
Online learning in financial time series

Gabriel Borrageiro

Thesis submitted for the degree of

Doctor of Philosophy

Department of Computer Science

University College London

supervisors: Dr. Paolo Barucca, Dr. Nick Firoozye

November 22, 2022



2

I, Gabriel Borrageiro, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated in the

work.



Abstract

We wish to understand if additional learning forms can be combined with sequential optimi-

sation to provide superior benefit over batch learning in various tasks operating in financial

time series.

In chapter 4, Online learning with radial basis function networks, we provide multi-

horizon forecasts on the returns of financial time series. Our sequentially optimised radial

basis function network (RBFNet) outperforms a random-walk baseline and several powerful

supervised learners. Our RBFNets naturally measure the similarity between test samples and

prototypes that capture the characteristics of the feature space.

In chapter 5, Reinforcement learning for systematic FX trading, we perform feature

representation transfer from an RBFNet to a direct, recurrent reinforcement learning (DRL)

agent. Earlier academic work saw mixed results. We use better features, second-order opti-

misation methods and adapt our model parameters sequentially. As a result, our DRL agents

cope better with statistical changes to the data distribution, achieving higher risk-adjusted

returns than a funding and a momentum baseline.

In chapter 6, The recurrent reinforcement learning crypto agent, we construct a dig-

ital assets trading agent that performs feature space representation transfer from an echo state

network to a DRL agent. The agent learns to trade the XBTUSD perpetual swap contract on

BitMEX. Our meta-model can process data as a stream and learn sequentially; this helps it

cope with the nonstationary environment.

In chapter 7, Sequential asset ranking in nonstationary time series, we create an

online learning long/short portfolio selection algorithm that can detect the best and worst

performing portfolio constituents that change over time; in particular, we successfully han-

dle the higher transaction costs associated with using daily-sampled data, and achieve higher

total and risk-adjusted returns than the long-only holding of the S&P 500 index with hind-

sight.



Impact Statement

This thesis adds to the academic research of learning in nonstationary environments or those

that experience frequent concept drifts. Chapter 4, Online learning with radial basis func-

tion networks contributes to the research of feature representation transfer and kernel-based

learning methods. Our sequentially optimised, transfer-learning radial basis function net-

works (RBFNets) outperform various powerful baseline models in multi-horizon, multi-asset

forecasting and help the financial industry reduce predictive uncertainty. Furthermore, it

is well-known that financial time series exhibit low signal-to-noise ratios. When one uses

RBFNets whose hidden units are determined by clustering algorithms or mixture models,

the hidden unit outputs retain more remarkable similarity through time, which increases

signal-to-noise ratios and ameliorates catastrophic forgetting.

Chapters 5, Reinforcement learning for systematic FX trading and 6, The recur-

rent reinforcement learning crypto agent contribute to the academic research of direct

reinforcement learning in financial trading systems. Specifically, the models learn to target

financial risk positions sequentially and directly without using value function estimation.

When regimes change or the funding costs alter to reflect new interest rate differentials, the

models transition smoothly to the desired risk positions, accruing lower transaction costs

than supervised learning methods.

Finally, chapter 7, Sequential asset ranking in nonstationary time series, contributes

to the research on prediction with expert advice, with a practical application of learning to

rank and select portfolios of assets. Despite the index appreciating intensely during the test

period, we outperform the long-only holding of the S&P 500 constituents with hindsight. The

financial industry benefits from this research as we can identify subsets of assets to trade on

a long/short basis through economic downturns, black swan events and bullish markets. We

do so while drastically reducing the high transaction costs that arise with so-called regress-

then-rank algorithms.



Acknowledgements

I want to thank my supervisors, Paolo Barucca and Nick Firoozye, for agreeing to supervise

me and investing their time and energy into this endeavour. Completing a part-time PhD as a

family man is a challenging effort. I thank my wife Marion and my daughters Juno and Thea

for their patience, especially over most weekends when I was working on my thesis out of

sight. Finally, I would like to dedicate this thesis to the memory of my father, Manuel.



Publications

Chapters 4 through 7 of this thesis were initially submitted as individual manuscripts that

have been peer-reviewed and published.

• G. Borrageiro, N. Firoozye and P. Barucca, Online learning with radial basis func-

tion networks, to appear in The Journal of Financial Data Science, February 2023.

• G. Borrageiro, N. Firoozye and P. Barucca, Reinforcement learning for systematic

FX trading, in IEEE Access, vol. 10, pp. 5024-5036, 2022, doi: 10.1109/AC-

CESS.2021.3139510.

• G. Borrageiro, N. Firoozye and P. Barucca, The recurrent reinforcement learning

crypto agent, in IEEE Access, vol. 10, pp. 38590-38599, 2022, doi: 10.1109/AC-

CESS.2022.3166599.

• G. Borrageiro, N. Firoozye and P. Barucca, Sequential asset ranking in nonstation-

ary time series, in 3rd ACM International Conference on AI in Finance (ICAIF ’22),

November 2–4, 2022, New York, NY, USA. ACM, doi: 10.1145/3533271.3561666.



Contents

1 Introduction 18

1.1 Context of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Aim and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Significance of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Background and literature review 29

2.1 The rationale for online learning in financial time series . . . . . . . . . . . 29

2.2 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 The radial basis function network . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Exponentially weighted recursive least squares . . . . . . . . . . . . . . . 36

2.5 Curds and whey multivariate regression . . . . . . . . . . . . . . . . . . . 37

2.6 Echo state networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Policy gradient reinforcement learning . . . . . . . . . . . . . . . . . . . . 41

2.7.1 Policy gradient methods in financial trading . . . . . . . . . . . . . 42

2.8 Prediction with expert advice . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.9 Online financial portfolio selection . . . . . . . . . . . . . . . . . . . . . . 46

2.10 Learning to rank portfolios of assets . . . . . . . . . . . . . . . . . . . . . 47

2.11 Naive Bayes ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Datasets 50

3.1 Online learning with radial basis function networks . . . . . . . . . . . . . 50

3.2 Reinforcement learning for systematic FX trading . . . . . . . . . . . . . . 53

3.3 The recurrent reinforcement learning crypto agent . . . . . . . . . . . . . . 54



Contents 8

3.4 Sequential asset ranking in nonstationary time series . . . . . . . . . . . . 54

4 Online learning with radial basis function networks 64

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 The research experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 The random-walk model . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 The online learning radial basis function network . . . . . . . . . . 70

4.2.4 Competitor models . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.5 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Reinforcement learning for systematic FX trading 80

5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Foreign exchange trading . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Experiment methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Targeting a position with direct recurrent reinforcement . . . . . . . 85

5.3.2 Baseline models . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.1 Performance evaluation methods . . . . . . . . . . . . . . . . . . . 91

5.4.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 The recurrent reinforcement learning crypto agent 99

6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 The BitMEX XBTUSD perpetual swap . . . . . . . . . . . . . . . . . . . 100

6.3 The research experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 The recurrent reinforcement learning crypto agent . . . . . . . . . 103

6.3.2 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



Contents 9

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Sequential asset ranking in nonstationary time series 110

7.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 The naive Bayes asset ranker . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 The research experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3.1 Baseline models . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.2 The S&P 500 dataset . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.3 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Conclusion and future work 123

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendices 130

A Colophon 130

Bibliography 131



List of Figures

1.1 Our thesis is motivated by the difficulty in modelling financial time series,

which are typically nonstationary and serially correlated. Even if one uses

returns, which are technically stationary as determined by unit root tests,

they typically experience regime shifts. Thus, the traditional batch-learning

OLS approach has obvious limitations. On various tasks, including forecast-

ing, proprietary risk-taking and portfolio selection, we show that intelligent

feature transfer combined with online learning will likely outperform histor-

ically difficult-to-beat baselines and powerful batch learners. . . . . . . . . 19

1.2 Online learning, combined with some form of feature representation transfer,

underpins all four experiments that we conduct. In addition, chapter 4 sees an

additional exercise of external input selection via an algorithm that combines

forward stepwise selection with variance inflation factor minimisation. . . . 28

2.1 For the S&P 500 dataset, we plot the probability that H0 : w j,t = w j,t+h is

rejected by the two-sample t-test for equal means. Specifically, the weekly

averaged AR(1) coefficients are compared. Unit root tests indicate that the

daily returns are stationary. However, the models that operate on the returns

require constant refitting; this motivates the need for online learning. . . . . 32

2.2 Architecture of the radial basis function network. . . . . . . . . . . . . . . 34

2.3 Here, we compare the posterior predictive densities of several scikit-learn

classifiers on synthetic datasets. A multilayer perceptron separates classes

using hidden units that form hyperplanes in the input space. In contrast, the

separation of class distributions modelled by local radial basis functions is

probabilistic, with each class fitted with a kernel function. . . . . . . . . . . 35

2.4 A schematic of the echo state network; source: (Jaeger, 2002). . . . . . . . 40



List of Figures 11

4.1 We show a heatmap of the training set returns correlations for the Refinitiv

cross-asset dataset. Across currency pairs, equities, rates, credit, metals,

agriculture, energy and crypto, there is a bias toward positive correlations,

which increases systemic risk in the financial markets, particularly during

periods of turmoil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The radial basis function network achieves the lowest normalised mean

squared error when predicting daily returns of the Refinitiv cross-asset

dataset up to h = 1, ...,30 days ahead. . . . . . . . . . . . . . . . . . . . . 77

4.3 We compare the cosine similarities of returns and RBFNet hidden unit out-

puts; specifically we compare their train/test split. Returns similarity is low

and erodes over time. In contrast, the RBFNet hidden outputs retain more

remarkable similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Average daily global FX market turnover in USD millions, source: BIS. . . 84

5.2 We show Refinitiv GBPUSD forward rates. FX forward rates primarily re-

flect the interest rate differential between the base and the counter currencies. 86

5.3 Feature representation transfer from a radial basis function network to a di-

rect, recurrent reinforcement learning agent. . . . . . . . . . . . . . . . . . 87

5.4 We plot relative intra-day bid/ask spreads for our experiment’s 36 Refini-

tiv currency pairs. Execution cost is highest when the trade date rolls onto

the next date; this occurs at around 10 PM GMT, precisely when Refinitiv

samples their historical daily FX data. . . . . . . . . . . . . . . . . . . . . 92

5.5 Stacked central bank interest rates in percentage points, source: BIS. There

has been a downward trajectory in global rates during the period shown, with

a sharp contraction in rates shortly after the 2008 financial crisis. . . . . . . 94

5.6 Cumulative daily returns across all currency pairs by strategy: drl is the

DRL agent, mom is the supervised-learning momentum trader and carry,

the carry/funding trader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 The distribution of daily returns by strategy: drl is the DRL agent, mom is

the supervised-learning momentum trader and carry, the carry/funding trader. 97

5.8 A sensitivity analysis of funding versus position for a USDRUB DRL agent. 98



List of Figures 12

6.1 We show XBTUSD basis during the bear market of 2019. The basis is neg-

ative when the perpetual swap trades below the cash index it tracks. A nega-

tive basis in crypto is a reflection of participants reducing risk and is exacer-

bated by forced liquidations. . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 We plot a schematic of feature representation transfer from an echo state

network to a direct, recurrent reinforcement learning agent. . . . . . . . . . 103

6.3 We plot cumulative returns for our XBTUSD crypto agent. Although the

model averages a mostly long position, it goes short where necessary. Also, it

resorts to staying out of the market if it does not have a solid signal indicating

to get back in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 A scatter plot of IR versus total return. Each circle represents an outcome

from a Monte Carlo simulation of 250 trials which assesses the impact of

ESN initialisation on our DRL crypto agent. . . . . . . . . . . . . . . . . . 109

7.1 The RBFNet forecasts are fed into the CAW multivariate regression model,

whose output is ranked and selected by the NBAR. . . . . . . . . . . . . . 114

7.2 The distribution of transaction costs, where the distribution is taken over the

average transaction cost per S&P 500 constituent. . . . . . . . . . . . . . . 117

7.3 Total return by each model in the test set where the maximum selection per-

centile is set to 5% of the total number of portfolio constituents. The naive

Bayes asset ranker performs best, particularly the cross-sectional momentum

version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 The NBAR cross-sectional momentum weights across time. We find visual

evidence that the portfolio selection is dynamic and changing over time. . . 120

7.5 NBAR cross-sectional momentum weights across time for Electronic Arts Inc.121

7.6 Test returns by model and selection percentile. Restricting the maximum

selection percentile results in the highest total returns but is not particularly

useful for portfolio managers that need to allocate substantial investment

capital. The risk-adjusted returns for this test set peak near an upper-bound

selection percentile of 5% of total constituents. . . . . . . . . . . . . . . . 121



List of Tables

3.1 The Refinitiv cross-asset class dataset. . . . . . . . . . . . . . . . . . . . . 50

3.2 The major FX pairs experimented with, including rics. . . . . . . . . . . . 53

3.3 Refinitiv S&P 500 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Summary statistics for the training set returns correlations for the Refinitiv

cross-asset dataset (section 3.1). There are substantial positive correlations,

which motivate using an external input feature selection algorithm. . . . . . 69

4.2 Forward stepwise selection and VIF minimisation applied to the EURUSD

spot FX returns in the training set. Features with a maximum VIF factor

κ ≤ 5 are accepted. The contribution to total R2 is displayed in the final

column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 The models perform multi-step returns forecasting on the Refinitiv cross-

asset dataset with horizons from h= 1, ...,30 days ahead. We show the distri-

bution of the test set normalised mean squared error (NMSE) for each model

across the multiple forecast horizons. The RBFNet achieves the lowest NMSE. 76

4.4 Summary statistics for the cosine similarities visualised in figure 4.3. . . . . 78

5.1 Portfolio net PNL returns by strategy. The DRL agent achieves the highest

risk-adjusted returns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 PNL returns by strategy. The carry baseline naturally achieves the highest

funding PNL. However, as table 5.1 shows, this funding PNL cannot off-

set what is clearly a momentum-driven environment with low-interest rates

(see figure 5.5). The DRL agent captures a greater funding profit than the

momentum trader. The momentum trader is a supervised learner which fore-

casts daily returns and cannot adjust its positions based on funding PNL.

Funding PNL tends to be negatively correlated with momentum PNL. . . . 95



List of Tables 14

5.3 Empirical information ratios, source: Blackrock. . . . . . . . . . . . . . . . 97

6.1 We display daily profit and loss (PNL) statistics for our transfer learning,

DRL XBTUSD crypto agent. Our agent averages mostly a long position,

which is natural as Bitcoin has appreciated relative to the US Dollar during

the test period. We find evidence that our crypto agent can successfully target

a positive funding PNL and capture the PNL associated with price trends. . 108

6.2 Summary statistics relating to the figure 6.4. . . . . . . . . . . . . . . . . . 109

7.1 Relative transaction costs incurred by each model in the test set. A buy-and-

hold strategy on the S&P 500 achieves the lowest transaction costs. However,

from the perspective of a more active portfolio management standpoint, our

ranking algorithm incurs far lower transaction costs than the regress-then-

rank baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Summary returns statistics are shown in relation to the experiment, shown vi-

sually in figure 7.3. The cross-sectional momentum naive Bayes asset ranker

has the highest total and risk-adjusted returns. . . . . . . . . . . . . . . . . 120



List of Algorithms

2.1 Exponentially weighted recursive least squares. . . . . . . . . . . . . . . . 37

2.2 Sequentially optimised curds and whey regression. . . . . . . . . . . . . . 39

2.3 Sequential prediction with an adaptive environment. . . . . . . . . . . . . . 44

2.4 The weighted majority algorithm. . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Forward stepwise selection with variance inflation factor minimisation. . . . 72

4.2 The online learning radial basis function network. . . . . . . . . . . . . . . 73

5.1 The extended Kalman filter. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1 The naive Bayes asset ranker . . . . . . . . . . . . . . . . . . . . . . . . . 113



Notation

Numbers and Arrays
a a real or integer scalar

a a vector

A a matrix

Id an identity matrix with d rows and d columns

0d a zero vector of length d

0d×d a zero matrix with d rows and d columns

diag(a) a square, diagonal matrix with a along the diagonal

Sets and Graphs
A a set

R the set of real numbers

Z+ the set of positive integers {0,1,2,3, ...}

{0,1, ...,n} the set of all integers between 0 and n

Indexing
ai element i of vector a

a−i all elements of a except for element i

Ai, j element i, j of matrix A

A:,i column i of matrix A

{µµµ j}k
j=1 an operation on vector µµµ j, j = 1, ...,k



Notation 17

Calculus
dy
dx the derivative of y with respect to x

∂y
∂x the partial derivative of y with respect to x

∇xy the gradient of y with respect to x

∇2
x f (x) the Hessian matrix of f evaluated at x

Probability and Statistics
x∼ P a P distributed random variable x

Ex∼P[ f (x)] the expectation of f (x) with respect to P(x)

Var[x] the variance of x

Cov[x,y] the covariance of x and y

N(x; µµµ,ΣΣΣ) Gaussian distribution over x with mean µµµ and covariance ΣΣΣ

R2 the proportion of the variation in the response that is explained by the predictors

mse mean square error

iid independent and identically distributed random variables

Functions
f (x;θθθ) a function of x parameterised by θθθ

∥x∥ L2 norm of x

I(.) an indicator function that returns 1 for a true condition, or else 0

sign(x) sign(x) = 1 if x > 0, 0 if x = 0, −1 if x < 0

argSort(.) returns the indices that would sort an array from largest to smallest value



Chapter 1

Introduction

This thesis is concerned with online learning in financial time series. In this chapter, we

provide context for our study, provide a statement of the problem, discuss our aim and scope,

detail our contributions to science and complete the chapter with an outline of the thesis

structure. Figure 1.1 succinctly describes our thesis setup. Our thesis is motivated by the

difficulty in modelling financial time series, which are typically nonstationary and serially

correlated. Even if one uses returns, which are technically stationary as determined by unit

root tests, they typically experience regime shifts. Thus, the traditional batch-learning OLS

approach has obvious limitations. On various tasks, including forecasting, proprietary risk-

taking and portfolio selection, we show that intelligent feature transfer combined with online

learning will likely outperform historically difficult-to-beat baselines and powerful batch

learners.

1.1 Context of the study
Time-series econometrics is concerned with estimating difference equations containing

stochastic components (Enders, 2014). The classical approach in this domain is the Box

and Jenkins (1970) ARIMA technique, which broadly involves differencing a time series

until it is stationary and then applying a structural, offline learning model, which is valued

for its ease of interpretation and hypothesis testing. Financial time series are usually nonsta-

tionary and serially correlated. Taking first differences renders such time series stationary,

and learning a model of the returns generally leads to regression residuals that show no

recognisable structure. The stationary, differenced time series facilitate using a broad class

of batch learning models. However, differencing these time series usually removes long-

memory properties in the data. de Prado (2015) argues that financial time series exhibit low
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Figure 1.1: Our thesis is motivated by the difficulty in modelling financial time series, which are
typically nonstationary and serially correlated. Even if one uses returns, which are tech-
nically stationary as determined by unit root tests, they typically experience regime shifts.
Thus, the traditional batch-learning OLS approach has obvious limitations. On various
tasks, including forecasting, proprietary risk-taking and portfolio selection, we show that
intelligent feature transfer combined with online learning will likely outperform histori-
cally difficult-to-beat baselines and powerful batch learners.

signal-to-noise ratios due to arbitrage forces, which integer differencing reduces further. The

emphasis of his work in de Prado (2018) is to apply a wide range of modern machine learn-

ing techniques to model financial time series and to move the emphasis away from applying

structural models to integer differenced data.

An approach that copes with nonstationarity is online learning, broadly defined as se-

quential fitting and prediction. Historically, we find some use of online learning in finan-

cial time series. Examples include discounted least squares (Abraham and Ledolter, 1983),

which uses a mini-batch sliding-window fitting approach, and recursive least squares (RLS)

(Harvey, 1993), which adopts sequential fitting and prediction. More recently, we find expo-

nentially weighted versions of RLS (EWRLS) which use nonlinear kernels (Liu et al., 2010).

The use of such models is emphasised in the context of sequential forecasting. However,

no claims are made that such models are strictly necessary or work better than offline learn-

ing models. It is often viewed that online learning is far noisier than offline learning. For

example, Polyak-Ruppert averaging (Ruppert, 1988; Polyak, 1990) is applied to the model

weight updates learnt through stochastic gradient descent, reducing the impact of noise on

the problem solution and improving convergence rates. More recently, in econometric time
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series forecasting, views have shifted toward the hypothesis that online learning is essen-

tial, specifically as the online learning approaches can adapt better to dynamic statistical

behaviours. For example, Anava et al. (2013) use regret minimisation techniques (Cesa-

Bianchi and Lugosi, 2006) to develop practical online learning algorithms for the prediction

problem without assuming that the noise terms are iid. Furthermore, they show that their

algorithms’ performances asymptotically approach the performance of the best arma model

with hindsight.

1.2 Statement of the problem

At the core of this thesis, we wish to understand if other forms of learning can be combined

with sequential optimisation to provide superior benefit over batch learning in various tasks

operating in financial time series. Such tasks include multi-horizon forecasting, proprietary

trading and portfolio selection. The traditional approach in this domain is to initially perform

feature engineering on stationary returns, apply a batch, supervised learning technique such

as regression, and use the model for a while before retraining it. Some thought is given to

identifying a training data period that reflects current market conditions. However, due to a

great deal of predictive uncertainty in financial time series, market behaviour often adapts

a priori. The batch learning models that operate on them are often too slow to react to or

cannot identify the behavioural change.

Whilst we expect sequential optimisation to provide a benefit, we anticipate that it will

need to be combined with other forms of learning to provide consistent outperformance over

offline learning techniques. Offline learning can operate advantageously with a forward-

looking bias on the entire batch of training data. For example, if we wish to model yt+h =

f (xt ,θθθ) + εt , that is, we wish to forecast a target yt+h that occurs h steps ahead in time

using inputs xt , we can learn this mapping using parameters θθθ as all future target values

are at our disposal. Online learning approaches cannot immediately learn the asymptotic

behavioural mapping of current inputs to future targets. We must wait for future target values

and even longer for parameter convergence, with several rounds of model fitting. However,

online learning can adapt learning in response to dynamic changes in the data’s statistical

distribution.
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1.3 Aim and scope
We aim to combine other forms of learning, such as transfer learning, reinforcement learn-

ing or prediction with expert advice, with powerful sequential optimisation techniques to

outperform batch learning on tasks such as multi-horizon forecasting, proprietary trading

and portfolio selection. In the absence of changes to the statistical distribution of the mod-

elled data, we aim to achieve a similar level of performance to the batch learning models.

However, when regime changes or concept drifts occur, we aim for our online learning meta-

models to outperform the batch learning ones. Finally, we limit the scope of our modelling

to financial time series, which often exhibit small changes over time and occasional large

jumps.

1.4 Significance of the study
Collectively our experiments on financial time series provide evidence that combining addi-

tional forms of learning, such as transfer learning or reinforcement learning with sequential

optimisation, outperforms batch learning models of high learning capacity on various tasks.

These various tasks include multi-horizon returns forecasting or risk-adjusted returns max-

imisation. In addition, all four of our experiments use some form of feature representation

transfer from clustering algorithms, mixture models or echo state networks. This feature

representation transfer provides upstream models with a somewhat prescient feature repre-

sentation that learns the salient properties of the input/predictor space.

In section 2.1, we show that even if we use the stationary returns of the S&P 500 dataset

(section 3.4), the batch learning models that operate on them have parameters that need to be

constantly adapted. We use statistical tests such as the t-test for equal means to show that the

further the distance in time between the model parameters being compared, the greater the

probability is that these tests will reject the hypothesis that the parameters were generated

from the same statistical distribution.

Section 4.4 demonstrates that our extensive use of feature representation transfer from

clustering algorithms to the various upstream models is fully justified. For the Refinitiv

cross-asset class dataset (section 3.1), we show that the training set returns have low similar-

ity with the test set returns. In contrast, the training set cluster-derived hidden unit outputs
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retain greater similarity with their test set counterparts.

In chapter 4, Online learning with radial basis function networks, we experiment

with the returns of financial time series, providing multi-horizon forecasts with a selection

of robust supervised learners.

1. We devise an external input selection algorithm that aims to maximise regression

R2 whilst minimising feature correlations and can operate efficiently in a high-

dimensional setting.

2. We improve upon the earlier work on radial basis function networks (RBFNets), which

applies feature representation transfer from clustering algorithms to supervised learn-

ers.

(a) In the initial training phase, rather than using a randomised, scalar standard de-

viation for each hidden unit’s radial basis function, we use a covariance matrix

estimated via a Bayesian maximum a posteriori approach. If many training data

points are assigned to the j′th cluster, the j′th covariance matrix will resemble

the maximum likelihood estimate; otherwise, it will resemble the diagonalised

variance prior.

(b) In the online learning phase, our radial basis functions use sequentially optimised

precision (inverse covariance) matrices. This approach leads to an improved test

time fitting time-complexity of O(kd2) from O(kd3), where k is the number of

hidden units, and d is the external input dimensionality. These parameters are

sequentially updated with an exponential decay to facilitate regime changes or

concept drifts.

3. Our online RBFNet outperforms a random-walk baseline, a historically tricky chal-

lenge, and several powerful batch learners. The outperformance is not purely down

to sequential updating in the test set; a competitor exponentially weighted recursive

least squares (EWRLS) model is updated similarly and performs less well than several

batch-learners.

