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Abstract 

Novel machine learning techniques are developed for the prediction of financial 

markets, with a combination of supervised, unsupervised and Bayesian 

optimisation machine learning methods shown able to give a predictive power 

rarely previously observed. A new data mining technique named Deep Candlestick 

Mining (DCM) is proposed that is able to discover highly predictive dataset 

specific candlestick patterns (arrangements of open, high, low, close (OHLC) 

aggregated price data structures) which significantly outperform traditional 

candlestick patterns. The power that OHLC features can provide is further 

investigated, using LSTM RNNs and XGBoost trees, in the prediction of a mid-

price directional change, defined here as the mid-point between either the open 

and close or high and low of an OHLC bar. This target variable has been 

overlooked in the literature, which is surprising given the relative ease of predicting 

it, significantly in excess of noisier financial quantities. However, the true value of 

this quantity is only known upon the period's ending – i.e. it is an after-the-fact 

observation. To make use of and enhance the remarkable predictability of the mid-

price directional change, multi-period predictions are investigated by training 

many LSTM RNNs (XGBoost trees being used to identify powerful OHLC input 

feature combinations), over different time horizons, to construct a Bayesian 

optimised trend prediction ensemble. This fusion of long-, medium- and short-term 

information results in a model capable of predicting market trend direction to 

greater than 70% better than random. A trading strategy is constructed to 

demonstrate how this predictive power can be used by exploiting an artefact of 

the LSTM RNN training process which allows the trading system to size and place 

trades in accordance with the ensemble's predictive certainty. 



 



Impact statement 

The work presented in this thesis contributes to the development of machine 

learning based predictive systems for financial markets by designing new data 

mining, trend prediction and ensemble methodologies using Long Short Term 

Memory (LSTM) Recurrent Neural Networks (RNNs), a variety of clustering 

algorithms and advanced optimisation techniques. This research provides several 

specific benefits. Firstly, the development of a novel and robust data mining 

technique demonstrates that a very high predictive accuracy from noisy and 

complex environments, such as financial markets, is achievable using simple 

feature representations. Secondly, a new methodology coined Deep Candlestick 

Mining is developed discovering novel candlestick patterns suitable for modern 

day financial markets; as the use of traditional candlestick charting has been an 

area of extreme conflict in academia and industry the discovery here that novel 

variants of these patterns can be successful is of clear interest. Thirdly, an 

undiscovered characteristic of financial timeseries is shown to be easily predicted, 

and exploited through a novel technique to infuse multi-period information, 

producing powerful predictive models which can also generate stable systematic 

profits across cryptoassets. Finally, the work of this thesis demonstrates how to 

design financial predictive systems that generalise over a range of asset classes 

while maintaining robust predictive power. In conjunction with the presentation 

here of this work, academic and industry publications and presentations have 

more widely publicised the benefits of adopting the novel techniques of this thesis, 

which have also been implemented in real-world systematic trading systems to 

demonstrate the practical benefits. 
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Chapter 1 

1 Introduction 

This chapter presents the motivation behind this thesis and the problems for 

which solutions are subsequently developed. Research contributions are then 

summarised, detailing publications, presentations, and contributions to the 

scientific community. The chapter ends with an outline of how this thesis is 

structured. 

  

1.1 Research motivation 

The ability to predict the movement of financial markets has been a longstanding 

aim of industry practitioners and academics, nowadays using a variety of 

techniques from technical analysis (TA) to machine learning (ML) and pattern 

recognition methodologies. The techniques used in this work focus on extracting 

novel valuable information from financial markets, which is a challenging task 

due to the efficiency of most contemporary financial markets, the high noise 

content of financial data, and its non-stationarity and low signal strength. 

Systems which can successfully exploit any remaining inefficiencies in 

contemporary financial data are of obviously significant interest given the 

financial rewards available for doing so.  

One of the first pattern recognition predictive systems for financial 

forecasting was developed by the Japanese in the 18th century using formations of 
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(open, high, low, close) or OHLC data called candlestick patterns to forecast the 

price of rice. Candlestick patterns are currently at the centre of a severe 

controversy surrounding their statistical significance in the directional prediction 

of prices, with many academics and industry practitioners proposing arguments 

for and against their usefulness (see section 2.2.1). Another form of more 

traditional financial market predictive system is that of technical analysis (TA), 

of which candlestick patterns are now known to be a sub-set. TA is the practice 

of applying simple statistical analysis such as averages over OHLC data structures 

and, on occasion, volume bars to construct systems which inform a trader if a 

market is trending, overbought/oversold or range bound amongst other 

classifications. Again, there has also been substantial controversy in the academic 

community relating to TA's usefulness and robustness, although the technique, 

like candlestick charting, remains popular amongst practitioners.  

Today, the largest institutions and hedge funds on the planet deploy not 

only these more traditional tools but also advanced prediction systems which are 

highly efficient, scalable, distributed and able to handle massive quantities of 

data. As markets have become more efficient over time the need for such advanced 

predictive methodologies has become progressively higher as competition increases 

to exploit subtle market inefficiencies. This new generation of predictive systems 

are often heavily based on advanced mathematics, statistical analysis and 

machine learning methods with the aim of gaining an advantage over other 

market participants.  

However this advantage cannot be gained simply by looking at directional 

movements. In traditional markets such as futures, equities and liquid currencies, 

generating alpha (defined as returns outperforming a benchmark or the underlying 

asset's natural gains) can often be difficult. Even if a statistically significant 

discovery is made in terms of directional forecasting the advantage can often only 
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result in single percentage point profits if the said discovery is used with a large 

capital base. Therefore, the need for robust predictive systems capable of 

discovering statistically significant predictive signals which also scale well with 

the quantity of capital placed on them is of extreme interest to banks, hedge 

funds and even pension funds.  

 Adding to this challenge and complexity, there is a newly emerging asset 

class, that of cryptoassets, of which a subset are known as cryptocurrencies, the 

best-known example of which is Bitcoin. This new asset class holds promise as it 

has many inefficiencies compared to that of traditional markets, although these 

inefficiencies can be short lived, capacity limited and come with an increased risk 

when trading through a cryptoasset exchange, which frequently come under 

attack from hackers. This new market offers up new challenges as well as new 

opportunities for financial predictive systems given the extreme volatility of 

cryptocurrencies, market manipulations and a fragmented market microstructure.   

This thesis aims to develop predictive systems with the ability to generalise 

effectively across both traditional and cryptoasset markets while providing robust 

and statistically significant predictive power. Furthermore, the effective use of 

this predictive power in wealth generation systems is investigated. This is a 

challenging task given the economics of trading (fees, low signal to noise rations, 

signal capacity, changing market dynamics, high competition for each inefficiency 

etc.). In summary, the main aims of this thesis are: 

 To develop novel and powerful pattern mining techniques for the 

prediction of financial markets. 

 To engage with the controversies surrounding the predictive power of 

candlestick patterns and to obtain at least a partial resolution. 
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 To exploit the predictive power of a previously unconsidered characteristic 

of financial time series data.  

 To explore the use of multi-period information in the construction of 

predictive models.  

1.2 Research contribution 

The main goal of this research is to investigate the effectiveness of machine 

learning methods in the construction of predictive systems for directional 

forecasting. To achieve this goal will involve the fusion of ideas which are 

centuries old with cutting-edge machine learning techniques, enabling these ideas 

to be investigated, improved and reinvented. The research contributions made 

are: 

 Development of a feature mining process capable of providing superior 

predictive power without the cost of excessive complexities in the feature 

space. 

 Demonstration that while virtually none of the traditional candlestick 

patterns were predictive, novel candlestick patterns can be highly 

predictive. 

 Discovery of a characteristic of a financial price series which can be 

exploited to give risk-adjusted returns that even in a cryptocurrency 

market are considerably in excess of those obtained from a ‘Buy & Hold’ 

strategy. 

 Provision of evidence of the added value that multi-period information can 

bring to financial predictive ensembles. 
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1.3 Publications and presentations 

Parts of this thesis have been published in the International Conference on 

Artificial Neural Networks: 

Mann, A.D. & Gorse, D. (2017) A new methodology to exploit predictive power 

in (open, high, low, close) data. Proceedings of the 26th International 

Conference on Artificial Neural Networks. Alghero, Italy, 11-14 September 

2017. Heidelberg: Springer. 495-502, 

and the International Conference on Neural Information Processing: 

Mann, A.D. & Gorse, D. (2017) Deep Candlestick Mining. Proceedings of the 

24th International Conference on Neural Information Processing. 

Guangzhou, China, 14-18 November 2017. Heidelberg: Springer. 913-921. 

Aside from presentations at these conferences parts of this thesis were also 

presented at the industrial conference QuantMinds, Vienna, May 2019. Further 

presentations with extracts of this work were given at these guest talks: 

 Algorithmic Trading and Machine Learning for Cryptocurrencies, 

University of Glasgow, September 2017,  

 Machine Learning for Cryptocurrency Trading, University of Newcastle, 

September 2017, 

 Artificial Intelligence for Algorithmic Trading, Sussex, March 2017, 

 Reinforcement Learning for Quantitative Finance, MathWorks, 2020.  

Further benefits of this work have been realised in the “real-world” by 

developing scalable distributed systematic trading and research systems to deploy 

each research discovery and assess its resilience to live market data.  
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1.4 Thesis outline  

This thesis is divided into six chapters inclusive of the introduction. 

Chapter 2 provides necessary background to this work and a survey of 

related literature. The background section includes technical details of the 

machine learning models used throughout this work and the performance metrics 

used to ascertain the effectiveness of the predictions made. The literature survey 

reviews relevant literature in relation to candlesticks, technical analysis and the 

use of machine learning methods in financial prediction and trading systems.  

Chapter 3 presents research pertaining to Deep Candlestick Mining 

(DCM), a method for identifying statistically significant novel candlestick 

patterns. A feature mining process using extreme gradient boosted trees in 

combination with correlation filtering is presented. The rich feature sets provided 

by this methodology are then used in a large-scale Bayesian and Hyperband 

hyperparameter optimisation process to tune an LSTM RNN's predictive power. 

Using the optimised LSTM RNN, a novel clustering process is proposed for the 

identification of new dataset specific candlestick patterns. These new patterns are 

statistically significant and able to provide predictive power significantly 

outperforming traditional ones. The feature mining and hyperparameter 

optimisation methodologies are used throughout the remainder of the work. 

Chapter 4 extends the use of OHLC data structures as they have been 

shown to yield significant predictive power in Chapter 3. A new financial 

timeseries characteristic is proposed, derived from the structure of an OHLC bar. 

This is shown to be an easily predicted metric although since it relates to an after-

the-fact observation it can be difficult to use for wealth generation.  
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 Chapter 5 solves this last-mentioned problem, allowing the new metric 

to be used effectively for wealth generation. It does so by training many LSTM 

RNNs to predict this metric over differing horizons, using differing feature 

aggregation periods. The models are then used to construct a Bayesian optimised 

ensemble predictor achieving directional forecasts greater than 70% better than 

random, which is remarkable when considering the noise content within a 

financial time series. A market neutral trading strategy using the ensemble's 

predictive power is then presented, demonstrating an ability to generate 

exceptional risk-adjusted returns in the notoriously volatile cryptoasset market. 

Lastly, Chapter 6 discusses the research presented in this thesis, reflecting 

on the aims proposed in Chapter 1 and the solutions found to address them. 

Future research directions are provided along with concluding remarks.   
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Chapter 2 

2 Background and literature survey 

 

Technical aspects of this thesis and the surrounding literature relating to financial 

market prediction systems are first discussed; in this section data representations, 

machine learning models and evaluation metrics are introduced. The literature 

review that follows focuses on research relating to the design of predictive systems 

using similar datasets, methods or machine learning algorithms to predict 

financial quantities or as part of a trading strategy. This survey highlights a gap 

in the literature both regarding the design of feature mining and predictive 

systems that extract maximal predictive power from relatively simple, yet 

intuitive feature sets, and regarding the prediction of target metrics not 

considered before. The surveyed work demonstrates there is no need to over 

engineer predictive systems, which results in model complexity explosions, if 

effective methodologies are developed around feature engineering and signal 

generation. 

 

2.1 Technical background 

Tools, definitions and data used throughout this thesis are introduced here.  
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2.1.1 OHLC data structures 

The use of open, high, low, close (OHLC) data structures is central to this work 

as it forms the basis of the feature mining methodology introduced in Chapter 3 

which is utilised throughout the remaining research. OHLC data is aggregated to 

represent specific time periods, e.g., 15 minutes. Traditional representations of 

OHLC data use clock time, although, more recently, OHLC bars have been 

constructed in volume, trade and quote time. The data structure is also referred 

to as a candlestick (or, if referring to multiple OHLC data structures clustered 

together, a candlestick pattern) as the body and shadow of the data structure look 

like a candle: 

 

Figure 2.1: OHLC data structures 

The region between the open and close prices is called the body. The shadow 

represents the regions between the high or low in relation to the top or bottom 

of the body. As shown in this example a black bodied candlestick represents a 

downward movement whereas a white bodied candlestick represents an upward 

movement. 
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2.1.2 Definition of the mid-price 

Traditionally the mid-price is defined as the mid-point between the bid and ask 

prices; this is not the case in this work. Here, two definitions of mid-price are 

used, and illustrated in Figure 2.2. Mid-price-1 is defined as the mid-point 

between the high and low of an OHLC structure defined as:  

 𝑚𝑖𝑑_𝑝𝑟𝑖𝑐𝑒_1 =  
ℎ𝑖𝑔ℎ + 𝑙𝑜𝑤

2
 (2.1) 

whereas mid-price-2 focuses on the real body of the OHLC data structure (the 

region of the candlestick between the open and close prices) and is defined as 

 𝑚𝑖𝑑_𝑝𝑟𝑖𝑐𝑒_2 =  
𝑜𝑝𝑒𝑛 + 𝑐𝑙𝑜𝑠𝑒

2
. (2.2) 

The predominant reason for investigating the use of a mid-price as a 

prediction target (as introduced in Chapter 4) is the observation that mid-price 

time series are far less noisy than the traditional close price series (see Section 

4.2.1), making for a more stable trend prediction target.  

 

Figure 2.2: Candlestick bars showing the difference between mid-price-1 and mid-price-2 on an 

OHLC data structure.  
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2.1.3 Cryptoassets 

A key aspect of the research in this thesis is the use of cryptoassets (Bank of 

England, 2019), of which the best-known example is Bitcoin (Nakamoto, 2008), 

as the underlying timeseries data. A cryptoasset can be defined in a general sense 

as a digital representation of value or contractual rights which is 

cryptographically secured. The asset can be freely traded, transferred or stored. 

These processes are enabled by distributed ledger and digital wallet technology, 

the details of which are beyond the scope of this thesis. This work will consider a 

sub-class of cryptoassets called cryptocurrencies. To trade a cryptocurrency such 

as Bitcoin or Ethereum is much the same as trading a stock, future or traditional 

currency. Cryptoasset exchanges such as Coinbase, Bitfinex or OKEx provide a 

professional trading interface from which a user can interact with the market as 

one would do so in any other market, with the major difference being the increased 

risk to capital held on an exchange due to the prevalence of hackers.  

It is hypothesised here that there may be more inefficiencies in 

cryptocurrency markets than in traditional markets (such as the FGBL German 

Bund Futures contract or the EURUSD market) given the prevalence in the 

cryptocurrency markets of retail traders, fragmented liquidity across global 

trading venues, ease of manipulation and the relative immaturity of 

cryptocurrencies as an emerging market. This of course would imply trading in 

cryptocurrency markets might be easier and more lucrative. However, given the 

relative immaturity of cryptocurrency markets, it is also hypothesised that 

statistical artefacts which can easily be exploited can cease to persist more quickly 

than in traditional markets. This, conversely, would tend of erode the profitability 

of cryptocurrency trading. Hence, cryptocurrency timeseries datasets provide an 

interesting timeseries prediction problem, which this thesis will explore further. 
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It should be noted that as this work is focused on predicting and trading 

cryptocurrencies on cryptoasset exchanges pegged against the USD the underlying 

datasets are of the same format and style as traditional financial timeseries data. 

This makes it easier to design predictive systems which generalise across asset 

classes (rather than being cryptocurrency specific), as it is hoped that the novel 

methods introduced in this work will have a wider application.  

2.1.4 Machine learning methods 

The machine learning models and training techniques used in the work of this 

thesis will be described from a practical point of view below. For a review of 

machine learning methods as used in finance see section 2.2.3. 

Long Short Term Memory (LSTM) Recurrent Neural Networks 

(RNNs) 

LSTM RNNs (Hochreiter and Schmidhuber, 1997) are a class of neural network 

designed for sequential timeseries data. The primary issue with vanilla RNNs 

when applied to such data is the vanishing gradient problem, which makes it 

difficult to respond to the information from further back in time, as when 

'unfolded in time' a vanilla RNN is effectively a deep architecture in which 

neurons in the layers closest to the 'input' (furthest back in time) fail to receive 

sufficient weight updates as the partial derivative of the error function is 

propagated backwards in training. To solve this problem Hochreiter and 

Schmidhuber (1997) proposed gated cell and memory blocks (which have a series 

of activation functions encapsulated in these cell architectures) which solved the 

vanishing gradient problem by retaining both long- and short-term information. 

There are many subsequent variants of LSTM cells (Gers & Schmidhuber (2000); 

Cho, et al. (2014); Yao, et al. (2015); Koutnik, et al. (2014)). However Greff, et 
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al. (2015) do a comparison of many different LSTM architectures and find 

minimal differences in performance. Hence, in this work, the vanilla LSTM cell is 

used. This cell can be characterised by the following equations:  

 𝑓௧ = 𝜎൫𝑊௫௙𝑥௧ + 𝑊௛௙ℎ௧ିଵ  +  𝑏௙൯, (2.3) 
 

 𝑖௧ = 𝜎(𝑊௫௜𝑥௧ + 𝑊௛௜ℎ௧ିଵ  +  𝑏௜), (2.4) 
 

 𝑐̃௧ = 𝑡𝑎𝑛ℎ(𝑊௫௖𝑥௧ + 𝑊௛௖ℎ௧ିଵ  +  𝑏௖), (2.5) 
 

 𝑐௧ = 𝑓௧ ∙ 𝑐௧ିଵ + 𝑖௧ ∙ 𝑐̃௧, (2.6) 
 

 𝑜௧ = 𝜎(𝑊௫௢𝑥௧ + 𝑊௛௢ℎ௧ିଵ  +  𝑏௢), (2.7) 
 

 ℎ௧ = 𝑜௧𝑡𝑎𝑛ℎ(𝑐௧) (2.8) 
 

where 𝜎(_) represents a sigmoid function, 𝑊 is the weight matrix, 𝑥௧ is the input, 

ℎ௧ିଵ is the previous input state, 𝑏 is the bias term and 𝑡𝑎𝑛ℎ(_) is a hyperbolic 

tangent function. To compute the LSTM cells outputs the input variables 𝑥௧ and 

ℎ௧ିଵ go through a forget gate (𝑓௧) first and then an input gate (𝑖௧) to decide what 

information to update. New candidate values (𝑐̃௧) are then computed which can 

potentially be added to the cell's internal state. To update the current state (𝑐௧) 

the old state (𝑐௧ିଵ) is multiplied into 𝑓௧ to forget selected information which is 

subsequently updated with the new candidate values (𝑖௧ ∙ 𝑐̃௧). A sigmoid function 

is then applied over the cell state to decide what information will be output from 

the internal state. The cell state is then put through a 𝑡𝑎𝑛ℎ function to squash 

values in the range -1 and 1. The result of the 𝑡𝑎𝑛ℎ operation is multiplied into 

the sigmoid output producing the output from this gate as represented in equation 

2.8. This occurs for each LSTM cell in the network. The weights of these cells are 

commonly optimised in the usual way using gradient based optimisers, of which 

a popular choice is ADAM, described below.  

Adaptive momentum estimation (ADAM) 
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ADAM (Kingma and Ba, 2015) is a first order gradient-based adaptive 

optimisation algorithm popular for training neural networks and designed to 

combine the benefits of both RMSProp (Hinton, 2014) and AdaGrad (Duchi et 

al, 2011). The algorithm uses squared gradients to scale the learning rate, like in 

RMSProp, and uses moving averages of the gradient rather than the raw gradient, 

like AdaGrad. The weight update rule for ADAM is 

 𝜃௧ାଵ = 𝜃௧  − 
𝜂

ඥ𝑣௧ෝ  +  𝜖
∙  𝑚௧ෞ  (2.9) 

where 𝜃 represents the model parameters, 𝜂 is the learning rate, 𝑚௧ෞ  is an estimate 

of the exponential decaying moving average of past gradients and 𝑣௧ෝ  is an estimate 

of the exponential decaying moving average of past squared gradients. 𝑚௧ෞ  and 𝑣௧ෝ  

are computed as  

 𝑚௧ෞ  =  
𝑚௧

1 − 𝛽ଵ
௧, (2.10) 

 

 𝑣௧ෝ =
𝑣௧

1 − 𝛽ଶ
௧ (2.11) 

where the exponential decaying moving average of past squared gradients (𝑣௧) 

and gradients (𝑚௧) is computed as  

 𝑚௧ = 𝛽ଵ𝑚௧ିଵ  +  (1 − 𝛽ଵ)𝑔௧, (2.12) 
 

 𝑣௧ = 𝛽ଶ𝑣௧ିଵ  + (1 − 𝛽ଶ)𝑔௧
ଶ (2.13) 

with 𝑔௧ representing the gradient at period 𝑡 and 𝛽 the decay rate. Interestingly, 

as 𝑚௧ and 𝑣௧ are initialised with zeros, they suffer from a bias towards zero in the 

initial epochs, and when decay rates are small. Hence equations 2.12 and 2.13 are 

used in the update formula (equation 2.9), rather than equations 2.9 and 2.10, to 

counteract this effect. In this thesis ADAM was used after first conducting 

empirical tests (as in the example of Figure 2.3) to establish this was, indeed, the 
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best performing optimiser. It should be noted that while Figure 2.3 uses BTCUSD 

the superiority of ADAM was also demonstrated for EURUSD, ETHUSD, and 

FGBL. 

 

Figure 2.3: An example empirical test of different optimisers using BTCUSD OHLC features.  

