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Abstract 

Successful trading in modern markets depends on the ability to monitor and anticipate 

changes in exchange rates, share, bond and derivative prices, and to make effective 

decisions to buy, sell, withdraw or hold based on these changes. Rapid changes in market 

conditions necessitates consistent but flexible strategies to inform, evaluate and take these 

decisions. The potential of Artificial Intelligence (AI) based systems to augment, and where 

necessary, replace human decision-making is clear in this field. 

While AI-based methodologies for trading and successful decision-making are discussed in 

academic publications, the tools (whether “black box” and producing output by “hidden” 

algorithmic or statistical means, or “white box” and employing explicit causal mechanisms) 

are typically proprietary, i.e. exact algorithms, heuristics and modelling archetypes 

employed are not in the public domain. Hence, for the trader, bespoke development is 

required to apply these methodologies to provide the information advantage sought. 

The work described in this thesis derives from an industrial collaboration between the 

University of South Wales and OSTC Wales Ltd., a trading company specialising in the 

trading of interest rates, commodity futures and other derivatives. The thesis addresses the 

exploitation of market behaviour by combining artificial intelligence with financial trading 

heuristics, to design and produce a working prototype system which quantifies and 

categorizes trading strategies.  

This thesis therefore details the design of, and examines the further implications and 

applications for, an early warning detection system for identifying ‘bad’ traders using 

machine learning. It is assumed traders can be evaluated using the same performance 

metrics as the trading strategies they employ. That is, a good trader is one that uses a 

successful strategy. The system is “white box” and hence amenable to analysis and practical 

experimentation. 

The system identifies a set of criteria by which the success of a trading strategy may be 

judged. It examines these criteria in order to “score” the traders employing these. The 

trading company, proprietary or otherwise, employing the traders can therefore make 

better decisions about the amount of funds to allocate to each trader.  
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The methodology is intended for use by those who manage traders, but can also be used by 

traders themselves. The detection system found may be used by other concerns in the 

financial sector whereas the principles examined can be extended to other areas in which 

decision-making is critical. Examination of the finished system and the process of its 

composition will provide useful material for academic analysis. 
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Chapter 1 – Introduction 

Financial markets are an essential part of the global economy as they are a centralised place 

to exchange assets and other financial instruments. Financial markets attract all sorts of 

participants such as buyers, sellers, investors, hedgers and speculators. Financial traders are 

speculators that provide liquidity to the market and they help discover the true value of an 

asset or financial instrument. Traders may partake in the markets for the thrill or for 

monetary gain, but to become consistently profitable in this highly competitive endeavour, 

the trader must commit to continuous learning in an ever evolving environment. Profits can 

be extracted from the financial markets in many ways but there is a catalogue of things a 

trader must become knowledgeable about including risk, psychology, capital management, 

how to create and apply a trading strategy and to how to recognise if their trading strategy 

has an edge in the markets.  

The primary aim of this thesis is to design an early warning detection system for bad traders 

using machine learning. Traders can be evaluated using the same metrics as trading 

strategies. Thus, this research will focus on classifying trading strategies rather than focusing 

on real life traders (which may infringe personal and proprietary information). Finding 

profitable trading strategies in ever-evolving markets is difficult but is crucial for the 

continued success of a trader. To test our early warning system for bad traders, the trading 

strategies used to test our system need to contain 'good' as well as 'bad' trading strategies. 

From the operations that take place at OSTC, there are two main methodologies that are 

being employed by traders; these are technical analysis (1.3.3) and fundamental analysis 

(1.3.4). Both categories of analysis can be employed to provide information advantages in 

trading. However, as will be explained later, the former is quantitative, whereas the latter is 

both qualitative and less immediate. This thesis addresses the broad principles of the 

possibility and means of categorizing traders. To meet the primary aim of the work, models 

of traders must be built, and this is facilitated by quantitative technical analysis algorithms 

and real-world financial data. Therefore the scope of work has been restricted to technical 

analysis. This effectively describes the second aim of this thesis, which is the creation of 



10 
 

trading strategies, the models of traders, through combining the buy and sell signals from 

technical analysis algorithms. 

It should be noted that this pragmatic approach to modelling trader and market behaviour 

contrasts with the typical academic method of assuming ideal (i.e. perfectly-competitive, 

non-arbitrageous) markets and seeking closed-form solutions relevant only to these. The 

approach taken here is therefore of direct and practical relevance to the University’s 

industrial partner on this project. 

The thesis is divided into five sections, beginning in Part 1 with the background and 

literature review of machine learning applied to the classification and creation of trading 

strategies, Chapter 2. In Part 2, the technical analysis interpretations that are implemented 

in this thesis are outlined in Chapter 3. An overview of the performance metrics that can be 

obtained from technical analysis interpretations and trading strategies is then provided, 

Chapter 4. The extent to which historical performance metrics can influence future 

performance metrics is also investigated in Chapter 5. In Part 3, an attempt is made to 

create trading strategies using a Genetic Algorithm in Chapter 6 and 7, optimising 

combinations of technical analysis algorithms to generate a pool of models of traders. 

However, the means of identifying an appropriate fitness function was unclear, and the 

approach may have suffered from overfitting. Having established the difficulties with 

determining useful fitness functions, this work informed the subsequent choice of a 

machine learning method that determines the fitness function as its output – the Adaboost 

algorithm. In Part 4, experiments are conducted using the Adaboost algorithm as the 

underlying classification algorithm to create classification systems that attempt can classify 

and identify ‘bad’ traders. In Chapter 8, classification systems trained using the performance 

metrics of single technical analysis interpretations are compared. In Chapter 9, imbalances 

in the training validation and outsample dataset are discussed. Classification systems 

trained using the performance metrics of trading strategies using a number of technical 

analysis interpretations are compared. In Chapter 10, classification systems are trained 

using the performance metrics of trading strategies using multiple market datasets. In 

Chapter 11, the categorization of what makes a trading strategy ‘good’ or ‘bad’ is changed 

and the classification systems are trained to predict various performance metrics in the 

future. In Part 5, 11.7 demonstrates how the Adaboost-based classification systems that are 
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explored in this thesis can be altered to produce regression output and also shows how to 

visualise and make sense of the decisions of these systems. 

A prototype system has been developed in this project, such that users of the system 

(managers of trading companies) can create the classification systems developed in this 

thesis and use the classification of the classification systems to classify traders. The users of 

the software can also choose their categorisation metric and value; this is described and 

illustrated in Appendix D. 

1.1 Financial Markets and their Prediction 

The definitions below for terms commonly used in describing financial markets are sourced 

from (McLaney, 2006). 

An ordinary share (or more often, just share) is an equity (a part ownership) in the company 

that issues it. The primary market for such shares refers to their purchase when new. 

The secondary market is the financial market in which previously issued shares and bonds, 

derivatives, options and futures (see below), are bought and sold. Despite its name, in 

providing ongoing prices for investors, the secondary market is the primary means of 

evaluation of asset prices, and hence of the companies and financial institutions whose 

assets they represent. It also administrates considerably greater value and volume of trade 

than the primary market. 

Bonds are loans made to companies or governments. They typically pay interest in the form 

of coupons (set payments) and may be redeemable for a face value at some point in the 

future. The bond market is globally more important than the share markets. 

Foreign exchange markets (FX or Forex) are markets that allow for one currency to be 

converted into another currency. The foreign exchange markets averaged more than $5 

trillion per day in April 2016 (Triennial Central Bank Survey of foreign exchange and OTC 

derivatives markets in 2016, 2016). 

Derivatives are contracts to buy or sell shares, bonds, or some other asset, the underlying. 

The most important derivatives are the future and the option. 
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A future is a contract to trade in the share, on an agreed future date, the delivery date, for 

an agreed price, the futures price. The holder may either retain the future, committing to 

buy or sell the underlying, or sell the contractual obligation on to a third party. The holder’s 

decision to do so depends on the behavior of both the underlying share price and the 

current future price.  

Of particular interest to the present study is the interest rate future, in which an interest-

bearing instrument such as a bond is the underlying asset. The interest rate derivatives 

market is currently the largest such market.  

An option on a share is a right to trade in the share, on an agreed future date, the exercise 

date, for an agreed price, the exercise price. The holder of the option pays the option price 

for this right, and may either retain the option pending the decision to exercise, or sell the 

option on to a third party. The holder’s decision to do so depends on the behavior of both 

the underlying share price and the current option price. For instance, the call option gives 

the holder the right to buy a certain number of shares, and the holder is likely to exercise if 

the share price falls below that of the exercise price. Alternatively, if the option price itself 

rises sufficiently, the right to buy may itself be sold on; this is likely to follow a change in 

share price. A put option gives the holder the right to sell a certain number of shares. 

The share price’s volatility, the tendency of the price to change over different time scales, is 

taken to be a measure of the risk attached to trading in the share and in its options. Against 

the risk, the possible profit or loss, the return, must be estimated.  

The risk of an investment is the probability that the return will be different from the 

expected return.  

A trading strategy is a policy of trade typically having the aim of optimizing return while 

minimizing risk. Such a strategy amounts to a decision-making protocol. The most important 

decisions are whether to buy, to sell, or to hold, when to buy, and when to sell. The correct 

choice of trading strategy with respect to an option therefore depends sensitively on 

anticipating the behavior of share prices. Assuming a long position, in which assets are held 

for sale, it is necessary to have sufficient confidence that prices are now lower than they will 

be, in order to buy. Given a short position, in which assets are bought for sale at an agreed 
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price, it is necessary to have sufficient confidence that prices are now higher than they will 

be, in order to sell. 

 

To buy a spread is to buy an option at a given premium (price) and write a second option 

with the same exercise date, a lower premium and a different exercise price. The numbers 

are chosen to create a position in which a profit will be made whether or not the options are 

exercised. If the investor exercises the option, it is because profit can be made on the resale 

of the underlying asset. If the written option with the lower premium is exercised, the 

investor will profit on sale of the underlying.  

To sell a spread is to write an option for a higher premium than one with the same 

underlying that one buys, e.g. to write a put option after buying a similar put option 

(perhaps with a closer exercise date). If either option is exercised, a profit is made by selling 

the option at a higher premium than was paid for the other. 

A proprietary trading company trades assets with its own money so as to make a profit for 

itself. An example of such a company is the industrial partner for the project described in 

this thesis, OSTC Wales, Ltd., based at Swansea. This company’s traders must make fast, 

critical buying and selling decisions in response to rapidly changing markets involving many 

competing traders. Market indicators, determined through the monitoring of past and 

current prices, can be used to construct trading strategies and to determine optimum 

ranges for setting buy and sell prices; these rules form the basis of trader behavior. The 

requirement for fast decisions runs the risk of traders making poor trades, which is a threat 

to the profitability of the traders and their employers. 

All market datasets used in this thesis are Foreign Exchange (FX) rate markets. The focus on 

these markets is justified by the volume of trading within them. It is assumed here that 

analyses performed on these markets and methodologies developed for them will be 

indicative of approaches likely to be successful in other financial markets. The early warning 

system described in this thesis functions as a decision support tool, intended to give OSTC 

an information advantage over other competing proprietary trading companies and other 

market participants. It can also be employed to assist trader discipline.  
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1.2 The Industrial Partner: OSTC Ltd 

OSTC have offices in many countries, including the United Kingdom, Poland, Portugal, Spain, 

India and Mauritius. The company specialises in the trading of interest rates, and of 

commodity futures and other derivatives, and each office trades in a slightly different way. 

The majority of markets are traded electronically via exchanges across the internet. OSTC 

Swansea trade the markets via these exchanges using the software ‘Stellar’ and ‘Stellar 

spread machine’. The ‘Stellar spread machine’ gives traders the ability to trade different 

contract dates for a particular asset. Interestingly, as they are based on the same asset 

these spreads are interlinked and price discrepancies can occur. 