4. We demonstrate that our local-learning RBFNets are naturally designed to measure the

similarity between test samples and continuously updated prototypes that capture the



1.4. Significance of the study 23

characteristics of the feature space. The models are robust in mitigating catastrophic

forgetting in a way that the global learning feed-forward multilayer perceptrons cannot.

In chapter 5, Reinforcement learning for systematic FX trading, we explore online

inductive transfer learning, with a feature representation transfer from a RBFNet formed of

Gaussian mixture model (GMM) hidden units to a direct, recurrent reinforcement learning

(DRL) agent. This agent is put to work in an experiment, trading the major spot market

currency pairs, where we accurately account for transaction and funding costs.

1. Earlier academic work that applies direct reinforcement to currency pair trading saw

mixed results. These mixed performances result from weak external inputs to the

DRL agent, first-order optimisation methods (stochastic gradient ascent), and shared

hyperparameters such as sliding window sizes for mini-batch fitting. In contrast, we

obtain good experiment results. We use more powerful features such as RBFNets

formed by Gaussian mixtures. We use second-order optimisation methods such as

extended Kalman filters. We adapt our model parameters sequentially rather than use

mini-batch learning train/test sliding window splits. As a result, our DRL agents cope

better with statistical changes to the data distribution.

2. A further point of differentiation is that we use a quadratic utility rather than the Sharpe

ratio. In earlier work, it was already identified that the Sharpe ratio penalises returns

that are larger than E[r2]
E[r] , that is, the ratio of expected square returns to expected returns.

This result is counter-intuitive as rational investors are happy to accept the volatility of

right-tail returns and less happy to accept the volatility of left-tail returns.

3. Our experiments are more rigorous than the earlier work on DRL agents, which rarely

use baselines or do not use them. Instead, we adopt two baselines: a funding/carry

trader and a momentum trader. The momentum trader is a supervised learning RBFNet

that maps the hidden units to the response (one-step ahead returns) using an EWRLS

model. Finally, our transfer learning DRL agent achieves better risk-adjusted returns

than either baseline.

4. We demonstrate how the DRL agent maintains an essential advantage over the super-

vised learning momentum trader. The DRL agent’s learning can be adapted in response
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to impacts on the utility function it seeks to optimise. For example, we compare the

realised positions of a USDRUB trader where in the former case, transaction costs and

carry are removed (figure 5.8a) and in the latter case, transaction costs and carry are

included (figure 5.8b). Without cost, the DRL agent realises a long position broadly

(buying USD and selling RUB), as the Ruble depreciates over time. The momentum

trader behaves similarly. However, when funding costs are accurately included, the

DRL agent learns a short position (selling USD and buying RUB), capturing this pos-

itive carry. The momentum trader cannot learn from this additional impact on profit

and loss.

In chapter 6, The recurrent reinforcement learning crypto agent, we demonstrate a

novel application of online transfer learning for a digital assets trading agent. This agent

uses a powerful feature space representation in the form of an echo state network (ESN), the

output of which is made available to a DRL agent. The agent learns to trade the XBTUSD

(Bitcoin versus US Dollars) perpetual swap derivatives contract on BitMEX on an intraday

basis.

1. We extend our earlier work into DRL agents that utilise feature representation transfer,

except this time, replace the GMM RBFNet for an ESN.

2. Our meta-model can process data as a stream and learn sequentially; this helps it cope

with the nonstationarity of the high-frequency order book and trading data.

3. Furthermore, by using the vast high-frequency data, our model, which has a high learn-

ing capacity, avoids the kind of overfitting on a lack of data points that occurs with

down-sampled data.

4. We escape the over-trading typically seen with supervised learning models by learning

the sensitivity of the change in risk-adjusted returns to the model’s parameterisation.

Stated another way, our model learns from the multiple impact sources on profit and

loss and targets the appropriate risk position.

5. Our crypto agent realises a total return of 350%, net of transaction costs, over roughly

five years, 71% of which is down to funding profit. The annualised information ratio
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that it achieves is 1.46.

6. The scientific experiment that we conduct is representative of the conditions observed

in live trading; thus, we are confident that the resulting performance can realistically

be transferred to industry use.

In chapter 7, Sequential asset ranking in nonstationary time series, we experiment

with the S&P 500 constituents, extending the academic research into cross-sectional mo-

mentum trading strategies.

1. The main result of this experiment is our ranking algorithm, the naive Bayes asset

ranker (NBAR), which we use to select subsets of assets to trade from the S&P 500

index in either a long-only or a long/short (cross-sectional momentum) capacity. Our

ranking algorithm computes the sequential posterior probability that individual assets

will be ranked higher than other constituents in the portfolio.

2. Our NBAR ranks the predictions of an online learning multivariate regression model,

the curds and whey (CAW) model with EWRLS updating. The CAW model benefits

from feature representation transfer from RBFNets formed by sequentially optimised

k-means clusters, as more signal is extracted from the noisy external input daily re-

turns.

3. Unlike earlier algorithms such as the weighted majority algorithm (Littlestone and

Warmuth, 1994), which deals with nonstationarity by ensuring the weights assigned

to each expert never dip below a minimum threshold, our ranking algorithm allows

experts who performed poorly previously to have increased weight when they start

performing well. Our algorithm computes the posterior ranking probabilities with

exponential decay and is better suited to learning in nonstationary environments.

4. Comparing the NBAR to Freund et al. (1997)’s Bayes algorithm, the latter also gives

the opportunity for hitherto poor performing experts to have increased weight when

they start performing well; yet, there is no memory per se with respect to time. The

Bayes algorithm incurs a weight increase or decay relative to the weighted majority.
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Thus if the weighted majority is noisy, frequent trading will occur and higher transac-

tion costs are expected relative to the NBAR.

5. Our algorithm achieves higher risk-adjusted and total returns than a strategy that would

hold the long-only S&P 500 index with hindsight, despite the index appreciating by

205% during the test period. It also outperforms a regress-then-rank baseline, a se-

quentially fitted curds and whey multivariate regression model.

1.5 Summary of contributions
We summarise our contributions to science, highlighting what is both novel and beneficial.

• We demonstrate that combining intelligent feature representation transfer with online

learning is likely to outperform historically difficult-to-beat baselines and powerful

batch learners, on a range of tasks operating on financial time series.

• We create a procedure that demonstrates that models operating on technically station-

ary financial time series returns require regular fitting, in large part due to regime shifts,

highlighting the rationale for online learning.

• We show that the training set financial time series returns have low similarity with

their test set counterparts, highlighting the challenges faced in particular by kernel-

based methods that use the training set returns as test-time prototypes; in contrast, our

online learning RBFNets have hidden units that retain greater similarity across time.

• We design bespoke quadratic utility functions for direct reinforcement learning pur-

poses that capture all impacts to PNL, including price discovery, funding and execution

cost.

• We create an online learning long/short portfolio selection algorithm that can detect

the best and worst performing portfolio constituents that change over time; in partic-

ular, we successfully handle the higher transaction costs associated with using daily-

sampled data, and achieve higher total and risk-adjusted returns than the long-only

holding of the S&P 500 index with hindsight.
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1.6 Overview
We complete this chapter with an outline of the structure of this thesis. Chapter 2 contains

background information central to our modelling and performs a literature review. We estab-

lish a rationale for online learning in economic time series and then discuss several topics,

including transfer learning, neural networks, multivariate regression techniques and rein-

forcement learning. The chapter ends with a discussion of the prediction with expert advice

framework and its impact on online portfolio selection.

Chapter 3 provides details of the datasets we use in our various experiments. Chapters

4 to 7 contain our four thesis experiments, where each chapter contains a primary model

that combines some form of additional learning with sequential optimisation. In chapter 4,

we perform feature representation transfer from clustering algorithms to supervised learners

whose goal is to provide multi-horizon forecasts in cross-asset financial time series.

In chapter 5, we perform feature representation transfer from Gaussian mixture models

to DRL agents who systematically learn to trade the major currency pairs. Chapter 6 extends

this research further, performing feature representation transfer from echo state networks to

DRL agents who learn to trade cryptocurrency futures. Ultimately, these DRL agents aim to

learn from the multiple sources of impact on profit and loss in a way that supervised learning

cannot and to provide superior risk-adjusted returns.

Our final experiment in chapter 7 takes place in the context of the prediction with expert

advice framework, where our novel ranking algorithm learns to select subsets of constituents

of the S&P 500 index. Our algorithm aims to outperform the long-only holding of the index

with hindsight. Finally, concluding remarks are made in chapter 8, including a summary of

our contributions and directions for future research.

Finally, figure 1.2 describes how all four of our experiments relate. Online learning,

combined with some form of feature representation transfer, underpins all four experiments

that we conduct. In addition, chapter 4 sees an additional exercise of external input selec-

tion via an algorithm that combines forward stepwise selection with variance inflation factor

minimisation.
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Figure 1.2: Online learning, combined with some form of feature representation transfer, underpins
all four experiments that we conduct. In addition, chapter 4 sees an additional exercise of
external input selection via an algorithm that combines forward stepwise selection with
variance inflation factor minimisation.



Chapter 2

Background and literature review

This chapter introduces the various models and topics that are the foundations of our four

experiments. The major issues discussed are feature representation transfer, multivariate re-

gression, reservoir computing, direct, recurrent reinforcement learning, prediction with ex-

pert advice and ranking algorithms. We begin by discussing the rationale for online learning

in financial time series.

2.1 The rationale for online learning in financial time series
Financial time series exhibit the characteristics of high serial correlation and nonstationar-

ity. The impact of high serial correlation on time series where forecasts are made using

regression-based models is that the R2 of model fit will be spuriously high (Granger and

Newbold, 1974). The ramification of nonstationarity can be more severe in that models fitted

offline on training data generalise poorly on hitherto unseen test data. Merton (1976) mod-

els the dynamics of financial assets, specifically option prices, as a jump-diffusion process,

which implies that economic time series should observe small changes over time, so-called

continuous changes, and occasional jumps. The model superimposes a diffusion compo-

nent modelled by geometric Brownian motion, with a jump component driven by a Poisson

process. The goal is to model abrupt changes in prices due to the arrival of new informa-

tion, facilitating the increased likelihood of tail events compared to the normal distribution.

Financial time series have also been modelled as a random-walk process (Markowitz and

Cootner, 1965). The random-walk process implies the unpredictability of economic time

series returns and their time-varying random nature, which Nakamura and Small (2007) find

exists in equities, currencies, precious metals and energy returns.

One approach for coping with nonstationarity is to learn online continuously. One may
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combine sequential optimisation with states-of-nature/transitional learning approaches such

as reinforcement learning or continual learning approaches such as transfer learning. Se-

quential learning in time is an intuitive concept and has a rich history. The Kalman fil-

ter (Kalman, 1960) is a state-space model originally designed for tracking objects in time

from noisy measurements. Several approaches exist for sequential learning in nonstationary

data; these include discounted least squares (Abraham and Ledolter, 1983) and exponen-

tially weighted recursive least squares (EWRLS) (Liu et al., 2010). Barber et al. (2011)

consider Bayesian approaches to time series modelling, which are amenable to sequential

learning. Reinforcement learning allows agents to interact with their environment, mapping

situations to actions to maximise numerical rewards. Well-known sequentially optimised

reinforcement learning algorithms include the so-called temporal-difference learners, such

as q-learning (Watkins, 1989) and sarsa (Rummery and Niranjan, 1994). The classical k-

armed bandit problem is formulated as an online learning problem, where one is faced with

a choice amongst k possible options. After each selection, a reward is assigned. The in-

terplay between exploitation and exploration leads to several algorithms such as ε-greedy,

stochastic gradient ascent, and upper confidence bound bandits (Sutton and Barto, 2018).

Continual learning is an area of study that asks how artificial systems might learn sequen-

tially, as biological systems do, from a continuous stream of correlated data (Hadsell et al.,

2020).They include gradient-based methods (Kaplanis et al., 2018; Kirkpatrick et al., 2017),

meta-learning (Wang et al., 2017) and transfer learning (Yang et al., 2020a).

Kroner and Sultan (1993) find that currencies have time-varying distributions that im-

pact the hedging of spot exposures using futures. Denote the optimal hedge ratio as

γ
∗
t =

Cov[st , ft ]
Var[ ft ]

, (2.1)

where st , ft denote the spot and futures currency returns at time t. Wang et al. (2015) extend

the research into optimal hedge ratios, experimenting with a range of time-invariant and

time-varying hedge ratio models. They find that these models struggle to outperform the

naive hedging strategy that sets γ∗t = 1. They attribute this to both covariance estimation

error and model misspecification. They conclude that no particular model specification can

flexibly capture the dynamic nature of spot and futures returns over time. An equivalent
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issue when predicting asset returns is that it is difficult to beat a random-walk baseline, as we

discuss in section 4.2.1. However, in chapter 4, we show that feature representation transfer

can boost model learning capacity and, when combined with sequential optimisation, can

outperform biased baselines such as the random walk.

Nonstationarity in time series can be identified through unit root tests such as the aug-

mented Dickey-Fuller (ADF) test (Said and Dickey, 1984). In section 7, we experiment with

the last 21 years of daily sampled S&P 500 data, whose constituents are summarised in table

3.3. When running the ADF test against the S&P 500 daily transaction prices, 90.5% of

the time series are considered nonstationary and when running the test against their linear

returns of the form

y j,t = p j,t/p j,t−1−1, (2.2)

where j denotes the constituent and t denotes the time-step, 100% of the time series are now

considered stationary. One could now assume that performing any modelling on the daily

returns is safe, and nonstationarity will no longer present a problem. A simple experiment

calls this view into question, as whilst the returns might be stationary, the models that operate

on such time series require parameters that must be adapted over time. We fit AR(1) models

with structural form

y j,t = w j,ty j,t−1 + ε j,t ,

to each constituent’s daily returns. The models are trained daily using the past n = 252

days on a rolling window basis. Using one-week non-overlapping time buckets, we average

the AR(1) coefficients and denote them as w j,t . Finally, we conduct two-sample t-tests for

equal means (Hirotsu, 2017) where we compare w j,t with w j,t+h for h = 1, ...,52, setting the

significance level of the test, α = 0.05. This t-test assumes that the compared variables are

normally distributed1, w j ∼ N(µ j,σ
2
j ). We find that as the shift h increases, the probability

1The t-test for equal means with unequal variances is a minimum variance unbiased estimator of µ1− µ2
with variance σ2

1 /n1 +σ2
2 /n2, where n j denotes the number of samples for the j′th variable. The test statistic

is intuitively

t = (µ̄1− µ̄2)/
√

σ̂2
1 /n1 + σ̂2

2 /n2.

The normality assumption of the AR(1) coefficients is verified here by conducting an omnibus test of normality
that combines skew and kurtosis considerations (D’Agostino, 1971; D’Agostino and Pearson, 1973). We find
that the normality test accepts the normality of the AR(1) coefficients 92% of the time at the 5% significance
level.
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that the null hypothesis H0 : w j,t = w j,t+h is rejected increases considerably. Figure 2.1

averages the results across the S&P 500 constituents and time shifts; it demonstrates that the

AR(1) parameters are changing over time, despite the training data being almost the same for

small shifts h. Specifically, the fraction of matched training days between coefficients w j,t

and w j,t+h is max
(
0, n−7h

n

)
. This experiment provides evidence supporting the use of online

learning when modelling financial time series returns.

Figure 2.1: For the S&P 500 dataset, we plot the probability that H0 : w j,t = w j,t+h is rejected by the
two-sample t-test for equal means. Specifically, the weekly averaged AR(1) coefficients
are compared. Unit root tests indicate that the daily returns are stationary. However, the
models that operate on the returns require constant refitting; this motivates the need for
online learning.

Use of equation 2.2 typically leads to data that is differenced by more than is required

to reject the null hypothesis of a unit root in the ADF test. Furthermore, over-differencing

can turn a long memory process into a white noise one. de Prado (2018) fractionally dif-

ferences financial time series by increasing order of magnitude until the ADF test indicates

stationarity. A sliding window of weights generates the fractionally differenced time series

at prediction time. However, time series generated in this way can appear chaotic, espe-
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cially for a fractional difference parameter d → 0, taking a few thousand observations to

settle down. Thus, we avoid using this technique data in our experiments, especially with the

limited availability of daily-sampled data.

2.2 Transfer learning
Transfer learning refers to the machine learning paradigm in which an algorithm extracts

knowledge from one or more application scenarios to help boost the learning performance in

a target scenario (Yang et al., 2020a). Typically, traditional machine learning requires signif-

icant amounts of training data. Transfer learning copes better with data sparsity by looking at

related learning domains where data is sufficient. Even with large datasets, including stream-

ing data, transfer learning provides benefits by learning the adaptive statistical relationship

of the predictors and the response. Following Pan and Yang (2010):

Definition 1 (transfer learning) Given a source domain DS and learning task TS,

a target domain DT and learning task TT , transfer learning aims to help improve

the learning of the target predictive function fT (.) in DT using the knowledge in

DS and TS, where DS ̸=DT , or TS ̸= TT .

Sub-paradigms of transfer learning include inductive, where labelled data is available in the

target domain and transductive, where labelled data is available only in the source domain.

Feature-based approaches transform the original features to create a new representation and

traverse all transfer learning sub-paradigms. An increasing number of papers focus on online

transfer learning (Zhao et al., 2014; Salvalaio and de Oliveira Ramos, 2019; Wang et al.,

2020).

2.3 The radial basis function network
The RBFNet is typically a single-layer network whose hidden units are radial basis functions

(RBF) of the form

φ j(x) = exp
(
−1

2
[x−µµµ j]

T
ΣΣΣ
−1
j [x−µµµ j]

)
. (2.3)

The hidden unit means and covariances are typically learnt through clustering algorithms

such as k-means (Lloyd, 1982). The hidden unit outputs are aggregated into a feature vector

φφφ t = [1,φ1(x), ...,φk(x)],
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and mapped to the response via regression

yt = θθθ
T

φφφ t + ε.

A schematic of the model is shown in figure 2.2. Figure 2.3 compares several scikit-learn

(Pedregosa et al., 2011) classifiers on synthetic datasets. A multilayer perceptron separates

classes using hidden units that form hyperplanes in the input space. The separation of class

distributions modelled by local radial basis functions is probabilistic. The predictive uncer-

tainty increases where there is class-conditional distribution overlap. The RBF activations

can be thought of as the posterior feature probabilities, and the weights can be interpreted as

the posterior probabilities of class membership, given the presence of the features (Bishop,

1995).

Figure 2.2: Architecture of the radial basis function network.

Rbfnets have a ’best approximation’ property (Girosi and Poggio, 1990). In the set of

approximating functions corresponding to all possible choices of parameters, the RBF has

a minimum approximating error. Seminal papers on RBFNets include those by Broomhead

and Lowe (1988) and Moody and Darken (1989). It is first with Moody and Darken (1989)
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Figure 2.3: Here, we compare the posterior predictive densities of several scikit-learn classifiers on
synthetic datasets. A multilayer perceptron separates classes using hidden units that form
hyperplanes in the input space. In contrast, the separation of class distributions modelled
by local radial basis functions is probabilistic, with each class fitted with a kernel func-
tion.

that we see the formulation of the RBFNet as a batch-learning combination of k-means and

linear regression. A related, although slower method, is considered by Billings et al. (1996),

where they initialise a large RBFNet and rely on orthogonal least squares (Markovsky and

Van Huffel, 2007) and forward stepwise selection (Derksen and Keselman, 1992) to select

the hidden units. They directly compare the narx model (Chen and Billings, 1989) and the

RBFNet, demonstrating an application to multiple-input multiple-output modelling (Bon-

tempi, 2008) in simulated dynamic time series. Kanazawa (2020) applies an RBFNet to

macroeconomic forecasting, outperforming benchmarks such as vector autoregression (My-

ers and Thompson, 1989) and threshold-var (Enders, 2015) estimators. Khosravi (2011)

demonstrates an approach to RBFNet training, similar to backpropagation for neural net-

works (Rumelhart et al., 1986). However, he sets some weights between the inputs and

hidden layer, rather than the traditional approach, which has weights from the hidden layer

to the outputs. He calls this his weighted RBFNet and finds improved accuracy on the UCI

letter classification and Hoda digit recognition datasets.

The RBFNet relates to the Gaussian process regression (GPR) model (Rasmussen and



2.4. Exponentially weighted recursive least squares 36

Williams, 2006b), in that they are both kernel learning methods. However, GPR is more

expensive to fit than the RBFNet as it uses all training vectors as test-time prototypes, with

a time-complexity of O(n3) and memory complexity of O(n2), where n is the number of

training examples. When it comes to larger datasets, n >= 10000, storing the GPR’s ker-

nel Gram matrix and solving the associated linear systems become prohibitive. Rasmussen

and Williams (2006a) discuss several procedures to learn in large datasets. They consider

reduced-rank approximations to the kernel Gram matrix, discuss general strategies for greedy

approximations, approximate the GP regression problem for fixed hyperparameters, and de-

scribe methods to approximate the marginal likelihood and its derivatives. Most of these

methods use a subset of size m < n of the training examples. More recently, online learning

GPRs are considered. Koppel et al. (2021) study sequentially optimised Gaussian process

approximation that preserves convergence to the population posterior, i.e., asymptotic poste-

rior consistency.

The RBFNet has a time-complexity of O(knr) for the k-means part, where k is the

number of clusters and r is the number of fitting iterations and O(n2k + k3) for the lin-

ear regression part. The RBFNet also relates to k-nearest neighbours (KNN) regression

(Takezawa, 2006) as a local learning technique and kernel ridge regression (KRR) (Cristian-

ini and Shawe-Taylor, 2000) as a kernel learning method. However, KNN, KRR and GPR

typically use all training examples as prototypes at test time, rendering these techniques less

useful for financial time series, which experience regular regime shifts.

2.4 Exponentially weighted recursive least squares

Exponentially Weighted Recursive Least Squares (EWRLS) is a well-known algorithm but

is included here in our background section as it appears in several experiments. The recur-

sive least squares (RLS) estimator is a particular case of the Kalman filter (Harvey, 1993).

The exponentially weighted formulation (EWRLS) facilitates adaptation sequentially in time

with exponential decay (Liu et al., 2010). The goal of EWRLS algorithm 2.1 is to forecast

a target yt+h using predictors xt . The predictors are mapped to the response using parame-

ters θθθ t . Thus, yt+h = f (xt ;θθθ t)+ εt . Algorithm 2.1 includes a variance stabilisation update,

which ameliorates the build-up of large values along the diagonal of the precision matrix P,
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which may occur if the response y has low variance. See, for example, Gunnarsson (1996)

for a further discussion on the regularisation of recursive least squares. Similar regularisation

approaches for online learning and nonstationary data are studied by Moroshko et al. (2015).

Algorithm 2.1 Exponentially weighted recursive least squares.
Require: α // the ridge penalty

0≪ τ < 1 // an exponential forgetting factor

h // a forecast horizon, h ∈ Z+

Initialise: θθθ = 0d , P = Id/α

Input: xt ∈ Rd , yt
Output: ŷt

1 r = 1+xT
t−hPt−1xt−h/τ

2 k = Pt−1xt−h/(rτ)

3 θθθ t = θθθ t−1 +k(yt−θθθ
T
t−1xt−h)

4 Pt = Pt−1/τ−kkT r
5 Pt = Ptτ // variance stabilisation

6 ŷt = θθθ
T
t xt

2.5 Curds and whey multivariate regression
The curds and whey (CAW) procedure due to Breiman and Friedman (1997) is a suitable

way of predicting several response variables from the same set of explanatory variables.

The method takes advantage of the correlations between the response variables to improve

predictive accuracy compared with the usual procedure of doing individual regressions of

each response variable on the shared set of predictor variables. Assume there are n training

examples, d predictors X∈Rn×d and q targets Y∈Rn×q. The basic version of the procedure

begins with the usual multivariate ridge regression

ΘΘΘ = (XT X+αId)
−1XT Y,

and estimates a shrinkage matrix

Ŷ = XΘΘΘ

W = (ŶT Ŷ+αIq)
−1ŶT Y.
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At test time, the vector of forecasts is

ỹt = Wŷt ≡W[xT
t ΘΘΘ]T .

Breiman and Friedman also derive estimates of the matrix W that take the form W=A−1DA

where A is the q× q matrix whose rows are the response canonical coordinates and D is a

diagonal ‘shrinking’ matrix. To estimate W, one performs an eigendecomposition of the

matrix

Q = (YT Y)−1YT X(XT X)−1XT Y.

Denote this eigendecomposition as AΛΛΛAT , where ΛΛΛ is the diagonal matrix whose k′th di-

agonal element is λk,the k′th eigenvalue of Q. Furthermore, denote as r = d/n, the ratio of

predictor dimensionality to its count. The diagonal shrinking matrix is estimated as

D j j = max

[
0,

(1− r)(ΛΛΛ j j− r)
(1− r)2 + r2(1−ΛΛΛ j j)

]
, j = 1, ...,q.

Given the nonstationary data we model, our particular interest is in sequential optimisation.

Thus we combine the CAW procedure with EWRLS updating. In algorithm 2.2, we set the

forecast horizon h = 1 for illustration purposes. The goal of the algorithm is to forecast

a target vector yt+1 using predictors xt . The predictors are mapped to the response using

parameters ΘΘΘt . Thus, yt+1 = f (xt ;ΘΘΘt)+Et .