 

Batch Normalization (BN) 

To accelerate the rate of training and enhance regularization when training neural 

networks BN (Ioffe and Szegedy, 2015) can be used in the construction of network 

layers. BN allows for higher learning rates and less attention on the initialisation 

of parameters in a network by reducing the internal covariate shift. The covariate 

shift refers to the change in the distribution of input values into a learning 

algorithm which can cause serious issues for machine learning algorithms as they 

are sensitive to input distribution causing the intermediate layer to continuously 

adapt to new input distributions. From a theoretical standpoint, BN aims to limit 

the covariate shift by normalizing the activations of each layer through 

transforming the inputs to be of mean zero and unit variance. This allows each 
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layer to learn from a more stable distribution of inputs. However, in practice the 

restriction of zero mean and unit variance can limit the power of the network. To 

avoid this, BN allows the network to learn a pair of parameters to scale (𝛾) and 

shift (𝛽) the activation using mini-batch statistics. This process can be described 

more formally with the following equations:  

 𝜇ℬ =
1

𝑚
෍ 𝑥௜

௠

௜ୀଵ

 (2.14) 

 

 𝜎ℬ
ଶ =

1

𝑚
෍(𝑥௜ − 𝜇ℬ)ଶ

௠

௜ୀଵ

 (2.15) 

 

 𝑥ො௜ =
𝑥௜ − 𝜇ℬ

ඥ𝜎ℬ
ଶ + 𝜀

 (2.16) 
 

 𝑦௜ = 𝛾𝑥ො௜  + 𝛽 (2.17) 
 

Equations (2.14) and (2.15) compute the mean and variance of the minibatch, 

(2.16) normalises the activation 𝑥 and (2.17) scales and shifts the resulting value. 

BN is particularly useful for modelling financial datasets, especially 

cryptocurrency data, where the distribution of inputs from a minibatch can vary 

significantly as a result of extreme volatility dynamics.  

 

Dropout 

To further enhance regularisation and improve generalisation in the training of a 

neural network Dropout (Srivastava et al, 2014) is used. The basic mechanism for 

Dropout is to temporarily remove, with some probability, a neuron and its 

incoming and outgoing connections from the network. Dropout can be applied to 

any neuron in the network, including the inputs, but not the outputs. This 

mechanism forces nodes in each layer to probabilistically deal with an increase or 
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decrease in information processing responsibility which has the effect of stopping 

network layers co-adapting. The result is a network which is more robust and, in 

many cases, one with a lower training error. There has been some discussion of 

the wisdom of using both BN and Dropout together, as detailed by Li et al. 

(2018), who suggests that implementing Dropout before BN would cause 

numerical instability. It is suggested in this work Dropout should be implemented 

if needed after the BN layer when constructing a network, which is the approach 

taken here. 

Mini-batching 

Mini-batching is a halfway house between stochastic gradient descent (pattern-

by-pattern weight updating, which can be overly erratic) and batched gradient 

descent (weight updates performed so as to improve performance over the entire 

pattern set, which can be slow and prone to trapping in suboptimal solutions). 

Mini-batch size is an important hyperparameter in the design of modern neural 

networks. Keskar et al. (2017) present findings to suggest large batch sizes tend 

to converge to sharp minimizers of training and test functions leading to poor 

generalisation whereas small batch sizes tend to converge to flat minimizers due 

to the inherent noise in the gradient estimation. Methods to select optimal batch 

sizes have focused on dynamic sampling (Byrd et al., 2012; Friedlander & 

Schmidt, 2012) with little uptake. The default size is often a value of the power 

of two to fit memory requirements of the GPU or CPU hardware. Masters and 

Luschi (2018) suggest the minibatch size value should be tuned after 

hyperparameter optimisation to avoid adverse interactions with the learning rate 

of a model optimisation. Here, as the optimisation of this value is outside of the 

scope of this thesis, which focuses on novel input representations and targets 

rather than the internal working of the predictors, a default value of 128 is used.  



19 
 
Early stopping 

Early stopping is when a learning algorithm stops before the final specified epoch, 

because an error threshold has been achieved or because it has been observed that 

further training may damage generalisation. Hinton (2015) suggested that early 

stopping should always be implemented by monitoring the error on a validation 

dataset with some patience (i.e. after a certain period, if the validation error does 

not improve training should be terminated). Other methods for early stopping 

include examining the convergence of the average weight update within the neural 

network. This work monitors the average weight update and activates a patience 

when the weight updates tend to zero. 

Bayesian Optimisation (BO) 

BO uses a probabilistic model, commonly Gaussian Processes (GPs), for modelling 

an objective function based on previously observed data points (Snoek et al., 

2012) which can be defined as  

 Ρ(𝑓(𝑥)|𝑥) = ℵ൫𝜇(𝑥), 𝜎ଶ(𝑥)൯ (2.18) 

where ℵ denotes the standard Normal distribution. To estimate 𝜇(𝑥) and 𝜎ଶ(𝑥) 

the GPs are fitted to the data using a kernel function (for a rigorous review of 

GPs and the process of fitting them to data see Rasmussen and Williams, 2006). 

An acquisition function is required to be optimised over the model. The job of 

the acquisition function is to control the trade-off between exploration – 

improving the models understanding of less well explored parts of the search space 

- and exploitation – favouring parts of the search space which appear to give 

promising results. This does not require the objective function to be evaluated. In 

general, exact equations can be derived for this optimisation to find a solution for 

the optimisation problem using gradient-based optimisation methods. A popular 
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acquisition function is the Upper Confidence Bound (UCB) (Brochu et al., 2010), 

defined as  

 𝑥௧ାଵ = 𝑎𝑟𝑔 max
௫

൫𝜇௧(𝑥) + 𝜅𝜎௧(𝑥)൯ (2.19) 

where 𝜅 is a pre-specified parameter that tunes the trade-off between exploration 

and exploitation. New, promising, parameter configurations are identified using 

an acquisition function based on the current model.  

The vanilla BO process iterates through the following steps until the 

maximum budget is reached:  

1. Select the point which corresponds to the maximisation of the acquisition 

function. 

2. Evaluate the objective function. 

3. Add the observation to the posterior distribution and refit the model. 

4. Repeat steps 1-3 until the budget runs out. 

As BO requires experience to effectively fit a model it behaves much like random 

search in early iterations. However with sufficient budget the BO algorithm offers 

significant speed ups to other methodologies such as random search and grid 

search. 

Bayesian Optimisation with Hyper-Bands (BOHB) 

BOHB (Falkner et al., 2018) is a hyperparameter optimisation process capable of 

efficiently optimising large parameter spaces. BOHB combines the advantages of 

Bayesian optimisation (BO) (Shahriari et al., 2016) and HyperBand (HB) (Li et 

al., 2016) into one algorithm. First, HB is used to determine the number of 

parameter configurations to evaluate and with what budget (a budget represents 

the total number of evaluations permitted on a function which is usually expensive 

to compute) and replaces the randomised selection of parameter configurations at 
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the start of each HB iteration using a model-based search which is trained on 

configurations which were previously evaluated. Once a selection of promising 

parameter configurations has been identified BO is used to guide the search 

process in the latter part of the optimisation process allowing the algorithm to 

refine the parameter configurations selected in the first stage of the search using 

HBs. The BO part is implemented as a variant of the Tree Parzen Estimator 

(Bergstra et al., 2011) with a product kernel. BOHB has shown 55x speed ups in 

hyperparameter searches when compared to vanilla hyperparameter selection 

processes such as random search. 

Extreme Gradient Boosted Trees (XGBoost) 

In this thesis XGBoost is used to reduce the dimensionality of a large OHLC 

based feature universe by removing features which are not important in the 

prediction of a specific target. XGBoost (Chen, 2016) is a supervised learning 

tree-based algorithm in which the objective function (loss function and 

regularization) to minimise at iteration 𝑡 is specified as 

 ℒ௧ = ෍ 𝚤 ቀ𝑦௜, 𝑦ො௜
௧ିଵ + 𝑓௧(𝑥௜)ቁ + Ω(𝑓௧)

௡

௜ୀଵ

 (2.20) 

where ℒ is a standard function of Classification and Regression Tree (CART) 

learners unable to be optimised using optimisation methods in a Euclidean space 

(Chen, 2016), 𝑦௜ is the target variable, 𝑦ො௜
௧ represents the prediction, 𝑓௧(𝑥௜) is the 

function with input features that most improves the model and Ω is a penalization 

function.  

To optimise the objective function of (2.20) second order approximation 

using Taylor’s theorem (see Morris (1972) for details) can be used to transform it 

into the Euclidean domain for optimisation. The quality of a tree structure 𝑞 can 

be computed as  
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 ℒሚ௧(𝑞) = −
1

2
෍

ቀ∑ 𝑔௜௜∈ூೕ
ቁ

ଶ

∑ ℎ௝ + 𝜆௜∈ூೕ

்

௝ୀଵ

+ 𝛾𝑇 (2.21) 

 

where 𝑔௜ = 𝜕௬ො (೟షభ)𝚤(𝑦௜, 𝑦ො௧ିଵ) and ℎ௜ = 𝜕
௬ො(೟షభ)
ଶ 𝚤(𝑦௜, 𝑦ො௧ିଵ) result from the second order 

approximation, 𝑞 represents the tree structure in question and 𝐼௝ = {𝑖 | 𝑞(𝑥௜) = 𝑗} 

is the instance set of leaf 𝑗. This formula returns the minimal loss value for a 

given tree structure allowing the original loss function to be evaluated using the 

optimal weight values. In practice a learner is built by: (1) initialising a single 

root with all training examples; (2) iterating over the features and values per 

feature while evaluating each split by computing the gain = loss(father instances) 

– (loss(left branch) + loss(right branch)); and (3) testing if the gain for the next 

split is negative, in which case stop growing that tree branch, otherwise continue. 

This "exact greedy algorithm" runs in 𝑂(𝑛 ∗ 𝑚) where 𝑛 represents the number of 

training samples and 𝑚 represents the number of features. Notably, XGBoost can 

be used to assess the importance of each feature to its target using the gain 

described above, an advantage of this method that will be used in chapters 3, 4 

and 5. 

k-means++ 

In this work k-means++ is used to cluster important OHLC based features for 

validating predictive properties. k-means++ (Arthur and Vassilvitskii, 2007) is 

an unsupervised learning algorithm with the objective of grouping similar 

datapoints based on some similarity metric. The algorithm is an enhancement of 

k-means with the main difference being an additional process to set the initial 

seedings. The algorithm can be described as follows:  

1. Select an arbitrary set of cluster centroids 𝐶 = {𝑐ଵ, . . . , 𝑐௞}. 

2. Uniformly at random select an initial center 𝑐ଵ from the feature set 𝜒. 
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3. Select the next center 𝑐௜ = 𝑥ᇱ ∈ 𝜒 with a probability ஽൫௫ᇲ൯
మ

∑ ஽(௫)మ
ೣ∈ഖ

 where 𝐷(𝑥) 

denotes the shortest distance from a data point 𝑥 to its closest center. 

4. Repeat step 3 until all 𝑘 centers have been selected. 

5. For each 𝑖 ∈ {1, . . . , 𝑘} set 𝑐௜ to be the set of points in 𝜒 which are closer to 

𝑐௜ than 𝑐௝ ∀ 𝑗 ≠ 𝑖. 

6. For each 𝑖 ∈ {1, . . . , 𝑘} set 𝑐௜ to be the center of all points in 𝐶௜: 𝑐௜ =

ଵ

|஼೔|
∑ 𝑥௫∈஼೔

. 

7. Repeat stages 5 and 6 until 𝐶 does not change. 

Steps 1-3 are the additional steps implemented by k-means++; vanilla k-means 

arbitrarily selects 𝑘 centers.  

t-Distributed Stochastic Neighbour Embedding (t-SNE) 

In this thesis t-SNE is used to verify that clear structural partitions are discovered 

when applying the k-means++ algorithm to OHLC features as described above. 

t-SNE (Maaten and Hinton, 2008) is a non-linear dimensionality reduction 

technique which is well suited for visualisation of high dimensional datasets. The 

process for reducing dimensionality can be summarised at a high level as:  

1. Create a Gaussian probability distribution in the high-dimensionality 

space which dictates the relationships between neighbouring points. 

2. Create a Student t-distribution with a single degree of freedom (also known 

as the Cauchy distribution) to recreate the probability distribution of the 

high-dimensional space in the low-dimensional space. This prevents the 

“crowding problem” which is common in low-dimensional space where 

points get too crowded due to the curse of dimensionality. The Student t-

distribution is selected due to its longer tails compared to a Gaussian 

distribution which helps alleviate this problem.  
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3. The low-dimensional probability mapping is then optimised by applying 

gradient descent with momentum on the KL-divergence (a measure of how 

two probability distributions are different, sometimes referred to as relative 

entropy) between the high and low probability density functions.  

Following the above process results in a low-dimensional visualisation of a high 

dimensional space.  

2.1.5 Performance evaluation metrics 

The assessment of predictive classification power will be central to this thesis. It 

will be especially important to account for imbalanced datasets. Many of the 

metrics used are constructed from a confusion matrix structure. For a binary 

classification problem, a confusion matrix is constructed as in Table 2.1: 

Table 2.1: Confusion matrix 

 Predicted Up  
Price Movement 

Predicted Down  
Price Movement 

Actual Up 
Price Movement 

True Positives (TP) False Negatives (FN) 
[Type II Error] 

Actual Down 
Price Movement 

False Positives (FP) 
[Type I Error] 

True Negatives (TN) 

where  

 TP: The number of predictions where an up prediction was made and the 

resulting price movement was up, 

 TN: The number of predictions where a down prediction was made and 

the resulting price movement was down, 
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 FN: The number of predictions where a down prediction was made and 

the resulting price movement was up, 

 FP: The number of predictions where an up prediction was made, and the 

resulting price movement was down.  

(The confusion matrix can be generalised to a multi-class classification problem 

by extending the columns and rows to equal the number of classes in the 

classification problem, but this will not be needed for the work of this thesis.) 

A number of performance metrics that can be computed from the confusion 

matrix will now be listed and defined, before moving to other metrics with 

different, statistical, bases for their definition. 

Simple Accuracy is computed as the proportion of correctly predicted 

directional movements. It can be formally defined as:  

 𝑠𝑖𝑚𝑝𝑙𝑒_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
. (2.22) 

It has the advantage of simplicity but the weakness of being an unreliable 

indicator of performance in a strongly trending market, where there may be a 

tendency to overpredict the majority class. 

Cohen’s kappa, sometimes referred to as the normalised percentage 

better than random (NPBR) is a more robust performance metric for imbalanced 

datasets when compared to a simple accuracy measure, with a range of -100% to 

100%, a score of 0% being equivalent to chance. The metric is defined below: 

 𝑡 = 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁, (2.23) 
 

 𝑅௧௢௧௔௟ =  
(𝑇𝑃 +  𝐹𝑃)(𝑇𝑃 +  𝐹𝑁)  +  (𝑇𝑁 +  𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

𝑡
, (2.24) 

 



26 
 

 𝐶𝑜ℎ𝑒𝑛′𝑠 𝐾𝑎𝑝𝑝𝑎 =
(𝑇𝑃 +  𝑇𝑁) − 𝑅௧௢௧௔௟

𝑡 − 𝑅௧௢௧௔௟
. (2.25) 

This measure allows a comparison against random, which is a valuable metric to 

state as it gives relative contextual information. 

Matthews Correlation Coefficient (MCC) is a complementary metric 

to record alongside Cohen’s kappa. The metric is a correlation coefficient between 

the observed and predicted classifications which is bounded between -1 to 1, with 

a perfect classification receiving a score of 1. Notable, a result of 0—the same as 

for a random prediction—is obtained if all examples are assigned to the same 

class, making the MCC a tough metric for the prediction of imbalanced datasets. 

The MCC metric can be specified for a binary classification problem as 

 𝑚𝑐𝑐 =
𝑇𝑃 ⋅ 𝑇N − 𝐹𝑃 ⋅ 𝐹𝑁

[(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)]଴.ହ
  (2.26) 

and is often presented as a percentage value by multiplying the value by 100. The 

MCC can further be generalised for multi-class classification problems. However, 

as binary classification (such as market up/down) is the focus of this thesis the 

multi-classification details are emitted.  

Precision, sometimes also referred to as the positive predictive value, is 

the number of true positives divided by the sum of true positives and false 

positives. It is the measure of a classifier's exactness and is often low if the model’s 

predictions resulted in many false positives. The Precision metric is given by: 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . (2.27) 

Recall, which is sometimes referred to as model sensitivity, is defined as 

the ratio of correct predicted positive labels (𝑇𝑃𝑠) to all observations of that class. 

It can be defined as:  
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 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . (2.28) 

The F1 Score is the weighted average of recall and precision meaning the 

metric considers both false positives and negatives in its computation. Although 

the metric is less transparent than simple accuracy it is often more useful to 

understand classification power when datasets are imbalanced (such as the ones 

in finance markets). The F1 score can be defined as: 

 𝐹1 = 2 ⋅
𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 . (2.29) 

Finally in this group of metrics derived from the confusion matrix, the 

Support is often recorded when presenting the F1 score, Precision and Recall 

metrics and is defined as the number of true responses per class. 

Aside from the above classification metrics, based on the confusion matrix, 

performance may also be measured using an exact binomial test. 

A Binomial test is formulated as  

 𝑃(𝑋 | 𝑛, 𝑝) =
𝑛!

(𝑛 −  𝑋)!  𝑋!
 ∙  (𝑝)௑  ∙  (𝑞)௡ ି ௑  (2.30) 

where 

 𝑝 is the hypothetical probability of a correct directional classification; 

 𝑞 is equal to (1 −  𝑝); 

 𝑛 is the total number of trials; 

 𝑋 is the number of correctly classified predictions. 

The result of plugging in the above variables is a p-value which can be 

rejected at different confidence intervals depending on the problem. Usually a 5% 

confidence interval is appropriate. This statistical test indicates if a pattern's 

predictive power significantly differs from an expected predictive ability. In this 
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thesis the greater one-sided tail is used following the approach presented in Lu et 

al. (2012) who also tests the significance of several candlestick patterns predictive 

value. 

In this work the assessment of a clustering algorithm's effectiveness, for 

the purpose of selecting the optimal number of clusters k, is done using the 

Silhouette coefficient (SC) (Rousseeuw, 1987). The SC represents how similar 

a datapoint is to its assigned cluster (measuring cohesion) compared to other 

clusters (measuring separation). Usually the mean SC is reported representing 

how well the data is clustered for 𝑘 clusters. The optimal value of 𝑘 is the one 

that maximises SC. The metric can be formulised for each data point 𝑖 𝜖 𝐶௜ as  

 𝑎(𝑖)  =  
1

|𝐶௜| − 1
෍ 𝑑(𝑖, 𝑗)

௝∈஼೔,௜ஷ௝

 (2.31) 

 

 𝑏(𝑖) = 𝑚𝑖𝑛
௞ஷ௜

1

|𝐶௞|
෍ 𝑑(𝑖, 𝑗)

௝∈஼ೖ

 (2.32) 

 

 𝑠(𝑖) =
𝑏(𝑖)  −  𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
, 𝑖𝑓 |𝐶௜| > 1 (2.33) 

where 𝑎(𝑖) is the mean intra-cluster distance, 𝑏(𝑖) is the mean nearest-cluster 

distance, 𝐶௜ is the cluster in question and 𝐶௞ is the total number of clusters equal 

to 𝑘. SC is bounded between -1 and 1 with higher values representing more 

effectively clustered datapoints (i.e. the cluster is denser as a result of data points 

being very similar).  

As is evident from the discussion of above performance evaluation metrics, 

assumptions are made in many of them which can potentially distort the 

interpretation of performance, making it important to use a variety of statistics 

to confirm the validity of a conclusion, especially in financial data where signal 

to noise ratios are low and false discoveries are easily recorded.  
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2.2 Related Work 

This section presents a review of research related to the work of this thesis, 

covering both traditional and advanced methodologies for financial prediction. 

Special attention is given to the use of OHLC data structures (candlesticks) in 

designing predictive systems as there has been conflict in the literature about 

their usefulness.  

2.2.1 Candlestick patterns 

Japanese candlestick patterns are one of the oldest forms of pattern recognition 

techniques used in the attempt to predict a market's directional movement and 

are a controversial topic in academia. They were first proposed by Munehisa 

Homma around 1750 for charting the price behaviour of rice markets. Since then 

a debate as to whether candlestick patterns do indeed provide predictive power 

has been ongoing for decades amongst industry practitioners and academics, with 

support from the financial industry opposed by academic scepticism. The 

adoption of candlestick patterns has been widespread among both professional 

and retail traders with books dedicated to the study of candlestick patterns 

(Morris, 1992;1995; Bigalow, 2011). Often these patterns are constructed over 

multiple lags of OHLC bars to create a pattern which considers historical 

information to predict future trends.  

However, as mentioned above, academic studies have been predominantly 

critical of the reputed predictive power of candlestick patterns. Marshall et al. 

(2006; 2008) find that the relationships between OHLC levels have no useful 

information when applied to stocks in the Dow Jones Industrial Average (DJIA). 

Horton (2009) confirms there is little to no value in candlestick charting. Fock et 

al. (2005) present negative results for both the DAX stock index and the FGBL 
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German Bund futures contract (FGBL). The latter result is noteworthy on the 

context of the work of this thesis, for which predictive power is demonstrated for 

the FGBL, though it should be noted that the OHLC-derived patterns of the 

thesis are not traditional candlesticks but data-mined constructions. A further 

analysis on the DJIA by Duvinage et al. (2013) assesses the profitability of 

candlestick patterns on an intra-day 5-minute aggregation across the 30 

constituents of the index. They too report a negative result, finding that after 

transaction costs the predictive power encapsulated in the 83 patterns they study 

is too weak to be profitable.  

An interesting approach is taken by Detollenaere and Mazza (2014) who 

demonstrate that execution costs can be significantly reduced by timing the 

market correctly using candlestick patterns as a signal as to when to execute 

trades, agreeing with Mazza (2015), where it was demonstrated the occurrence of 

a Doji pattern was correlated with higher liquidity. However, Detollenaere and 

Mazza overall concur with the negative results of Marshall et al. (2006; 2008) and 

Duvinage et al (2013), showing that candlestick patterns are not able to predict 

future returns of 81 European stocks. 

However not all academic studies are critical of the use of candlestick 

charting. On the positive side, Xie et al. (2012) find that candlestick patterns 

have significant predictive power to forecast US equity returns. Lu et al. (2015) 

find predictive power in several patterns, but these are rare and the research in 

addition did not sufficiently address the distinction between candlestick patterns 

being able to yield profit and their being able to predict trends. They did however 

make the observation that when considering more volatile markets evidence in 

favour of candlestick trading strategies strengthened. Chen et al. (2016) assesses 

the predictive power of four pairs of popular candlestick patterns (bullish and 

bearish versions of the same patterns), aggregated on a daily frequency for the 
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Chinese markets, finding five of the eight candlestick patterns to have significant 

predictive power over medium and large market capitalisation stocks, although 

predictive power decayed rapidly as the predictive horizon is increased. One 

study, that of Lu (2014), finds that traditional patterns have little value but that 

novel patterns may do so when applied to the Taiwan stock market. This result 

is in line with that of Prado (2013), where it is shown that though traditional 

candlestick patterns on Brazilian markets do not show statistically significant 

power,  significant results can be obtained when the patterns are finetuned for a 

specific market; this finding is in line with discoveries, to be presented later, of 

this thesis, though it should again be emphasised that the application of a novel 

feature mining process in the work of the thesis creates a very different context. 