Spread matrices which are used in the ‘Stellar spread machine’ software have some 

interesting properties. A trader can buy two consecutive spreads, for example, the March to 

June spread and the June to September spread, each of which spans a three month contract 

for a particular asset. The trader has effectively bought a six month spread at the price of 

each of the individual three month spreads. If the six month contract was priced higher than 

the price paid for each of these three month contracts then the trader has paid a lower 

price for the six month contract. As another example, consider that a trader can buy a six 

month spread, for instance, the March to September spread, then sell either of the three 

month spreads. 

Approximately 75% of the markets OSTC trade in are commodities (gas, oil, Brent crude, 

natural gas and light sweet crude) and other financial derivatives (FX and equity futures), 

and the other 25% of markets are short term interest rates (OSTC, 2012). 

OSTC traders attempt to forecast markets by using technical analysis (1.3.3) which aims to 

model and exploit human population behaviours, and fundamental analysis (1.3.4), which 

examines company and broader data directly. The latter data includes economic data such 

as the gross domestic product (GDP) which measures how quickly an economy is growing 

and the consumer price index (CPI) which is a popular measure of inflation in retail goods 

services. 

Markets are driven by traders across the world and without buyers and sellers, markets 

would not exist. To the extent to which the behaviour of groups of people is predictable, the 
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market is predictable. Traders consider the actions that other buyers and sellers might make 

when the market changes in order to take advantage of their situation and gain from 

another buyer’s or seller’s decision.  

1.3 Finance and Trading 

Financial exchanges are sources as well as measures of increasing wealth and there have 

been many attempts to predict the future price value of an asset. Determining an asset’s fair 

price, and forecasting its future price direction, is problematic in that the price is a complex, 

ever evolving system with many different dependent variables to consider. These variables 

include several from areas not discussed in thesis, such as high frequency trading and 

insider information. Although there are many different methodologies used to predict the 

price direction, this thesis will only use technical analysis models and only briefly discuss 

other areas. 

Unless otherwise noted, all figures in this chapter have been produced by a bespoke 

application developed for this project, or in Microsoft Excel. The function and design of the 

former is explained in the subsequent chapters. 

1.3.1 Traders 

Each individual market participant (trader, investor, hedge fund etc.) has one main 

objective: to make money by following the “buy low and sell high” rule. The difference 

between the prices (minus some transaction cost) is the profit of a trade. The rule also 

means “sell high then buy back low”, and “buy in anticipation of a higher price and sell in 

anticipation of a lower price” (Lim, 2015). Generally traders employ, but are not limited to, 

two methodologies for determining whether an asset is worth buying or selling. These are 

technical analysis (1.3.3) which analyses past and present price, volume, trends, momentum 

and similar market information, and fundamental analysis (1.3.4) which analyses the 

company and the market to which the company belongs. Both areas can and are used 

together and along with other methodologies to make more informed decisions. Traders 

and other market participants are always seeking innovative ways to acquire an 'edge' (an 

advantage over other participants) and thereby make money from the market. 

Traders deploy trading strategies which consist of many components with the aim of making 

a profit. Some traders automate their trading strategies by implementing them in code. This 
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removes human emotion, bias and error and allows the automated trading strategy to be 

objectively tested on past, similar and artificial market data. Automated trading strategies 

however may contain errors in the code or not fully behave as intended. Prices from the 

brokerage platform may report a drastically incorrect bid and offer price, the automated 

trading strategy may perceive the asset to be undervalued and allocate 100% of the capital 

or even worse become overleveraged.  

The flash crash on May 6, 2010 saw stock indices drop significantly and recover in the space 

of 36 minutes (Treanor, 2015). Though high frequency trading strategies did not cause the 

problem, high frequency trading strategies exacerbated the problem by further selling in 

response the falling market (Kirilenko, Kyle, Samadi, & Tuzun, 2017). 

1.3.2 Market Data 

Instead of working with raw numbers, market data are presented to the trader graphically 

(e.g. as in Figure 1). 
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Figure 1: Market data, hourly GBPUSD exchange rates and volume of transactions against 
time 

Prices are represented by ‘candlesticks’ which show the open, high, low and close price over 

a specific period of time, as illustrated in Figure 2. Market data can be viewed at various 

timeframes so each candlestick could represent trading activity over a minute, hour, day, 

week etc. For daily market data, each candlestick outlines what the price action was over a 

particular day. The open and close prices denote the price at the start and the end of the 

day respectively and the high and low prices denote the highest and lowest price of the day 

respectively. Figure 2 shows two variations on the candlestick representation; the second 

representation is coloured in red or green depending on the open and close prices. If the 

open is above the close then the colour of the candlestick is red and if the open is below the 

close then the colour of the candlestick is green. 

Volume is normally represented as a bar graph underneath price data. Volume denotes the 

number of transactions which took place for a given candlestick. This helps the trader gauge 



18 
 

how liquid is the market (high liquidity corresponds to a large number of buy and sell offers) 

and gauge the amount of activity for each candlestick (for a daily chart, the amount of daily 

activity). 

 

 
Figure 2: Visual representations of a candlestick with and without colour. Each candlestick 

indicates open, high, low and close prices.  
 

1.3.3 Technical Analysis 

Technical analysis uses market data, primarily price and volume data, to predict an asset’s 

future price movement, where ‘asset’ can refer to e.g. a stock, bond, commodity etc. 

(Kirkpatrick & Dahlquist, 2010). Technical analysis models attempt to model some observed 

behaviour or dynamic shown by the market. Technical analysis is normally shown alongside 

market data or is an overlay upon market data. The benefit of portraying this information 

visually is that it helps the trader to quickly and clearly identify key information about the 

model, such as turning points or trends. Additionally it is possible to see this information 

relative to other information such as price, volume and other technical analysis models. 

All information about an asset and future expectations is assumed to be reflected in the 

price (Aronson, 2011). Technical analysis assumes that the price action and dynamics of the 

market tend to repeat themselves. Technical analysis is seen as a self-fulfilling prophecy 
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(Jordan, 2014); as participants make buy and sell decisions based on these models, the price 

becomes influenced by the models. 

One of the main advantages of technical analysis is that it can be applied to any market and 

timeframe. Unfortunately the interpretation of technical analysis models is highly subjective 

and there always exists an opposite interpretation. For example, consider a technical 

analysis indictor such as the stochastic oscillator, which is a momentum model that indicates 

market direction (described in Section 3.3.3). In identifying direction, it could be interpreted 

as indicating that an asset is overbought and that the market should revert back to a lower 

price. On the other hand that same momentum model might indicate that the asset is 

undervalued and so it is moving to a new 'true' price that is higher. Market participants have 

conflicting biases, interpretations and behaviours. 

In technical analysis, chart patterns and candlestick patterns attempt to identify the future 

price direction visually. The head and shoulders chart pattern is well known and represents a 

reversal in the price trend if the price crosses a ‘neck line’ which is indicated by the 

horizontal red line in Figure 3 (Zapranis & Tsinaslanidis, 2010). The candlesticks visually form 

a shoulder, a head and a shoulder hence the name head and shoulders.  

 

Figure 3: Hourly EURUSD market data containing the Head and Shoulders pattern with the 
red neck line  
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Another area of technical analysis is that of technical indicators. Technical indicators are 

graphical representations of formula. The simple moving average is a technical indicator 

that attempts to model the trend by taking the average close price of the last 𝑛 days. One 

interpretation of the simple moving average is that if the average price over the last 𝑛 is 

days is below the current close price then the market is seen to be trending upwards. 

Another interpretation of the simple moving average is if the moving average’s gradient is 

positive then the price is in an uptrend and if the gradient is negative then the price is in a 

downtrend. 

The stochastic oscillator is another technical indicator that attempts to model momentum 

(the tendency of a trend to continue). The stochastic oscillator compares each closing price 

to its price range over the last n days. The asset is said to be overbought if the current 

stochastic oscillator value is above 80% of the range and oversold if below 20% (Figure 4). 

 

 
Figure 4: Hourly EURUSD market data with the stochastic oscillator underneath using 

𝒏 = 𝟖𝟎 

 

Bollinger bands were created by John Bollinger and consist of a moving average, a lower 

band and an upper band. Both the moving average and standard deviation is calculated by 
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using the past 𝑛 prices. The lower band is k times the standard deviation below the moving 

average and the upper band is k times the standard deviation above the moving average. If 

the asset price travels above the upper band then the asset is said to be overbought and the 

price will fall (Figure 5) (Lui & Zheng, 2011). However the opposite is also true, if the price is 

above the upper band then it is said to be trending upward. Standard deviation is a proxy 

for volatility so narrow bands indicate that there is less price volatility and wide bands 

indicate more price volatility. 

 

Figure 5: Hourly EURUSD market data with an overlay of a Bollinger band using 𝒏 = 𝟔𝟎 

In technical analysis there are many ways of interpreting the different models, and some 

may be more predicative than others. Combining technical analysis models is common as 

more informed decisions can be made however using too many models and adjustable 

parameters variables can create a trading system that produces too few trades and 

depending on the trading strategy creation process, fit historical data and have no 

predictive power on future prices. 

1.3.4 Fundamental Analysis 

Fundamental analysis is mainly concerned with finding the intrinsic or true value of an asset 

by analysing industry trends, related economic and financial data (Khanifar, Hossein, 

Jamshidi, & Mohammadinejad, 2012). This includes daily news events and business 

performance.  
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The intrinsic or true value of an asset is the sum of all information including that of future 

expectation. The intrinsic value is a somewhat theoretical concept, which leads to an 

assumption that profits from price fluctuations above and below the true value of an asset 

can be obtained if one subscribes to the strategy that the price will always move towards its 

true value (Bartram & Grinblatt, 2017). If an asset is mispriced lower than the asset’s 

intrinsic value then the asset is undervalued, whereas if the asset is mispriced higher on the 

market then the asset is overvalued (Kothari, 2001). Market participants speculate, have 

biases and do not know all the information about an asset. A proportion of market 

participants execute trading strategies that are based on different assumptions to 

fundamental analysis and technical analysis. Finding undervalued and overvalued assets is 

made harder by not knowing what the market participants will do regardless of what the 

notational true price of an asset is or will be. 

Calculating the intrinsic value is difficult because not all information is available and the 

evaluation is dependent on the interpretation of the analysist evaluating the asset. For 

instance, suppose an executive, thought to be the main innovator and visionary of a 

company, left for a rival company. The company’s share price may fall because it would be 

perceived that the company had lost future potential for profit. Whether or not this is fair 

depends on the correctness of the perceived importance of that person, a subjective matter 

of opinion. 

There are two approaches to evaluating an asset; the top-down and the bottom-up (Sharpe 

W. F., 1999). The top-down approach considers high level and general information like 

exchange rates, national productivity, inflation etc., and then narrows the search to specific 

sectors or industry, then to specific assets. The bottom-up approach starts with a specific 

asset, regardless of the industry or sector. The analyst looks at low level information; for 

instance, if the analyst was evaluating a company then he/she would look at the company’s 

financial reports and accounts. 

Fundamental analysis relies on accurate reporting and credible accounting. Tesco, a FTSE100 

company, overestimated their profits in its half-year profit guidance by £250 million (BBC, 

2014). Market participants lost trust in Tesco and this news lead to an 11.6% fall in the share 

price.  
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Academically, the fair price is usually equated with the expected value under fair market 

conditions. This interpretation need not be addressed outside any academic publications 

resulting from thesis study. 

1.3.5 Mathematical Analysis 

Mathematically, the volatility (risk) of an asset has been typically modelled as a function of 

statistical variance over a given time. However no model has evaluated risk perfectly, 

making too many, or unrealistic, assumptions. Volatility has always been a problem, due to 

factors typically divided into intrinsic (or specific) and extrinsic (or market) risks. Extrinsic 

risks include natural disasters, macroeconomic factors and political news that could 

instantly change the market behaviour. These events are hard to predict and it can be hard 

to determine what they mean in the case of a particular market. For instance, global 

financial perceptions changed dramatically when the Lehman Brothers’ bank faced 

bankruptcy (Wearden, Teather, & Treanor, 2008).  

Companies whose business models depend on risk assessment are especially vulnerable. 