2.6 Echo state networks

A recurrent neural network (RNN) is a multilayer network suitable for modelling dynamical

systems with memory. Two well-known RNN architectures are the long short-term memory

(LSTM) of Hochreiter and Schmidhuber (1997) and the echo state network (ESN) of Jaeger

(2001). The LSTM achieves extended memory capability via hidden units whose activation

decay is controlled by trainable gates. LSTMs are typically trained through backpropagation

(BP) (Rumelhart et al., 1986) or backpropagation through time (BPTT) (Werbos, 1990), with

second-order gradient descent methods called Hessian-free optimisation preferred (Martens

and Sutskever, 2011). Whilst the approach is amenable to online optimisation, the ESN still
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Algorithm 2.2 Sequentially optimised curds and whey regression.
Require: α,τ
// α is a ridge penalty

// τ is an exponential decay constant

Initialise: ΘΘΘ = 0d×q,W = 0q×q,P = Id/α,Q = Iq/α

Input: xt ∈ Rd ,yt ∈ Rq

Output: ỹt ∈ Rq

1 rt = 1+xT
t−1Pt−1xt−1/τ

2 kt = Pt−1xt−1/(rtτ)
3 ŷt−1 = [xT

t−1ΘΘΘt−1]
T

4 ΘΘΘt = ΘΘΘt−1 +kt(yt − ŷt−1)
T

5 Pt = Pt−1/τ−ktkT
t rt

6 Pt = Pt−1τ

7 ŷt = [xT
t ΘΘΘt ]

T

8 st = 1+ ŷT
t−1Qt−1ŷt−1/τ

9 mt = Qt−1ŷt−1/(stτ)
10 Wt = Wt−1 +mt(yt −Wt−1ŷt−1)

T

11 Qt = Qt−1/τ−mtmT
t st

12 Qt = Qt−1τ

13 ỹt = Wt ŷt

outperforms Hessian-free trained RNNs on a benchmark suite designed to challenge long

short-term memory acquisition (Jaeger, 2012). Yu et al. (2021) discuss the prolonged fitting

times of BPTT, although they provide a faster training method than BPTT, which separates

the LSTM cell into forward and recurrent models. In the context of financial time series

modelling, Lim and Gorse (2020) train an LSTM to predict the price movements of Bitcoin

and show that the model performs well even when the statistical behaviour of the market

changes.

In contrast to the LSTM, the ESN achieves extended memory capability by using large

dynamic reservoir networks of leaky integrator neurons with long-time constants. An ESN

schematic is shown in figure 2.4. Determination of the optimal output weights is solvable

analytically, for example, sequentially with RLS (Jaeger, 2002), and is extremely fast to train.

ESNs are an example of the reservoir computing paradigm for understanding and training

recurrent neural networks, based on treating the recurrent part (the reservoir) differently than

the readouts from it (Lukosevicius et al., 2012). From Jaeger (2002), the echo state property

is defined:

Definition 2 (echo state property) If a network is started from two arbitrary states x0, x̃0
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and is run with the same input sequence in both cases, the resulting state sequences xT , x̃T

converge to each other. If this condition holds, the reservoir network state will asymptotically

depend only on the input history, and the network is said to be an echo state network.

The echo state property is guaranteed if the dynamic reservoir weight matrix Whidden is

scaled such that its spectral radius

ρ(Whidden) = max
{
|λ1|, ..., |λnhidden|

}
,

that is, its largest absolute eigenvalue, satisfies ρ(Whidden) < 1. This ensures that Whidden

is contractive. The mathematically correct connection between the spectral radius and the

echo state property is that the latter is violated if ρ(Whidden)> 1 in reservoirs using the tanh

function as neuron nonlinearity and for zero input (Lukosevicius and Jaeger, 2009). Fitting

details for the model can be found in subsection 6.3.1.1.

Figure 2.4: A schematic of the echo state network; source: (Jaeger, 2002).

Numerous articles demonstrate ESNs within a reinforcement learning context. For ex-

ample, Szita et al. (2006) emphasise that ESNs are promising candidates for partially ob-

servable problems where information about the past may improve performance. ESNs are

linear function approximators acting on the internal state representation built from the previ-

ous observations. Therefore, Gordon’s results about linear function approximators (Gordon,

2000) can be transferred to the ESN architecture. Building on this, Szita et al. provide proof

of convergence to a bounded region for ESN training in the case of k-order Markov decision

processes.

Several publications show ESN applications to finance. For example, Lin et al. (2011)

forecast prices from the S&P 500 constituents using ESNs, outperforming a buy-and-hold
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baseline strategy. Maciel et al. (2014) use ESNs to forecast and trade foreign exchange (FX)

rates, outperforming an arma baseline. Liu et al. (2018) create an optimisation algorithm to

learn the parameters of an ESN, rather than adopting random weight initialisation, finding

improved prediction accuracy when providing forecasts of the daily returns of the Shanghai

Composite Index. Finally, Xue et al. (2016) create a scale-free, highly clustered ESN with

better echo state property than the conventional ESN of Jaeger (2002). They find improved

prediction performance over the conventional ESN when experimenting with the S&P 500

index and the EURUSD FX rate.

2.7 Policy gradient reinforcement learning

Whereas most reinforcement learning algorithms focus on action-value estimation, learning

the value of actions and selecting them based on their estimated values, policy gradient (PG)

methods learn a parameterised policy that can select actions without using a value function.

Williams (1992b) introduces his reinforce algorithm

∆θθθ i j = ηi j(r−bi j) ln(∂πi/∂θθθ i j),

where θθθ i j is the model weight going from the j′th input to the i′th output, and θθθ i is the

weight vector for the i′th hidden unit of a network of such units, whose goal it is to adapt in

such a way as to maximise the scalar reward r. For the moment, we exclude the dependence

on the time of the weight update to unclutter the notation. Furthermore, ηi j is a learning

rate, typically applied with gradient ascent, bi j is a reinforcement baseline, conditionally

independent of the model outputs yi, given the network parameters θθθ and inputs xi. The

characteristic eligibility of θθθ i j is ln(∂πi/∂θθθ i j), where πi(yi = c,θθθ i,xi) is a probability mass

function determining the value of yi as a function of the parameters of the unit and its input.

Baseline subtraction r−bi j plays a vital role in reducing the variance of gradient estimators.

Sugiyama (2015) shows that the optimal baseline is given as

b∗ =
Ep(r|θθθ)

[
rt
∥∥∑

T
t=1 ∇ lnπ(at |st ,θθθ)

∥∥2
]

Ep(r|θθθ)

[∥∥∑
T
t=1 ∇ lnπ(at |st ,θθθ)

∥∥2
] ,
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where the policy function π(at |st ,θθθ) denotes the probability of taking action at at time t

given state st , parameterised by θθθ . The expectation Ep(r|θθθ), is distributed over the probability

of rewards given the model parameterisation. The main result of Williams’ paper is

Theorem 3 For any reinforce algorithm, the inner product of E[∆θθθ |θθθ ] and ∇E[r|θθθ ] is non-

negative, and if ηi j > 0, then this inner product is zero if and only if ∇E[r|θθθ ] = 0. If ηi j is

independent of i and j, then E[∆θθθ |θθθ ] = η∇E[r|θθθ ].

This result relates ∇E[r|θθθ ], the gradient in weight space of the performance measure E[r|θθθ ],

to E[∆θθθ |θθθ ], the average update vector in weight space. Thus for any reinforce algorithm, the

average update vector in weight space lies in a direction for which this performance mea-

sure is increasing, and the quantity (r−bi j) ln(∂πi/∂θθθ i j) represents an unbiased estimate of

∂E[r|θθθ ]/∂θθθ i j.

2.7.1 Policy gradient methods in financial trading

Moody et al. (1998) train trading systems by optimising objective functions that directly

measure trading performance, such as the Sharpe ratio (Sharpe, 1966). They train their

systems using a direct, recurrent reinforcement learning (DRL) algorithm, an example of

the PG method. The direct part refers to the fact that the model targets a position directly,

with weights that are adapted so that the performance measure is maximised. Denote the

annualised Sharpe ratio as

srT = 2520.5×
rT − r f

sT
,

where rT is the average daily return for a trading strategy between times t = 1, ...,T , sT is

the standard deviation of these returns, and r f is the risk-free rate. The differential Sharpe

ratio is defined as
dsrt

dτ
=

bt−1∆at−0.5at−1∆bt

(at−1−a2
t−1)

3/2 , (2.4)

where the quantities at and bt are exponentially weighted estimates of the first and second

moments of the reward rt

E[rT ]≈ at = at−1 + τ(rt−at−1)

Var[rT ]≈ bt = bt−1 + τ(r2
t −bt−1), t = 1, ...,T.
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They consider a batch gradient ascent update for the model parameters θθθ

∆θθθ T = η
dsrT

dθθθ
,

where

dsrT

dθθθ
=

T

∑
t=1

dsrT

drt

drt

dθθθ

=
T

∑
t=1

{
bT −aT rt

(bT −a2
T )

3/2

}{
drt

d ft

d ft
dθθθ

+
drt

d ft−1

d ft−1

dθθθ

}
.

(2.5)

The reward

rt = ∆pt ft−1−δt |∆ ft |

depends on the change in reference price pt , transaction cost δt and a differentiable position

function

ft ≜ f (xt ,θθθ t), −1≤ ft ≤ 1.

Equation 2.5 shows the temporal dependence of the system state on previous decisions, ex-

pressed through the derivative of the current return on the previous position.

Moody et al. (1998) present empirical results that demonstrate the efficacy of their meth-

ods. Both methods outperform a trading system based on forecasts that minimise mean-

square error. However, an undesirable property of the Sharpe ratio is that it penalises a

model that produces returns larger than E[r2]
E[r] ≈

bt
at

. Rational traders are typically concerned

with the volatility of loss-making trades but not with the volatility of profitable trades. With-

out providing experimental results, Moody et al. (1998) briefly discuss the possibility of

using so-called downside risk measures for DRL purposes, such as semi-variance, downside

deviation and Sterling ratios. A likely, unwelcome consequence of using these downside risk

measures for DRL optimisation is that the model might learn to trade in quite a defensive

manner, spending large amounts of time out of the market. It is more likely that their dif-

ferential Sharpe ratio approach leads to a model that trades through a larger set of market

conditions, therefore allowing for the possibility of increased total returns.

Gold (2003) extends Moody et al. (1998)’s work and investigates high-frequency trading
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(hft) in FX with neural networks trained via DRL. He examines the impact of shared system

hyper-parameters on performance. In general, he concludes that the trading systems may be

effective but that the performance varies widely for different currency markets, and simple

statistics of the markets cannot explain this variability. Gorse (2011) applies a batch-learning

gradient-based recurrent reinforcement learner to trading the S&P 500 on a daily basis and

finds favourable performance compared to a genetic programming baseline. Actor-critic PG

methods (Sutton et al., 1999) are used by Tamar et al. (2017) to model dynamic financial

risk measures and by Mnih et al. (2016) and Luo et al. (2019) to train reinforcement learn-

ing agents to trade futures contracts. Deep, recurrent reinforcement learning networks are

considered by Azhikodan et al. (2019), Ye et al. (2020), Aboussalah and Lee (2020), Lei

et al. (2020) and Betancourt and Chen (2021) on various trading-related activities such as

proprietary risk-taking, algorithmic execution and portfolio management.

2.8 Prediction with expert advice
Prediction with expert advice is a multidisciplinary research area that predicts individual se-

quences in an online learning setting. Unlike standard statistical approaches, the prediction

with expert advice framework imposes no probabilistic assumption on the data-generating

mechanism. Instead, it generates predictions that work well for all sequences, with perfor-

mance nearly as good as the best expert with hindsight. The basic structure of problems in

this context is encapsulated in algorithm 2.3, adapted from Rakhlin and Sridharan (2014).

Algorithm 2.3 Sequential prediction with an adaptive environment.
// iterate over each time step

for t← 1 to T do
The learner chooses the set of predictions ŷt ∈D, where D is the decision space.
Nature simultaneously chooses an outcome yt ∈A, where A is the outcome space.
The player suffers a loss ℓ(ŷt ,yt) and both players observe (ŷt ,yt).

Perhaps the most well-known algorithm within this framework is the weighted majority

(WM) algorithm of Littlestone and Warmuth (1994), shown in algorithm 2.4. The authors

study the construction of prediction algorithms where the learner faces a sequence of trials,

and the goal is to make as few mistakes as possible with predictions made at the end of

each trial. They are interested in cases where the learner believes some experts will perform
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well, but the learner does not know which ones. A simple method based on weighted voting

is introduced to minimise the regret concerning the best expert with hindsight, even in the

presence of errors in the data. They discuss various versions of the algorithm, proving mis-

take bounds for them that are closely related to the mistake bounds of the best algorithms of

the pool. Finally, given a sequence of trials, if there is an algorithm in the pool d that makes

at most m mistakes, then the WM algorithm will make at most c(log|d|+m) mistakes on

that sequence, where c is a fixed constant.

Denote the forecaster’s cumulative loss as L̂T = ∑
T
i=1 ℓ(ŷt ,yt) and the cumulative loss of

expert i as L̂i,T = ∑
T
i=1 ℓ(ŷi,t ,yt). In algorithm 2.4, we assume the loss function ℓ is convex

in its first argument and that it takes values in [0,1]. Cesa-Bianchi and Lugosi (2006) show

that for any number of experts d and a learning rate η > 0, the regret of the WM algorithm

relative to the best expert with hindsight satisfies

L̂T − min
i=1,...,d

Li,T ≤
lnd
η

+
T η

8
.

In particular, with η =
√

8ln(d)/T , the upper bound becomes
√
(T/2) ln(d). If convexity

in the loss function is not presupposed or no separate training phase is applied, bounded re-

gret concerning the best learner with hindsight is not guaranteed. However, Calliess (2019)

provides performance guarantees for increasingly long durations, provided learning has been

allowed to take place sufficiently long; this gives rise to a new generalised notion of conver-

gence (and thereby of online-learnability) which he refers to as convergence with increasing

permanence.

The WM algorithm is less suited to nonstationary data, despite the authors providing

a modification to their base algorithm in section 3 of their paper, which ensures that the

weight assigned to the individual experts never dips below η/d, which is the learning rate

divided by the number of experts. This fixed, minimum threshold weight is somewhat rudi-

mentary. In the context of financial time series, our preference is for algorithms that assign

more weight to experts now performing well, irrespective of whether they performed less

well previously. Herbster and Warmuth (1998) tackle prediction with expert advice in the

nonstationary setting by introducing an algorithm that determines the best experts for seg-
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Algorithm 2.4 The weighted majority algorithm.
Input: outcome yt ∈ {0,1}, expert predictions ŷt ∈ {0,1}d and T rounds
Initialise: w̃0 = 1d , η =

√
8log(d)/T

Output: weighted majority prediction ŷt
1 for t← 1 to T do
2 Set wt = w̃t/∑

d
i=1 w̃i,t .

3 Assign p0 = ∑
d
i=1 I(ŷi,t = 0)wi,t .

4 Allocate the weighted majority prediction ŷt = 0 with probability p0 or ŷt = 1 with prob-
ability 1− p0.

5 Suffer loss ℓ(ŷt ,yt) = |ŷt− yt |.
6 Update w̃t+1 = w̃t exp−ηℓ(ŷt ,yt).

ments of the individual sequences. When the number of segments is k+1 and the sequence

is of length T , they can bound the additional loss of their algorithm over the best partition

by O
(
k log |d|+k log [T/k]

)
. An Achilles heel of the algorithm is that knowledge is required

a priori of the optimal number of segments k corresponding to the periods when new best

experts are required. Freund et al. (1997) study online learning algorithms that combine

the predictions of several experts who, like the WM algorithm, belong to the multiplicative

weights family of algorithms. They apply their methods to the prediction problem where the

best expert may change with time. They derive a specialist algorithm that is as fast as the

best-known algorithm of Herbster and Warmuth (1998) and achieves almost as good a loss

bound. However, unlike Herbster and Warmuth’s algorithm, Freund et al. ’s algorithm does

not require prior knowledge of the length of the sequence and the number of segments.

2.9 Online financial portfolio selection

The prediction with expert advice framework is valuable in online portfolio selection. Helm-

bold et al. (1998) present an online investment algorithm that achieves almost the same

wealth as the best constant-rebalanced portfolio (BCRP) determined in hindsight from the

actual market outcomes. The algorithm employs a multiplicative update rule derived using a

framework introduced by Kivinen and Warmuth (1995). They test the performance of their

algorithm on actual stock data from the New York Stock Exchange accumulated over 22

years. On these data, their algorithm outperforms the best single stock with hindsight, as

well as Cover’s universal portfolio selection algorithm (Cover, 1991). Rather than assum-
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ing the stationarity of financial time series, Gaivoronski and Stella (2000) propose variable

rebalanced portfolios which calculates the BCRP portfolio based on a latest sliding window.

Singer (1998) notes that the earlier work into online portfolio selection algorithms

which are competitive with the BCRP determined in hindsight (Cover, 1991; Helmbold et al.,

1998; Cover and Ordentlich, 1996), employ the assumption that high yield returns can be

achieved using a fixed asset allocation strategy. However, stock markets are nonstationary.

The return of a constant rebalanced portfolio is often much smaller than the return of an ad-

hoc investment strategy that adapts to changes in the market. In his paper, Singer presents an

efficient portfolio selection algorithm that can track a changing market and describes a sim-

ple extension of his algorithm for including transaction costs. Finally, he provides a simple

analysis of the competitiveness of the algorithm and evaluates its performance on stock data

from the New York Stock Exchange accumulated over 22 years; his algorithm outperforms

all the algorithms referenced above, with and without transaction costs.

Strategies in the Follow-the-Leader (FTL) approach try to track the BCRP strategy over

time. Regularised FTL approaches that ameliorate transaction costs are considered by Agar-

wal et al. (2006), specifically second-order online Newton step methods. More recently, Li

and Hoi (2016) survey prediction with expert advice algorithms in the context of portfolio

selection. They design four new algorithms to solve the online portfolio selection problem,

including a correlation-driven nonparametric learning approach. Yang et al. (2020b) present

a new online portfolio strategy based on the online learning character of a weak aggregating

algorithm (WAA), a gradient-based reinforcement learning bandit approach.They consider a

number of exponential gradient strategies of different values of parameter η as experts, and

then determine the next portfolio by using the WAA to aggregate the experts’ advice.

2.10 Learning to rank portfolios of assets

The ranking of a subset of assets to hold in a long/short portfolio is related to the issue of

portfolio selection. Poh et al. (2021) apply learning-to-rank algorithms, primarily designed

for natural language processing, to cross-sectional momentum trading strategies. Cross-

sectional strategies mitigate some of the risk associated with wider market moves by buying

the top α-percentile of strategies with the highest expected future returns and selling the bot-
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tom α-percentile of strategies with the lowest expected future returns. Classical approaches

that rely on the ranking of assets include ranking annualised returns (Jegadeesh and Titman,

1993), or more recent regress-then-rank approaches (Wang and Rasheed, 2018; Kim, 2019;

Gu et al., 2020). Poh et al. take a different approach using pair-wise learning-to-rank al-

gorithms such as RankNet (Burges et al., 2005) and LambdaRank (Burges, 2010). Overall,

in experiments they conduct on monthly-sampled CRSP 2019 data, the learning-to-rank al-

gorithms achieve higher total and risk-adjusted returns than the traditional regress-then-rank

approaches. In terms of assessing the limitations of the work, experimenting with daily sam-

pled data would probably resonate more with the finance community, as this facilitates the

possibility of a more active portfolio management style. Grinold and Kahn (2019) demon-

strate how active portfolio management can outperform passive portfolio management and

discuss associated quantitative procedures. However, working with higher frequency sam-

pled data presents further challenges, such as higher transaction costs due to frequent trading.

Additionally, there are slower training times for the learning-to-rank algorithms and, perhaps

more crucially, a decrease in signal and an increase in noise from the financial time series.

2.11 Naive Bayes ranking
In chapter 7, we introduce our naive Bayes asset ranker for portfolios comprised of financial

assets. First, however, we perform a literature review of naive Bayes ranking. The phrase

naive Bayes ranking has broad meaning, with different implementations in various contexts.

At the core of the idea is the naive Bayes classifier

P(yc|x) =
P(x|yc)P(yc)

∑ j P(x|y j)P(y j)
,

which predicts that the target y takes on a label value of c if this posterior probability is high-

est. Independence assumptions in the inputs x mean that the probabilities can be modelled

iteratively and inexpensively. Zhang and Su (2004) study the general performance of naive

Bayes in ranking. They use the area under the receiver operating characteristics curve (auc)

(Provost and Fawcett, 1997) to evaluate the quality of rankings generated by a classifier.

The auc is created by plotting the true-positive rate against the false-positive rate at various

threshold settings and has a maximum value of one if no positive example precedes any neg-
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ative example. For binary classification, auc is equivalent to the probability that a randomly

chosen example of class − will have a more negligible estimated probability of belonging

to class + than a randomly chosen example of class +. Thus, the auc is a measure of the

quality of ranking. Overall, their naive Bayes ranker evaluated using the auc outperforms the

C4.4 decision-tree algorithm for ranking (Provost and Domingos, 2003) on various datasets.

Flach and Matsubara (2007) consider binary classification tasks, where a ranker sorts

a set of instances from highest to lowest expectation that the instance is positive. They

propose a lexicographic ranker, lexrank, whose rankings are derived not from scores but a

simple ranking of attribute values obtained from the training data. Using the odds ratio to

rank the attribute values, they obtain a restricted version of the naive Bayes ranker. They

systematically develop the relationships and differences between classification, ranking, and

probability estimation, which leads to a novel connection between the Brier score (Brier,

1950) and auc curves.

Krawczyk and Wozniak (2015) propose a modification to the naive Bayes classifier for

mining streams in a nonstationary environment in the presence of the concept drift phe-

nomenon (Gama, 2012). They add a weighting module that automatically assigns an im-

portance factor to each object extracted from the stream; the higher the weight, the more

significant the influence the given object exerts on the classifier training procedure. So that

their classifier adapts quickly to evolving data, they imbue it with a forgetting principle im-

plemented as weight decay. With each passing iteration, the level of importance of previous

objects is decreased until they are discarded from the data collection. In summary, their algo-

rithm works by fitting a naive Bayes classifier on samples they deem essential and removing

unnecessary and outdated examples that no longer represent the present state of the analysed

data stream. This approach contrasts with our naive Bayes ranker shown in algorithm 7.1;

we learn from all training examples on the fly and assign some importance to each expert that

offers us advice. Unlike Krawczyk and Wozniak’s algorithm, experts that have performed

poorly are never discarded, and if they start performing well, they have the opportunity to

have more importance assigned to them.
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Datasets

Data for most of our experiments are extracted from Refinitiv using their Data Platform

Python client. Each quoted instrument available on Refinitiv is identified by its information

code (ric). Note that the Refinitiv data constitutes quote or trade data from multiple vendors.

For example, the foreign exchange data is sourced from tradable matching venues such as

EBS, Refinitiv Dealing and Matching, market-leading brokers and over-the-counter markets.

The remaining cross-asset class data is sourced from multiple global exchanges, including

the London Stock Exchange, the New York Stock Exchange, the Chicago Mercantile Ex-

change, the Intercontinental Exchange and Eurex. Finally, one of our experiments uses data

extracted from the digital assets futures exchange, BitMEX.

3.1 Online learning with radial basis function networks
We extract daily sampled data from Refinitiv, including currency pairs, equities, rates, credit,

metals, agriculture, energy and crypto. The sampled prices are the last daily traded or quoted

limit order book price, with a snapshot taken at 10 PM GMT. The dataset begins on 2018-

11-01 and ends on 2022-05-20. We use 649 training and 648 test examples. The full set of

constituents, including sector information, is shown in table 3.1.