Overall the evidence in the literature favours the dominant academic belief 

that candlestick patterns have little predictive value. However, along with those 

results that suggest that novel, or asset-tuned, patterns may be predictive, there 

is also evidence that combining OHLC data structure with other more advanced 

techniques such as fuzzy logic (Lan et al. 2011; Tsai, 2014; Naranjo, 2018) and 

machine learning (see section 2.2.3) may achieve statistically significant predictive 

systems. Thus the results presented in this thesis, albeit in the context of a mid-

price prediction and/or utilising advanced machine learning methods, while they 

may surprise academic researchers, are at least to some degree presaged by these 

few hints of the possible value of modified and/or augmented, non-traditional, 

forms of candlestick charting. 

2.2.2 Technical analysis 

As was the case with candlestick patterns the broader technical analysis field is a 

highly controversial area in academia, with academics largely doubting the 

usefulness of these tools and the statistical significance of claimed results. 
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Technical indicators (e.g. oscillators and averages typically used to infer trend 

strength, future market direction and oversold/overbought market state) in many 

cases rely heavily on lagged OHLC price structures (where a lagged price is one 

measured at a previous (relative to the current) time step), making this form of 

analysis to a substantial degree an extension of the ancient Japanese candlestick 

approach.  

On the positive side, Brock et al. (1992) measured the performance of 

technical analysis by applying a bootstrap methodology to the DJIA index, 

finding that trading range breaks and moving averages generate statistically 

significant returns when compared to four different benchmark models. Brown 

and Jennings (1989) confirm the usefulness of technical analysis, but only where 

prices are not fully informative and when market participants do not make 

rational decisions about the relationship between signals and price evolution. 

Kavajecz and Odders-White (2004) also confirm the usefulness of technical 

analysis by looking at support and resistance levels coinciding with order book 

depth concluding that moving averages have predictive power in relation to 

orderbook depth. Interestingly, Taylor and Allen (1992) surveyed senior London-

based foreign exchange dealers finding a bias towards the use of technical analysis 

for shorter term price analysis compared to the use of fundamental data. Lui and 

Mole (1998) carry out a similar study in Hong Kong, with the same outcome as 

the work of Taylor and Allen. This raises the question of whether technical 

analysis is in a sense self-fulfilling, so that market movements are simply an 

artefact of popular technical indicators. According to Schulmeister (2007) the 

presence of chartists in the market would indeed result in technical analysis being 

a self-fulfilling prophecy: markets with a high use of technical analysis would see 

significant results due to the number of market participants relying on the same 

toolset. 
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 Turning now to research that shows mixed results as to the value of 

technical analysis, an interesting study was published by Neftci (1991) which 

shows some instances of technical analysis can produce successful forecasting rules 

if the underlying timeseries process does not conform to a Gaussian distribution, 

although the general theme here was that technical analysis did not produce 

statistically significant predictions. Hao et al. (2013) investigate the profitability 

of technical trading rules such as trading range breakout (based off OHLC 

differences) and find these rules are more effective in emerging markets, and that 

shorter-term (minutes to hours) variants provide significantly more predictive 

power than longer term (over days) versions of the same indicator. However they 

also suggest that the chosen technical indicators would provide only weak 

predictive power in more efficient markets.  

 On the negative side, LeBaron (1999) investigated technical analysis over 

periods during which the Federal Reserve was inactive, showing that the ability 

to predict exchange rates using TA is significantly reduced. Park and Irwin (2007) 

conduct a study of the literature on the profitability of technical analysis, finding 

further evidence of poor predictive power when predictive systems are built from 

technical indicators alone. Menkhoff et al. (2007) acknowledge technical analysis 

is widespread but conclude the evidence that this form of predictive analytics 

holds any significant power is unconvincing.  

 Overall, then, there are mixed academic opinions as to the effectiveness of 

technical analysis, although use of technical indicators derived from an OHLC 

data structure is popular with practitioners. As was observed also in the section 

of the literature survey dealing with candlestick patterns, TA methods have been 

improved by applying more advanced methods such as genetic programming and 

neural networks to enhance the traditional or basic rules (Neely et al. (1997); 

Neely and Weller, 2001; Fernandez-Rodryguez et al. 2000). Many of the studies 
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reviewed above suggest the use of technical analysis can be effective on certain 

markets but its usefulness is highly correlated with the level of market efficiency. 

More advanced methods are required in efficient markets to extract meaningful 

predictive power given the decay of observable inefficiencies over time. This would 

be consistent with Olson (2004), in which it is stated that the profitability of 

technical trading rules has indeed reduced over time.  

2.2.3 Machine learning for prediction systems and trading 

As has been discussed above there is some degree of evidence that OHLC data 

structures can be a basis for predictive systems, historically, first through 

candlestick patterns, and later as a component of many popular technical 

indicators. More recently predictive systems have made heavy use of machine 

learning techniques, as markets have become more efficient and extracting 

significant predictive power has become harder. Interestingly, although the 

complexity of predictive systems has increased, the use of OHLC data structures 

remains popular.  

Hu et al. (2019) propose an interesting methodology by visualising the 

FTSE100 market as OHLC bars and then applying a deep convolutional 

autoencoder (CAE) to extract feature information from this dataset. Using the 

feature representations from the CAE they cluster the training data and select 

stocks with the highest Sharpe ratio (Sharpe, 1966) to construct a portfolio. Their 

portfolio was able to outperform the FTSE100 and competing investment vehicles 

by more than double. Other examples of using candlesticks in combination with 

deep learning is the work of Kim, T. and Kim H.Y. (2019) who propose a feature 

fusion LSTM-CNN combining features learned from different stock timeseries 

data and candlestick images to predict the SPDR S&P500 ETF price. They 

achieve a RMSE of 0.098 for predicting the five-minute forward return and 
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successfully devise several trading strategies with the best generating profits in 

excess of 17% over a three-month period. They also discover that a candlestick 

chart is the most appropriate type of visualisation for the prediction of financial 

markets which is in line with the results of this thesis. The methodology of (Kim 

and Kim, 2019) shows an interesting approach to the use of candlestick patterns 

in the 21st century for extraction of predictive power. 

Moving away now from the above approach of transforming OHLC data 

into images and applying CNNs to these image corpuses, Jasemi at al. (2011) 

combine Japanese candlestick analysis with a feed-forward neural network (ANN) 

using two different approaches. The first approach focuses on raw data, defined 

as ratios of OHL price levels to the bars close price, as network inputs. The second 

approach uses the candlestick representation as inputs to the network. Both the 

first and second approach had the same objective of predicting the 6-day trend, 

classified into three categories (ascent, neutral or decent). The authors find the 

signal approach (i.e. using OHLC representations of a candlestick) to be the most 

powerful, with accuracy scores into the 70% region (although the work does not 

account for dataset imbalance and so one should be cautious about the 

significance of this reported result). Nevertheless, this research demonstrates a 

successful hybrid combination of machine learning and candlestick patterns. 

The use of OHLC differences, ratios and/or returns as features for machine 

learning algorithms has been a focus for many academics and practitioners, using 

a wide variety of learning algorithms from support vector machines (SVMs) 

(Prasaddas and Padhy, 2012; Huang, 2002; Li and Tam, 2017), LSTM RNNs 

(Rather et al., 2015; Bao et al., 2017; Chen et al., 2015; Gao et al., 2017; Gers et 

al., 2002; Khare et al., 2017; Li and Tam, 2017; Nelson et al., 2017, Zeng and Liu, 

2018, Troiano, 2018), agent based approaches (Raudys and Zliobaite, 2006), deep 

belief networks (DBNs) (Shen et al., 2015), previously mentioned CNNs (Ding et 
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al. 2015; Kim, T. and Kim H.Y., 2019) and ANNs (Refenes et al., 1994; 

Garliauskas, 1999; Fernandez-Rodrıguez, 2000; Yu, 2015). It is clear the use of 

advanced machine learning techniques is popular in designing predictive systems, 

which could be partly due to the need for more advanced techniques in extraction 

of predictive power as markets become more efficient.  

One might give a particular emphasis here to the machine learning work 

of Sermpinis et al. (2015; 2013) and Duns et al. (2011), as the authors hold 

academic tenure and also actively run a fund where they presumably apply the 

techniques, or derivative versions of the techniques, proposed in their published 

works. An interesting approach to forecast foreign exchange rates is presented by 

Duns et al. (2011) and separately by Sermpinis et al. (2015; 2013). They focus on 

applying ANNs, SVMs and DBNs to a wide range of instruments achieving a 

maximum directional accuracy of 63.62%. Though one should again be cautious 

of directional prediction results reported solely in terms of accuracy, it is notable 

that when combined with simple trading strategies these predictions generate a 

maximum annualized return of up to 30% on the EURUSD currency market (a 

market this thesis also focuses on). 

So far, the literature reviewed has focused on the use of single learning 

algorithms to predict, usually, the close price. Ensemble learning is the practice 

of combining many models’ predictions into one with the aim of achieving a more 

stable model with enhanced predictive power. In Chapter 5 an ensemble classifier 

is proposed using multiple LSTM RNNs to predict a directional trend. Therefore, 

a review of interesting ensemble methods for financial prediction is appropriate. 

Cheng et al. (2012) conducts a comparison of ensemble methods in financial 

market prediction, finding bagging to be the most effective method when 

compared to random subspace and stacking, although he does note that the 

selection of ensemble algorithm is highly dependent on the desired usage. Picasso 



37 
 
et al. (2018) combines technical analysis and machine learning together as an 

ensemble to predict market trend for the selection of a portfolio of NASDAQ 

stocks, finding the method to achieve up to 61.69% accuracy. This is impressive 

(given the usual caveats about reporting in terms of accuracy) given the efficiency 

of the market they focused on. A number of other works have focused on 

combining neural networks and other learning algorithms to achieve a higher, 

more robust predictive power (Schwaerzel and Rosen, 1997; Al-Hnaity et al, 2015; 

Gyamerah et al., 2019; Hegde et al, 2018; Yang el al., 2016; de Mello Assis et al., 

2018; Xu et al., 2014; Yang el al., 2017; Yu et al., 2008). All have observed an 

increase in stability and enhanced robustness in out-of-sample datasets when 

compared to single predictors. Finally, in relation to the use of ensembles, it 

should be noted that the use in Chapter 5 of an ensemble of LSTM RNNs trained 

over different intra-day OHLC aggregations, each predicting a different horizon, 

is novel in previous work, to the author's knowledge, has not investigated the 

combination of different models which predict over differing time horizons and 

have differing frequency aggregations as features.  

This thesis focuses on a range of asset classes with one being that of 

cryptocurrencies. The literature review will therefore turn now to the use of 

machine learning techniques for forecasting cryptocurrency price movements. 

Attanasio et al. (2019) explores the use of machine leaning techniques for 

quantitative cryptocurrency trading, finding that prediction models based on time 

series forecasting techniques perform better than classification models, which 

agrees with the work to be presented in this thesis. McNally et al. (2018) applies 

a Bayesian optimised LSTM RNN to predict the Bitcoin price direction achieving 

a directional accuracy of 52%. This appears somewhat disappointing when 

compared to other (Chowdhury et al., 2019; Mallqui and Fernandes, 2019; Sin 
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and Wang, 2017) published work but demonstrates the difficulty of classifying 

cryptocurrency directional price movements.  

Ensemble learning, used in this thesis, has also seen past success in the 

directional prediction of cryptocurrency prices. Chowdhury et al. (2019) 

investigate the use of machine learning (gradient boosted trees, ANNs, K-NN, 

ensembles) to predict future prices of the CCi30 cryptocurrency index and its 

constitutes. They find a maximum performance using ensemble learning (though 

the work appears flawed in that only in-sample results are reported, albeit with 

accuracies of 95%). An interesting approach is taken by Mallqui and Fernandes 

(2019) who predict the direction, maximum, minimum and close prices of the 

daily Bitcoin exchange rate using an ensemble of recurrent neural networks and 

tree-based algorithms. They find significant predictive power with this approach 

achieving a directional accuracy of 62.91%. Sin and Wang (2017) design an ANN 

ensemble called a "genetic algorithm based selective neural network ensemble" to 

predict the price of Bitcoin, showing an impressive 64% accuracy. A trading 

strategy is then constructed achieving 88% returns over a period of two months 

(although they failed to outperform a Buy & Hold strategy). Other examples of 

machine learning trading strategies focusing on cryptocurrency markets (Shah 

and Kang, 2014; Fischer et al., 2019) show similar results where a better risk 

adjusted return is achieved at the cost of lower returns when compared to a Buy 

& Hold strategy. (In this thesis it will be shown that a methodology using 

ensembles of LSTM RNNs is shown to outperform Buy & Hold strategies while 

maintaining a high Sharpe ratio.) Other notable works on the prediction of 

cryptocurrency prices—using methods outside the scope of this thesis—include 

Georgoula et al. (2015) and Steinert and Herff (2018), who use social media 

features, and Kristoufek (2015) and Phillips and Gorse (2018), who use wavelet 

coherence applied to social media datasets.  
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As has been mentioned previously, in this thesis (as will be shown in 

Chapter 4) a new mid-price derived from the structure of an OHLC bar is shown 

to be highly predictive. Notably there exists no prior literature by other academics 

or practitioners relating to a mid-price as proposed here. 

Overall, on analysing the work discussed in this section, it appears higher 

frequency price and trend movements (e.g. intra-day movements) are more 

difficult to predict than those at a lower frequency (e.g. daily data). This may 

simply be an artefact of a large difference in the number of data points, where 

papers presenting work at a lower frequency may have discovered false artefacts, 

although one can only speculate. The level of market efficiency is also an 

important consideration as it appears that more impressive results have been 

achieved for emerging markets or markets with a high level of retail traders (e.g. 

Indonesia, Malaysia, China, Cryptocurrencies) compared to mature markets. 

Finally, the speed of market movements and liquidity fragmentation has an 

impact on how effectively predictive power can be extracted from a market due 

to patterns diminishing or completely breaking over a short period of time, usually 

because of a permanent change in market structure. 

2.2.4 Conclusions of the literature survey  

The evolution of systems for prediction of financial markets has continually 

increased in complexity, with a high correlation to increasing market efficiency, 

from the use of candlestick patterns in the 18th century to the widespread adoption 

of technical analysis, the use of advanced machine learning techniques, and 

hybrids between these most ancient and most modern approaches in the 21st 

century.  
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Evidence has been presented for (Xie et al., 2012; Chen et al., 2016; Lu, 

2014; Prado, 2013) and against (Marshall et al., (2006; 2008); Horton, 2009; Fock 

et al., 2005; Duvinage et al., 2013; Detollenaere and Mazza, 2014) the use of 

candlestick patterns and technical indicators in the construction of financial 

predictive systems. A review by Park (2004) shows currency markets are best 

suited to technical analysis with futures being classed as an intermediate fit and 

stock markets being the poorest fit for this type of predictive system. Over time 

markets have become more efficient from decreasing transaction costs, “big data” 

analysis, and more advanced market participants, which Park suggests has 

negatively affected the predictive capabilities of technical analysis. The decline in 

the effectiveness of technical analysis is further emphasised by Neely (2009), 

evidencing the need for more advanced predictive systems which can generalise 

across asset classes. This is one of the main focuses of this thesis. The work 

presented in this thesis focuses on currencies and futures markets, as would be 

recommended by Park, albeit two of the three currency markets investigated are 

that of cryptocurrencies which were not invented when Park published his work. 

Insight into the effectiveness of candlesticks and OHLC data in cryptocurrency 

markets will therefore provide further insight into this area. 

The increased quantity of published work using machine learning systems 

for financial market prediction (Prasaddas and Padhy, 2012; Li and Tam, 2017; 

Rather et al., 2015; Bao et al., 2017; Chen et al., 2015; Gao et al., 2017; Khare et 

al., 2017; Li and Tam, 2017; Nelson et al., 2017, Zeng and Liu, 2018, Troiano, 

2018; Hu et al. 2019) is highly correlated with fewer works being published 

relating to candlestick patterns and technical analysis, likely due to market 

efficiencies, as discussed previously. However, the literature suggests that the use 

of OHLC data structures has continued to be of significant interest evidencing it 

to be a particularly powerful representation of time series data. This thesis will 
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focus completely on the use of OHLC data, and the results to be presented will 

be in agreement with the observations of previous researchers that this data 

representation is indeed powerful.  

One of the dangers of a machine learning predictive system is that of 

overfitting (when an algorithm is fit to specific artefacts of its training dataset, 

resulting in a model which cannot generalise well to out-of-sample data) and 

complexity explosions. This appears to be widespread in the literature given the 

number of papers stacking machine leaning algorithms together and procuring 

feature sets with complex transforms in their methodologies to achieve what is 

reported as reasonable predictive power. López de Prado (2018) emphasises the 

danger of overfitting and widespread false discoveries published in financial 

literature, albeit in the context of trading strategy parameters. It is evidenced 

that financial datasets are a difficult area in which to develop robust and 

generalisable systems as their governing dynamics continually change, hence the 

need for powerful systems which in addition maintain transparency and 

interpretability.  

*    *    * 

This review section will end by considering the relations between the systems 

developed in this thesis, heavily based on machine learning and OHLC data 

structures, and those systems evidenced as promising in the literature. The novel 

predictive methodologies proposed here differ from the past literature in a number 

of important ways: 

1) The systems developed here focus on transparency and simplicity in the 

feature space while still achieving, and in many cases significantly 

outperforming, published works on the prediction of financial markets.  
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2) Consideration is given here to the sensitivities of each algorithm while still 

ensuring maximal predictive power can be extracted from a feature set.  

3) The possibly misleading use of accuracy alone as a performance metric is 

here avoided, and statistical testing of predictive power is carried out, 

showing the results presented in this thesis to be significant. 

4) No previous work has constructed ensembles by combining sub-models 

trained to predict different horizons using differing feature aggregation 

periods which is somewhat novel and achieves remarkable predictive 

power.  

5) No previous work has developed predictive systems effective on both 

traditional and crypto asset classes, as will be done in this thesis. 

With a focus on transparency, simplicity and interpretability this thesis provides 

insight in how to build prediction systems which can generalise, control for 

complexity, and operate at different data granularities while providing robust 

predictive power. 

 



 

Chapter 3 

3 Deep candlestick mining 

 

The goal of this chapter is to predict the direction of the close price (up or down 

over the next period, here one hour) using as input novel candlestick patterns 

derived a process of feature mining within a large universe of potentially useful 

OHLC constructions (using ratios and difference of price levels). As discussed in 

the previous chapter, there are conflicts in the academic literature about the 

usefulness of candlestick patterns to predict directional price movements. 

However, these discussions in the literature are about traditionally defined 

candlestick patterns only. In this chapter, a data mining process named Deep 

Candlestick Mining (DCM) is developed using Extreme Gradient Boosted Trees, 

Long Short Term Memory Recurrent Neural Networks and k-means++, and is 

shown to be able to discover candlestick patterns significantly outperforming 

traditional ones. A test for the predictive ability of novel versus traditional 

candlestick patterns is devised using all significant candlestick patterns within 

the traditional or deep mined categories. The deep mined candlestick system 

demonstrates a remarkable ability to outperform the traditional system by up to 

117% on hourly data. 
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3.1 Introduction 

Japanese candlesticks are one of the oldest forms of pattern recognition 

techniques used to attempt to predict financial markets. The methodology was 

first proposed by Munehisa Homma around 1750 for charting the price behaviour 

of rice markets. Candlestick charts visualise an asset’s price by aggregating period 

specific bars (e.g., 1-hour bars) consisting of open, high, low and close (OHLC) 

price levels. Formations of frequently identified sequential patterns are then used 

as a tool to predict future market direction. Many industry practitioners believe 

candlestick patterns are an effective predictive tool, though there has been much 

debate in the academic world as to their effectiveness, as discussed in section 

2.2.1. 

 In this chapter a new process for discovering candlestick pattern formations 

is proposed, referred to as Deep Candlestick Mining (DCM), as a means to 

discover asset-specific predictive candlestick patterns using a number of ML 

techniques: Extreme Gradient Boosted Trees (XGBoost), Long Short Term 

Memory Recurrent Neural Networks (LSTM RNNs) and k-means++ (for 

technical model details see section 2.1.4). A feature mining process is first 

proposed using XGBoost and correlation filtering showing that a high predictive 

power can be extracted from financial markets using relatively simple and 

intuitive feature representations. This feature mining process is also used in 

chapters 4 and 5 due to its effectiveness in discovering powerful features while 

maintaining transparency in the feature space.  

In the work of this chapter DCM-based prediction is shown to substantially 

outperform the use of traditional candlestick patterns on hourly data, over a 

range of different instruments, showing the methodology is robust to asset class. 

The technique additionally allows a visualisation of the candlestick patterns; in 
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this way, DCM-based patterns allow a human level understanding, that might 

be especially appealing to industry practitioners used to the deployment of 

traditional candlestick patterns, of what black-box predictors have deemed to be 

important relationships discovered in financial market datasets using OHLC 

derived features. 

3.2 Methodology: DCM Workflow 

This section tabulates the workflow for the DCM process. Each stage after the 

first, in which the data are generated, is carried on a different dataset, in order 

that there is no unwanted data leakage and the resulting model can generalise 

well. 
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Table 3.1: Deep Candlestick Mining’s process flow. 

Process & 
Dataset 

Details 

Data 
Generation 

(all data) 

1. Gather raw transaction data (section 3.3). 
2. Aggregate this into hourly OHLC data. 

Feature 
Mining 
(Dataset 1) 

1. Identify a powerful set of features using XGBoost and a 
correlation filtering process (section 3.4.1). 

2. For each feature set train LSTM RNN models (section 
3.4.2). 

3. Select the feature set which maximises the network's 
performance in validation (section 3.4.2). 

Candlestick 
Generation 
(Dataset 2) 

1. Cluster the feature set to identify global and local 
structure (section 3.5.1). 

2. Validate each cluster’s structure is real (section 3.5.1). 
3. Drop clusters that do not satisfy cluster desiderata 

(section 3.5.2). 
4. Index each candidate to the original OHLC timeseries 

and visualise its candlestick pattern (section 3.5.2). 
5. Create a Deep Candlestick Mining pattern to represent 

the average shape of a cluster’s candlestick patterns (i.e., 
the centroid) (section 3.5.2). 