The Long Term Capital Management Company was a hedge fund management firm which 

thought it had a winning model of the markets. The company’s board of directors included 

the Nobel Prize winners Myron Scholes and Robert Merton, noted for their contribution to 

Economic sciences. The company made profits outperforming other similar companies until 

the East Asian financial crisis and then the Russian financial crisis which resulted in the 

company’s collapse.  The models the company used did not account for such supposedly 

improbable events. 

Mathematicians have also tried to formulate the true price value of assets with a more 

abstract approach, using equations like that of Black Scholes and the related binomial 

options pricing model of Cox, Ross and Rubenstein.  

The Black Scholes equation was formulated by Fischer Black and Myron Scholes (Black & 

Scholes, 1973) ; it is a partial differential equation which describes the price of the option 

over time and is based on Brownian motion. The equation attempts to return the true 

option price and one could hedge with this equation to eliminate risk. The equation has 

different variations to accommodate different option types and the equation has been 

extended to accommodate for dividends. 



24 
 

The binomial option pricing model (Cox, Ross, & Rubinstein, 1979) is a discrete-time model 

algorithm that attempts to return the true option price of a particular option using the 

probability of upward and downward movements. It was designed to reproduce the Black 

Scholes formula by discrete means.  

All such models are dependent on explicit assumptions which allow useful solutions to be 

found. However these same assumptions can render the models unrealistic. 

1.4 Aims and Objectives 

Traders must make fast, critical buying and selling decisions in response to rapidly changing 

markets involving many competing market participants. Technical analysis interpretations, 

determined through the monitoring of past and current prices, can be used to construct 

trading strategies. The primary aim of this project is to construct a decision support system 

for the classification of traders and thereby the early detection of bad traders. For this, a 

secondary aim is to generate trading strategies, as models of traders, by combining the buy 

and sell signals from technical analysis interpretations. 

The work of this thesis combines computer science (machine learning and modelling 

techniques) with quantitative financial trading logic. The involvement of the University of 

South Wales in the development of the system has provided technical expertise in these 

disciplines that are not currently available within OSTC Wales. 

The objectives are to: 

 Identify a set of criteria by which the success or otherwise of a trading strategy may 

be judged, i.e. the trader who fails to meet these criteria, or a subset of these 

criteria, can be considered a bad trader.  

 Secondarily to score trading strategies so that they can be ranked and compared to 

other trading strategies. The propriety trading company employing the traders can 

therefore make better decisions about the amount of funds to allocate to each 

trader relative to other traders.  

 

While broad methodologies for trading strategy generation and for decision-making in 

general within Artificial Intelligence, are discussed within academic publications, the tools 
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(‘black box’ or causal) for supporting financial decision-making are proprietary, and the 

exact algorithms used for market prediction are not in the public domain. Hence, for the 

industrial partner, bespoke development is required to compare and combine 

methodologies and use the outcomes of this thesis to create software which can be 

exploited by managers at OSTC. 

The methodology proposed for classifying traders and trading strategies is the main novel 

contribution of this work, in that no attempt to achieve this is extant in the literature. For 

USW, the specific application and the access to trading knowledge within the company has 

enabled targeted and novel development with the additional element of a grounding and 

immediate application in the trading community. This practical focus has typically been 

lacking in academic work to date. 

This work has also advanced trading studies generally by: 

 Identifying a successful methodology for the classification of traders and trading 

strategies, incorporating the Adaboost machine learning algorithm; 

 Applying this methodology to representative artificial data, demonstrating the 

effectiveness of the approach; 

 Determining a fitness function, weighting standard criteria of trader performance, 

for evaluating trading strategies that can subsequently be employed in other 

optimisation tools; 

 Constructing a mechanism for identifying bad traders; 

 Determining that it is harder to distinguish between good traders and potentially 

good traders. 
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Chapter 2 – Machine Learning and its Application to the Classification 

and Creation of Trading Strategies 

This chapter introduces classification methodologies and reviews the use of these 

methodologies in literature as applied to the classification of traders. It is first noted that 

while there is much in the literature about the application of machine learning to market 

forecasting, there appears to be nothing specifically on its application to classifying the 

performance of traders or trading strategies. This may be because such systems, if they 

exist, would likely be proprietary. 

This chapter will first introduce the commonly used types of learning methodologies in 

machine learning in 2.1, then discuss classification and regression models in 2.2, then 

discuss the problems of overfitting and underfitting in 2.3. Several different machine 

learning algorithms are outlined and their applications to financial trading are discussed in 

2.4. Chapters 8, 9, 10 and 11 explore various binary classification systems so discussion of 

how to evaluate binary classifiers in outlined in 2.5. Lastly experiments were conducted in 

Chapter 6 and 7 that used Genetic Algorithms to create trading strategies so optimisation 

and in particular Genetic Algorithms are discussed in 2.7. 

2.1 Types of Learning 

Supervised learning (Mohri, Rostamizadeh, & Talwalkar, 2012) uses a labelled training 

dataset, which consists of input features and an output feature(s), to learn a mapping from 

the input features to the output feature(s). The idea behind supervised learning is that the 

algorithm can learn from a dataset of correct examples. Supervised learning requires a 

training dataset to be generated and to include predictive input features that can help 

predict an output feature(s). Generating a training dataset can be time consuming and could 

be of limited value. In natural language processing for example, producing a training dataset 

of part of speech tags (nouns, verbs, pronouns, etc.) is incredibly time consuming to create 

and only a finite amount of training data can be produced which normally depends on the 

project’s budget. 

Unsupervised learning (Ghahramani, 2004) on the other hand does not use a labelled 

training dataset but attempts to find interesting patterns using only input data. Clustering 

techniques are unsupervised learning techniques that attempt to cluster data into different 
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label categories. Though unsupervised learning techniques are not limited to a labelled 

training dataset, they cannot easily evaluate performance in the same way a supervised 

learning algorithm can using a training dataset. Instead the unsupervised learning algorithm 

uses some objective or utility function as a proxy for progress in extracting patterns from 

the data. 

Semi-supervised learning (Mohri, Rostamizadeh, & Talwalkar, 2012) combines both 

supervised and unsupervised learning methodologies to leverage labelled training data with 

extra unlabelled data to learn a mapping from the input features to the output feature(s). 

This thesis will focus on using supervised learning techniques as it is possible to label and 

create large training datasets. 

2.2 Classification and Regression 

Artificial Neural Networks and Support Vector Machines (discussed in 2.4.1 and 2.4.2) create 

regression models that attempt to estimate the relationship between a set of known 

features and a feature that the machine learner practitioner wishes to predict. These 

regression models output values that are continuous. Classification models that are 

produced by algorithms such as Adaboost (discussed in 2.4.3.2) on the other hand, also use 

a set of features but attempt to categorise the input features into two (or more) categories.  

In the intended application of classifying traders, classifiers attempt to categorise the trader 

into the good or bad category based upon features that are fed into the classifier (such as 

the trader’s profit factor over the past month). Regressors are similar but instead of 

categorizing traders into class labels, the trader is given a score of how likely the trader is to 

be either good or bad. 

2.3 Overfitting and Underfitting 

Overfitting occurs when a machine learning algorithm’s learning algorithm begins to 

memorize the training dataset. An overfitted classifier or regressor is said to be high 

variance and rerunning the machine learning algorithm on a different training dataset would 

produce a different classifier or regressor. Low variance classifiers and regressors are 

models that do not change much if a different training dataset is used. An overfitted model 

will report very successful performance on the training dataset but will be suboptimal in 
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classifying or regressing data outside of the training dataset. To help overcome overfitting, a 

validation dataset can be used to see how the classifier or regressor performs at each 

iteration of the learning algorithm on a different dataset, see Figure 6. 

 

Figure 6: Illustration of how validation data helps to avoid overfitting and underfitting. 
This also identifies where high bias and high variance exist during the model’s 

construction 

Underfitting is where the learning algorithm has not iterated enough to choose a classifier 

or regressor that has sufficiently captured the general classification in the training dataset. 

An underfitted classifier or regressor is said to be high bias meaning that it suggests more 

assumptions about the target classification or regression model. Low bias suggests fewer 

assumptions and allows for the target classification or regression model to be complex 

enough to be able to construct the target model. 

There is a clear trade-off between two sources of error, bias and variance, see Figure 6. A 

model with high bias is unable to capture the general classification or regression of the data 

as it is too simple and underfits due to the lack of complexity. On the other hand, models 

with high variance can overfit and memorize the training dataset. Overfitted models lose 

the ability to generalise and can hence can no longer successfully predict unseen data. 

At each iteration of the learning process the model’s error can be computed using an 

unseen dataset set called the validation dataset. For successful learning, the model’s error 

will generally decrease on both the training and validation datasets with increasing 

iteration. The error derived from the training dataset normally converges as the classifier is 
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forced into memorizing the training dataset. The error derived from the validation dataset, 

however, should, at some iteration, change direction and increase. This occurs when the 

classifier starts to memorize the training dataset. An optimal classifier can be chosen at the 

iteration before the one at which the error begins to increase on the validation dataset. 

Practitioners may also observe a sharp increase in error from the classifier on the validation 

dataset. Such sharp increases suggest that the classifier has memorized the training dataset. 

2.4 Machine Learning Algorithms 

This section outlines three machine learning classification and regression methodologies, 

Artificial Neural Networks 2.4.1, Support Vector Machines 2.4.2 and Ensemble methods 

2.4.3. 

2.4.1 Artificial Neural Networks 

Components of Artificial Neural Networks will be explained before detailing financial 

applications that employ them. Artificial neural networks (Figure 7, showing a feed forward 

neural network, as described in 2.4.1.2) were inspired by the neuronal model of the human 

brain and provide a general framework for solving problems, including classification and 

regression problems. Artificial neural networks mimic the accepted way in which systems of 

neurons predict some output value(s) given some input values. These networks can make 

sense of high-dimensional input data and extract features from this data (Cheh, Weinberg, 

& Yook, 2011). There are different variations of artificial neural networks and the main 

concepts are covered in the following sections. 
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Figure 7: A simple feed forward artificial neural network 

 

2.4.1.1 Single Layer Perceptron 

The basic information processing unit in an artificial neural network is the perceptron 

(Figure 8). Perceptrons are linear classifiers that attempt to linearly separate input data to 

distinguish one class from another and can also be used to perform regression. 

 

 

Figure 8: Outline of a perceptron 
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Here 𝑥𝑖  denotes an input value from an input feature, 𝑤𝑖 denotes the weight of the 𝑥𝑖 input 

value, 𝑏 denotes a bias value, ℎ denotes the function 𝑏 + ∑ 𝑥𝑖𝑤𝑖∀𝑖  and 𝑔 denotes the 

activation function. 

The weights 𝑤𝑖 and the bias value 𝑏 are adjustable parameters used to create a linear 

classifier. The values to these parameters are learned by using a perceptron learning 

algorithm.  Each input value 𝑥𝑖 is multiplied by an adjustable weight value 𝑤𝑖. The function ℎ 

sums all of the weighted input values and adds a bias value 𝑏. The bias value 𝑏 is used to 

adjust the input value into the activation function 𝑔: 

ℎ = 𝑏 +∑𝑥𝑖𝑤𝑖
∀𝑖

 

The activation function 𝑔 allows the perceptron to perform nonlinear regression or 

classification, depending on the activation function used. Figure 9 shows four different 

activation functions which transform the ℎ value (𝑥 axis) to some output value 𝑦. The 

Identity, TanH and Logistic activation functions perform regression and the Binary step 

activation function performs classification on the value of ℎ. 

 

Figure 9: Four activation functions: (i) Identity; (ii) TanH; (iii) Binary step; (iv) Logistic 
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Regressions and classifications from multiple perceptrons can be combined to create a 

complex regression or a higher-level classification of regressions and classifications. These 

are called multilayer perceptrons or artificial neural networks and are discussed below. 

2.4.1.2 Multilayer Perceptron Architecture  

Multilayer perceptrons, also known as artificial neural networks, have the capacity to create 

sophisticated regression and classification by combining individual perceptron regressions 

and classifications. Except for input neurons, each neuron within an artificial neural network 

is itself a perceptron. 

