1,998 research outputs found

    Multiobjective Evolutionary Optimization of Type-2 Fuzzy Rule-Based Systems for Financial Data Classification

    Get PDF
    Classification techniques are becoming essential in the financial world for reducing risks and possible disasters. Managers are interested in not only high accuracy, but in interpretability and transparency as well. It is widely accepted now that the comprehension of how inputs and outputs are related to each other is crucial for taking operative and strategic decisions. Furthermore, inputs are often affected by contextual factors and characterized by a high level of uncertainty. In addition, financial data are usually highly skewed toward the majority class. With the aim of achieving high accuracies, preserving the interpretability, and managing uncertain and unbalanced data, this paper presents a novel method to deal with financial data classification by adopting type-2 fuzzy rule-based classifiers (FRBCs) generated from data by a multiobjective evolutionary algorithm (MOEA). The classifiers employ an approach, denoted as scaled dominance, for defining rule weights in such a way to help minority classes to be correctly classified. In particular, we have extended PAES-RCS, an MOEA-based approach to learn concurrently the rule and data bases of FRBCs, for managing both interval type-2 fuzzy sets and unbalanced datasets. To the best of our knowledge, this is the first work that generates type-2 FRBCs by concurrently maximizing accuracy and minimizing the number of rules and the rule length with the objective of producing interpretable models of real-world skewed and incomplete financial datasets. The rule bases are generated by exploiting a rule and condition selection (RCS) approach, which selects a reduced number of rules from a heuristically generated rule base and a reduced number of conditions for each selected rule during the evolutionary process. The weight associated with each rule is scaled by the scaled dominance approach on the fuzzy frequency of the output class, in order to give a higher weight to the minority class. As regards the data base learning, the membership function parameters of the interval type-2 fuzzy sets used in the rules are learned concurrently to the application of RCS. Unbalanced datasets are managed by using, in addition to complexity, selectivity and specificity as objectives of the MOEA rather than only the classification rate. We tested our approach, named IT2-PAES-RCS, on 11 financial datasets and compared our results with the ones obtained by the original PAES-RCS with three objectives and with and without scaled dominance, the FRBCs, fuzzy association rule-based classification model for high-dimensional dataset (FARC-HD) and fuzzy unordered rules induction algorithm (FURIA), the classical C4.5 decision tree algorithm, and its cost-sensitive version. Using nonparametric statistical tests, we will show that IT2-PAES-RCS generates FRBCs with, on average, accuracy statistically comparable with and complexity lower than the ones generated by the two versions of the original PAES-RCS. Further, the FRBCs generated by FARC-HD and FURIA and the decision trees computed by C4.5 and its cost-sensitive version, despite the highest complexity, result to be less accurate than the FRBCs generated by IT2-PAES-RCS. Finally, we will highlight how these FRBCs are easily interpretable by showing and discussing one of them

    Machine Learning Methods to Exploit the Predictive Power of Open, High, Low, Close (OHLC) Data

    Get PDF
    Novel machine learning techniques are developed for the prediction of financial markets, with a combination of supervised, unsupervised and Bayesian optimisation machine learning methods shown able to give a predictive power rarely previously observed. A new data mining technique named Deep Candlestick Mining (DCM) is proposed that is able to discover highly predictive dataset specific candlestick patterns (arrangements of open, high, low, close (OHLC) aggregated price data structures) which significantly outperform traditional candlestick patterns. The power that OHLC features can provide is further investigated, using LSTM RNNs and XGBoost trees, in the prediction of a mid-price directional change, defined here as the mid-point between either the open and close or high and low of an OHLC bar. This target variable has been overlooked in the literature, which is surprising given the relative ease of predicting it, significantly in excess of noisier financial quantities. However, the true value of this quantity is only known upon the period's ending – i.e. it is an after-the-fact observation. To make use of and enhance the remarkable predictability of the mid-price directional change, multi-period predictions are investigated by training many LSTM RNNs (XGBoost trees being used to identify powerful OHLC input feature combinations), over different time horizons, to construct a Bayesian optimised trend prediction ensemble. This fusion of long-, medium- and short-term information results in a model capable of predicting market trend direction to greater than 70% better than random. A trading strategy is constructed to demonstrate how this predictive power can be used by exploiting an artefact of the LSTM RNN training process which allows the trading system to size and place trades in accordance with the ensemble's predictive certainty