Table 3.1: The Refinitiv cross-asset class dataset.

ric description sector

0 BTC= Bitcoin/US Dollar crypto

1 ETH= Ethereum/US Dollar crypto

2 LTC= Litecoin/US Dollar crypto

3 AUD= Australian Dollar/US Dollar FX

4 AUDCHF= Australian Dollar/Swiss Franc FX

5 AUDJPY= Australian Dollar/Japanese Yen FX

Continued on next page
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6 BRL= US Dollar/Brazilian Real FX

7 CAD= US Dollar/Canadian Dollar FX

8 CADCHF= Canadian Dollar/Swiss Franc FX

9 CADJPY= Canadian Dollar/Japanese Yen FX

10 CHF= US Dollar/Swiss Franc FX

11 CHFJPY= Swiss Franc/Japanese Yen FX

12 CNY= US Dollar/Chinese Yuan FX

13 EUR= Euro/US Dollar FX

14 EURAUD= Euro/Australian Dollar FX

15 EURCAD= Euro/Canadian Dollar FX

16 EURCHF= Euro/Swiss Franc FX

17 EURGBP= Euro/British Pound FX

18 EURJPY= Euro/Japanese Yen FX

19 GBP= British Pound/US Dollar FX

20 GBPAUD= British Pound/Australian Dollar FX

21 GBPCAD= British Pound/Canadian Dollar FX

22 GBPCHF= British Pound/Swiss Franc FX

23 GBPJPY= British Pound/Japanese Yen FX

24 GBPNZD= British Pound/New Zealand Dollar FX

25 HKD= US Dollar/Hong Kong Dollar FX

26 INR= US Dollar/Indonesia Rupiah FX

27 JPY= US Dollar/Japanese Yen FX

28 KRW= US Dollar/Korea Won FX

29 MXN= US Dollar/Mexico Peso FX

30 NOK= US Dollar/Norwegian Krone FX

31 NZD= New Zealand Dollar/US Dollar FX

32 PLN= US Dollar/Polish Zloty FX

33 RUB= US Dollar/Russian Ruble FX

34 SEK= US Dollar/Swedish Krone FX

35 SGD= US Dollar/Singapore Dollar FX

36 TRY= US Dollar/Turkish Lira FX

37 TWD= US Dollar/Taiwanese Dollar FX

38 ZAR= US Dollar/South African Rand FX

39 .BCOM Bloomberg Commodity commodities

40 .TRCCRB Refinitiv CRB commodities

41 ITEEU5Y=MG ITRAXX Europe CDS credit

42 ITEXO5Y=MG ITRAXX Crossover CDS credit

43 .TRXFLDGLPUENE Refinitiv Global Energy energy

44 .AEX AEX equities

45 .AORD ASX All Ordinaries equities

46 .AXJO S&P/ASX 200 equities

47 .BFX BEL 20 equities

48 .BSESN S&P Sensex equities

Continued on next page



3.1. Online learning with radial basis function networks 52

Table 3.1 – continued from previous page

ric description sector

49 .BVSP Brazilian IBOVESPA equities

50 .FCHI CAC 40 equities

51 .FTAS FTSE ALL SHARE equities

52 .FTJ203 JSE All Share equities

53 .FTSE FTSE 100 equities

54 .GDAXI DAX equities

55 .GSPTSE TSX Composite equities

56 .HSI Hang Seng equities

57 .IBEX IBEX 35 equities

58 .IMOEX MOEX Russia equities

59 .IRTS RTS equities

60 .IXIC NASDAQ Composite equities

61 .KLSE FTSE Bursa KLSE equities

62 .KS11 Korea Composite equities

63 .MID S&P 400 Mid Cap equities

64 .MXX Mexican IPC equities

65 .NDX NASDAQ 100 equities

66 .NYA NYSE Composite equities

67 .OMXHPI OMX Helsinki equities

68 .OMXS30 OMX Stockholm 30 equities

69 .SPX S&P 500 equities

70 .SSEC Shanghai Composite equities

71 .SSMI Swiss Market equities

72 .STI Straits Times equities

73 .STOXX50 EURO STOXX 50 equities

74 .STOXX50E EURO STOXX 50 equities

75 .TOPX TOPIX equities

76 .TRXFLDGLPU Refinitiv Global Equities equities

77 .TRXFLDGLPUHLC Refinitiv Global Healthcare equities

78 .TRXFLDUSP Refinitiv United States equities

79 AU10YT=RR Australia 10-year Note rates

80 CA10YT=RR Canada 10-year Note rates

81 CH10YT=RR Swiss 10-year Note rates

82 CN10YT=RR China 10-year Note rates

83 DE10YT=RR Germany 10-year Note rates

84 ES10YT=RR Spain 10-year Note rates

85 FR10YT=RR France 10-year Note rates

86 GB10YT=RR United Kingdom 10-year Note rates

87 IN10YT=RR India 10-year Note rates

88 IT10YT=RR Italy 10-year Note rates

89 JP10YT=RR Japan 10-year Note rates

90 RU10YT=RR Russia 10-year Note rates

91 US10YT=RRPS 10-Year Note rates

Continued on next page
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92 US2YT=RRPS 2-Year Note rates

93 US30YT=RRPS 30-Year Bond rates

94 US5YT=RRPS 5-Year Note rates

95 ZA10YT=RR South Africa 10-year Note rates

96 XAG= Silver metals

97 XAU= Gold metals

98 XPD= Palladium metals

99 XPT= Platinum metals

3.2 Reinforcement learning for systematic FX trading
We extract daily-sampled data from Refinitiv for 36 major cash foreign exchange (FX) pairs

with available tomnext forward points and outrights. These FX pairs are listed in table 3.2.

The dataset begins on 2010-12-07 and ends on 2021-10-21, with 2,840 observations per pair.

Table 3.2: The major FX pairs experimented with, including rics.

currency pair ric tomnext ric

1 AUDUSD AUD= AUDTN=

2 EURAUD EURAUD= EURAUDTN=

3 EURCHF EURCHF= EURCHFTN=

4 EURCZK EURCZK= EURCZKTN=

5 EURDKK EURDKK= EURDKKTN=

6 EURGBP EURGBP= EURGBPTN=

7 EURHUF EURHUF= EURHUFTN=

8 EURJPY EURJPY= EURJPYTN=

9 EURNOK EURNOK= EURNOKTN=

10 EURPLN EURPLN= EURPLNTN=

11 EURSEK EURSEK= EURSEKTN=

12 EURUSD EUR= EURTN=

13 GBPUSD GBP= GBPTN=

14 NZDUSD NZD= NZDTN=

15 USDCAD CAD= CADTN=

16 USDCHF CHF= CHFTN=

17 USDCNH CNH= CNHTN=

18 USDCZK CZK= CZKTN=

19 USDDKK DKK= DKKTN=

20 USDHKD HKD= HKDTN=

21 USDHUF HUF= HUFTN=

Continued on next page
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22 USDIDR IDR= IDRTN=

23 USDILS ILS= ILSTN=

24 USDINR INR= INRTN=

25 USDJPY JPY= JPYTN=

26 USDKRW KRW= KRWTN=

27 USDMXN MXN= MXNTN=

28 USDNOK NOK= NOKTN=

29 USDPLN PLN= PLNTN=

30 USDRUB RUB= RUBTN=

31 USDSEK SEK= SEKTN=

32 USDSGD SGD= SGDTN=

33 USDTHB THB= THBTN=

34 USDTRY TRY= TRYTN=

35 USDTWD TWD= TWDTN=

36 USDZAR ZAR= ZARTN=

3.3 The recurrent reinforcement learning crypto agent
We extract five minutely sampled trade and order book information for the XBTUSD (Bit-

coin vs US Dollar) perpetual swap from BitMEX; this is for March 2017 to December 2021.

There are various technical aspects to this contract which are described in section 6.2. The

data are extracted using the BitMEX API Explorer, a REST API for the BitMEX trading

platform.

3.4 Sequential asset ranking in nonstationary time series
We extract constituent data for the S&P 500 index from Refinitiv. There are 505 constituents

of this index, owing to symbols with multiple listings, such as class A and B shares. For

each symbol, we extract the closing daily transaction prices. Due to their relatively new

trade history, some time series have little data. Therefore, we select a subset of the S&P

500 index, where each constituent contains a trade count greater than or equal to the 25’th

percentile of trade counts. This subset, 378 rics, is shown in table 3.3. The dataset begins on

2001-01-26 and ends on 2022-03-25, 5326 days.
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Table 3.3: Refinitiv S&P 500 dataset.

ric description sector

1 A Agilent Technologies, Inc. life sciences

2 AAPL.O Apple Inc. technology

3 ABC AmerisourceBergen Corporation trade

4 ABMD.O ABIOMED, Inc. life sciences

5 ABT Abbott Laboratories life sciences

6 ADBE.O Adobe Inc. technology

7 ADI.O Analog Devices, Inc. manufacturing

8 ADM Archer-Daniels-Midland Company manufacturing

9 ADP.O Automatic Data Processing, Inc. technology

10 ADSK.O Autodesk, Inc. technology

11 AEE Ameren Corporation energy

12 AEP.O American Electric Power Company, Inc. energy

13 AES AES Corporation energy

14 AFL Aflac Incorporated finance

15 AIG American International Group, Inc. finance

16 AJG Arthur J. Gallagher & Co. finance

17 AKAM.O Akamai Technologies, Inc. trade

18 ALB Albemarle Corporation life sciences

19 ALGN.O Align Technology, Inc. life sciences

20 ALK Alaska Air Group, Inc. energy

21 ALL Allstate Corporation finance

22 AMAT.O Applied Materials, Inc. manufacturing

23 AMD.O Advanced Micro Devices, Inc. manufacturing

24 AME AMETEK, Inc. life sciences

25 AMGN.O Amgen Inc. life sciences

26 AMT American Tower Corporation real estate

27 AMZN.O Amazon.com, Inc. trade

28 ANSS.O ANSYS, Inc. technology

29 AON Aon Plc Class A finance

30 AOS A. O. Smith Corporation manufacturing

31 APA.O APA Corp. energy

32 APD Air Products and Chemicals, Inc. life sciences

33 APH Amphenol Corporation Class A manufacturing

34 ARE Alexandria Real Estate Equities, Inc. real estate

35 ATO Atmos Energy Corporation energy

36 ATVI.O Activision Blizzard, Inc. technology

37 AVB AvalonBay Communities, Inc. real estate

38 AVY Avery Dennison Corporation manufacturing

39 AXP American Express Company finance

40 AZO AutoZone, Inc. trade

41 BA Boeing Company manufacturing

42 BAC Bank of America Corp finance

Continued on next page
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43 BAX Baxter International Inc. life sciences

44 BBWI.K Bath & Body Works, Inc. trade

45 BBY Best Buy Co., Inc. trade

46 BDX Becton, Dickinson and Company life sciences

47 BEN Franklin Resources, Inc. finance

48 BFb Brown-Forman Corporation Class B manufacturing

49 BIIB.O Biogen Inc. life sciences

50 BIO Bio-Rad Laboratories, Inc. Class A life sciences

51 BK Bank of New York Mellon Corporation finance

52 BKNG.O Booking Holdings Inc. energy

53 BKR.O Baker Hughes Company Class A technology

54 BLK BlackRock, Inc. finance

55 BLL Ball Corporation manufacturing

56 BMY Bristol-Myers Squibb Company life sciences

57 BRKb Berkshire Hathaway Inc. Class B finance

58 BRO Brown & Brown, Inc. finance

59 BSX Boston Scientific Corporation life sciences

60 BWA BorgWarner Inc. manufacturing

61 BXP Boston Properties, Inc. real estate

62 C Citigroup Inc. finance

63 CAG Conagra Brands, Inc. manufacturing

64 CAH Cardinal Health, Inc. trade

65 CAT Caterpillar Inc. technology

66 CB Chubb Limited finance

67 CCI Crown Castle International Corp real estate

68 CCL Carnival Corporation energy

69 CDNS.O Cadence Design Systems, Inc. technology

70 CERN.O Cerner Corporation technology

71 CHD Church & Dwight Co., Inc. life sciences

72 CHRW.O C.H. Robinson Worldwide, Inc. energy

73 CI Cigna Corporation finance

74 CINF.O Cincinnati Financial Corporation finance

75 CL Colgate-Palmolive Company life sciences

76 CLX Clorox Company life sciences

77 CMA Comerica Incorporated finance

78 CMCSA.O Comcast Corporation Class A technology

79 CMI Cummins Inc. technology

80 CMS CMS Energy Corporation energy

81 CNP CenterPoint Energy, Inc. energy

82 COF Capital One Financial Corporation finance

83 COO Cooper Companies, Inc. life sciences

84 COP ConocoPhillips energy

85 COST.O Costco Wholesale Corporation trade

Continued on next page
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86 CPB Campbell Soup Company manufacturing

87 CPRT.O Copart, Inc. trade

88 CRL Charles River Laboratories International, Inc. trade

89 CSCO.O Cisco Systems, Inc. technology

90 CSX.O CSX Corporation energy

91 CTAS.O Cintas Corporation manufacturing

92 CTRA.K Coterra Energy Inc. energy

93 CTSH.O Cognizant Technology Solutions Corporation Class A technology

94 CTXS.O Citrix Systems, Inc. technology

95 CVS CVS Health Corporation trade

96 CVX Chevron Corporation energy

97 D Dominion Energy Inc energy

98 DE Deere & Company technology

99 DGX Quest Diagnostics Incorporated life sciences

100 DHI D.R. Horton, Inc. real estate

101 DHR Danaher Corporation life sciences

102 DIS Walt Disney Company trade

103 DISH.O DISH Network Corporation Class A technology

104 DLTR.O Dollar Tree, Inc. trade

105 DOV Dover Corporation technology

106 DRE Duke Realty Corporation real estate

107 DRI Darden Restaurants, Inc. trade

108 DTE DTE Energy Company energy

109 DUK Duke Energy Corporation energy

110 DVA DaVita Inc. life sciences

111 DVN Devon Energy Corporation energy

112 DXC DXC Technology Co. technology

113 EA.O Electronic Arts Inc. technology

114 EBAY.O eBay Inc. trade

115 ECL Ecolab Inc. life sciences

116 ED Consolidated Edison, Inc. energy

117 EFX Equifax Inc. trade

118 EIX Edison International energy

119 EL Estee Lauder Companies Inc. Class A life sciences

120 EMN Eastman Chemical Company life sciences

121 EMR Emerson Electric Co. manufacturing

122 EOG EOG Resources, Inc. energy

123 EQR Equity Residential real estate

124 ES Eversource Energy energy

125 ESS Essex Property Trust, Inc. real estate

126 ETN Eaton Corp. Plc technology

127 ETR Entergy Corporation energy

128 EVRG.K Evergy, Inc. energy

Continued on next page



3.4. Sequential asset ranking in nonstationary time series 58

Table 3.3 – continued from previous page

ric description sector

129 EW Edwards Lifesciences Corporation life sciences

130 EXC.O Exelon Corporation energy

131 EXPD.O Expeditors International of Washington, Inc. energy

132 F Ford Motor Company manufacturing

133 FAST.O Fastenal Company trade

134 FCX Freeport-McMoRan, Inc. energy

135 FDX FedEx Corporation energy

136 FE FirstEnergy Corp. energy

137 FFIV.O F5, Inc. technology

138 FISV.O Fiserv, Inc. technology

139 FITB.O Fifth Third Bancorp finance

140 FMC FMC Corporation life sciences

141 FRT Federal Realty Investment Trust real estate

142 GD General Dynamics Corporation manufacturing

143 GE General Electric Company manufacturing

144 GILD.O Gilead Sciences, Inc. life sciences

145 GIS General Mills, Inc. manufacturing

146 GL Globe Life Inc. finance

147 GLW Corning Inc manufacturing

148 GPC Genuine Parts Company trade

149 GPN Global Payments Inc. trade

150 GPS Gap, Inc. trade

151 GRMN.K Garmin Ltd. manufacturing

152 GS Goldman Sachs Group, Inc. finance

153 GWW W.W. Grainger, Inc. trade

154 HAL Halliburton Company energy

155 HAS.O Hasbro, Inc. manufacturing

156 HBAN.O Huntington Bancshares Incorporated finance

157 HD Home Depot, Inc. trade

158 HES Hess Corporation energy

159 HIG Hartford Financial Services Group, Inc. finance

160 HOLX.O Hologic, Inc. life sciences

161 HON.O Honeywell International Inc. manufacturing

162 HPQ HP Inc. technology

163 HRL Hormel Foods Corporation manufacturing

164 HSIC.O Henry Schein, Inc. trade

165 HST.O Host Hotels & Resorts, Inc. real estate

166 HSY Hershey Company manufacturing

167 HUM Humana Inc. finance

168 HWM Howmet Aerospace Inc. manufacturing

169 IBM International Business Machines Corporation technology

170 IDXX.O IDEXX Laboratories, Inc. life sciences

171 IEX IDEX Corporation technology

Continued on next page
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172 IFF International Flavors & Fragrances Inc. life sciences

173 ILMN.O Illumina, Inc. life sciences

174 INCY.O Incyte Corporation trade

175 INTC.O Intel Corporation manufacturing

176 INTU.O Intuit Inc. technology

177 IP International Paper Company manufacturing

178 IPG Interpublic Group of Companies, Inc. trade

179 IRM Iron Mountain, Inc. real estate

180 ISRG.O Intuitive Surgical, Inc. life sciences

181 IT Gartner, Inc. trade

182 ITW Illinois Tool Works Inc. technology

183 IVZ Invesco Ltd. finance

184 J Jacobs Engineering Group Inc. real estate

185 JBHT.O J.B. Hunt Transport Services, Inc. energy

186 JCI Johnson Controls International plc trade

187 JKHY.O Jack Henry & Associates, Inc. technology

188 JNJ Johnson & Johnson life sciences

189 JNPR.K Juniper Networks, Inc. technology

190 JPM JPMorgan Chase & Co. finance

191 K Kellogg Company manufacturing

192 KEY KeyCorp finance

193 KIM Kimco Realty Corporation real estate

194 KLAC.O KLA Corporation life sciences

195 KMB Kimberly-Clark Corporation manufacturing

196 KMX CarMax, Inc. trade

197 KO Coca-Cola Company manufacturing

198 KR Kroger Co. trade

199 L Loews Corporation finance

200 LEG Leggett & Platt, Incorporated manufacturing

201 LEN Lennar Corporation Class A real estate

202 LH Laboratory Corporation of America Holdings life sciences

203 LHX L3Harris Technologies Inc manufacturing

204 LIN Linde plc life sciences

205 LLY Eli Lilly and Company life sciences

206 LMT Lockheed Martin Corporation manufacturing

207 LNC Lincoln National Corporation finance

208 LNT.O Alliant Energy Corp energy

209 LOW Lowe’s Companies, Inc. trade

210 LRCX.O Lam Research Corporation technology

211 LUMN.K Lumen Technologies, Inc. technology

212 LUV Southwest Airlines Co. energy

213 MAA Mid-America Apartment Communities, Inc. real estate

214 MAR.O Marriott International, Inc. Class A real estate

Continued on next page
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215 MAS Masco Corporation manufacturing

216 MCD McDonald’s Corporation trade

217 MCHP.O Microchip Technology Incorporated manufacturing

218 MCK McKesson Corporation trade

219 MCO Moody’s Corporation trade

220 MDT Medtronic Plc life sciences

221 MET MetLife, Inc. finance

222 MGM MGM Resorts International real estate

223 MHK Mohawk Industries, Inc. manufacturing

224 MKC McCormick & Company, Incorporated manufacturing

225 MLM Martin Marietta Materials, Inc. energy

226 MMC Marsh & McLennan Companies, Inc. finance

227 MMM 3M Company life sciences

228 MNST.O Monster Beverage Corporation manufacturing

229 MO Altria Group Inc manufacturing

230 MRK Merck & Co., Inc. life sciences

231 MRO Marathon Oil Corporation energy

232 MS Morgan Stanley finance

233 MSFT.O Microsoft Corporation technology

234 MSI Motorola Solutions, Inc. manufacturing

235 MTB M&T Bank Corporation finance

236 MTD Mettler-Toledo International Inc. life sciences

237 MU.O Micron Technology, Inc. manufacturing

238 NEE NextEra Energy, Inc. energy

239 NEM Newmont Corporation energy

240 NI NiSource Inc energy

241 NKE NIKE, Inc. Class B manufacturing

242 NLOK.O NortonLifeLock Inc. technology

243 NOC Northrop Grumman Corporation manufacturing

244 NSC Norfolk Southern Corporation energy

245 NTAP.O NetApp, Inc. technology

246 NTRS.O Northern Trust Corporation finance

247 NUE Nucor Corporation manufacturing

248 NVDA.O NVIDIA Corporation manufacturing

249 NVR NVR, Inc. real estate

250 NWL.O Newell Brands Inc manufacturing

251 O Realty Income Corporation real estate

252 ODFL.O Old Dominion Freight Line, Inc. energy

253 OKE ONEOK, Inc. energy

254 OMC Omnicom Group Inc trade

255 ORCL.K Oracle Corporation technology

256 ORLY.O O’Reilly Automotive, Inc. trade

257 OXY Occidental Petroleum Corporation energy

Continued on next page
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258 PARA.O Paramount Global technology

259 PAYX.O Paychex, Inc. trade

260 PBCT.O People’s United Financial, Inc. finance

261 PCAR.O PACCAR Inc manufacturing

262 PEAK.K Healthpeak Properties, Inc. real estate

263 PEG Public Service Enterprise Group Inc energy

264 PENN.O Penn National Gaming, Inc. real estate

265 PEP.O PepsiCo, Inc. manufacturing

266 PFE Pfizer Inc. life sciences

267 PG Procter & Gamble Company life sciences

268 PGR Progressive Corporation finance

269 PH Parker-Hannifin Corporation manufacturing

270 PHM PulteGroup, Inc. real estate

271 PKG Packaging Corporation of America manufacturing

272 PKI PerkinElmer, Inc. life sciences

273 PLD Prologis, Inc. real estate

274 PNC PNC Financial Services Group, Inc. finance

275 PNR Pentair plc technology

276 PNW Pinnacle West Capital Corporation energy

277 POOL.O Pool Corporation trade

278 PPG PPG Industries, Inc. life sciences

279 PPL PPL Corporation energy

280 PSA Public Storage real estate

281 PTC.O PTC Inc. technology

282 PVH PVH Corp. manufacturing

283 PWR Quanta Services, Inc. real estate

284 PXD Pioneer Natural Resources Company energy

285 QCOM.O Qualcomm Inc manufacturing

286 QRVO.O Qorvo, Inc. manufacturing

287 RCL Royal Caribbean Group energy

288 RE Everest Re Group, Ltd. finance

289 REG.O Regency Centers Corporation real estate

290 REGN.O Regeneron Pharmaceuticals, Inc. life sciences

291 RF Regions Financial Corporation finance

292 RHI Robert Half International Inc. trade

293 RJF Raymond James Financial, Inc. finance

294 RL Ralph Lauren Corporation Class A manufacturing

295 RMD ResMed Inc. life sciences

296 ROK Rockwell Automation, Inc. life sciences

297 ROL Rollins, Inc. trade

298 ROP Roper Technologies, Inc. life sciences

299 ROST.O Ross Stores, Inc. trade

300 RSG Republic Services, Inc. energy

Continued on next page
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301 RTX Raytheon Technologies Corporation manufacturing

302 SBAC.O SBA Communications Corp. Class A real estate

303 SBUX.O Starbucks Corporation trade

304 SCHW.K Charles Schwab Corporation finance

305 SEE Sealed Air Corporation life sciences

306 SHW Sherwin-Williams Company trade

307 SIVB.O SVB Financial Group finance

308 SLB Schlumberger NV energy

309 SNA Snap-on Incorporated manufacturing

310 SNPS.O Synopsys, Inc. technology

311 SO Southern Company energy

312 SPG Simon Property Group, Inc. real estate

313 SPGI.K S&P Global, Inc. trade

314 SRE Sempra Energy energy

315 STE STERIS Plc life sciences

316 STT State Street Corporation finance

317 STZ Constellation Brands, Inc. Class A manufacturing

318 SWK Stanley Black & Decker, Inc. manufacturing

319 SWKS.O Skyworks Solutions, Inc. manufacturing

320 SYK Stryker Corporation life sciences

321 SYY Sysco Corporation trade

322 T AT&T Inc. technology

323 TAP Molson Coors Beverage Company Class B manufacturing

324 TDY Teledyne Technologies Incorporated manufacturing

325 TECH.O Bio-Techne Corporation life sciences

326 TER.O Teradyne, Inc. life sciences

327 TFC Trust Financial Corporation finance

328 TFX Teleflex Incorporated life sciences

329 TGT Target Corporation trade

330 TJX TJX Companies Inc trade

331 TMO Thermo Fisher Scientific Inc. life sciences

332 TPR Tapestry, Inc. manufacturing

333 TRMB.O Trimble Inc. life sciences

334 TROW.O T. Rowe Price Group finance

335 TRV Travelers Companies, Inc. finance

336 TSCO.O Tractor Supply Company trade

337 TSN Tyson Foods, Inc. Class A manufacturing

338 TT Trane Technologies plc life sciences

339 TTWO.O Take-Two Interactive Software, Inc. technology

340 TXN.O Texas Instruments Incorporated manufacturing

341 TXT Textron Inc. manufacturing

342 TYL Tyler Technologies, Inc. technology

343 UDR UDR, Inc. real estate

Continued on next page



3.4. Sequential asset ranking in nonstationary time series 63

Table 3.3 – continued from previous page

ric description sector

344 UHS Universal Health Services, Inc. Class B life sciences

345 UNH UnitedHealth Group Incorporated finance

346 UNP Union Pacific Corporation energy

347 UPS United Parcel Service, Inc. Class B energy

348 URI United Rentals, Inc. trade

349 USB U.S. Bancorp finance

350 VFC V.F. Corporation manufacturing

351 VLO Valero Energy Corporation energy

352 VMC Vulcan Materials Company energy

353 VNO Vornado Realty Trust real estate

354 VRSN.O VeriSign, Inc. technology

355 VRTX.O Vertex Pharmaceuticals Incorporated life sciences

356 VTR Ventas, Inc. real estate

357 VTRS.O Viatris, Inc. life sciences

358 VZ Verizon Communications Inc. technology

359 WAB Westinghouse Air Brake Technologies Corporation manufacturing

360 WAT Waters Corporation life sciences

361 WBA.O Walgreens Boots Alliance Inc trade

362 WDC.O Western Digital Corporation technology

363 WEC WEC Energy Group Inc energy

364 WELL.K Welltower, Inc. real estate

365 WFC Wells Fargo & Company finance

366 WHR Whirlpool Corporation manufacturing

367 WM Waste Management, Inc. energy

368 WMB Williams Companies, Inc. energy

369 WMT Walmart Inc. trade

370 WRB W. R. Berkley Corporation finance

371 WST West Pharmaceutical Services, Inc. manufacturing

372 WY Weyerhaeuser Company real estate

373 XEL.O Xcel Energy Inc. energy

374 XOM Exxon Mobil Corporation energy

375 XRAY.O Dentsply Sirona, Inc. life sciences

376 YUM Yum! Brands, Inc. trade

377 ZBRA.O Zebra Technologies Corporation Class A technology

378 ZION.O Zions Bancorporation, N.A. finance



Chapter 4

Online learning with radial basis

function networks

We provide multi-horizon forecasts on the returns of financial time series. Our sequentially

optimised radial basis function network (RBFNet) outperforms a random-walk baseline and

several powerful supervised learners. Our RBFNets naturally measure the similarity between

test samples and prototypes that capture the characteristics of the feature space. We show that

the training set financial time series returns have low similarity with their test set counterparts,

highlighting the challenges faced in particular by kernel-based methods that use the training set

returns as test-time prototypes; in contrast, our online learning RBFNets have hidden units that

retain greater similarity across time.