Artificial neural networks have three types of layers: an input layer, a hidden layer (which is 

itself usually multi-layer) and an output layer.  The input layer contains a number of input 

neurons that introduce data into the neural network. The next layer(s) of a neural network 

are the hidden layer(s). Each hidden layer contains a number of hidden neurons that are 

similar or identical to the perceptron model discussed in the Single Layer Perceptron Section 

2.4.1.1 above. The final layer of a neural network is the output layer which contains one or 

more output neurons. Output neurons also comprise perceptrons and deliver the final 

classification or regression output(s) of the neural network. 

Figure 7 shows an example of a feed forward neural network. The directed arrows from 

each perception show the information flow between the neurons show information flowing 

left to right. 

Deep learning is an emerging research topic within the artificial intelligence community 

which aims to find an efficient way to automatically extract features from data. 

Convolutional neural networks are feed-forward neural networks with many hidden layers 

to allow the neural network to learn and discover features. Recent research has also seen 

convolutional neural networks for deep learning (Mohamed, Dahl, & Hinton, 2012). 

Convolutional neural networks are computationally expensive due to the many hidden 

layers and neurons in the network. As computation becomes cheaper, more applications of 

deep learning will emerge from academic literature. It is probable that deep learning is 

already being used by hedge funds but details about their specific application would be 

vague or unknown due to the secretive nature of their operations. 
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Neural networks can learn the correct classification or regression depending on the features 

and data available, see 2.1. The neural network’s weight parameters 𝑤𝑖 can be adjusted to 

learn the correct classification or regression. For supervised learning, an artificial neural 

network’s weight parameters can be optimised by using a training dataset and a learning 

algorithm such as backpropagation (Eberhart & Shi, 2011), Genetic Algorithms (Hadavandi, 

Ghanbari, & Shavandi, 2010; Kuo, Chen, & Hwang, 2001) or bacterial chemotaxis 

optimization (Zhang & Wu, 2009) to optimise and learn the weights of the training dataset. 

Neural networks can have many hidden neurons and hidden layers, increasing the number 

of weight parameters. This consequently increases the amount of processing power needed 

to learn the correct weights. Additional layers and weights can help the neural network 

learn the correct mapping between the input values and the output values but can increase 

the likelihood of overfitting, 2.3. Michael Azoff (1994) proposes a theorem that suggests the 

total number of hidden neurons is one plus twice the number of input neurons. However, 

he found the ideal number of neurons is dependent on the problem. Ultimately 

experimentation with different numbers of hidden neurons and hidden layers is needed to 

find the optimum number of layers and neurons for a specific problem. 

2.4.1.3 Financial Application of Artificial Neural Networks 

Various applications of artificial neural networks within the financial trading and investment 

literature have been explored. Artificial neural networks have been implemented to find 

optimal resource allocations for portfolios (Fernández & Gómez, 2007) and to make sense of 

how information obtained from the internet (from sources such as Twitter) affects the 

market (Bollen, Mao, & Zeng, 2011).  

Forecasting future market movement is the most challenging application but has the 

potential to be very lucrative. Predicting market movement with artificial neural networks 

has also had some success. Chang, Liu, Lin, Fan and Ng (2009) used case-based reasoning 

with artificial neural networks to find undervalued stocks, classify the market (according to 

uptrend, steady and downward trend) and predict the highs and lows of the stock price. The 

authors achieved higher than 93.57%, 37.75% and 46.62% rates of return in stock markets. 

Atsalakis and Valavanis (2009) offer a survey of soft computing methods that attempt to 

forecast the direction of stock markets. Over 100 papers were surveyed and 60% of the 
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papers used feed forward neural networks and recurrent neural networks. Input variables 

included technical analysis factors, fundamental analysis indicators, raw prices, changes 

between prices and lagged market data. 

Beyond the use of standalone neural networks, ensembles of neural networks have been 

developed which are shown to outperform any individual neural network (Wang & Wu, 

2011). Ticknor (2013) uses a Bayesian regularized network to help prevent overfitting by 

restricting the magnitude of the weights. Neural network approaches that employ other 

methods have also been developed. For example, Genetic Algorithms have been used to 

improve efficiency and forecasting ability by evolving the weights of a neural network to 

optimal values (Asadi, Hadavandi, Mehmanpazir, & Nakhostin, 2012).  

Another variation on a standard neural network approach is a probabilistic neural network 

using a Bayesian method of classification (Chen, Leung, & Daouk, 2003). Claims by authors 

indicate that hybrid systems produce better results than pure neural network 

methodologies and the literature contains many such hybrid systems. See especially (Tang, 

2009; Zhang G. , 2003; Das & Banerjee, 2011). 

To capture as much market diversity as possible and reduce overfitting, authors suggest 

splitting an insample dataset into a training dataset containing the first 80% of market data, 

and a validation dataset of the remaining 20% to ensure that the neural network has not 

overfitted the training dataset (Zhang & Wu, 2009; Hadavandi, Ghanbari, & Shavandi, 2010; 

Fariaa, Albuquerquea, Gonzalez, Cavalcantea, & Albuquerquea, 2009). These are common 

settings amongst neural network practitioners. 

In the literature, various metrics have been employed to measure how well the neural 

networks have learnt the objective using the sample data (Taylor, Darrah, & Moats, 2003). 

These metrics can be used to compare the trading system to other trading systems. Metrics 

include calculating the average profit and loss, the percentage of correct signal 

classifications and the number of signals the artificial neural network has produced. 

Even though artificial neural networks are a “black box” approach to solving problems, they 

have been shown to be very successful when applied to asset price prediction (see for 

example (Atsalakis & Valavanis, 2009)). 
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No attempt has been made in literature to use artificial neural networks to classify whether 

traders, trading strategies or technical analysis algorithms are good or bad. 

2.4.2 Support Vector Machines (SVMs) 

Support vector machines were introduced by Vapnik (2013) and have been used to solve 

such problems as handwritten character recognition (Bahlmann, Haasdonk, & Burkhardt, 

2002; Niu & Suen, 2012); protein classification (Fernandez-Lozano, et al., 2014); and image 

classification (Zhou, Wang, Zhang, & Wei, 2013). SVMs can be divided into linear support 

vector machines and nonlinear support vector machines which are discussed in subsections 

2.4.2.1 and 2.4.2.2 respectively. The use of slack variables to handle the overlap between 

classes is discussed in 2.4.2.3. The application of SVMs in financial literature is discussed in 

2.4.2.4. 

2.4.2.1 Linear Support Vector Machines (LSVMs) 

The goal of linear support vector machines is to design a hyperplane in data space that 

linearly classifies a training set of support vectors (data points in the training dataset) into 

two classes, whilst maximising the margin of the hyperplane (Cristianini & Taylor, 2000). For 

example, Figure 10 shows the relationship between two feature variables in the training 

dataset, ‘Variable A’ and ‘Variable B’ and two classes, ‘Class 1’ and ‘Class 2’. The goal of the 

LSVM is to draw a line dividing the two classes whilst maximising the margin between the 

line and the support vectors. 

 

Figure 10: Graphical visualisation of two different classes 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

V
ar

ia
b

le
 B

 

Variable A 

Class 1

Class 2



36 
 

The two labelled classes can be separated by two different hyperplanes, as shown by the 

straight lines in Figure 11. The margin of a hyperplane as shown by the dashed lines in 

Figure 11 is the smallest distance between the hyperplane and the closest support vector 

perpendicular to the hyperplane. There are infinitely many hyperplanes that can divide the 

two classes shown in Figure 11, but the hyperplane that maximises the margin is globally 

optimal. 

 

Figure 11: Two hyperplanes that separate both classes 

A hyperplane is represented by the following equation, 

𝑤𝑇𝑥 + 𝑏 = 0 

where, 

 𝑤𝑇 is the normal vector, 

 𝑏 is the scalar value and 

 𝑥 is an input vector. 

The normal vector determines the orientation of the hyperplane and the scalar value 

controls the hyperplane’s displacement from the origin. The margins of a hyperplane, 

shown by two parallel hyperplanes, are given by the following equations, 

𝑤𝑇𝑥 + 𝑏 = −1 

𝑤𝑇𝑥 + 𝑏 = 1 
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The width of the margin, denoted as 𝑧1 and 𝑧2 in Figure 11, is equal to 

2

‖𝑤‖
 

Linear support vector machines are trained by maximising the width of the margin whilst 

obeying the constraint that the training data are correctly classified. This is an optimisation 

problem that can be solved by constructing a Lagrange function given the aforementioned 

constraints and objective function (Smola & Schölkopf, 2004) 

Linear support vector machines classify these support vectors by using the following logic,  

𝑓(𝑥) = {
−1,        𝑤𝑇𝑥 + 𝑏 ≤ −1 

1,        𝑤𝑇𝑥 + 𝑏 ≥ 1
 

where -1 and 1 denote different classes. 

2.4.2.2 Nonlinear support vector machines (NLSVMs) 

Figure 12 shows a set of vectors which cannot be separated linearly by a hyperplane. To 

overcome this problem, practitioners use a ‘kernel’ function 𝜑 to nonlinearly map the 

vector’s original feature space into a higher dimensional feature space to make the classes 

linearly separable by a hyperplane. The kernel function 𝜑  is applied before the linear 

support vector machine linearly separates the two classes in the new feature space. 

Commonly used kernel functions include the Hyperbolic, Polynomial and Gaussian radial 

basis kernel functions. Figure 13 shows an example of the new feature space after the 

kernel 𝜑 (below) is applied to the vectors in Figure 12. 

𝜑 (
𝑥1
𝑥2
) =

{
 
 

 
 (
1 + 𝑥1

2

1 + 𝑥2
2)      𝑖𝑓 𝑥1

2 + 𝑥2
2 ≥ 1 

(
𝑥1
2

𝑥2
2)                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Figure 12: Nonlinearly separable classes 

 

 

Figure 13: Linearly separable vectors mapped by the kernel function 𝝋 

 

2.4.2.3 Soft Margins 

Figure 14 shows a training dataset of support vectors that are not linearly or nonlinearly 

separable. Overlapping classes, outliers and mislabelled vectors are considered noisy data. 

Practitioners may add more features in the hope that the classes become linearly or 
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nonlinearly separable (solvable with a kernel function) but for some real world problems, 

there is uncertainty in the actual value of the feature. Soft margins can be incorporated into 

the support vector machine algorithm by allowing support vectors to be misclassified, but to 

suffer a penalty in the objective function of the support vector machine algorithm (Diale, 

Walt, Celik, & Modupe, 2016). The soft margin approach removes the hard constraint that 

all vectors must be classified correctly, using instead a soft constraint (called a slack variable 

within the objective function) that allows some vectors to be misclassified (Tanveer, 

Shubham, Aldhaifallah, & Ho, 2016). 

 

Figure 14: Feature overlap of two classes 

 

2.4.2.4 Financial Application of Support Vector Machines 

Gupta, Mehlawat, Inuiguchi and Chandra (2014) used support vector machines with a radial 

basis kernel function to select assets for a portfolio which suits a given investor-type. The 

predefined characteristics of an asset, short term return, long term return, risk and liquidity 

were used to classify the assets into three ‘investor-type’ classes. Support vector machines 

have also been used to predict the rate of return of a portfolio, with results compared to 

those of an artificial neural network’s prediction (Hao, Wang, Xu, & Xiao, 2013); better 

portfolio selection was shown to be achieved using the support vector machine approach. 

Choudhury, Ghosh, Bhattacharya, Fernandes and Tiwari (2014) used an unsupervised 

learning technique called K-means clustering to cluster stocks into risk and return clusters. 
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Their hybrid system then used support vector machines to forecast the short term price 

movement and volatility to inform the general trading strategy of the portfolio. 

Luss and D’Aspremont (2015) used support vector machines to predict abnormal returns 

using intraday price movements of financial assets by using text from news articles. They 

found that they could predict abnormal price movements but not anticipate the direction of 

the price movement. Similarly support vector machines have been used to classify press 

release documents into positive, negative or neutral documents from PRNewswire and 

Businesswire in order to determine the effect of the news on particular financial markets 

(Mittermayer, 2004). 