Test 
(Dataset 3) 

1. Test traditional candlestick patterns individually (section 
3.6.1) 

2. Test DCM-based patterns individually (section 3.6.2). 

Holdout 
(Dataset 4) 

Compare a predictive system based on multiple DCM-based 
candlestick patterns to one based on multiple traditional 
candlestick patterns (section 3.7). 

 

3.3 Data selection and usage 

The work of this chapter concentrates on four different instruments, the German 

bund 10-year futures contract (FGBL), EURUSD, Bitcoin (BTCUSD) and 
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Ethereum (ETHUSD). As the cryptocurrency asset class is much newer than 

FGBL or EURUSD the datasets acquired from the Bitfinex exchange for 

BTCUSD and ETHUSD do not go back as far historically. An effort is made, 

where possible, to align the historical duration. As the validation, test and holdout 

datasets are important for candlestick discovery and out-of-sample comparisons 

these are each of the same duration, and hence each market would be exposed to 

roughly the same global economic environment. The train dataset's historical 

duration is aligned per asset class categorisation (traditional and cryptoasset). 

The traditional asset classes use more train data as there was enough data 

acquired to do so. Results were observed to be robust within reason to different 

dataset durations of train, test, validation and holdout. The table below shows 

each instrument’s dataset durations per category. 

Table 3.1: Deep Candlestick Mining dataset durations. 

ID Train Validate Test Holdout 

FGBL 5 Years 6 Months 3 Months 3 Months 

EURUSD 5 Years 6 Months 3 Months 3 Months 

BTCUSD 3 Years 6 Months 3 Months 3 Months 

ETHUSD 3 Years 6 Months 3 Months 3 Months 

The train datasets are used for feature mining and training of the LSTM RNN. 

A validation dataset is then used to cluster the feature set. It is the clustering 

process which identifies the DCM patterns by differentiating global and local 

structure in the feature space. A test dataset is used for an out-of-sample 

predictive assessment at the individual pattern level, with the holdout dataset 

being reserved for a full portfolio of patterns predictive test. 
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3.4 OHLC feature mining  

3.4.1 Identification of candidate features 

All possible combinations of ratios and differences of one-hour OHLC data are 

calculated given 𝐿 lags. The number of such combinations, and therefore the 

number of potential features, increased very rapidly with L, as can be seen in 

Figure 3.1, with examples for the case of L=2 in Figure 3.2.  

 

 

Figure 3.1: Number of potential features as a function of lag, L. 

 

Figure 3.2: Examples of potential features for L=2. 

XGBoost is then used to rank the importance of each feature to a target 

(in this case the future close price directional change), deriving the importance 

value from the total gain metric. The top 𝑁 features—where N=100 is chosen 

here and throughout this work—are selected by inspection of the importance 
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curve. As can be seen in Figure 3.3 the total gain metric curve noticeably flattens 

for all instruments beyond 𝑁=100. 𝑁 should ideally be optimised for each asset 

when selecting a feature universe. However, to keep a consistent approach in 

demonstrating the Deep Candlestick Mining process we chose to use a constant 

𝑁=100 here with no further optimization; the results presented below are 

therefore a general indication of the process’s utility. 

 

Figure 3.3: Three-lag importance mining curve for BTCUSD, ETHUSD, FGBL and EURUSD 

for the total gain importance metric. 

Using the top 𝑁 feature universe, a further filtering is then applied, 

focusing on the correlation of feature-to-target (ft) and feature-to-feature (ff) 

relationships. Explainability was a strong requirement in this work; thus, for 

example, the use of the full feature set with dimensionality reduction via PCA, 

would not be suitable due to the mixing of information from different feature 

dimensions. Features with a high feature-to-feature or low feature-to-target 

correlation may be redundant dimensions in the input feature set as they add 

minimal value to the predictor's discriminatory power. Figure 3.5 (on p. 50) shows 

these correlation relationships for Bitcoin; it is plain some features demonstrate 

very high inter-feature correlation and low correlation to target. Therefore, 

features are selectively chosen based on correlation relationships, so that a 

maximal predictive power may be extracted with less features, reducing the 
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number of parameters (and model complexity) in the LSTM RNN. Features that 

pass the tests ห𝑐𝑜𝑟𝑟௙௧ห  ≥ 𝑐ଵ and ห𝑐𝑜𝑟𝑟௙௙ห  ≤ 𝑐ଶ   (see Figure 3.5, on the following 

page) make the optimal feature universe, with 𝑐ଵ and 𝑐ଶ being optimised on a 

validation set, with resultant values 𝑐ଵ = 0.2 and 𝑐ଶ = 1.0. 

 

 
Figure 3.4: Filtered Bitcoin importance mining feature sets performance. 

The dark colour in Figure 3.4 is where the correlation filtration process 

results in zero features. The bottom right of the figure shows that with no filtering 

(i.e., all 𝑁 features from the importance mining) the LSTM RNN can even so 

work quite effectively, suggesting it can work out what features to up-weight and 

down-weight in the training process on its own. Over all datasets, this filtering 

achieved ~10% improvement in predictive power. 
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Figure 3.5: Top 𝑁 Bitcoin correlation feature-to-feature and feature-to-target relationships. 
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3.4.2 Assessment of predictive value of features using LSTM 

A LSTM RNN is used as the directional prediction model taking features 

generated by the feature importance mining step, 3.2.1, as input. The LSTM RNN 

is constructed using LSTM cells, Batch Normalisation layers and Dropout to 

improve regularisation and training speed. The resulting LSTM RNN is trained 

using ADAM, a first-order adaptive optimisation algorithm described in section 

2.1.4.  

Inputs to the LSTM RNN are standardised by removing the median and 

scaling the data to the interquartile range (i.e., between the 25th and 75th quantile). 

The processes of centring and scaling occur independently over each feature on 

the train set. The scaler statistics (median and interquartile range) are then saved 

for use in out-of-sample datasets. This type of scaling is more robust to outliers 

compared to common standardisation schemas which typically focus on removing 

the mean and scaling according to unit variance, which can falsely skew the 

sample mean and variance. It is important to consider the effect of outliers on the 

feature set in the current work as two of the instruments, Bitcoin and Ethereum, 

are of the cryptoasset class which is a dataset well-known for containing extreme 

outliers.  

The targets for the LSTM RNN are -1 (for a down movement) and +1 (for 

an up movement). The network architecture is optimised using a distributed 

Bayesian Optimisation and Hyperband methodology (BOHB) (see section 2.1.4 

for details). BOHB is used to optimise several hyperparameters of the LSTM 

RNN as specified in Table 3.2. 
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Table 3.2: Hyperparameters to be optimised by BOHB. 

Hyperparameter Search Range 

Number of hidden layers {1,2,3} 

Number of units per layer [23, 28] 

Learning rate [10–6, 10–2] 

Dropout rate [0,0.5] 

 

Once the optimisation process completes, the sensitivities of the optimal 

parameter set are assessed. To do this, each parameter is frozen apart from the 

one which is being tested. Trials are run 𝑁 times where the parameter is perturbed 

by a value drawn from a distribution with the mean and variance set as the 

optimal parameter value (i.e., 𝜇(𝑝𝑎𝑟𝑎𝑚_𝑣𝑎𝑙𝑢𝑒) and 𝜎(𝑝𝑎𝑟𝑎𝑚_𝑣𝑎𝑙𝑢𝑒)). This 

process is carried out to assess the systematic sensitivity of each parameter, 

ensuring the optimal solution is robust to a reasonable range of fluctuations 

around the perceived optimal. The test is critical to a successful financial machine 

learning model optimisation as financial datasets are very noisy and thus require 

robust parameter selections to provide valuable out-of-sample predictions. Other 

statistical sensitivity methodologies exist; however, it was determined the 

methodology proposed here maintained transparency, clarity and was a simple 

way to test the robustness of the LSTM RNN's predictive power.  

3.5 Generation of novel candlestick patterns 

3.5.1 Clustering 

The LSTM RNN features which were used to perform the directional prediction 

on the validation set are now clustered using k-means++, where 𝑘 is selected by 
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maximising the Silhouette coefficient (SC) (see section 2.1.5 for details on this 

metric). An initial (parent) clustering is performed on the validation feature set 

with the intention of revealing global structure. A local (child) clustering is then 

performed which clusters each of the parent clusters. The optimal parent and 

child configurations are the ones which maximise the SC.  

 

Figure 3.6: An example three-lag Silhouette coefficient optimisation for ETHUSD to 

demonstrate the process of parent and child clustering. 

It is thought that by clustering for global and local structure interesting 

feature space relationships will be revealed that could allow us to classify specific 

types of directional movement more accurately. A second line of reasoning as to 

why a double clustering could be preferable is that “super clusters” might thereby 

be discovered. It is hypothesised that if these “super cluster” structures exist then 

they would provide robust and superior statistically significant predictive power, 

which would provide an edge over other market participants' models given the 

difficulty of identifying such structures in noisy datasets. Thus, these “super 

clusters” are likely to represent the most significant and powerful candlestick 

patterns. The clustering process is carried out for each instrument and lag 

lookback separately revealing structure in each. 
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The clustering of ETHUSD data (see Figure 3.6 above) shows an 

interesting result where the parent clustering sets 𝑘 = 3 and the child clustering 

sets all 𝑘 = 2. When a clustering algorithm sets 𝑘 = 2 it can often mean there is 

no structure present, and the algorithm was forced to arbitrarily select a 

partitioning of the dataset. To validate there is indeed cluster structure in such 

cases each dimension of the feature set is plotted against its magnitude shown in 

Figure 3.7 below. Each column represents the parent cluster ID, and each row 

represents the child cluster ID. It can be observed that all structures are unique 

thus confirming that there is structure in this dataset. This process is carried out 

for each asset and lag resulting in all clusters being confirmed to be valid – i.e., 

in the optimal feature sets, unique structure was discovered and validated. Other 

clustering techniques and k-selection criteria could have been used; however, the 

optimal selection of a clustering algorithm and associated selection criteria is 

outside the scope of this work. 
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Figure 3.7: Selected clusters from ETHUSD confirming different structures in the magnitude space of each feature.
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3.5.2 Cluster filtering and candlestick selection 

After confirming that structure exists, using the methods of the previous section, 

each cluster is analysed further to determine if it encapsulates a valid candlestick 

pattern.  

 Initially, a visual similarity check is done. Each cluster member is indexed 

to the OHLC data it corresponds to, allowing a visual inspection of all candidate 

OHLC arrangements to confirm that the clustering process did indeed group 

together patterns of similar shape. A Silhouette coefficient (SC) threshold is then 

optimised per cluster to increase the consistency of shape. The optimal SC 

threshold is the one that corresponds to the lowest cut-off (maintaining sample 

size) where each cluster member's shape is deemed to be consistently 

representative of the average shape per cluster. After imposing this cut per cluster 

all instances were found to consistently represent similar shapes in the clusters 

they had been assigned to. A further validation is then carried out, requiring a 

valid cluster to satisfy the following criteria:  

1. The LSTM RNN's Cohen’s kappa > 0%. 

2. The percentage of up movements deviates from 50%.  

This is calculated by indexing each candidate back to the original 

OHLC dataset, counting the number of candidates that represent an 

up movement and dividing by the total number of candidates belonging 

to that cluster. 

3. The LSTM RNN's majority prediction agrees with the cluster’s direction. 

Criterion 1 has the purpose of verifying that the LSTM RNN was able to 

gain discriminatory power from the feature structure. If the network's Cohen’s 

kappa score is <=  0%, then it was unable to use the feature structure effectively. 
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If this is true, then the candlestick pattern associated with the cluster would not 

represent a meaningful feature representation as the LSTM RNN deemed it 

insignificant and could not gain any informative information from it.  

 Criterion 2 verifies that the cluster candidates are biased in one direction. 

If the candidate’s directional movements at 𝑡 + 𝑛 are not skewed in one direction, 

on average, then there is no directional bias, resulting in uncertainty as to the 

future direction of price movement. 

Criterion 3 verifies that the cluster and LSTM RNN agree on the 

directional movement at 𝑡 + 𝑛. If this condition is not satisfied, then the derived 

candlestick pattern would be ineffective as the network derived the opposite signal 

from which the ground truth represents. In strongly trending markets this 

criterion could be satisfied when criterion 1 is not, hence the need for both.  

The DCM-based candlestick patterns represent the centroids of each 

cluster which passes the tests. These patterns are essentially what the LSTM 

RNN would have seen if it had been looking at OHLC data as a human might 

look at a candlestick chart when a prediction was made. 

3.6 Testing candlestick patterns individually 

In this section results are presented first for traditional candlestick patterns and 

then for DCM-based patterns, in each case assessing the statistical significance of 

their predictive power in terms of accuracy (where each matched pattern's 

accuracy is calculated as the ratio of correct predictions to total predictions, for 

a pattern that has been verified as significant in predicting movement in a given 

direction). 
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3.6.1 Traditional candlestick patterns 

To assess the power of the deep mined candlestick patterns against an 

appropriate baseline an assessment of 100 bull (predicting up) and bear 

(predicting down) traditional candlestick patterns (50 candlestick types overall)1 

were tested on FGBL, EURUSD, ETHUSD, BTCUSD hourly data. Significance 

levels were calculated using a binomial distribution (as in Hércules et al. 2013; 

see section 2.1.4 for details), where the null hypothesis was that candlesticks are 

no better than guessing, which translates to 50% directional accuracy. Significant 

candlesticks (see Table 3.4) are defined to be patterns with a directional 

predictive power significant at 10% or better. 

It can be seen from Table 3.4 (below) that only four patterns were 

significant at the 5% and 10% levels for FGBL, EURUSD and ETHUSD. Analysis 

on BTCUSD revealed five significant patterns. Interestingly no pattern was 

significant at the 1% level. Hence, while there is some predictive ability in 

traditional candlestick patterns, it appears not to be widespread. This finding is 

in line with the negative bias most academic studies showed toward the usefulness 

of candlestick charting, as reviewed in section 2.2.1. 

  

 
1 2 Crows; 3 Black Crows; 3 Inside; 3 Line Strike; 3 Outside; 3 Stars in South; 3 White Soldiers; 
Abandoned Baby; Advance Block; Belt Hold; Break Away; Closing Marubozu; Conceal Baby 
Swell; Counter Attack; Dark Cloud Cover; Down Side Gap 3 Methods; Downside Gap 2 Crows; 
Engulfing; Evening Star; Gap Side White; Hammer; Hanging Man; Harami; High Wave; Hikkake; 
Hikkake Mod; Homing Pigeon; Identical 3 Crows; In Neck; Inverted Hammer; Ladder Bottom; 
Long Line; Marubozu; Mat Hold; Matching Low; Morning Star; Piercing; Rise Fall 3 Methods; 
Separating Lines; Shooting Star; Short Line; Spinning Top; Stalled Pattern; Stick Sandwich; 
Takuri; Tasuki Gap; Thrusting; Tri Star; Unique 3 River 
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Table 3.3: Significant traditional candlestick patterns performance on the test dataset. 

Pattern 
Number of 
Candles 

Accuracy 
(%) 

Type 
Significance 

Level 

FGBL 

Advanced Block 3 51.22 Bear ** 

Inverted Hammer 3 52.23 Bull * 

3 Inside 3 52.85 Bear ** 

Engulfing 2 53.53 Bull ** 

EURUSD 

Harami 2 54.94 Bull * 

Inverted Hammer 1 56.89 Bull * 

Matching Low 2 57.84 Bull ** 

Advanced Black 3 53.53 Bear * 

BTCUSD 

3 Line Strike 4 52.44 Bull ** 

3 White Soldiers 3 55.40 Bear * 

Engulfing 2 50.73 Bull * 

Inverted Hammer 1 50.28 Bull ** 

3 Outside 3 56.38 Bull * 

ETHUSD 

Dark Cloud Cover 2 55.44 Bear ** 

Doji Star 1 53.11 Bear * 

Engulfing 2 51.23 Bull ** 

Engulfing 2 55.36 Bear * 

(*: significance at 10%; **: significance at 5%; ***: significance at 1%) 
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3.6.2 Deep candlestick mined patterns 

Deep mined candlestick patterns are dataset-specific, being mined from the 

features that the LSTM RNN used as inputs. A list of significant patterns for the 

datasets considered is presented in Tables 3.5 and 3.6 below.  

For the traditional instruments (FGBL and EURUSD) the DCM process 

was able to discover twelve significant patterns for FGBL and eight for EURUSD. 

The process additionally found five patterns to be significant at the 1% 

significance level on FGBL, and three achieving this level of significance on 

EURUSD. This contrasts with no significant patterns being found at the 1% level 

when using traditional candlestick patterns (see Table 3.4, above). Moreover, the 

DCM-based significant patterns achieve average directional accuracies of 62.17% 

and 59.39% on FGBL and EURUSD respectively. This is an improvement of 

18.5% for FGBL and 6.43% for EURUSD when compared against the significant 

traditional candlesticks.  

For the cryptocurrency instruments (BTCUSD and ETHUSD) the DCM 

process was able to identify ten significant candlestick patterns for BTCUSD and 

thirteen for ETHUSD, achieving average directional accuracies of 61.18% and 

61.14% respectively. This represents an outperformance over the traditional 

candlesticks of 8.13% and 7.36% for BTCUSD and ETHUSD. 
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Table 3.4: Significant deep mined candlestick patterns for traditional assets. 

Cluster 
Number of 
Candles 

Accuracy 
(%) 

Type 
Significance 

Level 
FGBL 

0,3 2 61.11 Bull ** 

0,4 2 58.92 Bull ** 

1,3 2 58.51 Bear ** 

0,1 3 62.34 Bear *** 

0,7 3 67.12 Bull ** 

1,2 3 57.67 Bear ** 

1,4 3 55.34 Bull *** 

2,5 3 69.12 Bear ** 

0,0 4 59.37 Bear *** 

0,2 4 60.90 Bear *** 

1,5 4 63.88 Bear ** 

3,0 4 71.75 Bear *** 

EURUSD 

0,5 2 58.34 Bear * 

0,1 3 57.12 Bull ** 

0,4 3 60.13 Bear *** 

1,2 3 59.99 Bear * 

3,3 3 56.45 Bull ** 

0,4 4 63.22 Bear *** 

1,2 4 61.45 Bear * 

1,4 4 58.44 Bull *** 

(*: significance at 10%; **: significance at 5%; ***: significance at 1%) 
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Table 3.5: Significant deep minded candlestick patterns for Bitcoin and Ethereum. 

Cluster 
Number of 
Candles 

Accuracy 
(%) 

Type 
Significance 

Level 

BTCUSD 

0,1 2 57.70 Bull ** 

0,4 2 61.19 Bull * 

2,1 2 65.53 Bear ** 

0,3 3 62.68 Bull ** 

1,1 3 61.23 Bear * 

1,3 3 55.65 Bull * 

2,0 3 66.60 Bear *** 

0,4 4 57.26 Bear ** 

3,3 4 59.85 Bull * 

4,1 4 64.12 Bull ** 

ETHUSD 

0,2 2 59.98 Bear ** 

3,4 2 66.93 Bull ** 

4,1 2 61.34 Bull * 

5,2 2 56.23 Bear *** 

1,0 3 57.46 Bull * 

2,1 3 59.09 Bear ** 

2,5 3 62.72 Bull * 

0,0 4 74.75 Bear ** 

0,2 4 67.13 Bull ** 

1,0 4 62.51 Bull ** 

2,2 4 55.23 Bull * 

3,0 4 58.03 Bull *** 

6,1 4 53.53 Bull * 

(*: significance at 10%; **: significance at 5%; ***: significance at 1%) 
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These results, comparing traditional to DCM-based candlestick patterns, 

therefore show substantial promise for the DCM process in discovering predictive 

candlestick patterns. DCM-based patterns were found to outperform on all 

instruments, with more patterns being significant at the 1% level on traditional 

markets. This too is an interesting discovery as it implies the process was able to 

find more robust structure in the feature space of traditional markets compared 

to the cryptocurrency markets. This again is in line with an earlier hypothesis 

(see Section 2.1.3) that, although cryptoasset markets appear to be more 

inefficient than mature instruments such as FGBL and EURUSD, the patterns 

on cryptoassets tend to decay faster, showing less robustness through time (i.e., 

are less robust to different market conditions). This could be related to the 

frequent structural breaks in the cryptoasset markets compared to the more 

consistent trading environment seen for traditional instruments. 

Figures 3.8 and 3.9 present examples of t-SNE visualisations for three 

lagged (4 candle) candlestick patterns. ETHUSD and FGBL have been selected 

here as they showed the most interesting structure for each of the categories 

(traditional and cryptoasset class). The visualisations demonstrate that using a 

non-linear dimensionality reduction technique reveals more interesting structure 

analysis than in Figure 3.7. This can help validate the quality of each structure 

and confirm that the thought process behind the valid cluster criteria makes sense. 

The idea of “super clusters” mentioned previously is difficult to confirm in a high 

dimensional space without the use of a non-linear dimensionality reduction 

algorithm such as t-SNE. In both cases presented below a clear structure can be 

observed.  

Figure 3.8 (p.66) shows a very pronounced structural shape is evident for 

cluster (0,2), which has a high accuracy of 67.13% at the 5% significance level. 
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This was investigated further revealing the cluster candidates to be of very similar 

shapes and directional representation. Further well-defined structure is observable 

across the different clusters for ETHUSD indicating there is robust structure in 

this dataset which could be exploited.  

Figure 3.9 (p. 67) presents an equivalent structural analysis for FGBL, 

which also confirms the presence of well-defined groupings associated with select 

clusters. Interestingly, it can also be observed that structure associated with 

parent cluster 1 and 3 can be rather sparse on occasion. This can indicate that 

within clusters there is a dense section which very similar features have clustered 

around and that as the distance extends from the centroid the decay in pattern 

reliability (feature similarity) is accelerated.  

Given the observations from these t-SNE charts that some clusters suffer 

from a certain sparsity away from a cluster’s centroid, the decision to optimise a 

Silhouette coefficient (SC) threshold per cluster is a reasonable suggestion. The 

patterns which were clustered together and did not satisfy the SC threshold were 

investigated and found to represent those examples which were sparsely 

distributed by the t-SNE (see Figure 3.9). These examples did not conform to a 

common shape, which the other cluster candidates did, which would impact the 

shape and interpretation of a DCM-based pattern.  
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Figure 3.8: t-SNE ETH Deep Candlestick Mining. 
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Figure 3.9: t-SNE FGBL Deep Candlestick Mining.
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Table 3.6: FGBL Deep mined candlestick patters for all lags. 

