2.3.4 Efficient re-orthogonalization algorithm

	CHAPTER 3 Numerical experiments
	3.1 Case 1: 3D vortex breakdown
	3.1.1 Performance
	3.1.2 Stability and accuracy

	3.2 Case 2: 3D flow past a hemisphere
	3.2.1 Performance
	3.2.2 Stability and accuracy

	3.3 Case 3: 3D flow in a carotid artery
	3.3.1 Performance
	3.3.2 Stability and accuracy

	CHAPTER 4 Analysis and conclusion
	4.1 Summary

	BIBLIOGRAPHY