Forecasting future market movements has met with some success. Kazem, Sharifi, Hussain, 

Saberi and Hussain (2013) describe a stock market price forecasting paper that uses a 

metaheuristic algorithm, the Firefly algorithm, to optimise the support vector machine. The 

firefly algorithm is a swarming algorithm that mimics the behaviour of fireflies. Fireflies are 

more attracted to other fireflies that are brighter and are more likely to move towards 

them, whereas fireflies that are dim are more likely to move randomly. The Firefly algorithm 

uses an objective function to determine the brightness of each firefly. The authors 

demonstrated that their novel system was more successful than other methods such as 

neural networks, a Genetic Algorithm optimised support vector regression and an adaptive 

neuro-fuzzy inference system for forecasting the market. 

Papadimitriou, Gogas and Stathakis (2014) used support vector machines to provide short-

term forecasting of the direction of daily average peak load. In this work, the only variables 

used were the volume and an autoregressive model. The authors commented that adding 

more variables may increase the support vector machine’s forecasting success. 

Kao, Chiu, Lu and Yang (2013) used a novel feature extraction which they termed nonlinear 

independent component analysis. The resultant independent components were used as 

features fed into the support vector regression algorithm. The authors compared their 

approach to other support vector regression systems. One of these did not use extracted 

features, another extracted the features from linear independent component analysis and 

another extracted features from principle component analysis. Using stock price data from 

the Nikkei 255 stock index and the Shanghai Stock Exchange Composite index, they reported 
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a lower prediction error with higher prediction accuracy when compared to other feature 

extraction techniques. 

2.4.3 Ensemble Methods 

Ensemble methods help to reduce the effect of overfitting which occurs when a 

classification or regression model memorizes the training dataset (described in 2.3). In 

ensemble methods multiple models are combined together to produce a better 

classification or regression model.  

Consider this example; an ensemble classifier consisting of 3 weak classifiers can be used to 

outperform each individual weak classifier. Each weak classifier’s misclassification can be 

shown to occupy some error space on a Venn diagram (Figure 15), in a manner suggested by 

Winston (2010) in which the Venn diagram constitutes a schematic illustration of the 

subdivision of the error space, i.e. the region of misclassifications. All 3 weak classifiers 

occupy a different error space. An unweighted ‘majority vote’ of these 3 weak classifiers 

correctly classifies all the data, as no two weak classifiers occupy the same error space. 

 

Figure 15: Venn diagram showing the error spaces occupied by weak classifiers, adapted 
from (Winston, 2010) 

If parts of the weak classifiers’ error spaces overlap (Figure 16) then the error of the 

ensemble of weak classifiers becomes the area of the intersection of the error spaces. If the 

intersected area is less than the error space of each weak classifier then the ensemble 

outperforms each of the weak classifiers individually. 
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Figure 16: Venn diagram showing overlapping errors of weak classifiers, adapted from 
(Winston, 2010) 

Extending this example further, consideration must be made of the selection of weak 

classifiers for the ensemble. Figure 17 shows the error spaces of weak classifiers that can be 

selected for the ensemble. An ensemble can be constructed such that no overlap of the 

error spaces occurs and that the majority vote ensures correct classification. Conversely, 

Figure 18 shows a badly constructed ensemble where error spaces overlap. 

 

Figure 17: Venn diagram of an ensemble with no misclassification 
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Figure 18: Venn diagram of a badly constructed ensemble 

 

The classifier and/or regression models that are in the ensemble can be the same type of 

model or any combination of types of model, for example, artificial neural network, support 

vector machine or Adaboost classifier etc. Ensemble methods use a ‘wisdom of the crowd’ 

approach where the majority vote of a collection of predictions is better than any individual 

model’s prediction. 

The next section will outline two ensemble techniques that can help to reduce overfitting by 

combining classification and/or regression models together in 2.4.3.1. Then a popular 

ensemble method called Adaboost (described in 2.4.3.2) that will be heavily used in 

experiments later in this thesis, will be described in 2.4.3.2 before detailing financial trading 

applications of this machine learning algorithm in 2.4.3.3 and 2.4.3.4. 

2.4.3.1 Bootstrap Aggregation and Feature Bagging 

Bootstrap aggregation, also known as bagging, is an ensemble technique that combines 

classifier and/or regression models. This technique helps to reduce overfitting of high 

variance models with low bias in a model averaging technique. Each individual model is 

trained on a random subsample of data points (with replacement) from the training set. If 

the models are not severely overfitted, individual models should share common parts of the 

general classification which should emerge when individual models are combined. Models 

will memorize parts of their subsampled training set during overfitting. Overfitted regions of 

the model are less likely to occur when they are combined in a majority vote ensemble, as 
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each model is inclined to overfit on a different part of the training set and thus produce 

different error spaces.  

Feature bagging (also known as the Random subspace method) is another ensemble 

method which helps to reduce overfitting of high variance models with low bias. It is 

possible that the classifier and/or regression models in an ensemble are too similar and that 

each model produces almost identical classifications or regressions. Feature bagging helps 

to solve this problem by training each model in the ensemble on a random subset of 

features, reducing the probability of constructing the same models. 

2.4.3.2 Adaboost 

Boosting is a supervised learning algorithm which uses ensemble techniques to create a 

classification or regression model. As with previously discussed ensemble methods, boosting 

is based upon the notion that the ‘wisdom of the crowd’ is better than the wisdom of any 

individual alone. At each iteration of a boosting algorithm, simple models are chosen which 

improve the classification or regression of the constructing model by correcting its errors.  

Adaboost is a boosting algorithm which was first proposed in (Freund & Schapire, 1995). 

Adaboost has been successfully employed in handwritten character recognition (Lin, Song, 

Li, Wang, & He, 2017; Arth, Graz, Limberger, & Bischof, 2007), automatic speech recognition 

(Zhao, Xue, & Chen, 2015; Bergstra, Casagrande, Erhan, Eck, & Kégl, 2006) and object 

recognition (Cheng, Lee, & Guo, 2015; Tsai, Hsu, Chiu, & Chu, 2015; Opelt, Pinz, 

Fussenegger, & Auer, 2006). A notable object recognition algorithm designed for detecting 

faces featured the Viola-Jones algorithm (Viola & Jones, 2001) , and employed an Adaboost 

variant to detect objects from an image. This algorithm contained 180,000 simple classifiers. 

Each iteration of the boosting algorithm attempts to reduce the error of the strong 

classifier. 
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In the context of classification, the Adaboost algorithm constructs a classifier called a strong 

classifier, as a linear combination of weak classifiers of the form, 

𝐻 = 𝑠𝑖𝑔𝑛 (∑ ∝𝑖 ℎ𝑖

𝑛

𝑖=0

) 

Where 𝛼𝑖 is the weight, ℎ𝑖 is the weak classifier value, H is the strong classifier value, and 

the ‘𝑠𝑖𝑔𝑛’ function indicates whether the summation is positive or negative. 

Each weak classifier produces a 1 or -1 categorization output. Weak classifier output 

effectively determines whether to add or subtract the weight α from the total classification 

value. The higher the weight α, the more important the corresponding weak classifier is to 

the final classification decision. The strong classifier is a weighted collection of weak 

classifiers (unlike the example in 2.4.3 where each weak classifier contributed an equal vote 

to the final decision). 

Each data point in the training set is associated with a weight value which represents how 

important the data point is to be classified correctly. Initially each data point in the training 

dataset is equally important so these values are all initialised to a normalised value of one 

divided by the number of data points in the training dataset. 

A classification error value is calculated for each weak classifier by summing all of the weight 

values of the incorrectly classified data points in the training dataset. The weak classifier 

with the lowest error is chosen to be the best weak classifier. This weak classifier multiplied 

by the weight ∝ is added to the ensemble where the weight ∝ is calculated by the following 

formula, 

∝=
1

2
ln (

1 − 𝑒𝑟𝑟𝑜𝑟

𝑒𝑟𝑟𝑜𝑟
) 

Next the weights of each row are updated by dividing the data points into two classification 

groups, correctly classified and misclassified, using our currently constructed ensemble. 

The weight values of each group are then normalized to equal 0.5. The new weights will 

place more importance on classifying the misclassifications of previous weak classifiers. 
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The process repeats until the machine learning practitioner decides to stop the Adaboost 

algorithm. This may occur when the strong classifier’s error converges, validation data 

suggests the strong classifier is beginning to overfit, a certain amount of time has passed or 

the algorithm has iterated a certain amount of many times, etc. 

2.4.3.3 Financial Applications of Boosting 

This section will focus specifically on financial applications. Barinova and Gavrishchaka 

(2009) used boosting as an optimisation technique to allocate funds to different trading 

strategies rather than using boosting as a classification algorithm (Gavrishchaka V. V., 2006). 

Their 2009 paper used a regularization technique which removed noisy, hard-to-learn data 

points as the boosting algorithm iterated, as suggested in (Vezhnevets & Barinova, 2007). 

Not much has been done in applying adaptive boosting to portfolio asset allocation. 

Salehi, Moradi and Molaei (2015) compares three algorithms, least angle regression, 

AdaBoost and kernel ridge regression to forecast systematic risk to help aid financial 

investment decisions. The authors derived 30 financial variables (fundamental metrics) from 

companies listed on the Tehran stock exchange and found the least angle regression 

outperformed Adaboost on its ability to forecast risk.  

Creamer and Freund (2010) proposed a hybrid automated trading system. Their system 

used LogitBoost, a boosting algorithm which places AdaBoost into a statistical framework. 

Their system created alternating decision trees and combined them in a weighted majority 

vote, and the authors report positive returns and noted that Sell and hold would have done 

better or the same as trading with transaction costs. 

2.4.3.4 AdaBoost Soft margins 

The training dataset used by the Adaboost algorithm may contain errors. These errors could 

be outliers and/or mislabelled data points. Additionally the training dataset may be derived 

from a noisy data source and the features values may only be approximations which can 

create overlap between classes, see 2.4.2.3. 

As Adaboost iterates, the strong classifier under construction gives more weight to data 

points which are misclassified, forcing the constructed strong classifier to overfit around 

these data points. While Adaboost rarely overfits in a low noise regime, it is not robust and 
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is prone to overfitting when used on noisy data because hard margin classification is 

suboptimal for the noise case. Intuitively, the dataset employed in the current project for 

trading strategy classification is necessarily noisy because trading strategy metrics are 

derived from market data, which is itself very noisy. Metrics derived from simulated market 

data hopefully reduce the noise but nevertheless noise still persists. 

Several regularized methods and generalizations of the original Adaboost algorithm have 

been proposed to achieve soft margins. These include direct incorporation of a 

regularization term into the error function, and linear and quadratic programming with slack 

variables to improve existing ensembles (Rätsch, Onoda, & Müller, 2001). 

BrownBoost is a variant of the Adaboost algorithm that assumes noisy data points 

repeatedly get misclassified and “gives up” on these data points as the algorithm iterates 

(Freund, 2001). 

LPBoost is another variant which attempts to minimize misclassification error and maximize 

the soft margin (Demiriz, Bennett, & Shawe Taylor, 2002). This algorithm adjusts the weights 

of the strong classifier which is being constructed at each iteration of the algorithm. 

Ada-GA is a proposed system which evolves a population of ‘sub-classifiers’ to reduce 

overfitting of the boosted strong classifier (Elden, Malaka A. Moustafa, & Emara, 2013). The 

‘sub-classifiers’ are created by randomly selecting weak classifiers and their weights from 

the resultant strong classifier obtained from the Adaboost algorithm. 

One algorithm which includes direct incorporation of a regularization term into the error 

function emplaces a low level of trust in data points which are highly weighted (Rätsch, 

Onoda, & Müller, 2001). A regularization term ‘C’ is included into the error function, and the 

higher the ‘C’ value the lower the trust in highly weighted data points. If ‘C’ equals zero then 

the algorithm behaves like the original Adaboost algorithm and for ‘C’ greater than 0 soft 

margins are introduced.  