2 Candle Patterns 

   
Cluster: 0,3 Cluster: 0,4 Cluster: 1,3 

3 Candle Patterns 

   
Cluster: 0,1 Cluster: 0,7 Cluster: 1,2 

  

 

Cluster: 1,4 Cluster: 2,5  

4 Candle Patterns 

   

Cluster: 0,0 Cluster: 0,2 Cluster: 1,5 

 

  

Cluster: 3,0   



69 
 

Table 3.7: ETHUSD Deep mined candlestick patters for all lags. 

2 Candle Patterns 

   
Cluster: 0,2 Cluster: 3,4 Cluster: 4,1 

 

  

Cluster: 5,2   

3 Candle Patterns 

 
 

 
Cluster: 1,0 Cluster: 2,1 Cluster: 2,5 

4 Candle Patterns 

   
Cluster: 0,0 Cluster: 0,2 Cluster: 1,0 

   

Cluster: 2,2 Cluster: 3,0 Cluster: 6,1 



70 
 

Tables 3.7 and 3.8 show examples of novel candlestick patterns discovered 

by the deep candlestick mining (DCM) process for FGBL and ETHUSD (as these 

asset classes were presented in the t-SNE analyses). Similar shapes were 

discovered for BTCUSD and EURUSD but are omitted for brevity (though 

performance results can be observed in Tables 3.5 and 3.6, and candlestick 

visualisations can be found in Appendix A).  

Table 3.6 displays the FGBL DCM-based patterns. FGBL was shown to 

have four significant traditional candlestick patterns in Table 3.3. It is interesting 

to note that the DCM-based patterns, while mainly discovering novel shaped 

representations, also rediscovered some traditional candlestick patterns in clusters 

0,3 and 0,4 which are very similar to a bullish Engulfing and a bullish + bearish 

Inverted Hammer candlestick pattern, respectively.  

Table 3.7 displays the ETHUSD DCM-based patterns. When analysing the 

traditional candlestick patterns for this instrument in Table 3.3 it was shown to 

have four significant patterns. In contrast, the DCM process discovered thirteen 

patterns of interest. Here, the DCM process again rediscovered traditional 

candlestick patterns which were not listed as significant in the previous analysis 

and combined them as part of a DCM-based pattern. For example, the traditional 

pattern “Doji Star” features heavily in many of the DCM-based pattern formation 

for ETHUSD.  

The observation that (1) the DCM process can rediscover significant 

traditional patterns and (2) can find traditional candlestick patterns which were 

not significant on their own but significant when grouped as part of a larger 

formation is an important point, as it shows the DCM's ability to rediscover and 

reinvent pattern formations while also finding novel formations of candlestick 

patterns. Point number 2 may indicate significant (or even insignificant) 
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candlestick patterns could be strong conformation signals, rather than simply 

representing a directional movement themselves, which the analysis presented 

earlier in this section suggests would yield poor results most of the time. 

Interestingly, in all cases the DCM approach appears to prefer more candlesticks 

in a pattern implying a greater information content is required to be predictive. 

Many popular traditional candlestick patterns only contain one or two candles 

which could be a reason why the vast majority have no power but when combined 

exhibit significant predictive power. 

3.7 Traditional vs. deep mined candlestick system 

Often a practitioner will use multiple candlestick patterns for making decisions. 

A comparison in this spirit between traditional and deep mined candlesticks was 

carried out by using all the patterns available in either category. The holdout 

dataset was used to assess the predictive power of both systems, in terms of 

Cohen’s kappa. As can be seen in Table 3.8 the DCM system outperformed the 

traditional system by 83.6%, 98.7%, 110.06% and 117.89% on FGBL, EURUSD, 

BTCUSD and ETHUSD respectively. 

Table 3.8: Performance comparison between a basket of traditional candlestick patterns vs. 

DCM candlestick patterns on the holdout dataset. 

Asset 
Number of 
Traditional 
Patterns 

Traditional 
Cohen’s 
kappa 

Number of 
Deep Mined 

Patterns 

Deep Mined 
Cohen’s 
kappa 

FGBL 4 4.45% 12 8.17% 

EURUSD 4 7.67% 8 15.24% 

BTCUSD 5 6.26% 10 13.15% 

ETHUSD 4 6.55% 13 14.27% 
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3.8 Discussion 

The deep candlestick mining (DCM) process introduced here has been shown to 

be remarkably effective at discovering statistically significant OHLC patterns. 

This is not in conflict with the many academic studies which claim candlestick 

patterns have no, or limited, predictive power (for example, Fock et al., 2005; 

Marshall et al., 2006; Horton, 2009) because the patterns that the DCM process 

discovers are largely novel (though some interesting correspondences with 

traditional candlestick patterns were discovered). DCM derived patterns 

outperformed the best (according to the earlier analysis) of the traditional 

patterns by 83.6%, 98.7%, 110.06% and 117.89% on FGBL, EURUSD, BTCUSD 

and ETHUSD respectively in relation to their ability to forecast directional 

movement better than random. The DCM process has many parts that could be 

further optimised to produce potentially better results. It would be expected these 

optimisations would be both instrument and time aggregation (daily, hourly, 

minute, etc.) dependent. The results here are therefore only an early indication 

of the promise of deep candlestick mining. 

 

 



 

Chapter 4 

4 A new methodology to exploit 
predictive power in (open, high, low, 
close) data 
 

In the previous chapter it was shown that OHLC bars could be used to extract 

powerful candlestick patterns able to predict close price directional movements 

with a maximum (for EURUSD) Cohen's kappa of 15.24%. This same OHLC-

based prediction framework, incorporating a feature discovery and mining process 

with LSTM RNNs, is used here to demonstrate the remarkable predictive power 

which can be extracted from a new target, termed mid-price, with directional 

forecasts of greater than 55% Cohen’s kappa on hourly data aggregations. The 

predictive power of the new target is shown to hold across FGBL, EURUSD, 

BTCUSD and ETHUSD, emphasising that this power is not simply an artefact 

of one instrument but can easily generalise over several vastly different asset 

classes.  

4.1 Introduction 

The work of this chapter utilises ML technology in the form of XGBoost, LSTM 

RNNs and Bayesian optimization with Hyperband (BOHB) as key components 

in a process for trend detection which takes advantage of the relative ease of 

prediction of the mid-price (defined in terms of OHLC candlestick levels in Section 

2.1.2) when compared to the traditional close price prediction target. It can thus 



74 
 
be demonstrated that if the target is carefully chosen OHLC levels can have a 

remarkably high predictive potential, beyond that evidenced in the previous 

chapter. 

4.2 Background 

There exists no prior literature relating to a mid-price, as it will here be termed, 

based on a candlestick structure, as proposed here. The common definition of a 

mid-price is the price halfway between the bid and ask; this has no relevance to 

the current work. Here, a mid-price pertains to the mid-point between either the 

high and low or the open and close of an OHLC data aggregation. There have, 

however, been many studies focusing on the predictive power of candlestick 

patterns, as reviewed in Section 2.2.1, and studied in Chapter 3. As discussed in 

these earlier thesis sections, these studies have reported varying results, with most 

evidencing little or no value in these patterns as predictors of close price 

movements, although it was shown in Chapter 3 that if advanced machine 

learning methodologies are used then dataset-specific candlesticks appear to 

provide some substantial predictive power.  

 

Mid-price motivation 

As defined in Section 2.1.2, there are two version of the proposed mid-price to be 

used as a target to predict trend direction. The spur behind the use of this new 

financial timeseries price level as a training target was the observation that it 

contained less noise than traditional targets such as the close price. 

To demonstrate this, the timeseries of the close price, mid-price-1, and mid-

price-2 (see Section 2.1.2) for hourly data for ETHUSD are examined, to 

investigate the differences in standard deviation (i.e., noise content) of their price 
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movements. Figure 4.1 shows these differences, where for each month in the 

ETHUSD dataset the standard deviation of the returns for hourly data was 

computed over the close-price, mid-price-1 and mid-price-2. It can be observed 

that there is a significant drop in noise content for both versions of the mid-price 

returns when compared to the close price returns. 

 

Figure 4.1: Differences in standard deviation per month on hourly data for ETHUSD. 

Mid-price-2 is observed to contain the least noise content, a difference of 

42.39% compared to the close-price returns. This is a substantial reduction in 

noise and is part of the reason that this new financial timeseries metric is much 

easier to predict. Similar results were obtained for many other examples of 

financial time series data, confirming mid-price-2, in particular, as a less noisy 

target than either mid-price-1 or the close-price.  

4.3 Methodology 

The methodology implemented here uses the tools (and data ranges) developed 

in Section 3.2 and 3.3 of the previous chapter.  
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4.3.1 Mid-price directional prediction 

The model training is along the same lines as Section 3.3.2 of the previous chapter, 

as the feature mining discovery process and LSTM RNN hyperparameter 

optimisation are executed in the same way. The difference here is the target, 

which is one of the mid-price definitions rather than the close price. As in the 

previous chapter, the LSTM RNN output value is in the range [−1, +1] with 

targets of -1 (down) and +1 (up). It should be noted that as we are predicting 1-

hour intervals (a substantial duration for financial markets to evolve) there are 

no periods where the target variable remains the same in the datasets which these 

models are trained on. This is due to the underlying assets having a relatively 

high noise content when compared to other popular financial instruments, such 

as US Treasuries, where one might expect price evolution to be more muted. 

4.4 Results 

4.4.1 Baseline performance: use of close and OHLC lags as inputs 

A baseline performance was established by investigating the prediction of both 

close- and mid-price targets (see Table 4.1 and 4.2) from close price lags and 

OHLC lags (defined as a full set of OHLC lags, for two preceding time steps, a 

total of eight features in all). Lagged inputs are defined by the equation below, 

 𝛿௜ =
(𝑝௜ − 𝑝௜ିଵ)

𝑝௜ିଵ
, (4.1) 

where 𝑝௜ is the current price and 𝑝௜ିଵ is the previous price.  

The use of simple returns, as defined above, was selected for feature 

construction purposes as this definition is most used in the candlestick literature, 

which allows us to compare results more easily to those of others, and anchor the 
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analysis. Log returns are another common feature construction, which are popular 

in many financial feature engineering studies as they are very effective in reducing 

seasonality in returns. However, both of these returns-derived series suffer from 

seasonality in their volatility patterns (solutions exist to eradicate this, in the 

form of fractional differencing methods, but this is outside the scope of this work) 

and exhibit little to no difference in their statistical properties when constructing 

intra-day features. Hence, it was decided that features would be constructed using 

the simple return, as this is more in line with the related literature, while 

maintaining similar statistical properties to log returns when applied to the 

financial timeseries under consideration in this study.  

 In this baseline experiment a lag setting of two was selected for initial 

experimentation. However, when constructing features over close and OHLC price 

levels, an imbalance in feature dimensionality occurs as the close-from-close 

feature set would have only two dimensions compared to the eight dimensions 

generated from the OHLC feature constructions (as lags are taken across all of 

the open, high, low and close price levels), causing a potential information 

shortfall. To remedy this, experiments (results not shown) were carried out where 

close lags were set at eight to have equivalence in feature dimensionality and 

informational content, but it was discovered results were robust to the number of 

close lags used, which made little to no difference to the result. Hence, all 

experiments used a lag setting of two. Table 4.1 and 4.2 present the baseline 

results across both traditional and cryptoasset markets where the metrics for F1, 

Recall and Precision are stacked, with the top values representing the 

performance for an upward prediction and the lower values representing the 

performance for a downward prediction. 
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Table 4.1: Baseline performance (i.e., close or OHLC lags used as inputs) for a one-hour 

prediction horizon on out-of-sample data for traditional markets; it is clear that the combination 

of input OHLC and target mid-price-2 gives the best performance. 

I/O Configuration F1 Recall Precision MCC 
Cohen’s 
kappa 

FGBL 

Close from Close 
0.5718 
0.4296 

0.6429 
0.3744 

0.5149 
0.5038 

1.80% 1.74% 

Mid-1 from Close 
0.6881 
0.6963 

0.6908 
0.6937 

0.6854 
0.6990 

38.44% 38.44% 

Mid-2 from Close 
0.7315 
0.7342 

0.7535 
0.7137 

0.7109 
0.7560 

46.70% 46.62% 

Close from OHLC 
0.6598 
0.1051 

0.9409 
0.0588 

0.5080 
0.4906 

-0.07% -0.03% 

Mid-1 from OHLC 
0.7074 
0.7276 

0.6942 
0.7407 

0.7212 
0.7149 

43.55% 43.52% 

Mid-2 from OHLC 
0.7467 
0.7556 

0.7592 
0.7438 

0.7347 
0.7678 

50.27% 50.25% 

EURUSD 

Close from Close 
0.4376 
0.5497 

0.3901 
0.6091 

0.4983 
0.5008 

-0.08% -0.08% 

Mid-1 from Close 
0.7065 
0.6965 

0.7138 
0.6892 

0.6993 
0.7040 

40.32% 40.31% 

Mid-2 from Close 
0.7533 
0.7531 

0.7683 
0.7386 

0.7388 
0.7682 

50.69% 50.66% 

Close from OHLC 
0.4371 
0.5722 

0.3783 
0.6489 

0.5175 
0.5118 

2.82% 2.71% 

Mid-1 from OHLC 
0.7323 
0.7209 

0.7430 
0.7102 

0.7219 
0.7319 

45.36% 45.34% 

Mid-2 from OHLC 
0.7569 
0.7527 

0.7783 
0.7322 

0.7366 
0.7744 

51.08% 51.00% 
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Table 4.2: Baseline performance (i.e., close or OHLC lags used as inputs) for a one-hour 

prediction horizon on out-of-sample data for cryptoasset markets; it is clear that the 

combination of input OHLC and target mid-price-2 gives the best performance. 

I/O Configuration F1 Recall Precision MCC 
Cohen’s 
kappa 

BTCUSD 

Close from Close 
0.5487 
0.4696 

0.6114 
0.4191 

0.4977 
0.5339 

3.10% 3.03% 

Mid-1 from Close 
0.6464 
0.6642 

0.6560 
0.6551 

0.6371 
0.6735 

31.08% 31.07% 

Mid-2 from Close 
0.6951 
0.7535 

0.6538 
0.7940 

0.7420 
0.7168 

45.33% 45.03% 

Close from OHLC 
0.5087 
0.5417 

0.5062 
0.5442 

0.5111 
0.5393 

5.04% 5.04% 

Mid-1 from OHLC 
0.6797 
0.7099 

0.6731 
0.7162 

0.6865 
0.7036 

38.97% 38.97% 

Mid-2 from OHLC 
0.7405 
0.7284 

0.6928 
0.7952 

0.7356 
0.7334 

46.10% 46.97% 

ETHUSD 

Close from Close 
0.5453 
0.4358 

0.6066 
0.3872 

0.4953 
0.4982 

-0.63% -0.62% 

Mid-1 from Close 
0.6515 
0.6741 

0.6360 
0.6898 

0.6678 
0.6591 

32.64% 32.60% 

Mid-2 from Close 
0.7459 
0.7232 

0.7804 
0.6900 

0.7144 
0.7598 

46.23% 46.03% 

Close from OHLC 
0.5509 
0.4940 

0.5862 
0.4626 

0.5195 
0.5300 

4.92% 4.88% 

Mid-1 from OHLC 
0.7064 
0.7252 

0.6898 
0.7420 

0.7238 
0.7092 

43.24% 43.19% 

Mid-2 from OHLC 
0.7392 
0.7324 

0.7512 
0.7206 

0.7276 
0.7446 

46.80% 47.18% 
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Table 4.1 compares the prediction results for traditional markets FGBL 

and EURUSD, using close-from-close lags to predict the direction of the t+1 close 

price, to the prediction of mid-price-1 and mid-price-2. Both close-from-close and 

OHLC feature sets are used for all targets, to compare the relative predictive 

value each of these feature sets provides.  

The close-from-close predictions were poor for both FGBL and EURUSD 

markets, with simple directional accuracy (defined as the mean precision score 

reported across both up and down classes) of 50.93% (MCC: 1.80%) and 49.95% 

(MCC: -0.08%) respectively. However, it should be noted that the poor 

performance derives primarily from the use of close price as a target rather than 

as a lagged input. Replacing the target at t+1 by either of the mid-prices, but 

retaining the simple close lag as input, results in an immediate and large 

improvement in directional accuracy, with an accuracy of 69.21% (MCC: 38.44%) 

and 73.34% (MCC: 46.70%) for mid-price-1 and mid-price-2, respectively, on 

FGBL. EURUSD markets exhibited similar behaviour with simple directional 

accuracy results of 70.16% (MCC: 40.32%) and 75.35% (MCC: 50.69%) for mid-

price-1 and mid-price-2 respectively. It is thus possible to predict a mid-price to 

a high accuracy while continuing to use traditional close or OHLC price lags as 

features for FGBL and EURUSD, which is a remarkable baseline result given the 

noise content in close price returns and the fact that these predictions are made 

on some of the most liquid and popular financial markets globally.  

Further to this result, it can be observed that OHLC lagged inputs 

increased predictive power (beyond those from close lagged inputs) by a further 

13% for mid-price-1 and 7.64% for mid-price-2 on FGBL but actually reduced the 

model’s predictive power for FGBL close prices. Improvements can also be 

observed for the mid-prices in the case of the EURUSD market, with mid-price-1 
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predictive power increasing by 12.5% and mid-price-2 increasing by around 1% 

when OHLC inputs were used. For prediction of close price for EURUSD, 

however, in contrasts to the result for FGBL, the use of OHLC inputs did give 

an improvement over close inputs. 

 Table 4.2 compares the same sets of input features and targets as Table 

4.1 but on cryptoasset markets BTCUSD and ETHUSD. A similar pattern is 

again observable for these assets as for traditional markets, where a traditional 

feature formulation using close price lags as inputs to predict future close price 

directional movement performs poorly, but the use of the same inputs to predict 

the mid-prices performs very much better. Simple directional accuracy scores of 

51.58% (MCC: 3.10%) and 49.67% (MCC: -0.63%) were achieved on BTCUSD 

and ETHUSD respectively when close price lags were used as inputs. The 

BTCUSD performance results are enhanced by 27.04% for mid-price-1 and 41.41% 

for mid-price-2, resulting in a simple directional accuracy of 65.53% (MCC: 

31.08%) and 72.94% (MCC: 45.33%) for mid-price-1 and mid-price-2 respectively. 

The same performance improvement pattern is observable on ETHUSD with 

enhancements of 33.55% for mid-price-1 and 48.38% for mid-price-2, with simple 

directional accuracy of 66.34% (MCC: 32.64%) and 73.71% (MCC: 46.23%) being 

achieved for mid-price-1 and mid-price-2. 

 The results from Table 4.2 follow the same enhancement pattern as 

observed in Table 4.1 for EURUSD, with improvements being observed on all 

target variables when OHLC lags are used instead of close lags. The most 

significant BTCUSD enhancement was observed for mid-price-1 for which OHLC 

increased predictive power by 6.06%, to achieve a simple directional accuracy of 

69.50% (MCC: 38.97%). The same pattern is observable for ETHUSD, which also 

saw the largest simple directional accuracy improvement for the mid-price-1 
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target, which increased by 7.99% to 71.65% (MCC: 43.24%). However, for both 

BTCUSD and ETHUSD, the highest predictive power is achieved through 

prediction of the mid-price-2 target. An interesting point to note when looking at 

the results for both the traditional and cryptoasset markets is that the 

classification metrics are well balanced and remain relatively stable with minimal 

imbalances, on average, towards either the up or down class. This result confirms 

that the models have been robustly trained and indicates performance results 

should be relatively agnostic to market state.   

It can be seen from the tables above that using open, high, and low (OHL) 

lagged inputs in addition to the close input has only a very small effect on the 

LSTM network’s ability to predict close direction; this may well explain why 

many traditional candlestick patterns appear not to be predictive (Marshall et 

al., (2006; 2008); Horton (2009); Fock et al., (2005)). There is however a more 

noticeable improvement in mid-price-1 and mid-price-2 predictions when 

additional OHL lagged inputs are used; this suggests that mid-price-2 predictions 

(the most effective) might be improved further by a more intelligent selection of 

OHLC based features.  

4.4.2 Baseline feature lag optimisation 

At this point only two lags have been considered. However, the number of lags of 

OHLC feature data could have an impact on predictive power and certainly has 

an impact on the complexity of the model (with fewer parameters being 

preferred). As mid-price-2 is the highest performing target from the previous 

section it was decided that the lag optimisation would take place with this target 

for all the markets considered in this study. 
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 To investigate the optimal number of lags for the prediction of the mid-

price-2 target, the training and evaluation process is run ten times for each 

instrument. Each time the process is run, an extra lag is included in the feature 

space. The results of this optimisation are for an out-of-sample test set (see 

Section 3.2.3 for data ranges) are shown below in Figure 4.1. Interestingly, the 

traditional asset classes are easier to predict, with higher predictive performance 

observed over most lag settings. This is likely due to there being less noise in the 

price series of traditional instruments compared to the highly volatile 

cryptoassets. 

 
Figure 4.2: Out-of-sample feature lag optimisation results for the mid-price-2 target. 

As can be observed in Figure 4.2, a lag of three provides the optimal 

predictive power across all instruments, achieving marginally enhanced 

improvements of around 5% for each instrument when compared to the originally 

chosen lag of two. As the optimisation results exhibit the same improvement 

patterns across all instruments and retain an exceptionally high level of 

predictability for a financial timeseries quantity, one can deduce that the 

predictive power of the mid-price target is not simply an artefact of one dataset, 

but generalisable across a universe of vastly different instruments. This is 

particularly interesting from a trading perspective as one can rely on the 
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robustness of such a prediction methodology when devising trading strategies 

which utilise mid-price predictions. This level of robustness is rarely seen with 

traditional targets such as the close price due to a high noise content being 

encapsulated within the target thus demonstrating the unique power of the novel 

mid-price construction presented here.  

There is an interesting connection between the results of this section and 

observations that can be made about candlestick patterns. In Chapter 3 we 

trained and optimised each neural network to predict the close price target based 

on a specified number of feature lags. This was done to align with common 

definitions of candlestick patterns, of which the most popular ones only contain 

three or four candlesticks. Figure 4.2 shows that Cohen’s kappa has peaks at 

three, six and nine OHLC lags for all assets. However, the overall maximum is 

reached at three, implying three lags of OHLC data is optimal in this context, 

and many candlestick patterns are created from three lags of OHLC data, such 

as the Three Line Strike, explored in the previous chapter. 