This chapter shows the benefits of feature selection and online learning with nonlinear mod-

els. We limit the scope of our experimentation to financial time series, which at times ex-

hibit high autocorrelation, nonstationarity, nonlinearity and regime-switching characteristics.

This behaviour can be classified as concept drift (Iwashita and Papa, 2019). We find that our

online RBFNet obtains the best test set results with minimum NMSE. The multi-layer per-

ceptron (mlp) performs worst. If we compare the local learning of the RBFNet with the

global learning technique of the mlp, the latter suffers from catastrophic forgetting (Kirk-

patrick et al., 2017; Sukhov et al., 2020). The RBFNets we formulate are naturally designed

to measure the similarity between test samples and continuously updated prototypes that

capture the characteristics of the feature space. As such, the models are robust in mitigat-

ing catastrophic forgetting. In addition, although related to k-nearest neighbours, Gaussian

process and kernel ridge regression, our experiments show that the RBFNets, which use

clustering algorithms to determine the network’s hidden units, are more predictive than us-

ing each training vector as test-time prototypes. Section 4.4 demonstrates this visually, with
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plots of the cosine similarity between training and test vectors. The original returns space

has low similarity, whilst the clustered returns space has high similarity; thus, more signal is

extracted from the data.

4.1 Problem formulation

Using the multi-asset dataset 3.1, we consider the problem of forecasting multi-horizon re-

turns h= 1, ..,30 days ahead for each asset in the dataset. Multi-horizon forecasting is impor-

tant in a number of circumstances. For example, if one seeks to purchase a portfolio of risky

assets, one will most likely be unsure when the risky positions will be liquidated. Liquida-

tion might occur due to profit taking. Therefore, having a prediction model that works well

across multiple forecast horizons is invaluable. Denote the target asset indices as j = 1, ...d.

In the general regression setting, we wish to learn the mapping of a set of predictors xt to an

individual horizon/target tuple yt+h, j = f (xt ;θθθ t)+ εt, j. In this experiment, the predictors xt

are daily returns for each asset’s end of day price

xt = [log(pt,1/pt−1,1), ..., log(pt,d/pt−1,d)].

The end of day price could be the closing transaction price, settlement price or last quote of

the day, depending on what the data vendor Refinitiv provides us with. Instead of a fixed

set of predictors, we consider a tailored set of predictors x( j) for each target y j, which is

determined by feature selection algorithm 4.1 that combines forward stepwise selection with

variance inflation factor minimisation. So as to unclutter our notation, assume now that

xt ≜ xt( j) ∀ j = 1, ...,d x ∈ Rq 1≤ q≤ d.

Furthermore, in the case of online learning RBFNet algorithm 4.2, there is an added transfor-

mation of the original external input space. We perform online feature representation transfer
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from the external inputs xt to a new feature space

φk(xt) = exp
(
−1

2
[xt−µµµk,t ]

T
ΛΛΛk,t [xt−µµµk,t ]

)
, ∀k = 1, ...,K

φφφ t = [1,φ1(xt), ...,φK(xt)]
T ,

φφφ t ≜ φφφ t( j) ∀ j = 1, ...,d,

via k-means, where φφφ t denotes the hidden units of a single-layer RBFNet. Each φk(xt) is

parameterised as a k-means cluster conditional multivariate normal N(µµµk,ΛΛΛ
−1
k ). As deter-

mination of x( j) depends on target y j, there is one RBFNet per target.

4.2 The research experiment

We consider the goal of multi-step forecasting with financial time series. Define the predic-

tion mean squared error (MSE) for the j′th model and h′th forecast horizon as

MSEh, j =
1

t−h

t−h

∑
i=1

(yi+h, j− ŷi, j)
2.

There are numerous financial examples where participants seek to minimise MSE over opti-

mal horizons h∗ that are not known in advance. For example, a market maker captures edge,

which is half the bid/ask spread, and only realises a profit when the risk is turned over (going

from long to short or vice versa) or flattened. This risk turnover is entirely variable. In the

context of execution algos, the algo seeks to minimise the implementation shortfall relative

to a benchmark. Even if the execution time is known in advance, such as with time-weighted

average price algos, the performance of the algo relative to the benchmark is unknown a

priori. A final example is systematic proprietary trading strategies, which rely on statisti-

cally driven signals to scale in and out of risk over varying time scales. A prediction model

that, on average, performs well over multiple forecast horizons is of great value in all the

aforementioned cases.

In our experiment, which uses the returns of the cross-asset Refinitiv dataset introduced

in section 3.1, we determine if the RBFNet can provide optimal forecasts over multiple hori-

zons. Optimality is quantified here as the relative performance of the RBFNet to a bench-
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mark, which is the random-walk model. The random-walk model is introduced next, in

section 4.2.1. Our RBFNet differs from earlier work in that its unsupervised and super-

vised learning components continue to learn in the test set. Specifically, we facilitate online

learning for the k-means++ algorithm that learns the network’s hidden units and maps these

hidden units to the response using EWRLS. A complete algorithm is shown in section 4.2.3

with algorithm 4.2.

The choice of returns is made for several reasons. Firstly, by constructing returns, all

the time series are considered stationary by unit root tests such as the augmented Dickey-

Fuller (ADF) test (Said and Dickey, 1984). Secondly, the introduction of returns makes

the choice of the random-walk as the baseline model most suitable. Finally, we use several

comparator models discussed in section 4.2.4 that rely on the iid random variables assump-

tion. These competitors are traditional batch-learning models and cannot be fitted practically

sequentially in several cases. For example, the gradient tree boosters and random forests

use underlying trees that are grown using the cart algorithm (Breiman et al., 1984). For re-

gression trees, the cart algorithm will split the training set by feature indices and values as

necessary to reduce the total MSE in the tree. Therefore, applying the algorithm at test time

to the original training dataset augmented by new test entries is not computationally feasible.

In addition, some models use an L-BFGS solver (Liu and Nocedal, 1989) for parameter op-

timisation, which is purely a batch method. Aside from this, to demonstrate that the results

we get with the RBFNet are not purely down to sequential optimisation in the test set, we

use a second online learning model, the EWRLS.

4.2.1 The random-walk model

The random-walk model (Harvey, 1993)

yt = yt−1 + εt ,

has stationary expectation

E[yt ] = y0,
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yet nonstationary variance and covariance

Var[yt ] = tσ2

Cov[yt ,yt−τ ] = |t− τ]σ2.

A large body of academic literature shows that it is difficult to beat the random-walk model

when forecasting returns of financial time series (Meese and Rogoff, 1983; Engel, 1994).

Bachelier (1900) considers price series as Gaussian random walks, whose increments are iid

Gaussian random variables. Bachelier’s first law states that the variation of returns grows

with the square root of time. Bouchaud et al. (2018) find that Bachelier’s first law holds

well for actual financial returns; however, they also find that standard Gaussian random-

walk models for financial returns modelling underestimate the extreme fluctuations that are

empirically observed. Finally, they find that price changes follow fat-tailed, power-law dis-

tributions, with extreme events not as rare as Gaussian models might predict.

4.2.2 Feature selection

In our experiment, we have one hundred assets to choose from in the Refinitiv cross-asset

dataset (section 3.1) as external inputs to the models we use. However, there is much re-

dundancy in this external input space. For example, figure 4.1 visually shows the training

set log-return correlations, with an overwhelming red colour indicating a positive correla-

tion. Furthermore, table 4.1 shows the distribution of the off-diagonal correlation values,

which averages just under 6% and has a maximum value of almost 100%. Correlated fea-

tures are likely to result in a more significant prediction variance. Denote the singular value

decomposition (Jolliffe, 2011) of the training set features as

X = USVT ,

where S is the diagonal matrix of eigenvalues. The variance of the least squares parameters

is:

Var[θθθ ] = σ
2(XT X)−1 = σ

2VS−2VT .

Highly correlated features in X cause S−2 to be large, which increases Var[θθθ ].
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Table 4.1: Summary statistics for the training set returns correlations for the Refinitiv cross-asset
dataset (section 3.1). There are substantial positive correlations, which motivate using an
external input feature selection algorithm.

count mean std min 25% 50% 75% max

ρ 9900 0.056 0.276 -0.82 -0.12 0.018 0.221 0.996

Figure 4.1: We show a heatmap of the training set returns correlations for the Refinitiv cross-asset
dataset. Across currency pairs, equities, rates, credit, metals, agriculture, energy and
crypto, there is a bias toward positive correlations, which increases systemic risk in the
financial markets, particularly during periods of turmoil.
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There are various feature selection algorithms, which Hastie et al. (2009) discuss in

detail. Forward stepwise selection scales well as the dimensionality d of the feature space

X ∈ Rn×d increases. The goal of forward stepwise selection is to choose features that max-

imise R2, although the features might be positively correlated. On the other hand, variance

inflation factor (VIF) minimisation (James et al., 2013) performs feature selection by min-

imising the correlation between features. As shown in exhibit 4.1, we combine forward

stepwise selection and VIF minimisation to the training set returns. The algorithm is applied

to each target, and the target-conditional subset of external inputs is held fixed during the test

set evaluation. Therefore, in algorithm 4.1, we novelly combine forward stepwise selection

and VIF minimisation to the training set returns. The algorithm is applied to each target, and

the target-conditional subset of external inputs is held fixed during test set evaluation. An

example of the algorithm’s output (to two decimal places) is shown in table 4.2. The target is

the training set one-step-ahead daily returns of the EURUSD currency pair. We see that the

R2 = 0.15, with the features ranked in order of their contribution to total R2. Other statistics

shown are the regression parameter t-values, which are the estimated regression coefficients

divided by their standard errors. The associated p-values can be compared against the 5%

critical value and standard frequentist statistics hypotheses of statistical significance inferred.

Other statistics included are the normalised MSE (NMSE) which is the regression MSE di-

vided by the variance of the response, which shows predictive quality in that the NMSE is

less than 1. Furthermore, the Durbin-Watson (DW) statistic (Durbin and Watson, 1950) for

serial autocorrelation is around 2, indicating no serial correlation in the regression residuals.

Finally, the ADF statistic shows that the regression residuals are stationary.

4.2.3 The online learning radial basis function network

In section 2.3, we discuss the earlier research into RBFNets. Notably, this earlier work is

cast within a batch learning framework, which is unsatisfactory for learning with nonstation-

ary time series or time series that regularly experience concept drifts (Iwashita and Papa,

2019). There is earlier research into online learning RBFNets; for example, Calliess (2019)

employs greedy projection (Zinkevich, 2003) to fit his RBFNet sequentially, a no-regret al-

gorithm designed for online convex programming. Whilst Calliess keeps the parameters of

the hidden units fixed to scalar values, perhaps for illustration purposes, our online learning
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Table 4.2: Forward stepwise selection and VIF minimisation applied to the EURUSD spot FX re-
turns in the training set. Features with a maximum VIF factor κ ≤ 5 are accepted. The
contribution to total R2 is displayed in the final column.

value t-value crit-value p-value VIF R2

EUR=

R2 0.15
n 648
σ2 0.00
MSE 0.00
NMSE 0.79
DW 2.02 0.05 0.02
ADF -25.7 -2.9 0.00
NOK= -0.08 -2.18 0.05 0.01 4.62 0.012
.MID 0.04 2.80 0.05 0.00 4.29 0.011
CAD= -0.09 -1.69 0.05 0.04 2.43 0.010
ITEXO5Y=MG 0.01 0.26 0.05 0.39 4.04 0.009
.FTJ203 0.01 0.77 0.05 0.22 3.46 0.009
NZD= -0.01 -0.23 0.05 0.40 2.75 0.008
.BSESN 0.03 1.86 0.05 0.03 2.26 0.008
.BVSP -0.01 -0.76 0.05 0.22 3.07 0.007
XPD= 0.01 1.24 0.05 0.10 1.94 0.006
SEK= 0.02 0.50 0.05 0.30 3.59 0.006
.MXX 0.01 0.68 0.05 0.24 2.12 0.005
PLN= -0.02 -0.55 0.05 0.28 3.11 0.005
MXN= 0.03 1.06 0.05 0.14 3.12 0.005
XPT= -0.00 -0.49 0.05 0.30 2.60 0.004
GBP= -0.00 -0.25 0.05 0.40 2.01 0.004
.TRCCRB -0.01 -0.86 0.05 0.19 2.03 0.003
.AXJO -0.00 -0.50 0.05 0.30 2.06 0.003
BTC= 0.01 1.99 0.05 0.02 2.95 0.003
XAG= -0.01 -0.77 0.05 0.22 3.61 0.003
RU10YT=RR -0.03 -1.04 0.05 0.14 1.56 0.003
CHFJPY= 0.08 1.90 0.05 0.02 1.55 0.003
BRL= -0.04 -2.14 0.05 0.01 1.75 0.002
.STI -0.02 -0.95 0.05 0.16 2.96 0.002
XAU= 0.03 1.30 0.05 0.09 3.26 0.002
ETH= 0.00 0.32 0.05 0.37 3.38 0.002
IT10YT=RR -0.01 -0.73 0.05 0.23 1.80 0.002
IN10YT=RR 0.09 2.41 0.05 0.00 1.22 0.002
ES10YT=RR 0.02 0.59 0.05 0.27 2.02 0.002
.KLSE 0.02 0.83 0.05 0.20 2.27 0.002
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Algorithm 4.1 Forward stepwise selection with variance inflation factor minimisation.
Require: κ // the maximum VIF

Initialise: S= [1,2, ...,d], r = v = 0d
Input: X ∈ Rn×d,y ∈ Rn

Output: S ∈ Zp, 0 < p≤ d
1 for j← 1 to d do
2 ȳ = 1

n ∑
n
i=1 yi

3 x̄ j =
1
n ∑

n
i=1 Xi j

4 θ j =
∑

n
i=1(yi−ȳ)(Xi j−x̄ j)

∑
n
i=1(Xi j−x̄ j)2

// r j is the R2 of a regression of y on x j.

5 r j = R2
y|x j

= 1− ∑
n
i=1(yi−θ jXi j)

2

∑
n
i=1(yi−ȳ)2

// R2
x j |X− j

denotes the R2 of a regression of x j onto the remaining predictors,

excluding the j′th one.

6 v j =
1

1−R2
x j |X− j

7 end
8 Sort r in ascending order and use the index to sort S.
9 while ∀v >= κ do

10 for j← 1 to d do
11 if v j >= κ then
12 Remove S j.
13 Recompute v.
14 end
15 end
16 end

RBFNet shown in algorithm 4.2 partially adopts the approach of Moody and Darken (1989).

In the training set, the algorithm uses k-means++ to learn the hidden unit means and then

maps the hidden unit output to the response using ridge regression. An innovation we make

is that whilst the earlier work uses a randomised, scalar standard deviation σ j in the RBF

equation 2.3, we apply a Bayesian maximum a posteriori (MAP) estimate to the covariance

matrices that we use instead. If many training data points are assigned to the j′th cluster, the

j′th covariance matrix will resemble the maximum likelihood estimate. In contrast, if few

data points are assigned to the j′th cluster, the j′th covariance matrix will resemble the diag-

onalised variance prior. A further innovation is the online updating of the hidden unit means

and covariances, with exponential decay to allow for regime changes or concept drifts. More

concretely, we operate with and adapt the precision (inverse covariance) matrices; this leads

to a test-time time-complexity of O(kd2), a reduction from O(kd3) when operating on co-
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variance matrices. Finally, we use exponentially weighted recursive least squares (EWRLS)

to map the hidden unit outputs to the response; EWRLS operates efficiently with a precision

matrix of the hidden unit space.

Algorithm 4.2 The online learning radial basis function network.
Require: k // hidden unit count, α // RR penalty, τ // exponential decay
Initialise: v0 = d +2, θθθ = 0k+1, P = Ik+1/α

Hidden unit parameterisation via k-means++:
// This section uses the training set feature matrix X ∈ Rn×d = {xT

i }n
i=1

1 Initialise the hidden unit means {µµµ j}k
j=1.

2 repeat
3 Assign the feature training vector to the nearest hidden unit mean δ j,i = argmin

j
∥xi −

µµµ j∥2
2, δ j,i = 1∧δk,i = 0 ∀k ̸= j.

4 Update each hidden unit mean using all the points assigned to it, µµµ j =
1
n j

∑
n
i=1 δ j,ixi.

5 until until convergence;
// Learn the hidden unit covariances via Bayesian MAP estimation

6 Estimate the prior scatter matrix S0 =
1

k1/d diag(s2
1, ...,s

2
d) where s j = (1/n)∑

n
i=1(xi− x̄ j)

2.
7 Estimate the j′th likelihood scatter matrix S j = ∑

n
i=1 δ j,i(xi− x̄ j)(xi− x̄ j)

T .
8 The j′th posterior cov is ΣΣΣ j =

S0+S j
v0+n j+d+2 , where n j = ∑i δ j,i, with ΛΛΛ j = ΣΣΣ

−1
j .

Output: ŷt
// This is the online update, with test-time data {xt ∈ Rd, yt}.

9 δ j,t = argmin
j
∥xt −µµµ j∥2

2

10 µµµ j,t = τµµµ j,t−1 +(1− τ)xt

11 at = 1+(xt −µµµ j,t)
T ΛΛΛ j,t−1(xt −µµµ j,t)/τ

12 kt = ΛΛΛ j,t−1(xt −µµµ j,t)/(τat)

13 ΛΛΛ j,t = ΛΛΛ j,t−1/τ−ktkT
t at

// Map the hidden units to the response using EWRLS.

14 φh(xt) = exp
(
−1

2 [xt −µµµh,t ]
T ΛΛΛh,t [xt −µµµh,t ]

)
, ∀h = 1, ...,k

15 φφφ t = [1,φ1(xt), ...,φk(xt)]
T

16 bt = 1+φφφ
T
t−1Pt−1φφφ t−1/τ

17 mt = Pt−1φφφ t−1/(btτ)

18 θθθ t = θθθ t−1 +mt(yt −θθθ
T
t−1φφφ t−1)

19 Pt = Pt−1/τ−mtmT
t bt

20 ŷt = θθθ
T
t φφφ t

4.2.4 Competitor models

The models we consider in our experiment are shown next. We use scikit-learn (Pedregosa

et al., 2011) implementations for Gaussian process regression, gradient tree boosting, k-

nearest neighbours regression, the multi-layer perceptron, the random forest and support

vector regression. We use our implementations of ridge regression, kernel ridge regression,
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EWRLS and the RBFNet. The online RBFNet faces a robust assortment of competitor mod-

els, which in most cases are suited to or can only be fitted by batch learning.

• random-walk - this is the baseline model that is discussed in section 4.2.1.

• GPR - the Gaussian process regression model (Rasmussen and Williams, 2005). We

combine an RBF kernel with a white noise kernel. Scikit-learn uses an L-BFGS solver

by default.

• GTB - the gradient tree boosting regression model (Friedman, 2001), with a default of

one hundred estimators, a maximum tree depth of 3 and MSE as splitting criteria.

• KRR - kernel ridge regression (Cristianini and Shawe-Taylor, 2000).

• KNNR - k-nearest neighbours regression (Takezawa, 2006), with a default 5 nearest

neighbours and Minkowski distance metric (Du, 2018). When computing the nearest

neighbours, the scikit-learn implementation automatically decides between ball-tree

and kd-tree algorithms (Munaga and Jarugumalli, 2012).

• MLP - multi-layer perceptron regression (Goodfellow et al., 2016). Note that we use

the L-BFGS solver, which converges faster and with better solutions on small datasets.

We use the default structure of a single layer comprised of one hundred hidden units

that use the relu activation.

• RF - random forests of regression trees (Breiman, 2001), with a default one hundred

estimators. Each tree in the forest is grown to an unrestricted depth and pruned back

using minimal cost complexity pruning (Breiman et al., 1984).

• RR - the ridge regression model (Hoerl, 1962).

• SVR - the support vector regression model, specifically the ν-SVR, where ν controls

the number of support vectors (Schölkopf et al., 2000, 2001). This scikit-learn imple-

mentation uses the RBF kernel by default.

• EWRLS - exponentially weighted recursive least squares, discussed in section 4.2.3.
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• RBFNet - the online learning radial basis function network detailed in algorithm 4.2.

We set k = 100 hidden units.

4.2.5 Experiment design

As discussed in section 3.1, we construct daily returns and set half the data aside for training

and the other half for testing. We apply the external input selection algorithm 4.1 to the

training set returns and end up with a subset of external inputs per target. These are held

fixed and used as is in the test set. We set the maximum VIF κ = 5. For the various models

that use RR penalties, we use a default value of α = 0.0001. Both the EWRLS and RBFNets

use an exponential decay factor τ = 0.99. During test time, these two models continue to

be fitted online. The performance criteria that we consider is normalised prediction mean

squared error (NMSE) for forecast horizons in days h = 1, ...,30

NMSEh, j =
∑

t−h
i=1(yi+h, j− ŷi, j)

2

∑
t−h
i=1(yi+h, j− y0, j)2

. (4.1)

In equation 4.1, the normalisation of MSE occurs relative to the random-walk baseline.

4.3 Results
Table 4.3 shows that several models have average test set NMSE that is better than the

random-walk baseline. These include EWRLS, GPR, GTB, KRR, RBFNet and RF. The

models that perform worse than the random-walk baseline include KNNR, MLP, RR and

SVR, with the MLP the worst performing model. The RBFNet has the lowest average NMSE

of 0.636. Comparing this to the second-best result, a NMSE of 0.673 for GPR, we perform

a two-sample t-test for equal means (Hirotsu, 2017) and find that the means are considered

statistically different, drawn from differently parameterised distributions. For all models,

we also perform a Wald test (Wasserman, 2004) for the null hypothesis that the nmspe is

no different from 1, tested at the 5% critical value. We find that in all cases, the model-

averaged NMSE is statistically different from 1. Figure 4.2 shows the NMSE by model and

forecast horizon, as well as NMSE box plots by model. There is a similar performance be-

tween the RBFNet and GPR for h = 1. For h = 2, ...,30, the RBFNet outperforms GPR,

the random-walk baseline and the remaining competitor models. We cannot put the RBFNet



4.4. Discussion 76

outperformance down to sequential updating alone in the test set; if this were the case, the

EWRLS model would outperform the remaining offline learning models. Instead, EWRLS

performs worse than GPR, RF, GTB and KRR, all offline learning models.

Table 4.3: The models perform multi-step returns forecasting on the Refinitiv cross-asset dataset with
horizons from h = 1, ...,30 days ahead. We show the distribution of the test set normalised
mean squared error (NMSE) for each model across the multiple forecast horizons. The
RBFNet achieves the lowest NMSE.

model EWRLS GPR GTB KRR KNNR MLP RBFNet RF RR SVR

targets 100 100 100 100 100 100 100 100 100 100
count 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000
mean 0.976 0.673 0.781 0.797 1.068 2.709 0.636 0.763 1.221 1.197
std 0.523 0.561 0.894 0.929 0.914 4.188 0.415 0.821 0.843 1.613
min 0.266 0.037 0.041 0.039 0.134 0.081 0.141 0.035 0.476 0.123
25% 0.608 0.315 0.312 0.302 0.423 0.712 0.360 0.322 0.830 0.434
50% 0.855 0.482 0.507 0.547 0.809 1.314 0.514 0.499 1.020 0.682
75% 1.146 0.845 0.900 0.869 1.327 3.064 0.795 0.868 1.359 1.190
max 3.395 3.374 5.703 5.338 5.006 25.7 2.46 5.734 8.332 11.9
se 0.010 0.010 0.016 0.017 0.017 0.076 0.008 0.015 0.015 0.029
t-value -2.49 -31.9 -13.4 -11.9 4.06 22.3 -48.1 -15.8 14.3 6.70
crit-value 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
p-value 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
reject H0 :
µ = 1

1 1 1 1 1 1 1 1 1 1

4.4 Discussion
Our RBFNets apply sequentially adapted feature representation transfer from clustering al-

gorithms to supervised learners. Online transfer learning is a relevant area of research for

nonstationary time series. Although transfer learning is primarily concerned with transfer-

ring knowledge from a source domain to a target domain and may be used offline or online,

an increasing number of papers focus on online transfer learning (Zhao et al., 2014; Salvalaio

and de Oliveira Ramos, 2019; Wang et al., 2020). Our experiment contributes to the research

of continual learning in financial time series by demonstrating that continual learning ben-

efits multi-step forecasting, above and beyond sequential optimisation. If we compare the

local learning of the RBFNet with the global learning technique of the MLP, the latter suffers

from catastrophic forgetting. Kirkpatrick et al. (2017) and Sukhov et al. (2020) look at ways

of improving this issue, specifically at training networks that can maintain expertise on tasks

that they have not experienced for a long time. The RBFNets we formulate are naturally



4.4. Discussion 77

Figure 4.2: The radial basis function network achieves the lowest normalised mean squared error
when predicting daily returns of the Refinitiv cross-asset dataset up to h = 1, ...,30 days
ahead.