2.5 Evaluating Binary Classifiers 

Binary classifiers attempt to correctly classify data as either one class or another, for 

example, good or bad, positive or negative. The performance of a binary classifier can be 

evaluated using formulas that are derived from a binary classifier’s predicted classification 
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and the true classification of the data. Table 1 shows a contingency table of frequencies that 

are used to calculate the performance values for the binary classifier. The performance 

values of a binary classifier are summarized in Table 2. 

 Actually good  Actually bad 

Classifier 
predicted 
good 

True positive (𝑇𝑃) False positive (𝐹𝑃) 

Classifier 
predicted bad 

False negative 
(𝐹𝑁) 

True negative 
(𝑇𝑁) 

Table 1: Contingency table 

 

 Formula Description 

Precision (𝑃), Positive 
predictive value (𝑃𝑃𝑉) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The proportion of 
observations classified as 
positive that are actually 
positive 

Negative predictive value 
(𝑁𝑃𝑉) 

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

The proportion of 
observations classified as 
negative that are actually 
negative 

Recall (𝑅), True positive rate 
(𝑇𝑃𝑅) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The proportion of actually 
positive observations that 
are correctly classified as 
positive 

Specificity (𝑆), True negative 
rate (𝑇𝑁𝑅) 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The proportion of actually 
negative observations that 
are correctly classified as 
negative 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

The proportion of 
observations that are 
correctly classified as 
positive or negative 

𝐹1
𝑃 score (for true positives) 2𝑃𝑅

𝑃 + 𝑅
 

The harmonic mean of the 
precision and recall. Best at 
1, worst at 0 

𝐹1
𝑁 score (for true negatives) 2𝑆(𝑁𝑃𝑉)

𝑁𝑃𝑉 + 𝑆
 

The harmonic mean of the 
negative predictive value 
and specificity 

Table 2: Binary classifier performance values 
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The performance of a binary classifier at classifying negative occurrences is given by the 

negative predictive value and the specificity value. The negative predictive value is the 

proportion of observations classified as negative that are actually negative. The specificity is 

the proportion of negative observations that have been correctly classified as negative. 

Figure 19 shows a Venn diagram which contain all the positive and negative observations; 

the space occupying the circle labelled ‘A’ denotes all the data points that are actually 

negative. The complement of ‘A’ contains all the data points that are actually positive. The 

space occupying the circle labelled ‘B’ denotes the circle of data points that the binary 

classifier’s classified as negative. From this Venn diagram the formulas for the negative 

predictive value and specificity can be derived. 

 

Figure 19: Venn diagram showing negative (A) and classified negative (B) data points 

 

The performance of a binary classifier at classifying positive occurrences is given by the 

precision and recall values (Ting, Precision and Recall, 2010). The precision is the proportion 

of observations classified as positive that are actually positive. The recall is the proportion of 

positive observations that have been correctly classified as positive.  

The accuracy performance measure (Ting, Accuracy, 2010) quantifies the overall 

performance of the classifier for classifying both the positive and negative data points. 
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Both the negative predictive value (Ting, Negative Predictive Value, 2010) and the specificity 

(Ting, Specificity, 2010) value are important when determining the performance of a binary 

classification system intended to identify and classify bad traders. The 𝐹1
𝑁score is the 

harmonic mean of the negative predictive value and the sensitivity, it is a single quantity 

that can be used to summarise just the identification and classification of bad traders. To 

help determine the binary classification system’s performance at identifying good traders, 

the 𝐹1
𝑃 score can be used (Ting, F1-Measure, 2010). The 𝐹1

𝑃 score is a single quantity that 

can be used to summarise just the identification and classification of good traders. Binary 

classification systems can be compared by using any of the binary classification performance 

values. 

2.6 Receiver Operating Characteristic (ROC curve) 

The receiver operating characteristic curve (ROC curve) is a graphical plot of a regressor’s 

recall and specificity (Bewick, Cheek, & Ball, 2004) (Hanley & McNeil, 1983). The ROC curve 

can also be calculated for classifiers if the classifier can predict a probability for its 

classification. Figure 20 shows the ROC curve of two classifiers. The ROC curve is created by 

ordering the probabilities or regression values from lowest to highest (where lowest 

denotes a classification of negative and highest denotes a classification of positive) and 

plotting the 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 against 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 as the predicted probability (or regression) 

is varied from the lowest to the highest. 

 

Figure 20: Receiver operating characteristic of two classifiers 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Se
n

si
ti

vi
ty

 

1 - Specificity 

ROC Curve 

Random

Classifier 1

Classifier 2



51 
 

ROC curves are used to visually compare classifiers by plotting the ROC curves of the 

classifiers on the same graph. The closer the ROC curve is to the diagonal line the closer the 

performance is to random. The area under a ROC curve (AUC) is an overall measure of 

performance. ROC curves that are furthest away from the diagonal have the largest such 

area. A randomly performing classifier has an AUC of 0.5 while a perfect classifier has an 

AUC of 1. In Figure 20, Classifier 1 has an AUC of 0.753 and classifier 2 has an AUC of 0.876. 

As classifier 2 has a larger AUC than classifier 1, the overall performance of classifier 2 is 

better than that of classifier 1. It can also be seen visually that classifier 2 is better than 

classifier 1 as classifier 2’s ROC curve is furthest away from the random performing 

classifier. 

2.7 Optimisation and Search 

Local search is a method for solving computationally hard optimisation problems using 

heuristics (Hiep, Duc, & Trung, 2016). For some problems, the search space of possible 

solutions may be too vast for a brute force algorithm to be able to check every solution. 

Local search however does not check every possible solution but its goal is to heuristically 

search the search space and find a good enough solution in a reasonable amount of time. 

Local search algorithms such as Tabu Search and Simulated Annealing metaheuristic 

algorithms consider the current state of a solution then looks locally for better solution 

states using some objective function that can score solutions (Jackson, Özcan, & John, 

2017). Genetic Algorithms utilise many solutions to find a local optimum solution. This is 

done by swapping a part of each solution with another solution at each iteration of the 

algorithm. Solutions are selected for swapping according to a fitness function (objective 

function), more detail in 2.7.1. 

Consider the travelling salesperson problem; the salesperson has to visit 𝑥 different cities, 

ideally using the fastest route possible. One approach to locating the fastest route from city 

to city is to search for it within the search space. However, it is impractical to search the 

search space by brute force if there are too many cities; for example, finding the global 

optimum solution with 20 cities creates 2,432,902,008,176,640,000 possible solutions.  

As early as 1999, Mayer, Belward, Widell and Burrage (1999) examined Genetic Algorithms 

amongst several numerical optimization tools, and noted that these were faster in the 
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context of general systems models. Nicoara (2015) states, having compared Genetic 

Algorithms to several more traditional methods of optimization in the context of production 

decisions, that “a Genetic Algorithm is easy to implement, easy to extend and easy to 

parallelize in order to gain computational efficiency”.  Hence Genetic Algorithms are a good 

choice for illustrating optimisation and local search, and will be used later in this thesis. 

The main goal of this thesis is to classify bad traders, so this thesis will not cover every 

aspect of optimisation and local search in this review.  

2.7.1 Genetic Algorithms 

Genetic Algorithms were first formulised by Holland (1975). Genetic Algorithms were 

inspired by the way evolution works in the natural world, and provide a powerful framework 

which can be implemented to solve problems. As the Genetic Algorithm iterates, the 

population, converges towards a local optimum in the search space as defined by the 

Genetic Algorithm’s fitness function (Melanie, 1998). In many instances, local optimal 

solutions to problems are good enough and depending on the search space global optimal 

solution may be obtainable. The main advantage of this framework is that it enables the 

location of a good, but not necessarily the best, solution in a sufficiently short time to be 

useful. 
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Figure 21 outlines the Genetic Algorithm. The Genetic Algorithm has six main components 

which will be discussed in more depth in the following sections in this chapter: 

1. Representation 
2. Initialisation 
3. Selection 
4. Fitness function 
5. Crossover 
6. Mutation 

 
Figure 21: Genetic Algorithm outline 

2.7.1.1 Representation 

A solution to a problem is represented by a chromosome. A chromosome can be formulated 

many ways depending on the problem. For instance, the travelling salesperson problem is a 

combinatorial problem subject to combinatorial explosion, i.e. non-linear growth in the 

space of possible solutions given linear growth in items of interest.  However, optimal 

solutions can be found by Genetic Algorithms (Braun, 1990; Whitley, Hains, & Howe, 2010). 

An example follows. 

Consider the travelling salesperson problem outlined in 2.7. A Genetic Algorithm can find a 

suboptimal solution in a timely manner that may be sufficient. To construct a chromosome 

that represents a solution to this problem, all of the 20 cities are represented by a letter and 

each letter is placed into the chromosome (Figure 22). This is a one dimensional array 

representation in which each entry is referred to as a gene. The order of the cities within the 

chromosome denotes the path along which the traveling salesperson travels, starting from 

the first city in the first gene all the way through to the last city in the last gene. 
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Figure 22: Travelling salesperson chromosome 

 

As another example of chromosome formulation, consider the problem of creating 

functions to fit a sequence of numbers. The functions can be represented by a tree-like 

chromosome (Figure 23). Each node represents a gene within the chromosome and can be 

replaced by other genes. It is clear that the chromosome represents the equation 10(12 +

𝑛). 

 

Figure 23: Tree-like chromosome 

2.7.1.2 Initialisation 

The goal of Genetic Algorithms is to evolve a population of chromosomes (solutions to some 

problem) to maximise some fitness function. The initialisation stage of the algorithm creates 

the initial pool of chromosomes. Usually the chromosome is given random gene values. For 

instance, a chromosome constructed as an array of zeros and ones can be initialised by 

randomly choosing either zero or one for each gene. More advanced initialisations can also 

be implemented such as the knowledge-based initialization technique published by Li, Chu, 

Chen and Xing (2015) which aims to seed the initial population with high quality 

chromosomes. 
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Care is needed when initialising some chromosome constructions. For instance, 

chromosomes in the travelling salesperson problem cannot have duplicate genes; this would 

result in the salesperson missing a city as the number of genes is equal to the number of 

cities to visit. 

2.7.1.3 Selection - Stochastic Universal Sampling 

Once the population is initialised, a fitness value for each chromosome is calculated. The 

fitness function that is used to calculate a chromosome’s fitness is specific to the problem 

implemented. Consider a Genetic Algorithm implementation that attempts to predict the 

price direction of a company’s future share price. A chromosome should obtain a higher 

fitness value if it can maximise profit and minimize risk. 

Once the fitness values for all chromosomes are calculated, they are normalised so that 

each chromosome occupies a unique interval between zero and one (Figure 24). A random 

number between zero and one is generated which corresponds to an interval that is 

occupied by a chromosome. This chromosome is selected for the next stage of the Genetic 

Algorithm. As the bigger intervals are occupied by higher scoring chromosomes then the 

better chromosomes (solutions) with better genes are more likely to be selected. This 

selection process is done until the number of selected chromosomes equals the size of the 

population so that the next stage, the crossover stage of the algorithm, can mix the genes of 

the selected chromosomes to create the next generation of chromosomes. 

 
 

Figure 24: Pie chart representing chromosomes occupying intervals between 0 and 1 

It is possible that a few chromosomes occupy a large proportion of the normalised range. 

Whilst the fittest chromosomes should be selected more often, it is important to select the 



56 
 

other chromosomes for the next stage of the algorithm as there needs to be diversity sets of 

genes to stop the population of chromosomes converging early. To overcome this, 

stochastic universal sampling can be employed. Stochastic universal sampling takes the 

generated random number and creates other numbers equally spaced apart. In four point 

stochastic universal sampling, a random number is generated and 3 other numbers which 

are spaced 0.25 away from each other and from the random number (Figure 25). Stochastic 

universal sampling therefore avoids individual chromosomes that occupy a large proportion 

of the normalized range. The four chromosomes corresponding to these numbers are 

selected for the next stage of the algorithm. 