4.4.3 Use of mined OHLC features as inputs 

Table 4.1 and 4.2 suggested the possibility that suitably configured OHLC data 

might further enhance the mid-price-2 prediction. In the experiments below mined 

data, as described in Section 3.3, were used, where the term Importance Mining 

in Table 4.3 refers to results using the top 100 importance-ranked factors, and 

correlation subset (ranked and filtered on a validation set) to a reduced input set 

with those same features now filtered.   
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Table 4.3: Feature mining performance results on an out-of-sample test dataset. 

Asset F1 Recall Precision MCC 
Cohen’s 
kappa 

Importance Mining 

FGBL 
0.7699 
0.7698 

0.7702 
0.7696 

0.7697 
0.7700 

53.98% 53.96% 

EURUSD 
0.7723 
0.7736 

0.7703 
0.7757 

0.7744 
0.7715 

54.60% 54.63% 

BTCUSD 
0.7614 
0.7605 

0.7627 
0.7593 

0.7601 
0.7618 

52.20% 52.26% 

ETHUSD 
0.7705 
0.7690 

0.7731 
0.7665 

0.7680 
0.7715 

53.96% 53.93% 

Importance Mining + Correlation Filtering 

FGBL 
0.7768 
0.7767 

0.7772 
0.7764 

0.7765 
0.7770 

55.36% 55.36% 

EURUSD 
0.7820 
0.7815 

0.7830 
0.7806 

0.7811 
0.7824 

56.36% 56.31% 

BTCUSD 
0.7683 
0.7690 

0.7674 
0.7700 

0.7694 
0.7680 

53.75% 53.77% 

ETHUSD 
0.7776 
0.7779 

0.7773 
0.7783 

0.7780 
0.7775 

55.55% 55.49% 

 

It can be seen from Table 4.3 that the feature importance mining 

methodology improves the LSTM RNN's performance, resulting in an increase of 

MCC scores across all instruments considered. Improvements from the lag 

optimisation were most substantial for the cryptoasset category with MCC scores 

increasing by 6.30% and 7.89% for BTCUSD and ETHUSD respectively. This 

resulted in the models achieving final MCC scores of 52.20% for BTCUSD and 

53.96% for ETHUSD. The predictive power of the traditional category was also 

increased with EURUSD seeing the largest improvement of 4.67% bringing the 

model's MCC score to 54.60% from the 52.16% achieved in the previous lag 

optimisation experiment.  
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In this section it has been shown that mined features can add significant 

improvements to out-of-sample model performance. However, the improvements 

due to the addition of correlation-based filtering are somewhat muted relative to 

other improvements demonstrated in this study. For the traditional asset 

category, the maximum improvement from correlation-based filtering was 

observed on FGBL with a final model MCC of 55.36%, up from 53.98%. The 

cryptoasset category also saw improvements of 2.90% and 2.94% on BTCUSD 

and ETHUSD, respectively, bringing the final model MCCs to 53.75% and 55.55% 

for BTCUSD and ETHUSD, respectively. In addition, the optimal values of the 

correlation thresholds c1 and c2 (see Section 3.3.1) were found to be 0.2 and 1.0, 

respectively, across all instruments considered, suggesting that these parameters 

are robust to varying noise levels in different markets. These various observations 

indicate both that it is the use of the mined features per se that is predominantly 

leading to the improvement in performance over the optimised baseline model, 

and also that the LSTM RNN can operate effectively without correlation-based 

input screening.  

Although the relative performance improvements compared to the initial 

results presented in Table 4.1 and 4.2 were not large, it should be noted that the 

progressively-improved models were being required to correctly predict in harder 

and harder market situations in order to achieve incremental performance 

improvements2, a task widely accepted to be of extreme difficulty for financial 

timeseries data. However, despite these observations, a maximum simple 

directional accuracy of 78.18% (MCC: 56.36%) was achieved on EURUSD using 

the enhanced Importance Mining + Correlation Filtering methodology. This is a 

 
2 For example, a model may perform well with simple features in a slow rolling market, but poorly 
in a market where volatility increases as the environment becomes harder to predict. Advanced 
BOHB optimisation methods also help to discover highly robust parameters with simple features 
allowing powerful models to be constructed which are robust many scenarios. 
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remarkable result for the novel mid-price targets, which have proved to be 

uniquely robust to vastly different markets while maintaining consistently high 

predictive power, a property rarely observed when predicting any financial 

quantity.  

4.5 Discussion 

It has been shown that use of the mid-price (as defined in in Chapter 2, Equation 

2.1 and 2.2) as a target can result in up to a 78.18% simple directional prediction 

accuracy (MCC: 56.36%), observed in this case for EURUSD, using appropriate 

machine learning techniques. This result is robust to asset class and instrument 

with all instruments under examination. In addition, all instruments also 

benefitted from an enhanced feature selection process based on the work of the 

previous chapter. OHLC data was used to generate candlestick features via an 

XGBoost importance mining process, which increased the predictive power of an 

LSTM RNN from an initial median MCC of 46.46% (Mid-2 from Close lags) 

across all instruments to a median of 55.45% MCC, showing that appropriately 

formatted OHLC data has a high predictive value in relation to the mid-price 

targets. The median performance increase observed across all instruments from 

using mined OHLC features, rather than traditional close price lags, is 19.34%, a 

substantial improvement, implying that the use of contextual information 

embedded in the OHLC structure extracted using novel feature engineering 

techniques should be of extreme interest to practitioners and academics alike.  

However, it was demonstrated also that mined OHLC data did not 

significantly increase predictive power when forecasting the traditional close price 

target, which is in line with Marshall et al., (2006; 2008), Horton (2009) and Fock 

et al., (2005). Hence the results here, while they may be surprising, are not at 

odds with the conclusions about candlestick charting drawn in other work. The 
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usefulness of features derived from OHLC data is not in predicting the close price, 

but predicting the mid-price, which has been neglected in past research. 

The discovery of the high predictive power of the mid-price is in itself a 

significant result given the prevailing sentiment that no aspect of an asset’s price 

behaviour can be predicted substantially above random. It is not immediately 

obvious how to harness this high predictive power within a trading strategy, as a 

mid-price prediction is not located at a specific moment in time but only within 

an interval. However, a trading strategy built around the mid-price is by no means 

impossible, though it would necessarily require more for its execution than the 

simple prediction of this value, and the challenge posed by this will be the topic 

of the last chapter of this work. 

 

 



 

Chapter 5 

5 Trend prediction with Bayesian 
optimised multi-period conviction 
ensembles 
 

In the previous chapter it was shown that a mid-price-2 directional change could 

be predicted with a predictive power of up to 56.36% MCC (56.31% Cohen's 

kappa) when using a Bayesian optimisation and Hyperband (BOHB) optimised 

Long Short Term Memory Recurrent Neural Network (LSTM RNN). However, it 

was noted that it would be difficult to use this predictive power in the context of 

a trading strategy as a mid-price-2 prediction is not located at a specific moment 

in time. 

Here, we introduce a novel methodology combining multiple models of the 

type described in paragraph above, each predicting the directional mid-price-2 

change over a different time horizon to construct an ensemble. It is shown that 

by applying a Bayesian optimisation weighting scheme to the ensemble's sub-

model predictions a predictive power of 73.26% Cohen’s kappa can be achieved, 

an increase of nearly 30% from the previous chapter. To demonstrate the 

ensemble's utility a market neutral trading strategy is constructed by exploiting 

an artefact in the training of each LSTM RNN model allowing directional 

exposure to be sized in line with the ensemble’s expected prediction accuracy. 

This is referred to as the model’s conviction. The resulting trading strategy 

outperforms a Buy & Hold strategy while maintaining the consistency of a Cash 



90 
 
& Carry strategy, a popular institutional trading strategy aiming to capture the 

difference between a futures contract and its spot price. 

5.1 Introduction 

Machine learning technologies for predicting trends in financial markets have 

primarily focused on traditional targets such as the close price and the mid-price 

(defined as the point between the bid price and the ask price). The reported 

success in predicting these quantities has been limited, as reviewed in Chapter 2, 

and evidenced in Chapter 3 and 4 of this work. However, practitioners and 

academics alike have continued to investigate increasingly advanced pattern 

recognition techniques in the pursuit of gaining an edge against other market 

participants, through more advanced modelling methods intended to provide a 

higher predictive power, which ultimately translates into larger financial rewards. 

Many of the more advanced pattern recognition methods use complex feature and 

model constructions to extract maximal predictive power from noisy datasets. 

These approaches have a high level of complexity but even so often result in only 

marginal outperformance of a random predictor when forecasting traditional price 

targets. 

In this chapter an ensemble of BOHB-optimised LSTM RNN models is 

constructed to predict directional trend movement defined as the binary (up / 

down) mid-price-2 directional change, as formulated in the previous chapter, 

rather than focusing on the traditional targets. Each BOHB-optimised LSTM 

RNN predicts a different horizon of a mid-price-2 directional change, trained 

using the pipeline presented in Chapter 4. The ensemble’s weighted output is 

mapped to specific horizons between a pre-specified range of possible horizons, 

with the optimal ensemble being the one that maximises predictive power at a 

specific target horizon (e.g., 60 minutes). To demonstrate the practical usages of 



91 
 
this unique predictive power, a trading strategy is formulated that shows how one 

can exploit the power of a mid-price-2 prediction in the context of a trading 

strategy subject to institutional risk management practices. 

The proposed methods of this chapter show that simple, but well-

constructed, predictive modelling pipelines can provide a remarkably high level 

of predictive power rarely observed on financial datasets, while also being able to 

add significant trading value when appropriate execution methods are considered. 

5.2 Background 

There have been many academic studies focusing on the power of OHLC data, 

primarily in the context of candlestick patterns as reviewed in Section 2.2.1. 

However, there exists no published literature on the predictability of a mid-price-

2 directional change in the context of OHLC data, outside of the work presented 

in Chapter 4 of this thesis. 

The work presented in this chapter extends the findings presented in 

Chapter 4 to an ensemble setting where multiple models predicting different 

horizons of the mid-price-2 are combined through a weighting scheme. As each 

model is trained using its own feature aggregations, with a granularity specific to 

that model, the resulting ensemble encapsulates information about many different 

model expectations over different horizons, using multiple data aggregations. This 

ensemble construction is itself novel; there is no prior literature relating to 

ensemble construction in this manner for financial market prediction, to the best 

of my knowledge.  

In this chapter several ensemble weighting schemes are investigated, with 

Bayesian optimisation (Brochu et al., 2010) found to produce the best results. 

The results presented are further evidence of the remarkable predictive power 
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which can be extracted from OHLC data structures if exposed to a well-designed 

machine learning pipeline focused on novel targets. 

5.2.1 Ensemble construction 

The feature mining, model construction and hyperparameter optimisation process 

proposed in the previous chapter is used here to train all the ensemble's sub-

models independently. 

To construct an ensemble of mid-price-2 models three weighting schemas 

(equally weighted, Cohen’s kappa weighted, and Bayesian weighted) are 

investigated. Each method assigns a weight to each of the sub-models. These 

weights are then normalised to produce the ensemble's output. The equally 

weighted and kappa weighted schemes are straightforward to implement. 

However, the Bayesian weighting scheme is more involved. The objective of this 

scheme is to maximise the ensemble's Cohen’s kappa on a validation dataset. In 

this work a Gaussian Process (GP) (Rasmussen and Williams, 2006) Upper 

Confidence Bound (UCB) (Snoek et al., 2012) is used to construct acquisition 

functions that minimise regret while maximising the ensemble's predictive 

capabilities. The process constructs a posterior distribution (e.g., GPs) to describe 

the function that is to be optimised, which then improves iteratively with more 

observations, resulting in the process becoming more confident about certain 

regions of the parameter space, which are then explored further. 

5.2.2 Data sources and usage 

The source of the data for the traditional assets under consideration is the same 

as in previous chapters. However, for the cryptoassets a different exchange is now 

used, OKEx, rather than Bitfinex, which was previously used. The reason for this 

change is Bitfinex's falling behind in the development of their market 
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infrastructure in recent years, and since the start of this thesis. As a result, there 

is no mature futures market listed on their exchange with acceptable liquidity to 

interact with, a critical component of the trading strategy presented here. In 

addition, the number of active Bitfinex users has severely declined, resulting in 

their spot (and futures) market liquidity and price integrity suffering. Hence, the 

exchange was changed to OKEx, which provides all the same products as Bitfinex, 

plus new ones needed for this chapter, with high quality liquidity to interact with. 

Data ranges for training, validation and testing remain in line with Table 3.1 of 

Chapter 3. 

5.2.3 Trading simulator 

A market neutral trading strategy was developed specifically for use in this 

chapter, to demonstrate how to exploit the power of a mid-price-2 prediction. 

The strategy is reliant on placing limit orders at set price levels (the exact 

methodology is explained in section 5.3.5). To accurately simulate any trading 

strategy an order book replay mechanism should be implemented, to replay exact 

market transactions rather than relying on aggregated data, which introduces 

errors into the simulation process and can ultimately result in false discoveries. 

Hence it is of extreme importance to have an accurate simulation environment 

available for testing algorithmic trading concepts. 

 Here, an ultrafast memory optimised C++ orderbook replay package was 

developed for the purpose of replaying quote and trade feeds for accurate 

simulation in an efficient manner. The package can replay any granularity of feed 

from level 3 (which combines trades and quotes, allowing one to know what orders 

a trade executed with) to level 1 (which is just a quote feed with the bid and ask 

prices). The package has been written in optimised C++ to deal with the very 

large quantities of data available from financial markets (e.g., for one cryptoasset 
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on OKEx there can be tens of millions of updates per day, hence efficiently written 

code is essential). 

5.2.4 Cryptocurrency perpetual futures 

The market neutral trading strategy utilised in this chapter uses two instruments 

to trade with per base currency. For example, the Bitcoin strategy trades are 

placed on BTCUSD, a spot market, and BTC-USDT-SWAP, a linear perpetual 

futures market (Tse, 2020). 

The objective of a perpetual future is to provide a derivative market for 

illiquid assets which are anchored to their spot prices, or fair values. It was first 

introduced by economist Robert Shiller in 1992. The product has rarely been 

utilised in traditional finance but has received a lot of attention in cryptoasset 

markets from when it was first introduced in 2016 by BitMEX (Hayes, 2016), due 

to the high leverage available (up to 100x), low fees, tight spread (difference 

between the bid and ask price) and lack of expiry (the contract never expires) 

making it easy to manage positions. 

As cryptoasset markets typically suffer from fragmented liquidity (the 

same asset can be bought and sold at slightly different prices on different 

exchanges) the perpetual future is not anchored to the spot price of a specific 

exchange but rather to a basket of prices from different exchanges, to help 

stabilise the pricing mechanism (usually an equally weighted average of the index 

basket) and protect against manipulation. To ensure the perpetual futures 

contract remains anchored to this index a funding rate is built into the contracts 

mechanics to incentivise market participants to take contrarian positions to the 

market trend and keep the perpetuals price close to the spot price. Every 𝑁 hours 

the market participants holding positions on the perpetual contract will either 
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pay or receive an amount equal to the difference between the average index price 

and the perpetual futures price. The cash flows (referred to as the funding rate) 

do not come from the exchange but rather the participants who hold positions in 

the contract. Perpetual futures contracts have several unique mechanics 

summarised in Table 5.1, on the following page. 

As can be observed from the table, there are many variables to consider 

when trading perpetual futures contracts, from different payoff dynamics that will 

impact the cost of hedging to funding rate frequency and pay-out currency. Linear 

contracts are more typical in traditional financial markets, whereas inverse 

contracts are very popular in cryptoasset markets as there is no requirement to 

interact with a regulated currency (e.g., USD) as all interactions take place using 

the cryptocurrency (e.g., BTC). A full review is outside the scope of this work 

although a more detailed review is available from multiple authors (Shiller, 1993; 

Alexander et al. 2021). 
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Table 5.1: A review of perpetual futures contract mechanisms. 

Mechanic Description 
Funding  

Rate 

As discussed above, this is equivalent to the average 

displacement between the index and contracts price. 

Funding 

Frequency 

Most cryptocurrency exchanges choose a funding rate of 3 

payments per day (every 8 hours). There are some 

exchanges which offer payments at different frequencies. 

Funding  

Sign 

If the funding rate is positive (perpetual futures contract 

price is above the index price), the longs pay the funding 

fee to the shorts. If negative (perpetual futures contract 

price is below the index price), the shorts pay to longs.  

Contract  

Types 

There are two popular types of perpetual contract 

available, referred to as Linear and Inverse, with subtle 

differences in how position p&l is calculated, and funding 

payments are delivered. 

Example Linear Inverse 
Quoted BTC/USD BTC/USD 

Contract Value 0.1 BTC 10 USD 

Delta* 1 1 𝑆𝑝𝑜𝑡⁄  

Gamma** 0 −1 𝑆𝑝𝑜𝑡ଶ⁄  

P&L 
𝐵𝑇𝐶𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ∗ 

(𝐸𝑥𝑖𝑡𝑃𝑟𝑖𝑐𝑒 −  𝐸𝑛𝑡𝑟𝑦𝑃𝑟𝑖𝑐𝑒) 

𝑈𝑆𝐷𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ∗ 

൬
1

𝐸𝑛𝑡𝑟𝑦𝑃𝑟𝑖𝑐𝑒
 −  

1

𝐸𝑥𝑖𝑡𝑃𝑟𝑖𝑐𝑒
൰ 

Payments USD BTC 
 

*Delta: The rate of change of the contracts price to the index price. 
**Gamma: The rate of change of the contracts delta to the index price. 
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5.2.5 Market neutral futures strategies 

One of the most popular institutional market neutral trading strategies is called 

a Cash & Carry. This strategy aims to generate profits by exploiting the difference 

between a futures price and a spot price, the difference often being referred to as 

the basis. (Thus, the trade is also sometimes simply referred to as a Basis trade.) 

The strategy is profitable because a futures market must expire at the spot price, 

or some average of the spot price leading up to the contract expire, allowing 

traders to lock in the basis as profit. There are two main states of a futures 

market, as will be explained. The state of contango is when the futures price is 

above the spot price whereas the state of backwardation is when the futures price 

is below the spot price. Institutions favour the Cash & Carry strategy as profits 

can be generated from financial markets without taking any directional risk.  

For a profit to be generated from the basis, trades must be executed in a 

way that depends on the market's state, in order to maintain market neutrality. 

These trades are summarised below in Table 5.2, where it should be noted that 

all positions are closed upon a futures contract's expiration. 

Table 5.2: Cash & Carry trades per market state. 

State Spot Market Futures Market3 
Contango Buy (Long) Sell (Short) 

Backwardation Sell (Short) Buy (Long) 

 

 
3 A subtle point to note is that the dollar quantities placed on each market differ. The spot market 
is simple, as a trader simply needs to buy one unit of the asset, denoted by some dollar amount, 
for example $100. To properly hedge this trade and capture the basis the futures market trade 
must also price in the basis. For example, if the basis is 10% and the market is in contango then 
a trader would buy the spot market with $100 and short the futures market with $110 (i.e., the 
equivalent of 1 unit long and 1 unit short).  
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The strategy above works well on calendar futures markets (in which 

contracts expire on a specific date) as there can in this case be a large difference 

between futures and spot prices ('basis'). However, the work of this chapter is 

focused on perpetual futures (this type of contract being explained in section 

5.2.4), which have little to no difference in their price compared to the spot 

market, and never expire. As explained in section 5.2.4, the perpetual futures 

contract makes payments at regular periods (for example, every eight hours) to 

compensate traders for anchoring the futures price close to, or at, the spot index 

price. Therefore, by executing the same trades as explained in Table 5.2, in the 

states of contango or backwardation the perpetual basis trade will earn income 

from these regular payments rather than profit from the price differences. This 

type of Cash & Carry trade is commonly referred to as a Funding Capture and is 

one of the most popular institutional cryptocurrency trades to execute. The reason 

for its popularity is that there is no directional exposure taken but the trade can 

even so return consistent, and sometimes large, profits due to the highly volatile 

nature of cryptoassets resulting in large displacements of the perpetual futures 

market relative to the spot market. A Funding Capture strategy is characterised 

by frequent gains and high Sharpe ratios if the correct positioning has been 

executed. 

5.2.6 Evaluation metrics 

All metrics used here to evaluate the predictive performance of models are as in 

the previous chapter, with their formal definitions stated in Section 2.1.5. 

However, the evaluation of a trading strategy has not been addressed in the 

previous chapters. Therefore, important metrics to consider when assessing the 

performance of a trading strategy are detailed below in Table 5.3. 

  



99 
 

 

 

Table 5.3: A review of trading strategy evaluation metrics. 

Metric Description 

Winning Days 
The ratio of winning days to total days as a 

percentage. A large value is favourable. 

Mean Daily Return 
The average return that a strategy earnt per day. 

A large value is favourable. 

Longest Drawdown 

The maximum number of days a strategy failed to 

match its previous high return. A small value is 

favourable. 

Max Drawdown 

The maximum percentage loss from a strategy’s 

peak return to its trough, before generating a new 

peak. A small value is favourable. 

Sharpe Ratio 

A strategy’s average return as a proportion of the 

strategy’s return standard deviation. The metric is 

often annualised by multiplying the value by the 

square root of the number of days the market is 

open for trading (in crypto markets this is 365 days 

a year; in traditional markets this is around 252 

depending on whether it is a leap year and specific 

market nuances). A large value is favourable. 

P&L 
A strategy’s total return over the full period it was 

deployed. A large value is favourable. 
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5.3 Methodology 

The overall process used in this chapter, including the implemented trading 

strategy, is summarised (for a given asset) below: 

Table 5.1: Process flow for trading from trend prediction. 

 

  

construct ensemble model 

 select data (section 5.2.2) 

 for each of n models, each with a different prediction horizon: 

 prepare the data: convert to OHLC format with time period equal 
to the horizon 

 generate the feature universe (section 5.3.1) 
 identify a powerful set of features using XGBoost and correlation 

filtering (section 5.3.1) 
 use selected features to predict mid-price-2 (section 5.3.2) 

 calculate weightings of the models in the ensemble (section 5.3.3) 

trade with the ensemble model (sections 5.2.5 and 5.3.5) 

 optimise trading interval (section 5.4.2) 

 at each such interval: 

 make a prediction using the weighted ensemble model  
 assess the confidence level of this prediction (see discussion and 

explanation in section 5.3.4) 
 use this as part of the input into a trading decision, following the 

steps outlined Table 5.4 
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 To construct the ensemble, 𝑛 models are required to be trained, using the 

methodology presented in Chapter 4. Once the models have been trained 

individually a weighting scheme is applied to their outputs to create the ensemble. 

In this work sixteen sub-models are trained on different horizons from 15 minutes 

to 4 hours in steps of 15 minutes (i.e., 15, 30, 45, …, 225, 240). As in Chapter 3, 

example charts are included in this section to help demonstrate the process. For 

final results see the Results section. 

