383 research outputs found

    Pre-Congestion Notification (PCN) Architecture

    Get PDF
    This document describes a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established, inelastic flows within a single Diffserv domain.\u

    The Squatting and Kicking strategies for self-provisioned, bandwidth resource sharing in multiclass networks

    Get PDF
    English: This article proposes a self-provisioned, Squatting and Kicking bandwidth resource sharing strategy for multiclass networks where differentiated services are not natively built. Moreover, this article provides a summary of the bandwidth constraints models and shows how the squatting and kicking strategies can be adapted to be the basis for a new bandwidth constraint model, which widens the range of techniques available to operators for bandwidth resource management in multiclass networks.Castellano: Este artĂ­culo propone unas estrategias para compartir ancho de banda en redes multi-clase de manera auto-gestionada, donde los servicios diferenciados no se soportan de manera nativa. AdemĂĄs, se provee una comparaciĂłn de los modelos de ancho de banda limitado y cĂłmo las estrategias "squat" y "kick" se pueden constituir como nuevo modelo. Dicho model ampliarĂĄ el nĂșmero de tĂ©cnicas que los operadores tienen disponibles para la gestiĂłn de trĂĄfico en redes multi-clase.CatalĂ : Aquest article proposa unes estratĂšgies per a compartir l'amplada de banda en xarxes multi-classe de manera auto-gestionada, a on els serveis diferenciats no se suporten de manera nadiua. A mĂ©s a mĂ©s, se proveeix una comparaciĂł dels models d'amplada de banda limitat i com les estratĂšgies "squat" i "kick" es poden constituir com a nou model. Aquest nou model ampliarĂ  el nombre de tĂšcniques de que disposen els operadors de xarxes multi-classe per a la gestiĂł del trĂ fic

    Investigating Basic Quality of Service Design Possibilities for Regis University Academic Research Network Edge Routers

    Get PDF
    The Regis University Academic Research Network (ARNe) had network resources, such as VoIP, that required preservation their ability to receive near real-time forwarding treatment across the network. Quality of Service (QoS) design ideas were examined from four actual implementations described in research cases. Additionally, research involving surveys from Cisco certified professionals was examined, and Cisco technical literature was examined. Case study methodology, involving the study of multiple cases, was the primary tactic utilized in this research. Examination and triangulation of data from the research indicated that ARNe would benefit from moving forward with a basic QoS design and implementation, integrating concepts identified in the data. Additionally, data supported that a basic QoS design and implementation on ARNe would provide Computer Science and Information Science students an opportunity to more fully appreciate QoS through further research and hands-on experience

    Resource Management in Diffserv (RMD) Framework

    Get PDF
    This draft presents the work on the framework for the Resource Management in Diffserv (RMD) designed for edge-to-edge resource reservation in a Differentiated Services (Diffserv) domain. The RMD extends the Diffserv architecture with new resource reservation concepts and features. Moreover, this framework enhances the Load Control protocol described in [WeTu00].\ud \ud The RMD framework defines two architectural concepts:\ud - the Per Hop Reservation (PHR)\ud - the Per Domain Reservation (PDR)\ud \ud The PHR protocol is used within a Diffserv domain on a per-hop basis to augment the Diffserv Per Hop Behavior (PHB) with resource reservation. It is implemented in all nodes in a Diffserv domain. On the other hand, the PDR protocol manages the resource reservation per Diffserv domain, relying on the PHR resource reservation status in all nodes. The PDR is only implemented at the boundary of the domain (at the edge nodes).\ud \ud The RMD framework presented in this draft describes the new reservation concepts and features. Furthermore it describes the:\ud - relationship between the PHR and PHB\ud - interaction between the PDR and PHR\ud - interoperability between the PDR and external resource reservation schemes\ud \ud This framework is an open framework in the sense that it provides the basis for interoperability with other resource reservation schemes and can be applied in different types of networks as long as they are Diffserv domains. It aims at extreme simplicity and low cost of implementation along with good scaling properties

    Advances in Internet Quality of Service

    Get PDF
    We describe recent advances in theories and architecture that support performance guarantees needed for quality of service networks. We start with deterministic computations and give applications to integrated services, differentiated services, and playback delays. We review the methods used for obtaining a scalable integrated services support, based on the concept of a stateless core. New probabilistic results that can be used for a statistical dimensioning of differentiated services are explained; some are based on classical queuing theory, while others capitalize on the deterministic results. Then we discuss performance guarantees in a best effort context; we review: methods to provide some quality of service in a pure best effort environment; methods to provide some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    A traffic engineering system for DiffServ/MPLS networks

    Get PDF
    This thesis presents an approach to traffic engineering that uses DiffServ and MPLS technologies to provide QoS guarantees over an IP network. The specific problem described here is how best to route traffic within the network such that the demands can be carried with the requisite QoS while balancing the load on the network. A traffic engineering algorithm that determines QoS guaranteed label-switched paths (LSPs) between specified ingress-egress pairs is proposed and a system that uses such an algorithm is outlined. The algorithm generates a solution for the QoS routing problem of finding a path with a number of constraints (delay, jitter, loss) while trying to make best of resource utilisation. The key component of the system is a central resource manager responsible for monitoring and managing resources within the network and making all decisions to route traffic according to QoS requirements. The algorithm for determining QoS-constrained routes is based on the notion of effective bandwidth and cost functions for load balancing. The network simulation of the proposed system is presented here and simulation results are discussed

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario
    • 

    corecore