 

Figure 25: Four point stochastic universal sampling 

The problem with the stochastic universal sampling selection technique is that negative 

fitness values cannot be normalised without transforming the fitness values in some way. In 

Chapter 6, a Genetic Algorithm is used to evolve a population of trading strategies by using a 

fitness function that maximises return. The fitness values produced are positive and 

negative, so to normalise these fitness values, all return values are shifted by the same 

number such that the trading strategy with the smallest return is above zero. This presents a 

scaling issue; the trading strategy with the highest return may be twice as profitable as the 

second most profitable trading strategy. After the shift for normalisation, the magnitude of 

the difference in profit is lost. 
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2.7.1.4 Selection – Tournament Selection 

Tournament selection also selects the chromosomes for the next stage of the Genetic 

Algorithm. Random chromosomes are repeatedly selected to compete in small tournaments 

of size 𝑘 in which the winner is selected for the crossover stage of the Genetic Algorithm. 

The fitness values of each chromosome are sorted from the highest to lowest in the 

miniature tournament. For each chromosome from the highest to the lowest fitness value 

there is some probability 𝑝 that the chromosome wins and is selected for the crossover 

stage of the Genetic Algorithm. 

Unlike the previous method, the ranking of chromosomes means that negative fitness 

values do not need to be shifted for normalisation. Additionally chromosomes with 

overwhelmingly high fitness values are not at risk of being repeatedly selected, which can 

lead to the population of chromosomes to converging to one of little genetic diversity. On 

the other hand, chromosomes with the lowest fitness values become more likely to be 

chosen, and the Genetic Algorithm may take longer to converge on a good solution. 

However this can be counteracted by increasing the tournament size so that weak 

chromosomes have a smaller chance of being selected. 

2.7.1.5 Crossover 

During the crossover stage, two chromosomes are chosen at a time in a process referred to 

as 'crossover' (analogous to 'breeding'). The two chromosomes have a probability 𝑝 that 

they swap genetic material and their offspring are in the next stage of the Genetic 

Algorithm. The two chromosomes have a probability of 1 − 𝑝 that the two chromosomes do 

not swap genetic material and are copied to the next stage of the Genetic Algorithm.  

Two chromosomes can be crossed over in many different ways, depending on the 

construction of the chromosome. Some crossover algorithms may not be suitable because 

they do not produce a valid chromosome. For example, swapping genetic material of two 

travelling salesperson solutions (chromosomes) may result in solutions that do not contain 

all the cities and have duplicate cities in the solution. 

One point crossover is a simple crossover operation on two chromosomes containing an 

array of n genes. A random value between 1 and n-1 is generated which denotes the index 
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between the genes. At this index, the two chromosomes exchange their genes past that 

index, and then these new chromosomes enter the mutation stage. In Figure 26 the random 

number is 4 so all the genes past the 4th gene are exchanged. 

 

Figure 26: Single point crossover between two binary chromosomes 

 

However, the use of one point crossover in the travelling salesperson problem (for example) 

would create an invalid chromosome. Thus other crossover methods like the permutation 

crossover are used. The permutation crossover will ensure there are no duplicates within 

each chromosome. 

2.7.1.6 Mutation and Termination Conditions 

At this stage of the algorithm, genes within the chromosomes can mutate. This introduces 

new genes into the population which may not have existed during the initialisation process 

or have become extinct by previous iterations of the Genetic Algorithm. By altering the 

genes it becomes more likely that the population will contain chromosomes capable of 

escaping local optima to arrive at new solutions. To put this in another way, it is possible 

that genes that were not previously needed to improve on a current best solution might, at 

some point in the future, prove necessary to escape some local optimum. 
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Mutation can be implemented in many different ways, depending on the chromosome’s 

construction. For chromosomes which are given as an array of binary digits (Figure 26), each 

gene might have, say, a 0.1% chance of mutating to the other digit. 

After mutation has occurred the population can be evaluated according to the same fitness 

function used during the selection process. The fittest chromosome in the population is 

compared to the fittest chromosome so far, and this fittest chromosome is recorded. Then 

the Genetic Algorithm from the selection stage is repeated, until some termination 

condition is fulfilled.  

There are a wide range of termination conditions that can be implemented in the Genetic 

Algorithm: 

 The population has converged to a single (or a few) chromosome(s) duplicated 
throughout the population; 

 Sufficient time has passed; 

 Sufficient iterations of the algorithm have taken place; 

 The best chromosome so far has exceeded some measure; or  

 The best chromosome has not improved over the last n iterations. 

 

2.7.1.7 Genetic Algorithm Literature on Creating Trading Strategies 

In the literature there have been many Genetic Algorithm implementations which aim to 

combine variables and/or models into trading strategies or trading rules. Lakshman, 

Ramesh, Manjula and Govardhan (2012) proposed a Genetic Algorithm which evolved a 

population of 100 trading rules using the return performance metric on historical data as 

the fitness function. Each trading rule consisted of 6 conditions which are technical analysis 

algorithms that have a threshold above or below a particular value. If all conditions are 

satisfied, then the trading rule produces a buy signal else the trading rule produces a sell 

signal. The authors used the stock prices from the India Cements stock index future. A 

limited amount of market data of 80 trading days from September 2011 to December 2011 

were used as historical data and 80 trading days for from January 2012 to April 2012 were 

used as outsample data.  Only six trading rules were evolved and they were compared to 
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the buy and hold strategy. The trading rules reported 21% - 54% return on outsample data 

compared to -26% for the buy and hold strategy. 

Lipinski (2010) has represented trading experts by a binary chromosome in which each gene 

indexes a trading rule. If a gene value is 0 then the trading rule is not active and if the gene 

value is 1 the trading rule is active. The trading experts predict market price direction by 

taking the majority vote of all buy and sell signals from the trading rules active. Lipinski has 

also created trading experts (chromosomes) for which the gene contains a number 

representing the weight a trading rule has on the final decision of the trading expert 

(Lipinski, 2008). Lipinski has explored the use of objective functions such as the Sharpe ratio, 

Sortino ratio, Sterling ratio and the Treynor ratio, performance metrics of return and risk 

(Lipinski & Korczak, 2004). The Sharpe ratio, Sortino ratio and other performance metrics 

are explained in Chapter 4 Lipinski has also experimented with fixing common building 

blocks of trading rules and then running the evolutionary process, which is reported to 

reduce the search space (Lipinski, 2010). 

Recently, Ozturk, Toroslu and Fidan (2016) published a paper that uses Genetic Algorithms 

to evolve binary chromosomes in a similar fashion to Lipinski’s work. Their hybrid system 

also used the Genetic Algorithm to optimise the parameter settings of a population of 

trading rules. Each trading strategy contains 20 trading rules and the binary gene values 

activate or deactivate the trading rule. The trading strategy makes buy and sell decisions 

based upon the majority vote of all the activated trading rules. The authors performed 3 

experiments, the first used 1 minute EURUSD data from the start of January 2013 to the end 

of December 2013. In total, 246,792 data points were used as historical data and 121,648 

data points for outsample. The second experiment used 1 minute EURUSD from the start of 

January 2013 to the end of June 2013. In total, 121,129 data points were used as historical 

data and 61,371 data points for outsample. The third experiment used 1 minute GBPUSD 

from the start of January 2014 to the end of June 2014. In total, 121,196 data points for 

historical data and 61,068 data points for outsample. The authors experimented with the 

return performance metric and the average profit per trade performance metric as fitness 

functions and found the return performance metric to be preferable; these performance 

metrics are explained in more detail in Chapter 4. About 60% of the optimised trading 

strategy trades were reported to be profitable. 
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Lipinski (2007) created trading experts in the form of multi-layered perceptrons, each having 

15 trading rules as inputs. He then extended his work by creating trading experts 

(chromosomes) that contain artificial neural networks and trading rules (genes) (Lipinski, 

2008). 

Other literature uses Genetic Algorithms to optimise the parameters of some trading 

strategy template. Wang, An, Xia, Liu, Sun and Huang (2014; 2016) used Genetic Algorithms 

to optimise the parameters of two moving averages (moving average technical analysis 

algorithms are explained in 3.1). A highly cited paper authored by Allen and Karjalainen 

(1999) created trading strategies using mathematical operators, conditional operations, 

moving averages results and prices to create functions that output buy and sell signals. 

Hu, Liu, Zhang, Su, Ngai and Liu (2015) observed a significant bias in their literature review 

of the discovery of trading rules in algorithmic trading on stock markets towards the 

application of Genetic Algorithms. The review found that the return performance metric 

(and measures that are essentially return quantities) were mainly used. The joint second 

most used performance measure was the Sharpe ratio performance metric and the root 

mean squared error. 

Genetic Algorithms have been used in hybrid approaches evolving support vector machines 

and creating their own system of models (Yu, Wang, & Lai, 2005; Chiu & Chen, 2009). Chiu 

and Chen achieved about 71%-75% return on their capital in their model which combined 

Genetic Algorithms, artificial neural network and support vector machine methodologies. 

The Genetic Algorithm in Chiu and Chen’s paper optimised the parameters of the fuzzy 

models. The fuzzy models are based on technical indicators and macroeconomic variables. 

Modern Portfolio Theory helps investors construct a portfolio that maximises expected 

return given an investor’s preference to risk. To construct the efficiency frontier which 

contains the optimal allocations of capital for various risk preferences, the following 

information is required: the investible assets, the correlation between the assets returns, 

each asset’s expected return and the standard deviation of each asset’s returns (which is a 

proxy for risk). Similarly Genetic Algorithms have been used to optimise the allocation of 

capital of a portfolio for long term investments (Qu, Zhou, Xiao, Liang, & Suganthan, 2017). 

In Modern Portfolio Theory the advantage of using local search such as Genetic Algorithms 
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to search for optimal portfolio allocation over a brute force method is that the Genetic 

Algorithm’s runtime scales better as more assets are considered. Another implementation 

of Genetic Algorithms involves evolving a population of portfolio allocations where each 

gene in a chromosome gene denotes the proportion of capital to allocate to a particular 

asset (Krzysztof, Filipiak, & Lipiński, 2012; Aranha & Hitoshi, 2009). The Sharpe ratio 

performance metric can be used as a fitness function that would guide the population to a 

state that minimises risk and maximises return. 

2.8 Conclusion and Direction of the Work 

The application of Genetic Algorithms to trading strategy creation demonstrates two 

perspectives in published work. One focuses on the derivation of formulas and the 

optimisation of parameters of trading strategies; this perspective is the most prevalent in 

published work. The other uses Genetic Algorithms to combine technical analysis algorithms 

to create trading strategies. 

In the literature, forecasting systems using artificial neural networks and support vector 

machines use technical analysis algorithms as inputs. This takes a ‘low-level’ approach to 

price prediction which seeks to make sense of technical analysis interpretations. However, 

this model of a trading strategy is a ‘black box’. This approach seems unhelpful for this 

project, given the involvement of the industrial partner and the associated practitioner 

outlook. The parameters of the technical analysis algorithms are fixed and only a small 

number of technical analysis algorithms are used. The basic principle of combining technical 

analysis algorithms to form profitable models is in line with the direction of the project of 

this thesis. 

Evolutionary approaches offer the prospect of adapting to changing market conditions 

(although the period of market data used for training is important here, and atypical 

changes in market behaviour are likely to remain problematic for market prediction). To 

date, only the work of Lipinski and the newly published paper authored by Wang, An, Xia, 

Liu, Sun and Huang, combines technical analysis algorithms into an evolutionary approach. 

By switching algorithms on or off within the chromosome, the pattern of those switched on 

could be thought of as constituting a trading strategy. However, the Genetic Algorithm 
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method employed does not control the numbers of trading rules that are active within these 

trading strategies, and so no explicit modelling of traders is evident. 

Artificial neural networks and support vector machines are ‘black boxed’ approaches to 

regression and classification. The goal of this thesis is to create an early warning detection 

system for bad traders. The project partner has expressed that they would like to 

understand the decisions of the classification system which classifies bad traders. As a 

result, an Adaboost based classification system will be implemented and experiments using 

ensemble methods to create more robust classification systems will be explored. 