5.3.1 Feature mining and selection 

Figure 5.1 shows that each sub-model of the proposed ensemble has a similar 

feature ranking pattern with all of them flattening around 𝑁=100, after which a 

gradual decline in importance is observed. This is the same 𝑁 setting as was 

proposed in previous chapters for different horizons, reinforcing that this setting 

is robust to model horizon (and asset, as similar patterns were observed for all 

assets under consideration in this chapter). 

 

Figure 5.1: Feature importance rankings of all sub-models for the BTCUSD ensemble. 

The selected 𝑁=100 features per model are then exposed to the correlation 

filtering framework, as detailed in the previous chapter.  
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5.3.2 Multiple mid-price-2 directional predictions  

Again, the methodology implemented to train each individual model follows that 

of the previous chapter. The difference here is that instead of one model there are 

sixteen models, each trained on a different horizon. 

 

Figure 5.2: BOHB-optimised LSTM RNN validation loss per model horizon for BTCUSD. 

Figure 5.2 shows that each sub-model was successfully trained to provide a stable 

validation loss across its relevant horizon. This is of particular interest to note, 

as often when the target horizon increases the variance in the predicted target 

label also increases. It is shown here that, in contrast, the proposed methodology 

can produce robust models at any of the horizons considered, a favourable 

characteristic to observe, especially if the predictions are to be used for trading 

as one can allocate capital confidently.  

5.3.3 Ensemble weighting scheme 

Three ensemble weighting schemas (equally weighted, Cohen’s kappa weighted, 

and Bayesian weighted) will be considered for the construction of the ensembles. 

An equally weighted ensemble results in each model receiving a weight equivalent 

to 1
𝑛ൗ , where 𝑛 is the number of models included in the ensemble. A Cohen’s 
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kappa weighted ensemble results in each model receiving a weight equivalent to 

its Cohen’s kappa on a validation dataset, and a Bayesian optimised weighted 

ensemble allocates a value between [0,1] to each of the models in the ensemble, 

where the objective is to maximise the ensemble's Cohen’s kappa on a validation 

dataset. The output of the chosen weighting scheme is then normalised using the 

following formula: 

 
∑ 𝑤௜𝑚௜

௡
௜ୀ଴

∑ 𝑤௜
௡
௜ୀ଴

 ,  (5.1) 

where 𝑖 is a model index, 𝑛 is the total number of models included in the 

ensemble, 𝑚௜ is model 𝑖’s output and 𝑤௜ is the weight assigned to the sub-model. 

Bayesian optimisation was selected, as opposed to a simple grid-search, due to 

the high dimensionality of the optimisation problem. 

5.3.4 Ensemble conviction mapping 

Each of the model outputs (LSTMs, optimised using the BOHB process of section 

2.1.4) is assessed by adding the output to the relevant bucket (buckets being of 

size 0.1, stretching from -1 to 1, the output range of the model predictions, and 

hence 20 buckets in total), taking all predictions that reside in each bucket and 

assessing the simple accuracy of that bucket. The hypothesis to be tested here is 

that output values near the limits (close to either -1 or 1, the ends of the bucket 

range) will be more accurate than output values near zero (in the middle of the 

bucket range). If this were true, the resulting shape of the accuracy as a function 

of the bucket label (referred to in Figure 5.3 as 'Network Output') should resemble 

a parabola, and this does, in fact, appear to be reliably the case, as evidenced in 

Figure 5.3. 
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As the example in Figure 5.3 below shows, the remarkable similarity of the 

bucketed outputs (right) to the hypothetical parabolic mappings (left) does, in 

fact, allow a higher confidence to be allocated to a prediction when a model 

outputs a value tending towards the limits of its output range. We name this 

property the model's 'conviction mapping'.  

 

Figure 5.3: [Left] Different ideal hypothetical outputs drawn from parabola functions; [Right] 

Example 15-minute predictive model output on a validation dataset. 

In this chapter the output of an ensemble of models will be used to inform 

a trading strategy. As discussed and evidenced above, when the output of a 

component model is near the limits of its range it can be assumed that its 

prediction is highly likely to be correct and thus capital should be aggressively 

assigned in line with the prediction. It is found that for each sub-model in each 

asset's ensemble a robust conviction mapping is embedded over all horizons, 

although some are more stable than others.  

Examples from each sub-model of the BTCUSD ensemble (see Figures 5.4 

to 5.7 below) are selected to demonstrate that conviction stability persists over 

different long- and short-term horizons and that predictive results are robust to 

the train, validation, and test datasets.   
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Figure 5.4: Conviction mapping for the 30-minute BTCUSD model. 

 

 

Figure 5.5: Conviction mapping for the 60-minute BTCUSD model. 
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Figure 5.6: Conviction mapping for the 120-minute BTCUSD model. 

 

 

Figure 5.7: Conviction mapping for the 240-minute BTCUSD model. 
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5.3.5 Trading strategy 

In this work a novel twist on the popular Funding Capture strategy is proposed 

by allowing restricted directional exposure to be opened. This is done by reducing 

position size on either the spot or perpetual futures market within a pre-specified 

risk budget (e.g., a risk budget equal to no more than a 1% directional exposure) 

conditional on a conviction ensemble's prediction and the market state. Reducing 

the position size on either of the above markets has the net effect of opening a 

directional exposure while still allowing the baseline strategy to earn an income 

from the funding rates. The strategy is designed to satisfy an institutional style 

of trading with flexible limits on the amount of directional exposure that can be 

taken, referred to above as the risk budget. 

To help explain the directional mechanic further a hypothetical trade is 

detailed. Assume the conviction ensemble is predicting an upward movement, and 

a trader is $500 short on the perpetual contract and $500 long on the spot market 

positioned for the contango state. To benefit from this prediction the trader will 

reduce the perpetual contract position size from $500 to $250, which will open 

the equivalent of a 25% long directional exposure while leaving 25% short on the 

perpetual contract, which will continue to earn the funding rate. Assuming the 

prediction of 'up' is correct, and the next period happened to be a funding rate 

payment, then the trader would receive p&l from the long directional exposure 

and the funding rate paid to short positions. Hence, the proposed strategy exploits 

multiple sources of income in a controlled manner, allowing a trader to manage 

risk effectively, exploit the power of a mid-price-2 prediction and continue to 

benefit from the baseline funding rate.  

The above explanation of the strategy’s directional mechanic does not 

consider the order placement mechanic which is now explained. As a mid-price-2 
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prediction does not occur at a specific moment in time the execution of opening 

or closing a directional exposure is critical to the success of the strategy. The 

execution placement rules are detailed in Table 5.4, on the following page.  

An example order placement scenario is shown in Figure 5.8. For this 

example, it is assumed the market is in contango, the prediction is for an upward 

move, and conviction is greater than 0.5. At 𝑡0 a limit order is placed on the bid 

side of the perpetual future at the previously realised 𝑀𝑖𝑑𝑃𝑟𝑖𝑐𝑒2௧ିଵ. This has the 

effect of buying back a portion of the short position resulting in long directional 

exposure.  

 

Figure 5.8: A hypothetical limit entry order placement. 

Using the same example as above, if the prediction happened to be for a 

downward movement, then an order would be placed on the ask side of the spot 

market, selling a portion of the spot position, resulting in an opening of short 

directional exposure. As the market is already above this point (giving favourable 

execution) the order would simply be placed at the best ask price and held there 

until filled. The strategy re-balances directional exposures at each discrete 

prediction period.   
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Table 5.4: Trading and execution logic review. 

Rule Detail Reason 

Opening 
Placed via limit orders at or 
around the previous mid-
price-2.  

Directional risk is only 
opened if orders can be 
executed around the 
previous mid-price-2 as this 
aligns the powerful 

prediction target with prices 
that can be executed at. 

Placement* 

For every 1% reduction from 
perfect conviction the limit 
order price will deepen by the 
minimum tick size of the 
market (BTCUSD: $0.1; 
ETHUSD: $0.01). 

The trading strategy 
becomes less aggressive as 
uncertainty increases 
resulting in a reduced 
probability of a bad order 
being filled. 

Sizing** 

Orders are sized as a function 
of ensemble conviction. Sizing 
is computed as:  𝑐𝑜𝑛𝑣𝑖𝑐𝑡𝑖𝑜𝑛 × 
𝑟𝑖𝑠𝑘 𝑏𝑢𝑑𝑔𝑒𝑡. 

More dollars of the assigned 
risk budget are utilised as 
directional confidence 
increases. 

Thresholding 

Order placement will only be 
activated when the conviction 
ensemble breaches 0.5 for long 
or -0.5 for short. 

Adds further protection 
against bad predictions in 
line with expected model 
accuracy.  

Closing 
Closing orders are placed 
aggressively via market 
orders. 

Protects strategy gains 
against uncertainty with 
immediate effect.  

*All price levels are calculated from the spot market rather than the perpetual futures market for 
ease as the perpetual contract will often be closely anchored to the spot price and there is more 
data available for spot to train the models on. 
**If a risk budget has been previously assigned and there is an increase of conviction then the 
sizing will be the difference between current and desired position size.  
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The strategy presented in the results section of this chapter specifies very 

conservative directional budgets of 1%, 5% and 10%. This is to keep the strategy 

closely in line with a market neutral mandate while demonstrating how much 

improvement can be made when allowing small directional exposures to be 

opened, if controlled through a mid-price-2 conviction ensemble. Note that the 

funding rate and directional p&l is continually invested. 

The strategy is deployed on the cryptocurrency markets due to high 

frequency data being available for simulated trading, allowing limit order 

placement logic to be modelled, due to the cryptocurrency asset class becoming 

very popular, and to demonstrate the power of a mid-price-2 directional 

prediction in the context of a popular trading concept. 

All transaction costs4, spread costs and market impact costs are accounted 

for in the trading simulation. Adverse selection is not accounted for, although 

would be an interesting iteration to the strategy’s order placement logic.   

5.4 Results 

In this section individual model performance results are presented first. These are 

then used in the construction of the conviction ensembles. The ensembles are then 

used within a trading strategy, to demonstrate their practical value. 

 

 
4 The highest level of transaction cost is used for the simulation. On OKEx this is set at 0.08% 
for spot limit orders, 0.1% for spot market orders, 0.02% for perpetual limit orders and 0.05% for 
perpetual market orders. 
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5.4.1 Individual model performance 

To help assess the power of the proposed conviction ensemble methodology each 

sub-model’s performance is first investigated, providing a baseline benchmark in 

relation to the ensemble performance.  

The results for the individual models are shown in Table 5.5 on the 

following page for each asset on both validation and test data sets, where the ID 

column represents the model’s horizon in minutes (e.g. an ID of 15 represents a 

15 minute forecast horizon). It can be observed that very high Cohen’s kappa 

scores (representing percentages better than random) are achieved at all horizons 

and for all assets under consideration. These performance results are rarely 

observed when predicting financial quantities due to the noise content in financial 

data. It is thus shown that the power of a mid-price-2 prediction can scale and 

be robust to multiple short- and long-term horizons over multiple asset classes.  
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Table 5.5: A Cohen’s kappa comparison of all ensembles' sub-models per horizon and asset. 

ID Validation Test ID Validation Test 
BTCUSD 

15 55.45% 54.99% 135 50.97% 50.09% 
30 54.86% 51.36% 150 51.54% 52.32% 
45 55.18% 51.37% 165 56.06% 50.63% 
60 52.36% 54.40% 180 49.38% 50.81% 
75 47.33% 51.19% 195 47.18% 54.09% 
90 49.64% 52.08% 210 52.76% 53.80% 
105 55.76% 54.84% 225 49.73% 49.22% 
120 50.25% 48.75% 240 55.87% 53.16% 

ETHUSD 
15 55.25% 51.08% 135 50.72% 53.67% 
30 54.44% 48.69% 150 54.73% 51.53% 
45 51.64% 52.82% 165 56.12% 50.12% 
60 54.66% 56.01% 180 53.39% 55.08% 
75 55.17% 52.71% 195 54.09% 54.02% 
90 52.30% 49.79% 210 51.75% 55.53% 
105 52.52% 51.13% 225 48.60% 47.89% 
120 52.92% 54.78% 240 56.05% 53.88% 

FGBL 
15 55.01% 50.86% 135 50.50% 53.44% 
30 54.21% 48.49% 150 54.50% 51.32% 
45 51.42% 52.59% 165 55.87% 49.91% 
60 54.43% 55.78% 180 53.16% 54.85% 
75 54.94% 52.49% 195 53.87% 53.79% 
90 52.08% 49.58% 210 51.53% 55.29% 
105 52.29% 50.92% 225 48.39% 47.69% 
120 52.69% 54.56% 240 55.80% 54.64% 

EURUSD 
15 56.78% 52.50% 135 52.12% 55.17% 
30 55.95% 50.04% 150 56.25% 52.96% 
45 53.08% 54.29% 165 55.68% 53.52% 
60 56.18% 57.57% 180 54.87% 56.61% 
75 56.71% 54.17% 195 55.59% 55.52% 
90 53.76% 51.18% 210 53.19% 57.08% 
105 53.98% 52.56% 225 49.95% 49.23% 
120 54.39% 56.31% 240 53.66% 55.46% 
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The highest validation score in Table 5.5 is on EURUSD at the 75-minute 

horizon, with a Cohen’s kappa of 56.71%. The highest individual test score is also 

observed on EURUSD, with the 210-minute model achieving a 57.08% Cohen’s 

kappa. Confusion matrices relating to these best-performing horizons are shown 

in Table 5.6 below. 

Table 5.6: Confusion matrices for best-performing prediction horizons. 

Model Confusion Matrix 

75 Min Horizon 
(56.71% Kappa) 

 Up Down 
Up 671 193 

Down 181 683 

210 Min Horizon 
(57.08% Kappa) 

 Up Down 
Up 240 70 

Down 63 247 

These results are remarkable as they evidence that long-term predictions 

can be made regarding a market trend (through the mid-price-2 metric) with 

confidence higher than that displayed for many short-term prediction models. In 

addition to this display of robustness, the average difference in performance 

between the validation and test datasets ranges from the 2.37% Cohen’s kappa 

for EURUSD to a maximum of 2.58% Cohen’s kappa for ETHUSD, giving 

confidence that results observed on validation datasets can be reproduced on test 

datasets and in a production setting.   

5.4.2 Conviction ensemble performance 

Conviction ensembles are assembled by selecting a weighting scheme to apply to 

a universe of individual models which produce the ensemble output. The result is 

a model which is informed by information extracted from multiple horizons and 

multiple feature granularities, a very powerful combination which provides 

important contextual information to the ensemble. It is thought that this 

contextual information extracted at multiple granularities is one of the main 
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reasons the ensemble outperforms the already impressive individual modelling 

results presented above in Table 5.5.  

As has been mentioned earlier, to construct the ensemble three weighting 

schemes (detailed in section 5.3.3) will be tested, applied to each sub-model 

universe per optimisation. Each model will receive a weight dictated by the 

selected scheme to its last available output, with the combined output then being 

normalised to ensure the resulting model operates within the same bounds as the 

sub-models. For each weighting scheme the predictive performance is measured 

at different horizons ranging from 15 minutes to 4 hours. The optimisation results, 

for the three weighting schemes, and for each asset under consideration, are shown 

below in Figures 5.9 to 5.12. 

It can be observed from that the optimal horizon is 60 minutes for all asset 

classes and found to persist over all weighting schemes. The maximum Cohen's 

kappa appears to be robust to small variations in horizon for all the weighting 

schemes considered, with the 45-minute and 75-minute horizons, both achieving 

performance scores in the top 10th percentile of model results.  

The best performance is attained using the Bayesian optimisation 

weighting scheme. This is likely due to the scheme being able to dynamically test 

different weights for each model as part of the trail-and-error optimisation 

process, a flexibility the other schemes cannot provide as they are static. As the 

optimal 60-minute horizon exhibits a shallow peak for all weighting schemes it 

can thus be assumed the optimal results using any of the three weighting schemes 

considered are robust to reasonable deviations and not simply an artefact of a 

specific dataset. This is further enforced by the fact that the optimal horizon 

scales across multiple asset classes which encapsulate very different market 

dynamics.   
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Figure 5.9: BTCUSD | [Upper] Validation performance; [Lower] Test performance. 
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Figure 5.10: ETHUSD | [Upper] Validation performance; [Lower] Test performance. 
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Figure 5.11: FGBL | [Upper] Validation performance; [Lower] Test performance. 
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Figure 5.12: EURUSD | [Upper] Validation performance; [Lower] Test performance. 
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 The charts above show that the Bayesian optimisation weighting scheme 

is superior across all horizons, asset classes and weighting schemes on both the 

validation and test datasets. However, the predictive power is surprisingly robust 

to variations of weighting scheme, indicating that the ensemble models provide a 

consistent yet high predictive power and are not reliant on overly complex 

optimisation schemes which can lead to instability, again demonstrating the 

unique properties encapsulated in the methodology and novel target construction. 

Table 5.7 below summarises the optimal performances per weighting scheme and 

asset, all of which achieved maximum performance at the 60-minute horizon 

mark. 

Table 5.7: A comparison of different weighting scheme performances. 

Asset 
Validation Cohen’s 

Kappa 
Test Cohen’s 

Kappa 
Equally Weighted 

BTCUSD 65.00% 63.84% 
ETHUSD 66.13% 68.45% 
EURUSD 60.89% 62.53% 
FGBL 58.89% 63.57% 

Cohen’s Kappa Weighted 
BTCUSD 66.74% 67.74% 
ETHUSD 67.51% 69.19% 
EURUSD 62.59% 64.26% 
FGBL 61.00% 64.90% 

Bayesian Weighted 
BTCUSD 68.81% 68.94% 
ETHUSD 70.92% 73.26% 
EURUSD 65.70% 67.01% 
FGBL 63.70% 66.26% 

The maximum performance observed on a validation dataset was on 

ETHUSD, using the Bayesian weighting scheme, where a 70.92% Cohen’s kappa 

was achieved. This translated into a remarkable 73.26% Cohen’s kappa on the 

test dataset which was the highest observed performance over all asset classes 
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and weighting schemes investigated. The mean absolute performance difference 

(in terms of Cohen's kappa) between the validation and test datasets across all 

assets was 2.45%, 2.06%, and 1.59% on the equally weighted, kappa weighted, 

and Bayesian weighted schemes, respectively, showing that there is a robustness 

to the validation results, as they can be closely reproduced on unseen data, a 

promising property to observe. Interestingly, the smallest difference was observed 

for the Bayesian weighting scheme and the largest difference observed for the 

equally weighted scheme, implying that the extra complexity of the Bayesian 

weighted scheme was worth paying, given that the results both provide higher 

predictive power and are more robust. 

The predictive models built for the cryptoassets outperformed those for 

the traditional assets by providing an additional 3.09%, 3.89% and 4.47% Cohen’s 

kappa on average across the equally weighted, kappa weighted and Bayesian 

weighted schemes respectively. This is contradictory to the individual model 

performances, where the maximum predictive power was observed for the 

traditional asset classes. Thus, although multi-period contextual information 

extracted from multiple data granularities is important when predicting all asset 

classes, the benefits are most strongly observed for cryptoassets.  
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Figure 5.13: BTCUSD | [Upper] Train conviction mapping; [Middle] Validation conviction 

mapping; [Lower] Test conviction mapping.  
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5.4.3 Conviction ensemble stability 

To verify the stability of the ensemble conviction mappings, the train, validation, 

and test conviction accuracies are plotted for each ensemble sub-model in Figure 

5.13, with those for the Bayesian weighted ensembles added to the charts to 

demonstrate the enhanced stability. The results are presented for BTCUSD 

(ETHUSD was observed to follow the same pattern). 

It can be seen from Figure 5.13 that the tightest distribution of model 

performances is on the train dataset. This is to be expected as it is an in-sample 

result. As the models are applied to unseen datasets ranging further from the 

training dataset, the individual model performance distributions widen. The 

Bayesian weighted ensemble addresses these concerns effectively by adjusting for 

individual model instabilities. This stabilising effect is critical to successful usage 

in real world scenarios such as trading where the output will be used to size and 

place orders that require stable and accurate predictions. If the output were 

unstable it would result in overtrading, higher trading costs and less accurate 

order sizing and placement logic, as these mechanics are a function of model 

certainty.  

An interesting point to note, though outside the scope of this work, is that 

a model re-training mechanism could be designed as a function of an ensemble's 

sub-model’s performance variance, which would effectively control for instability 

propagating through the ensemble's predictions as time evolved. 

5.4.4 Market neutral trading strategy 

As described in section 5.3.5 a market neutral trading strategy was designed to 

enhance a classical Funding Capture trade while maintaining the benefits of the 

baseline strategy’s funding rate income. The results from this strategy presented 
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here use the optimal Bayesian weighted ensemble to inform order placement and 

sizing of directional exposures every 60 minutes, as this is the horizon where the 

highest predictive power was discovered. Simulation results using a $100k 

portfolio are presented below for BTCUSD and ETHUSD. 
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Figure 5.14: BTCUSD performance comparison for the different strategy variants, in each case 

using a Bayesian weighted conviction ensemble to make trading decisions. Upper charts use 

Funding Capture as the baseline strategy while lower charts use Buy & Hold. 
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Figure 5.15: ETHUSD performance comparison for the different strategy variants, in each case 

using a Bayesian weighted conviction ensemble to make trading decisions. Upper charts use 

Funding Capture as the baseline strategy while lower charts use Buy & Hold. 
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As can be seen from Figures 5.14 and 5.15, the two baseline strategy 

profiles are very different. The Buy & Hold strategy exhibits large swings in its 

performance but can provide high returns, whereas the Funding Capture strategy 

typically generates very consistent returns with lower upside. However, as 

BTCUSD had a large selloff in May (due to Elon Musk’s tweets, and rumours 

that Tesla had sold their previously acquired Bitcoins) the Funding Capture 

strategy outperformed the Buy & Hold strategy during this period while 

maintaining its more desirable risk profile. This is not the case for ETHUSD, for 

which the Buy & Hold strategy outperformed Funding Capture. There is thus a 

trade-off between the amount of risk taken and the consistency of return delivered 

by a strategy.  

The conviction ensembles effectively combine the best features of the 

baseline strategies, allowing directional risk to be safely taken while still allowing 

for consistent returns to be generated from the perpetual futures funding rate. 