(a) NMSE by model and horizon.

(b) NMSE box plots by model.
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designed to measure the similarity between test samples and continuously updated proto-

types that capture the characteristics of the feature space. As such, the models are robust in

mitigating catastrophic forgetting. To demonstrate this, we conduct a small experiment that

measures the cosine similarity

cosine similarity =
a ·b
∥a∥∥b∥

,

between training and test vectors of the financial assets used in the main research experiment.

The range of this function is between -1 (complete dissimilarity) and 1 (total similarity).

Similar to correlation, a value of 0 indicates no similarity. Figure 4.3 and table 4.4 indicate

that the returns have cosine similarity close to zero, whereas the RBFNet hidden unit outputs

show much larger cosine similarity, which erodes less quickly with the passage of time. We

observe regions of high similarity interspersed with periods of low similarity. For example, a

substantial period of low similarity occurred in March 2020, when risky assets such as equi-

ties, crypto and commodities sold off massively on the back of global economic shutdowns

induced by Covid-19. It is perhaps unsurprising that the RBFNet hidden unit outputs retain

greater similarity than the returns. The regime-switching models of Hamilton (1994) rely

on Gaussian mixture models to capture the regime-switching characteristics of economic

time series. K-means can be thought of as a variant of expectation-maximisation (Dempster

et al., 1977), which is used to perform maximum likelihood estimates for Gaussian mixture

models. With the similarity plots of the original feature space on the left of figure 4.3 and

the clustered feature space on the right of figure 4.3, we see the differences between models

such as KRR and the RBFNet. The KRR model will pull the test vectors toward training

prototypes that may say little about forecast capability for hitherto unseen data. In contrast,

the RBFNets measure the similarity of test vectors with hidden units that have learned the

feature space’s intrinsic nature.

Table 4.4: Summary statistics for the cosine similarities visualised in figure 4.3.

mean std

returns 0.00201 0.386
RBFNet hidden unit output 0.347 0.476
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Figure 4.3: We compare the cosine similarities of returns and RBFNet hidden unit outputs; specifi-
cally we compare their train/test split. Returns similarity is low and erodes over time. In
contrast, the RBFNet hidden outputs retain more remarkable similarity.



Chapter 5

Reinforcement learning for systematic

FX trading

We perform feature representation transfer from a radial basis function network to a direct,

recurrent reinforcement learning (DRL) agent. Earlier academic work saw mixed results. We use

better features, second-order optimisation methods and adapt our model parameters sequentially.

As a result, our DRL agents cope better with statistical changes to the data distribution, achieving

higher risk-adjusted returns than a funding and a momentum baseline. We design a bespoke

quadratic utility function for DRL purposes that captures all impacts to PNL, including price

discovery, overnight FX funding and execution cost.

Forecasters of financial time series commonly use supervised learning. For example, Tsay

and Chen (2019) apply parametric approaches such as nonlinear state-space models and non-

parametric methods such as local learning to nonlinear time series forecasting. In contrast,

Bengio (1997) finds that with noisy time series, better results are obtained when the model

is trained directly to maximise the financial criterion of interest, such as gains and losses (in-

cluding those due to transactions) incurred during trading. In this spirit, we extend the earlier

work of Moody and Wu (1997) and Gold (2003), where direct, recurrent reinforcement learn-

ing (DRL) agents are put to work in financial trading strategies. Rather than optimising for

an intermediate performance measure such as maximal forecast accuracy or minimal fore-

cast error, which is still the traditional approach in this domain, we maximise a more direct

performance measure such as quadratic economic utility. An advantage of the method is that

we can use the risk-adjusted returns of the trading strategy, execution cost and funding cost

to influence the learning of the model and update model parameters accordingly.

As discussed in section 2.7.1, the focus of Moody and Wu (1997) is on using the differ-

ential Sharpe ratio as a performance measure. In contrast, we adopt the quadratic utility of
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Sharpe (2007). This utility ameliorates the undesirable property of the Sharpe ratio in that it

penalises a model that produces returns larger than E[r2
t ]

E[rt ]
, that is, the ratio of the expectation

of squared returns to the expectation of returns (Moody et al., 1998). Due to using relatively

weak features and shared backtest hyper-parameters, Gold (2003) obtained mixed results

when experimenting with cash currency pairs. In contrast, our experiment with the major

foreign exchange (FX) pairs sees our DRL trading agent achieve an annualised portfolio in-

formation ratio of 0.52 with a compound return of 9.3%, net of execution and funding cost,

over a seven-year test set. This return is achieved despite forcing the model to trade at the

close of the trading day at 5 pm EST, when trading costs are statistically the most expensive.

Aside from the different utility functions, we attribute these improved experiment re-

sults to several factors. Firstly, we use more powerful feature engineering in the shape of

radial basis function networks (RBFNets). The hidden units of these networks have means,

covariances and structures determined by an unsupervised learning procedure for finite Gaus-

sian mixture models (Figueiredo and Jain, 2002). The approach is a form of continual learn-

ing, explicitly inductive, feature representation transfer learning, where the knowledge of

the mixture model is transferred to upstream models. Secondly, when optimising our utility

function with respect to the DRL agent’s parameters, we do so sequentially online during the

test set, using an extended Kalman filter optimisation procedure (Haykin, 2001). The earlier

work uses less powerful offline batch gradient ascent methods, which cope less well with

non-stationary financial time series.

To demonstrate that the DRL agent is aware of all impacts to PNL, we compare the

realised positions of a USDRUB trader where transaction costs and carry are removed (fig-

ure 5.8a) and included (figure 5.8b). Without cost, the DRL agent realises a long position

broadly (buying USD and selling RUB), as the Ruble depreciates over time. In contrast,

when funding cost is accurately applied, the overnight interest rate differential is roughly

6%, and the DRL agent learns a short position (selling USD and buying RUB), capturing

this positive carry. The positive carry is not enough to offset the rapid depreciation of the

Ruble.
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5.1 Problem formulation
We experiment with the Refinitiv currency pair dataset, section 3.2, specifically taking

overnight risk positions. The overnight FX positions attract a funding profit or loss (PNL),

depending on the interest rate differential between the two currencies that form the trade

pair. There are thus multiple sources of impact on PNL, including directional market moves,

funding and transaction costs. These multiple PNL impact sources make it interesting and

relevant to experiment with our focus model, the direct reinforcement learning (DRL) agent,

that benefits from feature representation transfer via Gaussian mixture models (GMMs). For-

mulation of the DRL agent is discussed in section 5.3.1; for each currency pair, the model

targets a position that maximises expected returns and minimises the variance of returns. The

36 currency pairs that we have available, are all targets for our proprietary trading experi-

ment. Furthermore, these currency pairs are also used as external inputs for our focus model

and a supervised learning, momentum baseline (section 5.3.2). Specifically, we construct

daily returns from closing mid prices for each currency pair and aggregate them into a vector

ut =
[ pt,1

pt−1,1
−1, ...,

pt,36

pt−1,36
−1

]
.

We then fit a GMM to the external inputs ut using a modified expectation-maximisation

(EM) procedure due to Figueiredo and Jain (2002). Denote each mixture component as

φ j(ut) j = 1, ...,m.

Each mixture component has an associated parameterisation

φ j(ut)∼N(µµµ j,ΛΛΛ
−1
j ).

Thus, we have a single-layer RBFNet formed by the GMM

xt = [1,φ1(ut), ...,φm(ut), ft−1]
T ∈ Rm+2,

where

ft−1 = tanh
(
θθθ

T
t−1xt−1

)
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is the previous position of the DRL agent. The xt are made available to the DRL agent and

the momentum trader baseline. The DRL agent’s parameters θθθ t are adjusted such that the

quadratic utility is maximised

max
θθθ

µt−
λ

2
σ

2
t ,

where λ is a risk appetite parameter. The expectation of returns E[rt ] = µt and the variance

of returns Var[rt ] = σ2
t depend on θθθ t through the position function ft(.)

rt = ∆pt ft−1−δt |∆ ft |+κt ft ,

where ∆pt is the mid price difference, δt is the transaction cost and κt is the funding PNL.

These returns attributes are constructed individually for each of the 36 currency pairs. The

RBFNet is optimised sequentially during the test set, as well as the DRL agent’s position

function and the exponentially weighted recursive least squares (EWRLS) component of the

momentum trader. Finally, we consider the risk-adjusted returns for each of the 36 currency

pairs as the primary performance measure. These returns are then aggregated and discussed

in sections 5.5 and 5.6.

5.2 Foreign exchange trading

This section describes the FX market and the mechanics of the FX derivatives, which are

central to the experimentation we conduct in section 5.4. The global FX market sees over

six trillion US dollars traded daily. Figure 5.1 shows this breakdown by instrument type

extracted from the Bank of International Settlements Triennial Central Bank Survey, 2019.

FX transactions implicitly involve two currencies: the base currency is quoted conven-

tionally on the left-hand side and the counter currency on the right-hand side. If FX positions

are held overnight, the trader will earn the interest rate of the currency bought and pay the

interest rate of the currency sold. The interest rates for specific maturities are determined in

the inter-bank currency market and are heavily influenced by the base rates typically set by

central banks. Currency trades usually settle two business days after the trade date. Clients

fund their positions by rolling them forward via tomorrow/next (tomnext) swaps. Tomnext

is a short-term FX transaction where a currency pair is bought and sold over two business
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Figure 5.1: Average daily global FX market turnover in USD millions, source: BIS.

days: tomorrow (in one business day) and the following day (two business days from today).

The tomnext transaction allows traders to maintain their position without being forced to

take physical delivery. To determine this funding cost, one needs to compute the forward

prices. Forwards are agreements between two counterparties to exchange currencies at a

predetermined rate on some future date.

Forward prices are calculated by adding forward points to a spot price. These points

reflect the interest rate differential between the two currencies being traded and the maturity

of the trade. Forward points do not represent an expectation of the direction of a currency

but rather the interest rate differential. Let bidspot
t denote the spot FX price at which price

takers can sell at time t. Similarly, let askspot
t denote the spot FX price at which price takers

can buy at time t. The spot mid-rate is

midspot
t = 0.5× (bidspot

t +askspot
t ). (5.1)

Forward points are computed as follows

mid f pts
t = midspot

t (e2− e1)
T

360ι
,
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where e2 is the counter currency interest rate, e1 is the base currency interest rate, T is the

number of days till maturity, and ι is the tick size of the FX pair. Example forward points

for GBPUSD are shown in figure 5.2. GBP= is the Refinitiv information code (ric) for

cash GBPUSD and GBPTND= is the ric for tomnext GBPUSD forward points. Note that

the forward points are quoted as a bid/ask pair, reflecting the interest differential and the

additional spread quoted by the FX forwards market maker to compensate them for their

quoting risk. The tomnext outrights are computed as

bidtn
t = bidspot

t +ask f pts
t ι

asktn
t = askspot

t +bid f pts
t ι .

When rolling a long GBPUSD position forward, the tomnext swap would involve selling

GBPUSD at bidspot
t and repurchasing it at asktn

t . The cost of this roll is thus notional×

(bidspot
t −asktn

t ), where notional denotes the size of the position taken by the trader. When

rolling a short GBPUSD position forward, a trader would buy askspot
t and sell forward bidtn

t ,

with the funding cost being notional× (bidtn
t − askspot

t ). This funding may be a loss but

also a profit. In addition, traders hold FX positions to capture the favourable interest rate

differential between two currency pairs, known as the carry trade.

5.3 Experiment methods
This section describes how our DRL agent targets a position directly. The DRL agent learns

the desired risk position via the policy gradient paradigm, discussed in section 2.7. Addi-

tionally, we describe the baseline models that are used for returns benchmarking.

5.3.1 Targeting a position with direct recurrent reinforcement

Our DRL agent comprises an unsupervised model and a reinforcement learning component.

Specifically, we construct a RBFNet whose hidden units are determined by a Gaussian mix-

ture model (GMM) procedure due to Figueiredo and Jain (2002) which has an identical

expectation step to Dempster et al. (1977)’s em algorithm, but a modified log-likelihood

function for the maximisation step. The procedure involves the construction of a large mix-

ture and annihilates components from the mixture that are not supported by the data. The

GMM hidden unit output is aggregated into a feature vector which includes an additional
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Figure 5.2: We show Refinitiv GBPUSD forward rates. FX forward rates primarily reflect the interest
rate differential between the base and the counter currencies.

bias term and the DRL agent’s prior position (equation 5.9). A dot product between the

feature vector (equation 5.10) and a weight vector is passed through a nonlinearity, typically

the tanh function, which maps this output to the range −1≤ ft ≤ 1, determining the desired

risk position of the DRL agent. The DRL agent’s weights are determined by an extended

Kalman filter (EKF) algorithm 5.1. Figure 5.3 provides a schematic of the feature represen-

tation transfer from the RBFNet to the DRL agent. The external input to the transfer learner,

represented by the left-most black circles, is a vector of daily returns of the 36 FX pairs used

in the experiment, detailed in section 3.2. The grey circles represent the RBFNet hidden unit

layer. Additionally, the blue circle represents the previously estimated position of the DRL

agent. The DRL output is fed back into the hidden layer recurrently and is represented by

the dotted blue line.

Sharpe (2007) discusses asset allocation as a function of expected utility maximisation,

where the utility function may be more complex than that associated with mean-variance

analysis. Denote the expected utility at time t for a single portfolio constituent as

υt = µt−
λ

2
σ

2
t , (5.2)
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Figure 5.3: Feature representation transfer from a radial basis function network to a direct, recurrent
reinforcement learning agent.

where the expected return µt = E[rt ] and variance of returns σt = E[r2
t ]−E[rt ]

2 may be

estimated in an online fashion with exponential decay

µt = τµt−1 +(1− τ)rt , (5.3)

σ
2
t = τσ

2
t−1 +(1− τ)(rt−µt)

2. (5.4)

The risk appetite constant λ > 0 can be set as a function of an investor’s desired risk-adjusted

return, as demonstrated by Grinold and Kahn (2019). The information ratio is a risk-adjusted

differential reward measure, where the difference is taken between the strategy being evalu-

ated and a baseline strategy with expected returns bt = E
[
rb,t

]
:

irt = 2520.5× µt−bt

σt
. (5.5)

The similarity of the information ratio to the Sharpe ratio is apparent. Setting bt = 0, substi-

tuting the non-annualised information ratio into equation 5.2 and differentiating with respect
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to the risk, we obtain a suitable value for the risk appetite parameter:

irt =
µt

σt

υt = irt×σt−
λ

2
σ

2
t

dυt

dσt
= irt−λσt = 0

λ =
irt

σt
.

(5.6)

The net returns whose expectation and variance we seek to learn are decomposed as

rt = ∆pt ft−1−δt |∆ ft |+κt ft , (5.7)

where ∆pt is the change in reference price, typically a mid-price

∆pt = 0.5× (bidt +askt−bidt−1−askt−1),

δt represents the execution cost for a price taker

δt = max[0.5× (askt−bidt),0], (5.8)

κt is the profit or loss of rolling the overnight FX position, the so-called carry and ft is the

desired position learnt by the DRL agent

ft = tanh
(
θθθ

T
t xt

)
. (5.9)

The model is maximally short when ft =−1 and maximally long when ft = 1. The recurrent

nature of the model occurs in the input feature space where the previous position is fed to

the model input

xt = [1,φ1(ut), ...,φm(ut), ft−1]
T ∈ Rm+2, (5.10)

and φ j(.) denotes an radial basis function hidden unit, in a network of m such units, which

takes as input a feature vector ut , see section 2.3. The goal of our DRL agent is to maximise

the utility in equation 5.2 by targeting a position in equation 5.9. To do this, one may apply
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an online stochastic gradient ascent update

θθθ t = θθθ t−1 +η∇υt ≡ ∆θθθ t +η
dυt

dθθθ t
.

Instead of a fixed learning rate η , one may consider the Adam optimiser (Kingma and Ba,

2017), where an adaptive learning rate is applied. This adaptive learning rate is a function of

the gradient expectation and variance. In practice, we find that Adam takes many iterations of

model fitting to get the weights to be large enough to take a meaningful position via function

5.9; this is not necessarily an Adam problem but a result of the tanh position function taking

a while to saturate. If the weights are too small, then the average position taken by the DRL

agent will also be small. Therefore, we perform a gradient-based weight update using an

extended Kalman filter (EKF) (Williams, 1992a; Haykin, 2001), modified for reinforcement

learning in this context.

Algorithm 5.1 The extended Kalman filter.
Require: α // a ridge penalty

1 , τ // 0≪ τ ≤ 1 is an exponential decay factor.

Initialise: θθθ = 0d , P = Id/α

Input: ∇υt
Output: θθθ t

2 z = 1+∇υT
t Pt−1∇υt/τ

3 k = Pt−1∇υt/(zτ)
4 θθθ t = θθθ t−1 +k
5 Pt = Pt−1/τ−kkT z

In algorithm 5.1, Pt is an approximation to [∇2υt ]
−1, the inverse Hessian of the utility

function υt with respect to the model weights θθθ t . We decompose ∇υt =
dυt
dθθθ t

as follows:

∇υt =
dυt

drt

{
drt

d ft

d ft
dθθθ t

+
drt

d ft−1

d ft−1

dθθθ t−1

}
=

dυt

drt

{
drt

d ft

(
∂ ft
∂θθθ t

+
∂ ft

∂ ft−1

∂ ft−1

∂θθθ t−1

)

+
drt

d ft−1

(
∂ ft−1

∂θθθ t−1
+

∂ ft−1

∂ ft−2

∂ ft−2

∂θθθ t−2

)}
.

(5.11)
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The constituent derivatives for the left half of equation 5.11 are:

dυt

drt
= (1−η)[1−λ (rt−µt)]

drt

d ft
=−δt× sign(∆ ft)+κt× sign( ft)

d ft
dθθθ t

= xt
[
1− tanh2 (θθθ T

t xt)
]

+θθθ t,m+2
[
1− tanh2 (θθθ T

t xt)
]

×xt−1
[
1− tanh2 (θθθ T

t−1xt−1)
]
.

An alternative procedure to consider, if one still has a strong preference for gradient-

only methods, is Lecun (1989)’s modified tanh function

f (x) = 1.7159× tanh
(2

3
× x

)
,

that allows the target values of ±1 to be more easily attained, although is bounded on

±1.7159 and is thus less suitable for our position function, as ±1 indicates the largest posi-

tion we take and no leverage is used. A further option is to sequentially compute the volatil-

ity of the position function, Var[tanh(θθθ T
t xt)], and scale the positions taken by this measure.

Volatility scaling of risk in equity portfolios has been shown to generate higher risk-adjusted

returns than constant notional portfolios (Harvey et al., 2018).

5.3.2 Baseline models

To assess the comparative strength of the model of section 5.3.1, we employ two baseline

models. The first model is a momentum trader, which uses the sign of the next step ahead

return forecast as a target position. This model is also a RBFNet, except here, the feature

representation transfer of the GMM cluster is to an exponentially weighted recursive least

squares (EWRLS) supervised learner. A visual representation of the model is shown in figure

2.2. Our second baseline is the carry trader, which hopes to earn a positive overnight funding

rate. Denote the long/short carry as

κ
long
t = bidspot

t −asktn
t

κ
short
t = bidtn

t −askspot
t ,
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the position of the carry trader is

f carry
t = sign

(
κ

long
t −κ

short
t

)
.

The carry trader goes long (short) the base currency if the base currency has an overnight

interest rate higher (lower) than the counter currency. The observed carry may be less than

the execution cost; therefore, we allow the carry trader to abstain from trading in such cir-

cumstances.

5.4 Experiment design
In this section, we establish the design of the experiment, describing the data we use and

the experiment’s performance evaluation criteria. Section 3.2 describes the dataset. We have

over 11 years of daily data to use in our experiment. From these data, we construct daily

returns for each of the 36 currency pairs, reserving the first third as a training set and the final

two-thirds as a test set. The returns are inputs to the DRL agent and EWRLS momentum

trader. More concretely, we use linear returns of the form

retk,t =
midk,t

midk,t−1
−1, k = 1, ...,36.

The training set returns are used as an external input to a RBFNet whose structure, hidden

unit means and covariances are determined by Figueiredo and Jain (2002)’s GMM algorithm.

The DRL agent is also fitted in the training set to each currency pair, explicitly learning the

weights in position function 5.9 using the EKF algorithm 5.1. Additionally, the momentum

trader of section 5.3.2 is fitted in the training set to each currency pair using EWRLS algo-

rithm 2.1. Both models continue to learn online during the test set. The carry trader baseline

does not require any model fitting.

5.4.1 Performance evaluation methods

We force the models to trade as price takers, incurring an immediate execution cost equal

to half the bid/ask spread. These data are sampled at the end of the trading day, 10 PM

GMT, impacting the risk-adjusted returns performance. At this time, the bid/ask spreads

are statistically at their widest, which impacts execution and funding costs. Preferably, we
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would extract intraday data; however, Refinitiv restricts us to under 30 business days for

these sampled data. Figure 5.4 illustrates the challenge succinctly. It shows relative intraday

bid/ask spreads

spreadspot
t =

askspot
t −bidspot

t

midspot
t

,

for the 36 currency pairs used in our experiment. The data are sampled minutely over 28

business days ending mid-October 2021. The global maximum bid/ask spread occurs pre-

cisely when Refinitiv samples the daily data, namely 10 PM GMT.

Figure 5.4: We plot relative intra-day bid/ask spreads for our experiment’s 36 Refinitiv currency
pairs. Execution cost is highest when the trade date rolls onto the next date; this occurs
at around 10 PM GMT, precisely when Refinitiv samples their historical daily FX data.

The test set evaluates performance for each currency pair using the net PNL equation

5.7. This reward, net of transaction and funding cost, is in price difference space. We convert

to returns space by dividing by the mid-price computed using equation 5.1. These returns are

accumulated to produce the results shown in figure 5.6 and the middle sub-plots of figures

5.8a and 5.8b. In addition, the daily returns are described statistically in tables 5.1 and 5.2.

In table 5.1, the information ratio (ir) is computed using equation 5.5. We set the baseline
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return bt = 0. In summary, we evaluate performance by considering the risk-adjusted daily

returns generated by each model, net of transaction and funding costs.

5.4.2 Hyperparameters

The following hyperparameters are set in the experiment:

• τ = 0.99, the exponential decay constant of moving moment equations 5.3, 5.4, 5.7,

EKF weight algorithm 5.1 and EWRLS algorithm 2.1.

• α = 1, the ridge penalty of EKF weight algorithm 5.1 and an EWRLS algorithm 2.1.

• λ , the risk appetite parameter of equation 5.2, is estimated using equation 5.6.

The hyperparameters are set to reasonable values, rather than optimised, as we wish to pre-

serve as much data for the test set. With larger datasets, we would consider cross-validation

of the hyperparameters.

5.5 Results
Figure 5.6 shows the accumulated returns for each strategy. The DRL agent is denoted as

DRL, the momentum trader is shown as momentum and the carry trader is indicated as carry.

The carry baseline performs poorly, reflecting the low-interest rate differential environment

since the 2008 financial crisis. The available funding that can be earnt relative to execution

cost is small. Figure 5.5 shows the direction of travel in central bank interest rates over the

past 20 years. Central bank rates halved on average during the 2008 global financial crisis

and have declined further since. In contrast, the momentum trader achieves the highest return

with an annual compound net return of 11.7% and an information ratio of 0.4. Additionally,

the DRL agent achieves an annual compound net return of 9.3%, with an information ratio of

0.52. Its information ratio is higher because its daily portfolio returns standard deviation is

two-thirds of the momentum trader’s. Table 5.1 summarises net PNL (PNL) returns statistics

by strategy, with a figure of the distribution of the daily returns in figure 5.7.

Table 5.2 shows the funding or carry in returns space for each strategy. We see that

the carry baseline does indeed capture positive carry. However, this return is not enough to

offset the execution cost and the PNL associated with holding risk, which moves in a trend-

following way, mainly as opposed to the funding PNL. How funding moves opposite to price
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trends is expected. Central banks invariably increase overnight rates when currencies depre-

ciate considerably to make their currency more attractive and stem the tide of depreciation.

The Turkish Lira and Russian Ruble are two cases in point. We see evidence in table 5.2 that

the DRL agent captures more carry relative to the momentum trader. This funding capture is

also expected, as the funding PNL makes its way into equation 5.7 and is propagated through

to the derivative of the utility function with respect to the model weights, using equation 5.11.

Figure 5.5: Stacked central bank interest rates in percentage points, source: BIS. There has been a
downward trajectory in global rates during the period shown, with a sharp contraction in
rates shortly after the 2008 financial crisis.

5.6 Discussion
Both baselines make decisions using incomplete information. The momentum trader focuses

on learning the FX trends but ignores costs, whilst the carry trader tries to earn funding but

ignores price trends. In contrast, the DRL agent optimises the desired position as a function

of market moves and funding whilst minimising execution cost. To demonstrate that the

DRL agent is indeed learning from these reward inputs, we compare the realised positions of
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Table 5.1: Portfolio net PNL returns by strategy. The DRL agent achieves the highest risk-adjusted
returns.