    Fifth annual conference on Alaskan placer mining

    Get PDF
    An abridged format of papers, presentations and addresses given during the 1983 conference held on March 30-31, 1983 compiled and edited by Bruce W. Campbell, Jim Madonna, and M. Susan Husted.Partial funding was provided by the Carl G. Parker Memorial Publishing Fund, University of Alaska, Fairbanks, and the Mining and Mineral Resources Research Institute, U.S. Department of the Interior, Bureau of Mines

    Managing extreme cryptocurrency volatility in algorithmic trading: EGARCH via genetic algorithms and neural networks.

    Get PDF
    Política de acceso abierto tomada de: https://www.aimspress.com/index/news/solo-detail/openaccesspolicyThe blockchain ecosystem has seen a huge growth since 2009, with the introduction of Bitcoin, driven by conceptual and algorithmic innovations, along with the emergence of numerous new cryptocurrencies. While significant attention has been devoted to established cryptocurrencies like Bitcoin and Ethereum, the continuous introduction of new tokens requires a nuanced examination. In this article, we contribute a comparative analysis encompassing deep learning and quantum methods within neural networks and genetic algorithms, incorporating the innovative integration of EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) into these methodologies. In this study, we evaluated how well Neural Networks and Genetic Algorithms predict “buy” or “sell” decisions for different cryptocurrencies, using F1 score, Precision, and Recall as key metrics. Our findings underscored the Adaptive Genetic Algorithm with Fuzzy Logic as the most accurate and precise within genetic algorithms. Furthermore, neural network methods, particularly the Quantum Neural Network, demonstrated noteworthy accuracy. Importantly, the X2Y2 cryptocurrency consistently attained the highest accuracy levels in both methodologies, emphasizing its predictive strength. Beyond aiding in the selection of optimal trading methodologies, we introduced the potential of EGARCH integration to enhance predictive capabilities, offering valuable insights for reducing risks associated with investing in nascent cryptocurrencies amidst limited historical market data. This research provides insights for investors, regulators, and developers in the cryptocurrency market. Investors can utilize accurate predictions to optimize investment decisions, regulators may consider implementing guidelines to ensure fairness, and developers play a pivotal role in refining neural network models for enhanced analysis.This research was funded by the Universitat de Barcelona, under the grant UB-AE-AS017634

    Machine Learning-Driven Decision Making based on Financial Time Series

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Online learning in financial time series

    Get PDF
    We wish to understand if additional learning forms can be combined with sequential optimisation to provide superior benefit over batch learning in various tasks operating in financial time series. In chapter 4, Online learning with radial basis function networks, we provide multi-horizon forecasts on the returns of financial time series. Our sequentially optimised radial basis function network (RBFNet) outperforms a random-walk baseline and several powerful supervised learners. Our RBFNets naturally measure the similarity between test samples and prototypes that capture the characteristics of the feature space. In chapter 5, Reinforcement learning for systematic FX trading, we perform feature representation transfer from an RBFNet to a direct, recurrent reinforcement learning (DRL) agent. Earlier academic work saw mixed results. We use better features, second-order optimisation methods and adapt our model parameters sequentially. As a result, our DRL agents cope better with statistical changes to the data distribution, achieving higher risk-adjusted returns than a funding and a momentum baseline. In chapter 6, The recurrent reinforcement learning crypto agent, we construct a digital assets trading agent that performs feature space representation transfer from an echo state network to a DRL agent. The agent learns to trade the XBTUSD perpetual swap contract on BitMEX. Our meta-model can process data as a stream and learn sequentially; this helps it cope with the nonstationary environment. In chapter 7, Sequential asset ranking in nonstationary time series, we create an online learning long/short portfolio selection algorithm that can detect the best and worst performing portfolio constituents that change over time; in particular, we successfully handle the higher transaction costs associated with using daily-sampled data, and achieve higher total and risk-adjusted returns than the long-only holding of the S&P 500 index with hindsight
    corecore