The proposed Funding Capture strategy with different directional budgets 

provides a strong alternative to simply buying the underlying or fully hedging 

directional exposure, as the classical Funding Capture strategy does. As already 

noted, the proposed strategy can provide returns similar to Buy & Hold, with 

Sharpe ratios comparable to the classical Funding Capture strategy, essentially 

providing the best of both worlds. This successful fusion is achieved through the 

power of a mid-price conviction ensemble allowing for controlled directional 

exposure to be opened within the bounds of a pre-specified risk tolerance, giving 

a flexibility that the baseline strategies do not provide. Table 5.8 below 

summarises each strategy’s performance statistics. 



127 
 

Table 5.8: An out-of-sample comparison of trading performance across the different strategies under consideration. 

Asset 
Winning 

Days 
Mean Daily 

Return 
Longest  

Drawdown 
Max  

Drawdown 
Sharpe  
Ratio 

P&L 

Baseline 1: Funding Capture 
BTCUSD 89.09% 0.10% 10 Days -0.18% 19.31 18.43% 
ETHUSD 89.70% 0.11% 9 Days -0.12% 20.79 19.25% 

Baseline 2: Buy & Hold 
BTCUSD 47.27% 0.04% 62 Days -45.79% 0.59 6.50% 
ETHUSD 53.94% 0.37% 41 Days -31.41% 1.95 84.57% 

Funding Capture [1% Budget] 
BTCUSD 92.73% 0.13% 9 Days -0.27% 22.56 23.85% 
ETHUSD 94.55% 0.14% 3 Days -0.09% 24.46 26.92% 

Funding Capture [5% Budget] 
BTCUSD 92.73% 0.23% 8 Days -0.88% 21.19 45.56% 
ETHUSD 92.73% 0.27% 2 Days -0.55% 20.33 57.53% 

Funding Capture [10% Budget] 
BTCUSD 90.91% 0.33% 8 Days -1.45% 18.50 72.67% 
ETHUSD 91.52% 0.41% 3 Days -0.97% 17.34 95.67% 
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It is clear from the descriptive statistics in Table 5.8 that at a baseline 

level the Funding Capture strategy offers a much more robust return stream 

compared to Buy & Hold. The basic Funding Capture strategy offers Sharpe 

ratios up to 20.79 on ETHUSD compared to a maximum Sharpe ratio of 1.95 on 

ETHUSD using the Buy & Hold strategy. The advantages of the Funding Capture 

strategy are further emphasised through other descriptive statistics such as the 

number of winning days (an average of 89.39% across both assets for Funding 

Capture compared to 50.61% for Buy & Hold), the maximum drawdown (an 

average of -0.15% across both assets for Funding Capture compared to -38.60% 

for Buy & Hold), and the longest drawdown (an average of 9.5 days for Funding 

Capture compared to 51.5 days for Buy & Hold). However, the ETHUSD Buy & 

Hold strategy outperformed in p&l and mean daily return, as would be expected 

in times of bull markets, which were experienced during the period that these 

tests were run. The BTCUSD Buy & Hold strategy did not outperform in p&l or 

mean daily return making it the worst performing strategy. As previously 

mentioned, this is due to strong negative sentiment surrounding Tesla’s Bitcoin 

holdings as mentioned previously that resulted in the price of BTCUSD crashing 

in May. 

The benefits of using conviction ensembles over the classical Funding 

Capture strategy are now analysed. Across the three directional budgets explored, 

the p&l of the baseline Funding Capture strategy is increased on average by 35%, 

173%, and 346% for directional budgets of 1%, 5% and 10% respectively. These 

large outperformances come with very little damage to the strategy's core 

properties, with only a marginal increase in the max drawdown, and in fact a 

shortened drawdown duration in cases, most apparently on ETHUSD. Hence, 

although a deeper max drawdown is observed, this drawdown is generally 

recovered from more quickly than in the case of the basic Funding Capture 
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baseline strategy. Across all the directional exposures considered the number of 

winning days increased by 4% on average, while mean daily returns also increased 

by 29%, 138%, and 251% for 1%, 5% and 10% directional budgets, respectively. 

These enhancements are directly attributed to directional exposures provided 

through the conviction ensembles. Remarkably, for taking only a 1% directional 

exposure the baseline Funding Capture strategy can be improved by 35% in p&l. 

It can also be seen that by opening just a 10% directional exposure the strategies 

p&l can marginally outperform an ETHUSD Buy & Hold return of 84.57% by 

13.12%, taking the p&l to 95.67% while maintaining exceptionally high Sharpe 

ratios.  

Figures 5.16 and 5.17, on the next page, address the consistency of each 

strategy type comparing the baseline strategies with the minimum (1%) and 

maximum (10%) directional exposure budget explored in this work.  
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Figure 5.16: BTCUSD quarterly performance comparison over different strategy variants. 
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Figure 5.17: ETHUSD quarterly performance comparison over different strategy variants. 
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Figure 5.16 shows that BTCUSD performed very well in the first quarter 

of 2021, giving a baseline Buy & Hold strategy a p&l of ~60%, an outperformance 

over all other strategies considered over the same period (although if they are 

compared with respect to Sharpe ratio the proposed Funding Capture strategy 

series again outperforms). However, as mentioned earlier, the BTCUSD return 

for Q2 severely underperformed, losing ~50% and reducing the year-to-date return 

of a BTCUSD Buy & Hold strategy to only 6.5%. The same pattern is observable 

in the ETHUSD returns in Figure 5.17, where the Buy & Hold strategy performs 

well in the first Quarter of 2021 and then remains flat to the end of Q2. This 

observation emphasises how important timing is when considering a Buy & Hold 

strategy. ETHUSD demonstrates this sensitivity most clearly, where ~40% of the 

return is generated in the first week of 2021. Therefore, an investor who deployed 

a Buy & Hold strategy from January 1st, 2021, would be ~40% better off than an 

investor who deployed the same strategy a week later. This is demonstrated 

visually in Figure 5.18 below.  

 

Figure 5.18: ETHUSD performance sensitivity demonstrates the weakness of a Buy & Hold 

strategy compared to a systematic strategy which can deliver consistent returns. 

The timing sensitivity demonstrated in Figure 5.18 is a very undesirable 

property for a strategy as it highlights that an investor's returns are mainly a 
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function of a lucky entry point, making this type of strategy unsustainable for 

many investors. In the ETHUSD example above it can be seen that an investor 

entering the market on the 7th January 2021 would take on a very large amount 

of risk by holding such a volatile asset, and only marginally outperform an 

investor who deployed the Funding Capture strategy with a 1% directional 

exposure budget, a very undesirable result for the Buy & Hold investor.  

Gaining exposure to extreme returns through a Buy & Hold strategy is 

therefore highly conditional on optimally timing the opportunity to enter the 

market, which is often attributed to luck. When comparing this to the Funding 

Capture strategy with directional budgets, the benefits of fusing the Funding 

Capture with the conviction ensemble's superior predictive power becomes 

apparent, with the 10% directional budget being able to outperform Buy & Hold 

while delivering high Sharpe ratios, low drawdowns and consistent returns which 

are robust to timing. The success of combining the Funding Capture strategy 

with directional budgets could only be achieved with an extremely high predictive 

power that is also consistent and robust, a characteristic not realistically 

achievable through traditional methodologies and target constructions. 

5.5 Discussion 

In this chapter it has been shown that the power of a mid-price-2 prediction holds 

across multiple time horizons from 15 minutes to 4 hours, demonstrating that this 

novel target can provide robust, consistent, and scalable predictive value. The 

development of Bayesian optimised conviction ensembles extended the framework 

for mid-price-2 predictions. Several different ensemble weighting schemes were 

considered, of which the Bayesian weighted scheme was the most effective, 

outperforming any individual model's predictive power by an average of 22.93% 
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across all assets under examination, with the ensemble achieving a maximum 

Cohen’s kappa of 73.26% on out-of-sample ETHUSD data.  

The work of Chapter 4 had demonstrated that a high predictive power 

could be achieved through a mid-price-2 prediction, but had noted that making 

use of this predictive power would not be trivial since a mid-price-2 is not located 

at a specific point in time. Here, a novel twist on two classical trading strategies 

was developed, powered by a Bayesian optimised conviction ensemble, which 

outperformed both baseline strategies considered, while maintaining each of their 

desirable properties, resulting in high Sharpe ratios and high returns with minimal 

directional risk taken. This outperformance is directly attributed to the power of 

a mid-price-2 prediction and could not have been achieved with traditional 

targets, due to such targets being unable to provide a high and consistently robust 

predictive power. The construction of conviction ensembles and the resulting 

trading strategy has many components which can be further optimised, producing 

potentially better results. Therefore, the results here only indicate the potential 

power and trading value that conviction ensembles could provide. 



 

Chapter 6 

6 Conclusions and future work 
 

In this final chapter, the main contributions of this thesis are summarised, future 

work is proposed, and concluding remarks are made. 

6.1 Discussion and summary of contributions 

This thesis has focused on the design and development of novel machine learning 

methodologies for extracting predictive power from OHLC data structures, a 

subject that has seen much controversy (Marshall et al., (2006; 2008); Horton, 

2009; Fock et al., 2005; Duvinage et al., 2013; Detollenaere and Mazza, 2014). 

The aim of this work has been to provide novel methodologies for extracting value 

from these data structures, in several real-world contexts from pattern mining to 

prediction and algorithmic trading. Throughout this thesis empirical results have 

been presented which demonstrate that the novel techniques, and novel targets, 

proposed here have successfully been able to extract valuable information from 

OHLC data structures, a result in contrast to many other works in the literature 

(see Section 2.2.4). 

In Chapter 3, Deep Candlestick Mining (DCM) was introduced, with the 

aim of discovering both new and traditional statistically significant predictive 

candlestick patterns. A novel double-clustering process was first developed to 

identify general and specific structures in data. The approach was applied to 

understand what OHLC feature input states a BOHB-optimised LSTM RNN 

found to be useful for predicting the close price change. Using the proposed 
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methodology, a relationship between LSTM RNN predictions and arrangements 

of OHLC data structures, known as candlestick patterns, was discovered allowing 

for a deeper understanding of what specific OHLC arrangements provided 

predictive value to the LSTM RNN. The novel DCM-based candlestick patterns 

were represented by the centroids of each cluster, constructed by averaging each 

cluster's candidate OHLC arrangements, deemed valid if several validation filters 

were passed. A test was then formulated to compare the predictive power of 

traditional vs. DCM-based candlestick patterns, showing DCM-based patterns to 

significantly outperform. The result demonstrates that there is significant value 

in OHLC data structures if used in combination with novel methodologies not 

widely known to the community. 

In Chapter 4, a new prediction target was proposed in the form of mid-

price-1, the point between the high and low of an OHLC structure, and mid-

price-2, the point between the open and close price levels. It was found that these 

targets had reduced noise content compared to traditional ones like the close 

price, making them easier to predict. The highest predictive power was achieved 

through the mid-price-2 target, in combination with (importance mined + 

correlation filtered) OHLC features, suggesting again that there is value in OHLC 

data structures if used in a novel context, where here the novelty lies in both the 

features and the target mid-price. However, although the methodology provided 

a level of predictive power rarely observed when forecasting financial quantities, 

it was suggested it would be hard to use in practice as the mid-price does not 

reside at a specific point in time.  

In Chapter 5, the concepts from the previous chapter were extended into 

an ensemble setting by training 𝑁 BOHB-optimised LSTM RNN’s to predict mid-

price-2 directional changes at 𝑁 different horizons, as previously presented in 

Chapter 4 for 𝑁=1, and then combined using a weighting scheme to construct 
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the ensemble. It was shown that the results presented in Chapter 4 for a 60-

minute horizon were robust to a very wide range of horizons from 15-minutes to 

4-hours achieving remarkably high model performance scores for each horizon. 

This further emphasises the robust and consistent predictive power which can be 

achieved from a novel mid-price-2 target using OHLC features if modelled 

through a context not widely considered before. Using these models, an ensemble 

was constructed by exploring three different weighing schemes (equally weighted, 

Cohen’s kappa weighted, and Bayesian weighted) with the Bayesian weighting 

scheme shown to provide the best results over all considered horizons. A Bayesian-

weighted ensemble achieved a predictive power exceeding 70% MCC at the 60-

minute horizon on ETHUSD, an improvement of 30% over any result in the 

previous chapter. The remarkably high predictive power presented, while 

surprising, does not contradict the surrounding academic literature as the 

performance was achieved by using a novel target and ensemble construction 

process never used before in the context of OHLC data structures. To demonstrate 

the utility of mid-price-2 Bayesian optimised conviction ensembles, the 

predictions were used to control directional exposure, execution, and position 

sizing in a novel twist of a popular institutional market neutral cryptoasset 

trading strategy, allowing the strategy to earn higher returns from controlled 

directional risk exposures. It was shown that by opening only small directional 

exposures, enhancements of up to 346% over the baseline strategy could be 

achieved in total return, while maintaining exceptionally high Sharpe ratios. The 

approach offers a way to achieve returns at the level of Buy & Hold without 

sacrificing consistency of return, a novel yet highly flexible strategy proposition. 

The success of this strategy addressed concerns in Chapter 4 that it might be 

hard to harness the power of mid-price-2 predictions in a real-world scenario. 
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The primary result of this thesis, presented in Chapter 5, and based on 

work in the previous two chapters, shows that a remarkably high predictive power 

can indeed be extracted from OHLC data structures and used successfully in an 

algorithmic trading setting, if formulated in combination with novel targets and 

modelling techniques. Overall, the work presented here has shown substantial 

promise in the development of new methodologies for predictive systems using 

OHLC data structures, although there is still scope for improvement, as discussed 

below. 

6.2 Future work  

There are many opportunities for the work presented in this thesis to be further 

developed and explored, due to its novelty. As concepts are shared across chapters 

proposals are presented per component of the modelling pipeline used throughout 

this thesis, rather than related to a specific chapter. 

All proposed enhancements are designed to develop the baseline framework 

presented in this thesis into a dynamically evolving pipeline for enhanced financial 

market prediction and trading.  

 

6.2.1 Feature construction 

Multi-exchange OHLC structures. Currently, a single exchange's data feed 

is used to construct the OHLC data structures which form the baseline feature 

inputs. While this approach is often acceptable for traditional assets, which are 

usually listed on only one exchange, it is commonplace for cryptoassets to be 

listed on multiple exchanges. Hence, the construction of OHLC data structures 

using the whole market (often 10+ exchanges for cryptoassets) should be 
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considered to increase information content embedded in the baseline OHLC 

structure. 

Price discovery weightings. As there are many exchanges around the world 

catering to different client types, trading styles, products (spot, futures, options, 

etc.), and market views, an OHLC structure constructed over a universe of 

exchanges, as suggested above, may start to show higher variance in its price 

levels, making prediction harder as more uncertainty is embedded in the feature 

space and targets. To adjust for this, it may be valuable to explore a dynamic 

weighting scheme to account for informational flows between exchanges and 

adjust for exchange nuances (such as the Kimchi premium (Mourdoukoutas, 

2018)) resulting in a price discovery aware OHLC data structure. 

Sampling method. This work has focused on clock time sampling, where OHLC 

structures are generated every clock period (e.g., every hour) as it is the default 

sampling convention and used widely in the surrounding literature. However, it 

would be useful to investigate the use of event time sampling, such as 'dollar 

volume time sampling', which generates OHLC structures every 𝑁 dollars (e.g., 

every $10 million traded). The main advantages of event time sampling are 

enhanced statistical properties for modelling (data is more i.i.d., which is often 

advantageous for machine learning algorithms (Lopez de Prado, 2018)), and 

informational stability as each OHLC period represents a constant quantity of 

market events (clock time does not, which could result in subtle modelling 

instabilities). It is expected enhanced control can be achieved through event time 

sampling, as models can make decisions in line with the natural rate at which 

markets process information rather than at an arbitrarily imposed rate, as is the 

case with clock time.  
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6.2.2 Feature selection 

In this work a very large universe of features is exposed to an XGBoost model 

which subsequently ranks them for importance against a specific target (e.g., close 

price, mid-price-2, …). The ranked features are then processed further through a 

correlation filtering framework. However, given the dimensionality of the feature 

universe and the inherent noise content, it may be appropriate to investigate the 

use of different methods such as LSTM RNN Deep AutoEncoder (Srivastava et 

al, 2015) architectures to first process the feature universe to obtain a 

representation with reduced noise and dimensionality, through the AutoEncoder's 

latent space, then assess importance mappings to a desired target. This approach 

may be better able to exploit sequential relationships and subtle conditional 

information in a large feature universe, resulting in a richer feature space.  

6.2.3 Structural identification 

k-means++ has been used to design a novel double-clustering process which 

identifies general, and then specific, structure in data. This approach, while 

functional, does not scale well to larger datasets. Hence, it would be valuable to 

explore more scalable clustering algorithms for the purpose of structural 

identification in large feature sets, such as PQk-means (Matsui et al, 2017). 

6.2.4 Target construction 

Mid-price-1 and mid-price-2 were proposed in this work as novel targets, showing 

that remarkable predictive power can be achieved by predicting their directional 

change. This is likely for several reasons, including a reduced noise content and 

the fact that they are unknown quantities to most market participants, thereby 

reducing competition in the prediction and subsequent trading based on their 
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values. Given the success of these proposed quantities in this work it would be 

valuable to investigate a series of novel mid-price constructions focusing on mid-

points between known, and lesser known, OHLC price levels such as mid-points 

between high to upper body, upper body to mid-price-2, mid-price-2 to lower 

body, lower body to low, etc. By sub-dividing each level of an OHLC structure, 

novel targets can be constructed, allowing a much larger proportion of the OHLC 

structure to be predicted via novel quantities, rather than well-known traditional 

ones, likely resulting in more accurate prediction of trends. 

6.2.5 Ensemble construction 

In Chapter 5 the best ensembles were constructed by applying a Bayesian 

weighting scheme to a universe of individually trained BOHB-optimised LSTM 

RNNs. While this was shown to be a highly effective methodology it could be 

extended to (1) consider regimes, (2) dynamically weight sub-models, and (3) 

dynamically train sub-models through asynchronous schedules. These 

propositions are discussed in more detail below. 

Regime aware ensembles. It would be worthwhile investigating the 

combination of the DCM’s double-clustering methodology applied to the task of 

market regime identification with ensemble weighting schemes. The combination 

of these two novel techniques would result in regime aware ensembles, potentially 

enhancing prediction accuracy as ensembles would be weighted per regime to 

maximise predictive power. 

Dynamic ensemble weighting. An extension to the above-proposed regime 

aware ensembles could be to use a reinforcement learning agent to construct a 

dynamic weighing scheme. The agent could take the regime cluster IDs and sub-

model predictions as input to derive a dynamic weighting for the ensemble. The 
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reward function would be designed to maximise an objective of interest such as 

the MCC, or even a desired trading performance metric, such as the Sharpe ratio. 

Asynchronously staggered ensembles. The synchronisation of a classical 

ensemble's sub-models is sensitive to the data each model is trained on. Typically, 

the dataset each sub-model is trained on is the same. It would be valuable to 

explore a methodology to de-synchronise the sub-models' training ranges, to break 

up any unwanted correlation in model predictions. Each model would be trained 

over different data ranges and only be available at certain times during the 

prediction period, as they would auto-re-train at different times, based on 

variables such as performance and consistency. The proposal is based upon the 

observation that the most recent training data is not necessary the most 

representative of current trading conditions and that a range of models exploiting 

different data properties across different data ranges could improve the ensemble's 

robustness and accuracy. 

The above proposals build on the current work by extending the core 

ensemble design principals, making the framework more dynamic, allowing it to 

evolve with the market and adjust for different regimes. These proposals will very 

likely result in enhanced robustness of the predictive power, offering a greater 

level of control when used in a trading strategy. 

6.2.6 Trading strategy design 

In this thesis, a popular institutional market neutral trading strategy was 

enhanced by the addition of directional risk budgets controlled by conviction 

ensembles. This provided the strategy with a directional income, in addition to 

the baseline funding rate capture, by exploiting the remarkably accurate and 



143 
 
robust predictive power of a mid-price-2 conviction ensemble. Future work should 

focus on two main areas – namely, execution and risk management.  

Execution. Enhancing the limit order placement model (LOPM) is of critical 

importance to increase the dollar capacity of this strategy, and to protect against 

information leakage as a result of large orders being placed at specific price levels. 

Initial investigation should focus on layering limit orders into the order book as 

a function of distance from previously realised mid-price-2 levels and conviction. 

By encouraging more limit order placements, some more aggressively priced than 

the previously realised mid-price-2, a more continuous execution model could be 

achieved, enhancing capacity and adding a third source of income to the strategy 

through fee rebates, as some exchanges pay for limit orders to be placed into their 

order books to enhance liquidity – typically the job of a market maker. In addition 

to enhanced pricing logic, a multi-exchange approach should be integrated into 

the LOPM to exploit pricing inefficiencies as a result of fragmented liquidity 

observed in cryptoassets. 

Risk Management. An investigation into dynamic risk budgets as a function 

of conviction and regime should be considered. This would allow an enhanced 

level of control, conditional on regime, allowing for larger directional income 

budgets to be allocated at times when market conditions are stable, and for 

directional risk budgets to be reduced or turned off at times when market 

direction is uncertain. 

Overall, the aim of this trading strategy is to demonstrate a novel use case 

of a conviction ensemble in the context of a tightly risk-controlled trading 

strategy. The strategy’s additional income streams (directional exposure and fee 

rebates) are only attractive if a remarkably high level of predictive power can be 
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achieved, not possible with traditional predictive modelling methodologies or 

targets.  

6.3 Concluding remarks 

The prediction of financial markets is, and will remain, a difficult challenge due 

to market dynamics being influenced in part by random and subtle forces. 

However, the work presented here suggests that there are ways to exploit 

information embedded in OHLC data structures to accurately predict and trade 

financial markets if novel methodologies are used. 

 

 

 



 

Appendix A 

A. Additional Research Results 

Significant candlestick pattern catalogues are presented on the following pages 

supplementing the catalogues presented for FGBL and ETHUSD in Chapter 3. 
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Table A.1: BTCUSD Deep mined candlestick patters for all lags. 

2 Candle Patterns 

   

Cluster: 0,1 Cluster: 0,4 Cluster: 2,1 

3 Candle Patterns 

 
  

Cluster: 0,3 Cluster: 1,1 Cluster: 1,3 

 

  

Cluster: 2,0   

4 Candle Patterns 

  
 

Cluster: 0,4 Cluster: 3,3 Cluster: 4,1 
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Table A.2: EURUSD Deep mined candlestick patters for all lags. 

2 Candle Patterns 

 

  

Cluster: 0,5   

3 Candle Patterns 

   

Cluster: 0,1 Cluster: 0,4 Cluster: 1,2 

 

  

Cluster: 3,3   

4 Candle Patterns 

  
 

Cluster: 0,4 Cluster: 1,2 Cluster: 1,4 
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