DRL momentum carry

count 1888 1888 1888
mean 0.00104 0.00121 -0.002
std 0.032 0.048 0.052
min -0.141 -0.202 -0.344
25% -0.019 -0.028 -0.028
50% -0.000 -0.002 0.000
75% 0.019 0.028 0.026
max 0.245 0.423 0.200
sum 1.953 2.296 -4.328
ir 0.518 0.403 -0.701

Table 5.2: PNL returns by strategy. The carry baseline naturally achieves the highest funding PNL.
However, as table 5.1 shows, this funding PNL cannot offset what is clearly a momentum-
driven environment with low-interest rates (see figure 5.5). The DRL agent captures a
greater funding profit than the momentum trader. The momentum trader is a supervised
learner which forecasts daily returns and cannot adjust its positions based on funding PNL.
Funding PNL tends to be negatively correlated with momentum PNL.

DRL momentum carry

count 1888 1888 1888
mean -0.00030 -0.00050 0.00048
std 0.00019 0.00031 0.00036
min -0.00395 -0.00576 0.00007
25% -0.00035 -0.00059 0.00029
50% -0.00024 -0.00040 0.00035
75% -0.00019 -0.00032 0.00051
max 0.00153 0.00072 0.00518
sum -0.56226 -0.94769 0.90655
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Figure 5.6: Cumulative daily returns across all currency pairs by strategy: drl is the DRL agent,
mom is the supervised-learning momentum trader and carry, the carry/funding trader.

a USDRUB trader where transaction costs and carry are removed (figure 5.8a) and included

(figure 5.8b). Without cost, the DRL agent realises a long position broadly (buying USD

and selling RUB), as the Ruble depreciates over time. In contrast, when funding cost is

accurately applied, the overnight interest rate differential is roughly 6%, and the DRL agent

learns a short position (selling USD and buying RUB), capturing this positive carry. The

positive carry is not enough to offset the rapid depreciation of the Ruble.

How significant are these results? Grinold and Kahn (2019) show table 5.3 of empirical

information ratios for US fund managers over the five years from January 2003 through

December 2007. Although dated, the results indicate that our DRL agent, which trades

statistically at the worst time of day in the FX market, achieves an information ratio at the

75′th percentile of information ratios achieved empirically by various fund managers within

fixed income and equities. The information ratio measures the probability that a strategy will

achieve positive residual returns in every period; it is a measure of consistency. Equation 5.5

shows that the information ratio is the ratio of residual return to residual risk. Denote this
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Figure 5.7: The distribution of daily returns by strategy: drl is the DRL agent, mom is the
supervised-learning momentum trader and carry, the carry/funding trader.

residual return as the strategy’s alpha, αt = µt − bt . The probability of realising a positive

residual return is

Pr(αt > 0) = Φ(irt),

where Φ(.) denotes the cumulative normal distribution function. We find that the DRL agent

has a probability of a positive residual return of 70%, and the momentum baseline has a

probability of a positive residual return of 66%.

Table 5.3: Empirical information ratios, source: Blackrock.

asset class equities equities equities fixed income both

percentile mutual funds long long/short institutional average
90 1.04 0.77 1.17 0.96 0.99
75 0.64 0.42 0.57 0.50 0.53
50 0.20 0.02 0.25 0.01 0.12
25 –0.21 –0.38 –0.22 –0.45 –0.32
10 –0.62 –0.77 –0.58 –0.90 –0.72
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(a) We show a USDRUB DRL agent trading without execution or funding cost. Without funding,
this transfer learning, direct, recurrent reinforcement learning agent behaves like the supervised
learner, the momentum trader.

(b) We show a USDRUB DRL agent trading with execution and funding cost. When funding is
included, the DRL agent tries to capture a funding profit, going short USD and long RUB.

Figure 5.8: A sensitivity analysis of funding versus position for a USDRUB DRL agent.



Chapter 6

The recurrent reinforcement learning

crypto agent

We construct a digital assets trading agent that performs feature space representation transfer

from an echo state network to a DRL agent. The agent learns to trade the XBTUSD perpetual

swap contract on BitMEX. Our meta-model can process data as a stream and learn sequentially;

this helps it cope with the nonstationary environment. We design a bespoke quadratic utility

function for DRL purposes that captures all impacts to PNL, including price discovery, intraday

funding and execution cost.

In this chapter, we extend our earlier work in chapter 5, where we combine sequential op-

timisation with feature representation transfer and direct, recurrent reinforcement learning

(DRL). We novelly transfer the learning of an echo state network (ESN) to a DRL agent who

must learn to trade digital asset futures, specifically the XBTUSD (Bitcoin versus US Dol-

lar) perpetual swap on the BitMEX exchange. Our transfer learner benefits from an ample,

dynamic reservoir feature space and can learn from the different impact sources on profit

and loss (pnl), including execution costs, exchange fees, funding costs and price moves in

the market.

Perhaps the main benefit of this chapter will be for financial industry practitioners. Our

meta-model can process data as a stream and learn sequentially; this helps it cope with the

nonstationarity of the high-frequency order book and trading data. Furthermore, by using

the vast high-frequency data, our model, which has a high learning capacity, avoids the

kind of overfitting on a lack of data points that occurs with down-sampled data. We escape

the problem of over-trading typically seen with supervised learning models by learning the

sensitivity of the change in risk-adjusted returns to the model’s parameterisation. Stated

another way, our model learns from the multiple impact sources on profit and loss (PNL)
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and targets the appropriate risk position. Finally, the scientific experiment that we conduct

is representative of actual trading conditions; thus, we are confident of the efficacy of the

results for industry use.

6.1 Problem formulation
We consider the goal of proprietary risk taking in the BitMEX XBTUSD perpetual swap,

specifically using five-minutely sampled data, as discussed in section 3.3. This crypto deriva-

tives contract attracts a funding PNL every eight hours. The funding mechanism ensures that

the contract does not trade too far away from the cash index it tracks. Participants can spec-

ulate more easily in the perpetual swap than the underlying cash cryptocurrency pair, as

the latter requires ownership or borrowing. In addition, leverage may also be used in these

derivatives contracts. As there are multiple PNL impact sources, including directional mar-

ket moves, execution costs and funding PNL, proprietary risk taking in perpetual swaps is

suitably tackled with DRL. Complete specification of the DRL agent, including the use of

feature representation transfer from ESNs, is discussed in section 6.3.1. We measure success

of the experiment by considering the risk-adjusted returns that the model generates, including

the contribution of funding PNL to total PNL. These results are discussed in section 6.3.3.

Finally, sensitivity of risk-adjusted returns to ESN initialisation, is examined in section 6.4.

6.2 The BitMEX XBTUSD perpetual swap
The data that we experiment with is from the BitMEX cryptocurrency derivatives exchange.

In 2016 they launched the XBTUSD perpetual swap, where clients trade Bitcoin against

the US Dollar. The perpetual swap is similar to a traditional futures contract, except for no

expiry or settlement. It mimics a margin-based spot market and trades close to the underlying

reference index price. A funding mechanism tethers the contract to its underlying spot price.

In contrast, a futures contract may trade at a significantly different price due to the basis

basist = f uturest− indext .

The basis means different things in different markets. For example, in the oil market, the

demand for spot oil can outpace the demand for futures oil, leading to a higher spot price.
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Crypto futures basis typically increases (decreases) with the time till expiry in a bull (bear)

market. Similar effects happen in the equity markets. In both asset classes, participants can

take risks in the futures market more easily. The spot markets typically do not offer leverage,

and the trader must have inventory in the exchange to trade. In contrast, the futures markets

allow traders to use margin-based trading and to go short without borrowing the underlying

asset, requiring just a margin (deposit) to fund the position. Figure 6.1 shows the basis in

relative terms for the XBTUSD perpetual swap during the bear market of 2018. The mid-

price of the perpetual swap is compared against the underlying index it tracks, .BXBT. The

relative basis is computed as

rbasist =
f uturest− indext

indext
. (6.1)

Before this bear market, Bitcoin hit a then all-time high of $20,000, and the 100-day expo-

nentially weighted moving average of relative basis was very positive in late 2017. For most

of 2018 and 2019, the basis was largely negative, reflecting the cash market sell-off from

all-time highs to roughly USD 3,000.

6.2.0.1 Funding

The funding rate for the perpetual swap comprises two parts: an interest rate differential

component and the premium or discount of the basis. Denote this funding rate as κt . The

interest rate differential reflects the borrowing cost of each currency involved in the pair

et =
equote

t − ebase
t

T
.

For XBTUSD, equote
t denotes the US Dollar borrowing rate and ebase

t denotes the Bitcoin bor-

rowing rate. As funding occurs every 8 hours, T = 8. The basis premium/discount compo-

nent is computed similarly to equation 6.1, with some subtleties applied to minimise market

manipulation, such as using time and volume weighted average prices. The funding rate is

κt = bt +max(min[ζ et−bt ],−ζ ), (6.2)
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Figure 6.1: We show XBTUSD basis during the bear market of 2019. The basis is negative when
the perpetual swap trades below the cash index it tracks. A negative basis in crypto is a
reflection of participants reducing risk and is exacerbated by forced liquidations.

where ζ is a basis cap, typically five basis points (0.05%). When the basis is positive, traders

with long positions (buy XBT, sell USD) will pay those with short positions (sell XBT, buy

USD). Reciprocally, shorts pay longs when the basis is negative.

6.3 The research experiment

In our experiment, we perform feature representation transfer from an ESN to a DRL agent.

This meta-model aims to learn to trade digital asset futures on the BitMEX crypto exchange,

specifically perpetual contracts. The dynamical reservoir of the ESN acts as a powerful

nonlinear feature space; this is fed into the upstream DRL agent, which is aware of the

various sources of impact on PNL and learns to target the desired position.



6.3. The research experiment 103

6.3.1 The recurrent reinforcement learning crypto agent

We begin by describing the ESN’s dynamic reservoir feature space, the resultant learning of

which is transferred to the DRL agent, which targets the desired risk position. Figure 6.2

shows a schematic of the ESN that we combine with a DRL agent. The ESN part is inspired

by the schematic of Lukoševičius (2012), and the DRL part is inspired by the McCulloch-

Pitts schematic of Bishop (1994). The schematic demonstrates visually that the target labels,

the so-called teacher signal, can be fed back into the dynamic reservoir. Equally, one could

apply a regression layer to the ESN and loop the resulting forecasts into the ESN reservoir.

Both approaches lead to a recurrent ESN. Rather than treating this exercise as a value func-

tion estimation task as with Szita et al. (2006), we feed the augmented, dynamic reservoir

features of the ESN to a DRL agent. By differentiating a quadratic utility function with

respect to the DRL agent’s parameters, with feedback connections from the agent’s past po-

sitions fed back into the ESN dynamic reservoir, the agent learns from the various sources of

impact on PNL and targets the appropriate position that maximises the risk-adjusted reward.

Figure 6.2: We plot a schematic of feature representation transfer from an echo state network to a
direct, recurrent reinforcement learning agent.
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6.3.1.1 The dynamic reservoir feature space

Denote as ut , a vector of external inputs to the system, which is observed at time t. In the

context of this experiment, such external input would include order book, transaction and

funding information. These features may come from the instrument being traded, exoge-

nous instruments, or both. Initialise the external input weight matrix Winput ∈ Rnhidden×ninput ,

where the weights are drawn at random; a draw from a standard normal would suffice. Here,

nhidden denotes the number of hidden units in the internal dynamical reservoir and ninput is

the number of external inputs, including a bias term. Next, initialise the hidden units weight

matrix Whidden ∈ Rnhidden×nhidden . The procedure detailed by Yildiz et al. (2012) is

• Initialise a random matrix Whidden, all with non-negative entries.

• Scale Whidden such that its spectral radius ρ(Whidden)< 1.

• Change the signs of the desired number of entries of Whidden to get negative connection

weights.

• Sparsify Whidden with probability P(β ), where 0≪ β < 1, setting those elements to

zero.

This procedure is guaranteed to ensure the echo state property for any input. Intuitively,

a recurrent neural network (rnn) has the echo state property concerning an input signal ut ,

if any initial network state is forgotten or washed out when the network is driven by ut

for long enough (Jaeger, 2017). The model supports recurrent connections from either a

teacher signal yt ∈ Rnback or model output ŷt ∈ Rnback . These are connected to the model

via the weight matrix Wback ∈ Rnhidden×nback , whose weights are initialised at random from a

standard normal. Note that Winput , Whidden and Wback, have weights that remain fixed.

Finally, initialise the output weight vector wout
0 ∈ Rninput+nhidden+nback . At this point, our

procedure differs from the original ESN formulation shown by Jaeger (2001). There, wout is

a matrix Wout ∈ Rnback×(ninput+nhidden+nback) and the performance measure of the model is the

quadratic loss

min
Wout

1
2T

T

∑
t=1

(yt−Woutzt)
2.
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The reasons will soon appear when we detail the model’s DRL part. But first, we describe

how we create the augmented system state, zt ∈ Rninput+nhidden+nback . Firstly, initialise a zero-

valued internal state vector x0 ∈ Rnhidden . At time t, compute the recurrent internal state

xt = fhidden(Winputut +Whiddenxt−1 +Wback
t ŷt),

where fhidden(.) is typically a squashing function such as tanh. The augmented, recurrent

system state is then

zt = [ut ,xt , ŷt ]. (6.3)

Equation 6.5 defines ŷt as the past desired positions of the DRL agent.

6.3.1.2 Direct recurrent reinforcement learning

The augmented, internal feature state, zt , is now fed into the upstream model, a DRL agent,

whose performance measure is a quadratic utility function of reward and risk. The DRL

agent learns the desired risk position identically to the procedure detailed in section 5.3.1.

The net returns whose expectation and variance we seek to learn are decomposed similarly

rt = ∆pt ft−1−δt |∆ ft |−κt ft , (6.4)

except that κt is the funding cost of section 6.2. The model is maximally short when ft =−1

and maximally long when ft = 1. The past positions of the model are used as the feedback

connections for equation 6.3

ŷt = [ ft−nback , ..., ft−1]. (6.5)

The goal of our DRL agent is to maximise the utility in equation 5.2, by targeting a position

in equation 5.9. To do this, we apply an online optimisation update of the form

wout
t = wout

t−1 +∇υt ≡ ∆wout
t +

dυt

dwout
t

,

where, the weight update procedure is an extended Kalman filter (EKF) update, shown in

algorithm 5.1.
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6.3.2 Experiment design

We put a DRL crypto agent to work by trading the XBTUSD perpetual swap on BitMEX.

We transfer the output of the source model, the dynamic reservoir feature space of section

6.3.1.1, to the target model, the direct DRL agent of section 6.3.1.2, who learns to target a

risk position directly. Finally, we use five minutely sampled intraday data. The choice of this

sampling rate is driven by the throttle imposed by the vendor on retrieving historical data;

if we could obtain the raw, asynchronously delivered tick data promptly, we would do so.

Nevertheless, we are still using 365×5×1440/5 = 525600 observations in our experiment.

Our performance evaluation procedure involves the following:

• Construct input features from the order book and trade information made available by

BitMEX for XBTUSD.

• Feed these input features into an ESN, with nhidden = 100, nback = 10 and the percent-

age of reservoir units Whidden that are sparsified, set to β = 0.75.

• Feed the output of the ESN (equation 6.3) into a DRL agent (section 6.3.1.2).

• Set the risk appetite constant λ = 0.00001 for quadratic utility equation 5.2.

• Set the ridge penalty α = 1 and the exponential decay factor τ = 0.999 for the EKF of

algorithm 5.1.

• Backtest the entire history as a test set, learning online to target the desired position.

• Force the agent to trade as a price taker, who incurs an execution cost equal to equation

5.8 plus exchange fees, which are set to 5 basis points (0.05%).

• For non-zero risk positions, apply the appropriate funding PNL as per equation 6.2.

• Monitor equation 5.3, the expected net reward of the strategy. The agent may trade

freely if µt ≥ 0; otherwise, it must sit out of the market.

6.3.3 Results

Table 6.1 and figure 6.3 show the results of the experiment. The crypto agent achieves a total

return of around 350% over a test set that is less than five years. The associated annualised
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information ratio (IR) is 1.46. We see that the agent averages a position of E[ ft ] = 0.41.

Thus there is a bias toward the agent maintaining a long position, which is desirable, as

Bitcoin has appreciated against the US Dollar over this period. We see visual evidence in

figure 6.3 that on occasion, the crypto agent abstains from trading, or rather is forced to take

no position; this will happen during periods when the predictive performance of the agent

decreases relative to execution and funding costs. Our crypto agent also captures a 71%

cumulative return due to earning funding, which is expected as the agent learns to target the

appropriate position that maximises its quadratic utility. Funding is one of the drivers of this

utility. The total execution cost and exchange fees the agent pays out is -54%.

Figure 6.3: We plot cumulative returns for our XBTUSD crypto agent. Although the model averages
a mostly long position, it goes short where necessary. Also, it resorts to staying out of
the market if it does not have a solid signal indicating to get back in.
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Table 6.1: We display daily profit and loss (PNL) statistics for our transfer learning, DRL XBTUSD
crypto agent. Our agent averages mostly a long position, which is natural as Bitcoin
has appreciated relative to the US Dollar during the test period. We find evidence that
our crypto agent can successfully target a positive funding PNL and capture the PNL
associated with price trends.

position execution carry PNL

count 1684 1684 1684 1684
mean 0.405 -0.000 0.000 0.002
std 0.579 0.001 0.005 0.027
sum -0.542 0.713 3.498
IR 1.46

6.4 Discussion
The ESN provides a robust and scalable feature space representation. We transfer this learn-

ing representation to a DRL agent that learns to target a position directly. It is possible to use

the ESN as a reinforcement learning agent directly, as shown by Szita et al. (2006). However,

the approach may lead to undesired behaviour in a trading context. Specifically, they use an

ESN to estimate the state-action value function of a temporal difference learning sarsa model

(Sutton, 1988; Sutton and Barto, 2018). This value function takes the form

qπ(s,a) = Eπ{rt |st ,at},

where the expected return rt depends on the transition to state st having taken action at under

policy π . Sarsa estimates this value function sequentially as

q(st ,at) = (1−η)q(st ,at)+η [rt+1 + γq(st+1,at+1)], (6.6)

where 0 < γ ≤ 1 is a discount factor for multi-step rewards, and η > 0 is a learning rate.

Equation 6.6 shows that the state transition reward is passed back to the starting state, which

is perfectly desirable in activities such as maze traversal or board games. However, in the

context of trading, where the value function q(st ,at) represents the value of a position st ,

with the possibility of switching or remaining in the same position denoted by action at , we

will on occasion find that a larger utility is assigned to the wrong state. For example, imagine

the current state is st = 0; the model has no position. Now we observe a large positive price
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jump leading to reward rt+1 ≫ 0. Equation 6.6 passes the state transition reward rt+1 to

the initial state q(st = 0,at = 0). At the next iteration, with probability Pr(1− ε), st+1 = 0

as q(st+1 = 0,at+1 = 0) is the highest value function. However, if the position is zero, the

model cannot hope to earn a profit. Even if one excludes the zero state, there is still the

possibility of observing this problem for a reversal strategy with possible states s = {−1,1}.

Our DRL agent does not suffer from these problems.

In assessing the DRL agent’s limitations, figure 6.4 and table 6.2 measure the impact of

ESN initialisation on test set performance. We run a Monte Carlo simulation of 250 trials,

with the network parameterisation fixed as before. There is evidence of the variability of

total and risk-adjusted returns, however the distribution of returns is skewed to the right.

Figure 6.4: A scatter plot of IR versus total return. Each circle represents an outcome from a Monte
Carlo simulation of 250 trials which assesses the impact of ESN initialisation on our
DRL crypto agent.

Table 6.2: Summary statistics relating to the figure 6.4.

IR total return

mean 1.160 2.977
std 0.299 0.740
25% 1.023 2.572
50% 1.199 3.076
75% 1.355 3.352



Chapter 7

Sequential asset ranking in nonstationary

time series

We create an online learning long/short portfolio selection algorithm that can detect the best

and worst performing portfolio constituents that change over time; in particular, we successfully

handle the higher transaction costs associated with using daily-sampled data, and achieve higher

total and risk-adjusted returns than the long-only holding of the S&P 500 index with hindsight.

Our particular modelling interest is in financial time series, which are typically nonstation-

ary. Nonstationarity implies statistical distributions that adapt over time and violates the

independent and identically distributed (iid) random variables assumption of most regres-

sion and classification models. We require approaches that adopt sequential optimisation

methods, preferably methods that make little or no assumptions about the data-generating

process. The prediction with expert advice framework (Cesa-Bianchi and Lugosi, 2006) is a

multidisciplinary area of research suited to predicting sequences sequentially, where statisti-

cal distribution assumptions are not made. This framework minimises the regret concerning

the best available expert with hindsight and is well-suited to portfolio selection problems.

The main result of this chapter is our novel ranking algorithm, the naive Bayes asset

ranker, which we use to select subsets of assets to trade from the S&P 500 index in either a

long-only or a long/short (cross-sectional momentum) capacity. Our ranking algorithm fore-

casts the one-step-ahead sequential posterior probability that individual assets will be ranked

higher than other constituents in the portfolio. Earlier algorithms, such as the weighted ma-

jority algorithm (Littlestone and Warmuth, 1994), deal with nonstationarity by ensuring the

weights assigned to each expert never dip below a minimum threshold without ever increas-

ing weights again. In contrast, our ranking algorithm allows experts who performed poorly
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previously to have increased weight when they start performing well. Finally, our algorithm

computes the posterior ranking probabilities with exponential decay and is better suited to

learning in nonstationary environments.

We achieve higher risk-adjusted and total returns than a strategy that would hold the

long-only S&P 500 index with hindsight, despite the index appreciating by 205% during the

test period. We also outperform a regress-then-rank baseline, a sequentially fitted curds and

whey multivariate regression model.

7.1 Problem formulation
We consider the problem of selecting so-called cross-sectional momentum portfolios using

constituents of the S&P 500 index. Cross-sectional momentum portfolios are effectively

long/short portfolios, comprising of a subset of assets that are expected to increase in value,

and a subset of assets that are expected to decrease in value. The long/short portfolios fa-

cilitate trading during bull (increasing asset prices) and bear (decreasing asset prices) mar-

kets, and more generally, ameliorate the sensitivity to overall market moves. We select the

long/short portfolios using our focus model, the naive Bayes asset ranker (NBAR), discussed

in section 7.2. As section 7.3 and schematic 7.1 shows, there are in fact three parts to our fo-

cus model setup. We use the daily returns of the S&P 500 constituents as both external input

features, denoted xt ∈ Rd , and supervised learning targets, denoted yt+1 ∈ Rd . These daily

returns are provided as external inputs to a solitary, single-layer radial basis function network

(RBFNet) comprised of five hundred hidden units. Each hidden unit is parameterised as a

multivariate normal

φk(xt) = exp
(
−1

2
[xt−µµµk,t ]

T
ΛΛΛk,t [xt−µµµk,t ]

)
, ∀k = 1, ...,K

φφφ t = [1,φ1(xt), ...,φK(xt)]
T ,

via k-means, where φφφ t denotes the hidden units of the single-layer RBFNet. Each φk(xt) is

parameterised as a k-means cluster conditional multivariate normal N(µµµk,ΛΛΛ
−1
k ). The one-

step-ahead target returns are estimated as

yt+1 ≈ ŷt = f (φφφ t ;ΘΘΘt)+Et ,
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where ΘΘΘt denotes the curds and whey (CAW) multivariate regression parameters and Et

denotes a covariance error matrix. The CAW model is discussed in section 2.5. Finally,

the CAW output ŷt is ranked via the NBAR; a complete specification is shown in algorithm

7.1. We consider risk-adjusted returns as the most important measure, and compare these

risk-adjusted returns to a passive, long-only baseline which purchases the index constituents

with equal weighting.

7.2 The naive Bayes asset ranker
Our ranking algorithm is the NBAR, which is succinctly displayed in algorithm 7.1. The

algorithm sequentially ranks a set of experts; it does so by forecasting the one-step-ahead

posterior probability that individual experts will be ranked higher than the set of available

experts at its disposal. In the context of the experiment described in section 7.3, each expert

is a forecasted return for an individual portfolio constituent of the S&P 500. The fore-

casted returns come from the CAW multivariate regression model (algorithm 2.2), which

utilises feature representation transfer from the constituent S&P 500 returns to RBFNets

whose k-means++ (Arthur and Vassilvitskii, 2007) clusters form hidden units. Assume that

the algorithm is presented with a set of q forecasts. The goal is to select a subset of experts

1≤ k ≤ q such that the reward of the k experts is expected to be the highest; this is achieved

by estimating the sequential posterior probability that expert j ∈ 1, ...,q is ranked higher than

each of the remaining q−1 experts. This posterior probability is computed with exponential

decay, allowing experts who performed poorly and now perform well to be selected with

greater weight than previously. The inputs to the algorithm are β = k/q, with k ≤ q, the

β -percentile subset of assets to trade, and τ , an exponential half-life. Denote as

p(r j,t ≥ rt) = p(at) =
q

∏
i=1

p(r j,t ≥ ri,t),

the probability that the forecasted returns of asset j will be ranked higher than the q assets

considered, where rt ∈Rq is the vector of forecasts at time t. Furthermore, denote as p(r j,t >

0) = p(bt), the probability that asset j has a forecasted return at time t that is greater than

zero; this condition is required so that we do not naively select k assets to go long if there

are fewer assets with expected positive returns. The sequential posterior probability that
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algorithm 7.1 computes is

p(at |bt) =
p(bt |at)p(at)

p(bt |at)p(at)+ p(bt |ac
t )p(ac

t )
. (7.1)

Finally, the algorithm returns the set of indices that would sort p(at |bt) from largest to small-

est.

Algorithm 7.1 The naive Bayes asset ranker
Input: rt , τ , β

Initialise: s = 1q, S = 1q×q, p = 0q, n = 0, k = ⌊βq⌋
// rt are the forecast one-step-ahead daily returns from the CAW algorithm

2.2

// τ is an exponential decay constant

// β is the maximum percentile of experts that can be chosen

Output: zt = argSort(pt)
1 if τ = 1 then
2 n = n+1 wt = (n−1)/n
3 else
4 wt = τ

// I(.) is an indicator function that returns 1 for a true condition, or else

0
5 for j← 1 to q do
6 s j,t = wts j,t +(1−wt)I

(
r j,t ≥ 0

)
for i← 1 to q do

7 Si j,t = wtSi j,t +(1−wt)I
(
r j,t ≥ ri,t

)
8 Initialise zero vectors a = b = 0q

9 for j← 1 to q do
10 b j = s j,t/∑

q
i=1 si,t

11 a j =
∑

q
i=1 Si j,t

∑
q
h=1 ∑

q
k=1 Shk,t

12 ac = 1−a
13 pt =

ba
ba+bac

// argSort(.) returns the indices that would sort an array from largest to

smallest value

14 zt = argSort(pt)

15 Denote z j,t = j∗, the test time return is ∑
k
j=1 r j∗,t+1p j∗,t .

7.3 The research experiment
Our research experiment aims to assess the benefits of sequentially optimised ranking al-

gorithms to select subsets or portfolios of financial assets to hold in either a long-only or

long/short (cross-sectional momentum) capacity. More concretely, we experiment with the
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constituents of the S&P 500 index. We use our NBAR algorithm as the sequentially opti-

mised ranker, with the posterior ranking probabilities of equation 7.1 estimated continuously

during the test set. The NBAR inputs are the one-step-ahead predicted daily returns esti-

mated by the CAW multivariate regression model. In turn, the CAW model collects individ-

ual one-step-ahead predicted daily returns from RBFNets, one per S&P 500 constituent. The

RBFNets have hidden units whose means are determined via k-means++; thus, we perform

feature representation transfer from external inputs, the S&P 500 constituent daily returns,

to hidden unit outputs determined by clustering algorithms. These hidden unit outputs are

mapped to the response, individual constituent one-step-ahead daily return forecasts, using

exponentially weighted recursive least squares (EWRLS). A schematic in the form of graph-

ical probability models is shown in figure 7.1.

Figure 7.1: The RBFNet forecasts are fed into the CAW multivariate regression model, whose output
is ranked and selected by the NBAR.

At first glance, this meta-model setup might seem overly or unnecessarily complicated.

We could, for example, use the raw S&P 500 constituent daily returns as inputs to the NBAR.

However, we are building on the research of regress-then-rank algorithms in the context of

portfolio selection (Jegadeesh and Titman, 1993; Gu et al., 2020), which motivates our use

of the RBFNets. We are also building on the work of Breiman and Friedman (1997) to take
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advantage of the correlations between the response variables to improve predictive accuracy

compared with the usual procedure of doing individual regressions of each response variable

on the shared set of predictor variables. We use their CAW procedure but combine it with

EWRLS to facilitate sequential optimisation in the test set without forward-looking bias.

Finally, we make use of online learning RBFNets as these models retain more remarkable

knowledge of the input feature space. They also respond better to regime changes or concept

drifts than models that do not use feature representation transfer.

7.3.1 Baseline models

In order to assess the true value of the meta-model shown in figure 7.1, we adopt two baseline

models. The first model intuitively is the long-only holding of the S&P 500 constituents

with equal weighting and replicates a passive, index-tracking investment strategy. A second

baseline is our proxy for the regress-then-rank models, the sequentially optimised CAW

multivariate regression model, algorithm 2.2. This baseline also uses the individual predicted

daily returns from online learning RBFNets.

7.3.2 The S&P 500 dataset

We conduct this research experiment using the daily closing constituent prices for the S&P

500 index, which we extract from Refinitiv. Due to their relatively new trade history, some

time series have little data. Therefore, we select a subset of the S&P 500 index, where each

constituent contains a trade count greater than or equal to the 25’th percentile of trade counts;

this leaves us with a subset of 378 Refinitiv information codes (rics). The dataset begins on

2001-01-26 and ends on 2022-03-25, 5326 days.

7.3.3 Experiment design

We use the first 25% of the data as a training set and the remaining data as a test set. In

the training set, algorithms 2.2 and 7.1 are initialised and fitted. These models are also

sequentially optimised without forward-looking bias in the test set. The hyperparameters

that are set for this experiment are:

• Exponential decay, τ = 0.99.

• Ridge penalty, α = 0.001.
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• Radial basis function networks with 500 hidden units determined by k-means++.

• Maximum percentile of assets to trade either long or short, β = 0.05.

Once the training data are assigned to their nearest cluster centres, the cluster-conditional

covariance matrices and their inverses are estimated. Cluster centres with few training data

vectors assigned to them are regularised to a diagonal variance prior. Thus, we are adopting

a Bayesian maximum a posteriori procedure here.

We use the forecasts of the CAW model, algorithm 2.2, as the basis for taking risk in a

subset of constituents in the S&P 500 index. Specifically, the long-only CAW model buys

the expected top five per cent of performing assets ỹt . For example, if there are k assets in

this top five percentile, then a weight of 1/k is applied per constituent. The long/short CAW

model works similarly, except that it includes the short-selling of the bottom five per cent of

most negative forecasts, with a weight of −1/k.

A second forecaster we consider is the NBAR algorithm 7.1, applied to the one-step-

ahead forecasts of the CAW model. Algorithm 7.1 outputs zt , the set of indices that would

sort pt in descending order, which is the posterior probability of highest ranked assets. De-

noting z j,t = j∗ and assuming there are k assets in the expected top five per cent of performing

assets, the NBAR assigns a weight to the j′th constituent (1≤ j ≤ k) of

p j∗,t
/ k

∑
i∗=1

pi∗,t . (7.2)

Similarly, for short positions, assuming there are k assets we wish to go short, the weight

assigned to the j′th constituent (q− k ≤ j ≤ q) is

−
(

1−p j∗,t

)/( q

∑
i∗=q−k

1−pi∗,t

)
. (7.3)

We must also consider execution costs. We force the CAW and NBAR models to trade as

price takers, meaning that the models incur a cost equal to half the bid/ask spread times the

change in absolute position. Specifically, we apply the average transaction cost per S&P 500
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constituent, whose distribution of relative basis point costs

bpcost j =
10000

T

T

∑
t=1

ask j,t−bid j,t

mid j,t
,

is shown in figure 7.2. Furthermore, as these data are sampled daily, any portfolio rebalanc-

Figure 7.2: The distribution of transaction costs, where the distribution is taken over the average
transaction cost per S&P 500 constituent.

ing is applied at most once a day, at the close of trading circa 4 pm EST.

7.3.4 Results

The passive index tracking baseline purchases each constituent with equal weighting at t = 0

and holds them till the end of the experiment. This strategy pays transaction costs once and

therefore has the least fees, as shown in table 7.1. Table 7.2 and figure 7.3 also show that the

cumulative returns generated by this strategy are 205%, the compound annual growth rate

(cagr) is 7.3% and the risk-adjusted annualised Sharpe ratio (sr) is a little under 0.8. As-

suming normally distributed returns, the Sharpe ratio implies a probability of positive annual

returns of 71%. The largest peak-to-trough drawdown for the strategy is just under 72%,

and the total return to maximum drawdown is around 2.9. Finally, by simply holding the in-
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dex, the percentage of days with positive returns is 55%. The same performance metrics are

available for the CAW and NBAR models. Both long-only and long/short CAW and NBAR

models outperform the passive index tracking baseline, with the long/short models showing

higher risk-adjusted performance measures indicated by the Sharpe ratios. The NBAR per-

forms best, with the long/short NBAR showing the highest total and risk-adjusted returns.

Table 7.1 shows that despite the CAW and NBAR models being actively managed strategies

that rebalance the portfolios daily, only the CAW models show high transaction costs. The

NBAR models rebalance less often and do a better job of picking portfolio constituents.

Figure 7.4 shows a bird’s eye view of the NBAR cross-sectional momentum weights

across time. Long positions show up as dark blue specks, and short positions show up as

yellow specks. We see evidence of the NBAR dynamically shifting weights over time to find

the best candidates to hold on a cross-sectional momentum basis, given the fixed constraint

that a maximum of five per cent of total assets can be held long or short. The weight range in

figure 7.4 indicates a relatively diffuse weight choice; in other words, no single constituent

appears to dominate the others regarding predicted returns performance. We can zoom into

a specific portfolio constituent, namely Electronic Arts Inc. In figure 7.5, we see that the

long/short NBAR switches between long, short and flat positions as necessary, without an

exponential decay of the weights permanently, as with the weighted majority algorithm.

Figure 7.6 displays the sensitivity of total returns and Sharpe ratios to the selection

percentile, that is, the fraction of assets that are held in either a long-only or long/short

manner. We draw similar conclusions with the fixed experiment that selects five per cent of

the expected best-performing assets. The NBAR models perform best, and the long/short

models perform better than their long-only counterparts. The total return increases as fewer

assets are selected, particularly for the NBAR, which shows a ×5 improvement over the

baseline when trading just a pair of assets in a long/short manner. However, such a strategy is

not scalable if a large amount of investment capital needs to be allocated to it. Furthermore,

we have not modelled the trade impact that would invariably appear if we were executing

prominent positions relative to each asset’s average daily volume turnover. Figure 7.6 also

shows that the Sharpe ratios increase toward a selection percentile of around five per cent

and, depending on the model, decrease or plateau after that.
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Table 7.1: Relative transaction costs incurred by each model in the test set. A buy-and-hold strategy
on the S&P 500 achieves the lowest transaction costs. However, from the perspective of
a more active portfolio management standpoint, our ranking algorithm incurs far lower
transaction costs than the regress-then-rank baseline.

transaction costs

long S&P 500 -0.003
long CAW -0.933
long/short CAW -1.966
long NBAR -0.050
long/short NBAR -0.104

Figure 7.3: Total return by each model in the test set where the maximum selection percentile is set to
5% of the total number of portfolio constituents. The naive Bayes asset ranker performs
best, particularly the cross-sectional momentum version.
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Table 7.2: Summary returns statistics are shown in relation to the experiment, shown visually in
figure 7.3. The cross-sectional momentum naive Bayes asset ranker has the highest total
and risk-adjusted returns.

long S&P
500

long CAW long NBAR long/short
CAW

long/short
NBAR

mean 0.0005 0.001 0.0013 0.0009 0.0015
std 0.012 0.016 0.016 0.010 0.010
total ret 2.047 4.113 5.372 3.397 5.806
cagr 0.073 0.108 0.124 0.098 0.128
sr 0.798 1.243 1.636 1.624 2.879
pr(ann. ret > 0) 0.71 0.816 0.895 0.893 0.994
max dd 0.717 0.64 0.646 0.942 0.202
total ret / max dd 2.853 6.423 8.311 3.607 28.7
win ratio % 0.549 0.553 0.563 0.547 0.575

Figure 7.4: The NBAR cross-sectional momentum weights across time. We find visual evidence that
the portfolio selection is dynamic and changing over time.
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Figure 7.5: NBAR cross-sectional momentum weights across time for Electronic Arts Inc.

Figure 7.6: Test returns by model and selection percentile. Restricting the maximum selection per-
centile results in the highest total returns but is not particularly useful for portfolio man-
agers that need to allocate substantial investment capital. The risk-adjusted returns for
this test set peak near an upper-bound selection percentile of 5% of total constituents.
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7.4 Discussion
How might we rationalise the outstanding performance of the NBAR relative to the long-

only, passive baseline? Furthermore, why does the CAW perform worse than the NBAR?

Several academic papers discuss the shortcomings of regression models compared to clas-

sification models in the financial time series prediction setting. For example, Satchell and

Timmermann (1995) show that regression models that typically minimise prediction MSE

obtain worse performance than a random-walk model when forecasting daily FX returns.

Furthermore, they show that the probability of correctly predicting the sign of the change

in daily FX rates is higher for the regression models than the random-walk baseline, even

though the mse of the regression models exceeds that of the random-walk model. They con-

clude that mse is not always an appropriate performance measure for evaluating predictive

performance. More recently, Amjad and Shah (2017) find that classical time series regres-

sion algorithms, such as ARIMA models, have poor performance when forecasting Bitcoin

returns. However, they find that the probability distribution of the sign of future price changes

is adequately approximated from finite data, specifically classification algorithms that esti-

mate this conditional probability distribution. In summary, the NBAR could be interpreted

easily as a classification model in that it endeavours to predict the posterior ranking proba-

bilities; this task seems more beneficial in the context of long/short portfolio selection than

regress-then-rank approaches.



Chapter 8

Conclusion and future work

We conclude this thesis with our final set of inferences based on the experiments conducted,

briefly summarise our main contributions once more and end with directions for future re-

search.

8.1 Conclusions
Financial time series exhibit the attributes of autocorrelation, nonstationarity and nonlinear-

ity. Our experiment in chapter 4 demonstrates the added value of feature selection, nonlinear

modelling and online learning when providing multi-horizon forecasts. Technically, by con-

structing returns, the time series become stationary as measured by unit root tests; therefore,

offline batch learning is possible. However, we find experimental evidence to support the jus-

tified use of sequentially optimised radial basis function networks (RBFNets). The RBFNets

obtain the best experiment results, which can be attributed primarily to their clustering al-

gorithms, which learn the intrinsic nature of the feature space. The resulting hidden units

provide predictive prototypes for unseen test data, which retain high similarity across time.

Our experiment on the major currency pairs in chapter 5 sees us construct a meta-model

that uses feature representation transfer from Gaussian mixture models (gmms) to direct,

recurrent, reinforcement learning (DRL) agents. These agents achieve higher funding and

risk-adjusted returns than a momentum trader baseline, a supervised learning RBFNet. The

momentum trader uses the same feature representation transfer methodology. However, our

DRL agent maintains an essential advantage over the momentum trader. The agent’s weights

can be adapted to reflect the different profit and loss (PNL) variation sources, including

returns momentum, transaction costs, and funding costs. We demonstrate this visually in

figures 5.8a and 5.8b, where a USDRUB trading agent learns to target different positions
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that reflect trading in the absence or presence of cost.

In chapter 6, we demonstrate that the echo state network (esn) provides a robust and

scalable feature space representation. We transfer this learning representation to a DRL

agent that learns to target a position directly. We argue in section 6.4 that direct reinforce-

ment is likely to perform better than state-action value estimation approaches, mainly when

the state represents an agent’s position and the action represents the desire to switch posi-

tions. Furthermore, in markets that experience frequent regime changes, state-action value

approaches may significantly underperform direct reinforcement approaches that target fi-

nancial risk positions directly.

The main inference that can be drawn from chapters 5 and 6 is that DRL agents achieve

good risk-adjusted returns, primarily as these models have adaptive learning capability.

Specifically, learning is adapted in response to impacts on the utility functions they max-

imise. These impacts include funding cost, execution cost or trends in the financial time

series. However, it would not be possible to obtain consistently good performance without

performing feature representation transfer from either clustering algorithms, mixture models

or ESNs. Finally, combining this additional learning with sequential optimisation in the test

set is essential, as is the choice of the optimisation method. We use a robust second-order

optimisation method which relies on an extended Kalman filter.

Our final experiment is detailed in chapter 7. The experimental objective is to out-

perform a baseline model that holds the S&P 500 index constituents with equal weighting.

Historically, this task has been tackled using so-called regress-then-rank models, which se-

lect a subset of assets to hold using regression-estimated returns that provide the ranked

portfolio assets. Our experiment employs a robust regress-then-rank baseline, the curds and

whey (CAW) model, which takes as external input the one-step-ahead predictions of large

RBFNets formed by k-means++ clusters. The risk-adjusted returns of these baselines are

compared with those of our novel ranking algorithm, the naive Bayes asset ranker (NBAR).

Our ranking algorithm uses the CAW outputs as estimates for predicted asset returns. These

predicted returns are then ranked by estimating the sequential probability that individual

assets will achieve higher positive returns than the remaining portfolio constituents. Our

ranking algorithm achieves the best results, particularly the long/short portfolio version. The
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performance holds for a wide range of β -quantile subsets of assets to trade. We can think of

the output of our ranking algorithm as experts we wish to follow. Unlike earlier algorithms,

such as the weighted majority algorithm, our ranking algorithm is better suited to learning

in nonstationary data. This ability to operate in nonstationary environments is achieved by

computing the posterior ranking probabilities with exponential decay. Therefore, experts

who previously performed poorly have the chance to have more prominence when they start

performing well.

8.2 Summary of contributions

We wish to understand if other forms of learning can be combined with sequential optimi-

sation to provide superior benefit over batch learning in various tasks operating in financial

time series, including multi-horizon forecasting, proprietary trading and portfolio selection.

In section 2.1, we show that even if we use the stationary returns of the S&P 500 dataset

(section 3.4), the batch learning models that operate on them have parameters that need to be

constantly adapted. We use statistical tests such as the t-test for equal means to show that the

further the distance in time between the model parameters being compared, the greater the

probability is that these tests will reject the hypothesis that the parameters were generated

from the same statistical distribution.

Section 4.4 demonstrates that our extensive use of feature representation transfer from

clustering algorithms to the various upstream models is justified. For the Refinitiv cross-asset

class dataset (section 3.1), we show that the training set returns have low similarity with the

test set returns. In contrast, the training set cluster-derived hidden unit outputs retain greater

similarity with their test set counterparts.

In chapter 4, Online learning with radial basis function networks, we experiment

with the returns of financial time series, providing multi-horizon forecasts with a selection

of powerful supervised learners. We devise an external input selection algorithm that max-

imises regression R2, minimises feature correlations and can operate efficiently in a high-

dimensional setting. We improve upon the earlier work on RBFNets, which applies feature

representation transfer from clustering algorithms to supervised learners. We use sequen-

tially optimised and regularised Bayesian maximum a posteriori precision matrices rather
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than a randomised, scalar standard deviation for each hidden unit’s radial basis function. Our

online RBFNet outperforms a random-walk baseline, a historically tricky challenge, and the

remaining models. The outperformance is not purely down to sequential updating in the test

set; a competitor EWRLS model is updated similarly and performs less well than several

batch-learners. Our RBFNets are naturally designed to measure the similarity between test

samples and continuously updated prototypes that capture the characteristics of the feature

space.

In chapter 5, Reinforcement learning for systematic FX trading, we perform feature

representation transfer from an RBFNet formed of Gaussian mixture model hidden units to a

direct, recurrent reinforcement learning (DRL) agent. This agent is put to work in an experi-

ment, trading the major FX pairs. Earlier academic work that applied direct reinforcement to

FX trading saw mixed results. These mixed performances come from weak external inputs

to the DRL agent, first-order optimisation methods, and shared hyperparameters. We use

more powerful features such as RBFNets and second-order optimisation methods such as

extended Kalman filters and adapt our model parameters sequentially instead of using batch

learning. As a result, our DRL agents cope better with statistical changes to the data distri-

bution. Our DRL agent achieves higher risk-adjusted returns than a funding/carry baseline

and a supervised learning momentum trader.

In chapter 6, The recurrent reinforcement learning crypto agent, we demonstrate a

novel application of online transfer learning for a digital assets trading agent. This agent uses

a powerful feature space representation in the form of an echo state network, the output of

which is made available to a DRL agent. The agent learns to trade the XBTUSD perpetual

swap derivatives contract on BitMEX on an intraday basis. Our meta-model can process

data as a stream and learn sequentially; this helps it cope with the nonstationarity of the

high-frequency order book and trading data. Furthermore, by using the vast high-frequency

data, our model, which has a high learning capacity, avoids the kind of overfitting on a lack

of data points that occurs with down-sampled data. We escape the problem of over-trading

typically seen with the supervised learning model by learning the sensitivity of the change in

risk-adjusted returns to the model’s parameterisation. Stated another way, our model learns

from the multiple impact sources on profit and loss and targets the appropriate risk position.
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In chapter 7, Sequential asset ranking in nonstationary time series, we extend the

academic research into cross-sectional momentum trading strategies. The main result of this

experiment is our novel ranking algorithm, the naive Bayes asset ranker, which we use to

select subsets of assets to trade from the S&P 500 index. Our ranking algorithm computes

the sequential posterior probability that individual assets will be ranked higher than other

constituents in the portfolio. Unlike earlier algorithms such as the weighted majority al-

gorithm, which deals with nonstationarity by ensuring the weights assigned to each expert

never dip below a minimum threshold, our ranking algorithm computes the posterior rank-

ing probabilities with exponential decay, allowing experts who previously performed poorly

to have increased weights when they start performing well. Our algorithm outperforms a

strategy that would hold the long-only S&P 500 index with hindsight, despite the index ap-

preciating by 205% during the test period. It also outperforms a regress-then-rank baseline,

a sequentially fitted curds and whey multivariate regression model.

8.3 Future research

In chapter 4, our RBFNets are comprised of k-means++ clusters that transfer their learning

to EWRLS supervised learners. In terms of future work, one could consider using other un-

supervised learning approaches to learn the hidden units of the RBFNet. One such example

is stacked denoising autoencoders (Vincent et al., 2010). Another option is variational Bayes

expectation maximisation, which Murphy (2012) shows is sparsity promoting, typically re-

quiring fewer clusters than the predefined set required for a GMM. Kingma and Welling

(2014) combine autoencoders with variational Bayes.

In chapter 5, where we explore feature representation transfer from gmms to DRL

agents that are sequentially optimised. One may improve the results by applying a portfolio

overlay. The utility function of equation 5.2 is readily treated as a portfolio problem

υt = hT
µµµ t−

λ

2
hT

ΣΣΣth,

where the optimal, unconstrained portfolio weights are obtained by differentiating the port-
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folio utility with respect to the weight vector

h∗ =
1
λ

ΣΣΣ
−1
t µµµ t .

Another approach is to treat portfolio selection as a policy gradient problem, where the policy

of picking actions, or in this case, portfolio constituents, is estimated via function approxi-

mation techniques.

As we discuss in chapter 5, our DRL agent comprises an unsupervised model and a

reinforcement learning component. Specifically, we construct an RBFNet whose hidden

units are determined by a Gaussian mixture model (GMM) procedure due to Figueiredo and

Jain (2002) which has an identical expectation step to Dempster et al. (1977)’s em algorithm,

but a modified log-likelihood function for the maximisation step. The procedure involves the

construction of a large mixture and annihilates components from the mixture that are not

supported by the data. This procedure is purely a batch-learning approach. An attractive

alternative, which ties more closely to our philosophy of online learning in financial time

series, is the incremental Gaussian mixture network (IGMN) approach of Pinto and Engel

(2015). Like Pinto and Engel, we also sequentially update the mixture-conditional precision

matrices of the GMM. However, Pinto and Engel take the GMM learning a step further

and select mixture components incrementally. At test time, if the current mixtures have

low similarity with the available external input vector, then a new mixture component is

added. Adding mixture components incrementally when there is low external input similarity

with existing prototypes seems like a sensible way to tackle concept drift (Gama, 2012) or

covariate shift (Tibshirani et al., 2019).

In section 6.4, part of the experiment that performs feature transfer from ESNs to DRL

agents, we discuss how the various esn parameters are initialised at random. We then perform

a Monte Carlo simulation of 250 trials, with the network parameterisation fixed as before.

We find evidence of the variability of total and risk-adjusted returns caused by the random

initialisation of the various esn parameters. In the same way that k-means++ has improved

the performance of k-means, more research could be done that improves esn initialisation,

with a demonstrably positive impact on risk-adjusted returns.

Finally, in chapter 7, we use the NBAR’s output to determine the amount of risk to
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take. The risk taken is proportional to the probability that individual assets are ranked higher

than the other portfolio constituents. This is shown in equations 7.2 and 7.3. The approach is

reasonable and sensible. Furthermore, it works better than portfolio selection using a regress-

then-rank approach. However, in terms of future work, one might compare the position sizes

derived by the NBAR with position sizing algorithms such as the Kelly criterion or more

general models for this purpose (Lototsky and Pollok, 2021).



Appendix A

Colophon

This LaTeX document was created with Overleaf. The references were stored in Mende-

ley, nicely integrated with UCL’s online library services. The experiments were coded up in

Python using the integrated desktop environment, Pycharm. Most of our experiment mod-

els were coded up from scratch, and occasionally we used some of the scikit-learn (Pe-

dregosa et al., 2011) implementations. The RBFNet schematic, figure 2.2, was generated

using Python and Graphviz (Isaksson, 2017). Figures 6.2 and 7.1 were generated using Li-

breOffice Impress and GNU Image Manipulation Program (GIMP).
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processes. SIAM Journal on Financial Mathematics, 12(1):342–368.
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