In literature, no attempts have been made to classify whether a trader is good or bad using 

the machine learning classification or regression algorithms described in this thesis. The 

work described in this thesis aims at more explicit modelling of trading strategies. 
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Chapter 3 – Overview of Technical Analysis Algorithms 

There are many technical analysis indicators and categories of these. Traders will form their 

own opinions as to which are most appropriate, or reliable, for their own trading decisions. 

The algorithms selected for experimentation in this thesis are all in common usage and are 

favoured by the industrial partner, as identified by the author's own induction training at 

that company. Technical analysis algorithms were chosen instead of fundamental analysis 

due to the ease with which they can be implemented in code, and the ability to easily derive 

necessary information from market data. 

As described in Section 1.3.3, technical analysis employs primarily the price and volume data 

of an asset to predict future price movement. Unfortunately there are many ways in which 

to interpret these models, and in general there will even be conflicting interpretations (Lo, 

Mamaysky, & Wang, 2000). The technical analysis algorithms used in this thesis are the 

following: 

 Simple Moving Average (Section 3.1.1) 

 Simple Moving Median (Section 3.1.2) 

 Exponential Moving Average (Section 3.1.3) 

 Moving Average Convergence Divergence (Section 3.1.5) 

 Bollinger Bands (Section 3.2.1) 

 Relative Strength Index (Section 3.3.1) 

 Stochastic Oscillator (Section 3.3.2) 

A technical analysis interpretation is a subjective interpretation of a given technical analysis 

algorithm that instructs a trader on a course of action. For example, a condition might be 

used in combination with a technical analysis algorithm, with an output meeting the 

condition leading to the interpretation of the output 

3.1 Trend Technical Analysis 

Trend is the general direction of the market’s price and is modelled by moving average 

algorithms. Moving average algorithms are used to smooth noisy candlestick data which 

help market participants identify trends and market cycles. 
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3.1.1 Simple Moving Average (SMA) 

The simple moving average (Figure 27) is calculated by averaging the last 𝑛 close prices, 

using the following formula (Dash & Dash, 2016), 

𝑆𝑀𝐴𝑖(𝑛) =  
∑ 𝐶𝑖−𝑗
𝑛−1
𝑗=0

𝑛
 

where 𝑖 denotes the 𝑖th candlestick,  𝑗 denotes the offset from the 𝑖th candlestick, 𝑛 is the 

number of historic close prices, and 𝐶𝑎 is the close price at the 𝑎th candlestick. 

Simple moving averages with smaller 𝑛 values respond to price changes more quickly 

(Figure 27) than those with large 𝑛 (Figure 28) because they are averaging over fewer close 

prices. 

 

 

Figure 27: Candlestick chart of hourly AUDUSD data with a simple moving average (in red) 
that averages the last 24 close prices 
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Figure 28: Candlestick chart of hourly AUDUSD data with a simple moving average (in red) 
that averages the last 60 close prices 

 

3.1.2 Simple Moving Median (SMM) 

Similar to the simple moving average algorithm that averages over the last 𝑛 close prices, 

the simple moving median (Figure 29) is calculated by finding the median of the last 𝑛 close 

prices. 
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Figure 29: Candlestick chart of hourly AUDUSD data with a simple moving median (in red) 
that is the median close price of the previous 60 close prices 

 

3.1.3 Exponential Moving Average (EMA) 

The exponential moving average (Figure 30) assigns a greater weight the more recent the 

close price. EMA has the following formula (Macedo, Godinho, & Alves, 2017), 

𝐸𝑀𝐴𝑖(𝑛) = 𝐸𝑀𝐴𝑖−1(𝑛)+∝ (𝐶𝑖 − 𝐸𝑀𝐴𝑖−1(𝑛)) 

∝=
2

𝑛 − 1
 

where 𝑖 denotes the 𝑖th candlestick, ∝ denotes the smoothing factor, 𝑛 is the number of 

historic close prices, and  𝐶𝑎 is the close price at the 𝑎th candlestick. 
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Figure 30: Candlestick chart of hourly AUDUSD data with an exponential moving average 
(in red) using the previous 60 close prices 

The smoothing factor ∝ is a constant coefficient between 0 and 1 that represents the 

degree of weighting decrease. The larger the smoothing factor value, the less the older close 

prices exert an influence on the total average.  

 

3.1.4 Trend Interpretations 

The output of technical analysis algorithms that model trend can be interpreted in various 

ways when reaching a buy/sell decision. In implementing technical analysis algorithms 

individually, or in combination, in this thesis to reach such decisions an exhaustive approach 

is taken to implementing algorithms and interpretations together. For the output of trend 

algorithms (simple moving average, simple moving median and the exponential moving 

average) the following interpretations are considered: 

1. Uptrend if the current price is above the moving average. 

2. Uptrend if the moving average previously is below the current moving average. 

3. Uptrend if the price is above the last 𝑥 moving averages. 

4. Uptrend if the moving average value is above the last 𝑥 moving averages. 

5. Uptrend if the price is above the average of the last 𝑥 moving averages. 
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6. Uptrend if the moving average value is above the average of the last 𝑥 moving 
averages. 

Downtrends are instead considered if conditions are reversed. 

 

3.1.5 Moving Average Convergence/Divergence (MACD) 

The moving average convergence/divergence algorithm (Figure 31) uses the difference 

between the short term and long term trends to anticipate future movements, as shown by 

the following formula (Ye, Zhang, Zhang, Fujita, & Gong, 2016), 

𝑀𝐴𝐶𝐷(𝑁, 𝑛) =  𝐸𝑀𝐴(𝑁) − 𝐸𝑀𝐴(𝑛) 

where n is the number of historic close prices for the shorter term trend, N is the number of 

historic close prices for the longer term trend, and N > 𝑛. 

Secondly, a moving average of the 𝑀𝐴𝐶𝐷 called the signal line (coloured blue in Figure 31) 

can be overlaid on the 𝑀𝐴𝐶𝐷 (the red line) to help traders identify trend reversal. A trend 

reversal is where a trend changes from an upward trend to a downward trend or vice versa. 
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Figure 31: Candlestick chart of hourly AUDUSD data with a MACD indicator below. The 
MACD(26, 12) is shown in red and the signal line, shown in blue, averages the previous 9 

MACD values 

 

3.1.6 MACD Interpretations 

The moving average convergence divergence algorithm can be interpreted in various ways. 

The interpretations implemented in this thesis are as follows: 

1. Buying momentum (market conditions favouring profitable buying) if the MACD 

crosses the signal line from below to above the signal line. 

2. Buying momentum if the MACD crosses the zero value from below to above the zero 

line. 

Selling momentum instead considered if conditions are reversed. 

 

3.2 Volatility Technical Analysis 

Volatility is a measure of risk. Statistical measures such as the variance and standard 

deviation of the price series are often used to measure volatility. Non-volatile markets 
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experience steady price movements whilst volatile markets experience rapid upward and 

downward price movements over a short period of time. 

 

3.2.1 Bollinger Bands (BB) 

Bollinger bands (illustrated in Figure 32) were created by John Bollinger in the 1980s as a 

method for market participants to identify extreme short-term price movements in a 

security. Bollinger bands model the volatility of the current price action given the last 𝑛 

close prices. The upper and lower bands are created by calculating the standard deviation 𝜎 

of the last 𝑛 close prices from a moving average (Bollinger, 2001): 

𝐵𝐵(𝑛) = {
𝑆𝑀𝐴(𝑛) +  𝜎
𝑆𝑀𝐴(𝑛)

𝑆𝑀𝐴(𝑛) −  𝜎
 

where 𝜎 denotes the standard deviation of the close prices, 𝑖 denotes the 𝑖th candlestick, 𝑗 

denotes the offset from the 𝑖th candlestick, 𝑛 is the number of historic close prices, and 𝐶𝑎 is 

the close price at the 𝑎th candlestick. 
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Figure 32: Candlestick chart of hourly AUDUSD data with a Bollinger band using the last 60 
close prices. The middle red line is SMA, the higher red line is the upper band and the 
lower red line is the lower band, both bands are one standard deviation from the SMA 

 

3.2.2 Bollinger Band Interpretations 

The output of the Bollinger band algorithm can be interpreted in various ways. Here are the 

interpretations implemented in this thesis: 

1. Buying momentum if the price is greater than the upper band. Selling momentum if 

price is lower than the lower band. 

2. Overbought if the price hits the upper band so downward momentum once price 

crosses the upper band from above. Oversold if the price hits the lower band so 

upward momentum once price crosses the lower band from below. 

3. Overbought if the price hits the upper band so downward momentum once price 

crosses the moving average after being above the upper band. Oversold if the price 

hits the lower band so upward momentum once price crosses the moving average 

after being below the lower band 
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3.3 Momentum Technical Analysis 

Momentum models model the buying and selling pressures of market participants and give 

an indication of the strength. Momentum helps determine whether the market is 

overbought (the price has risen unjustifiably on the strength of high-volume buying), or 

oversold (the price has fallen unjustifiably on the strength of high-volume selling). 

3.3.1 Relative Strength Index (RSI) 

The relative strength index (illustrated in Figure 33) is a momentum indictor that helps 

determine whether the market is overbought or oversold given the last 𝑛 close prices (Bell, 

2016). The relative strength index uses a ratio that takes the last 𝑛 price changes (the 

candlestick’s close price minus the same candlestick’s open price) and divides the average 

price increase by the average price decrease of the past 𝑛 price changes. The indictor is 

calculated by the following formulas: 

𝑅𝑆𝐼(𝑛) = 100 − (
100

(1 + 𝛼)
) 

𝛼 =
𝐴𝑣𝑔𝑢𝑝

𝐴𝑣𝑔𝑑𝑜𝑤𝑛 
 

where, 𝐴𝑣𝑔𝑢𝑝  is the average price of increasing candlesticks and   𝐴𝑣𝑔𝑑𝑜𝑤𝑛 is the average 

price of decreasing candlesticks. 

When the RSI value is above 70, this indicates that there is buying momentum and the 

market is overbought. If the RSI value is below 30 then there is selling momentum and the 

market is oversold. The values 70 and 30 are typical thresholds and are normally the default 

settings on most trading platforms. 
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Figure 33: Candlestick chart of hourly AUDUSD data and an RSI indictor using the last 14 
price changes. 

 

3.3.2 Stochastic Oscillator (SO) 

The stochastic oscillator (illustrated in Figure 34) is a momentum indicator promoted by Dr. 

George Lane in the 1950s. There is no contemporary academic reference, but Lane states 

that this was in 1954 (Lane, 1985).  

The idea of the stochastic oscillator is that prices close near a recent high close price during 

bull markets, and close near a recent low close price during bear markets. From this, traders 

can get a rough idea of when the trend might be reversing and when the asset is 

overbought or oversold. The stochastic oscillator attempts to predict future price movement 

by considering where the current close price is compared to the highest and lowest close 

price of the last 𝑛 close prices. It is found using the following formula (Bell, 2016):  
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𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃𝑙𝑜𝑤
𝑃ℎ𝑖𝑔ℎ − 𝑃𝑙𝑜𝑤

× 100 

where  𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current close price, 𝑃𝑙𝑜𝑤 is the lowest close price of the last 𝑛 days, 

and 𝑃ℎ𝑖𝑔ℎ  is the highest close price of the last 𝑛 days. 

When the SO value is above 80, this indicates that there is buying momentum and the 

market is overbought. If the SO value is below 20 then there is selling momentum and the 

market is oversold. The values 80 and 20 are typical thresholds and are normally the default 

settings on most trading platforms. 

 

 

Figure 34: Candlestick chart of hourly AUDUSD data and an SO indictor using the last 14 
price changes. Overbought and oversold levels are SO values of above 80 and below 20 

respectively 
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3.3.3 Momentum Interpretations 

The output of technical analysis algorithms that model momentum can be interpreted in 

various ways. Here are the interpretations implemented in this thesis for the stochastic 

oscillator and the relative strength index. 

1. Buying momentum if the oscillator value is above a certain value. Selling momentum 

if the oscillator value is below a certain value. 

2. Buying momentum if last oscillator value is below the current oscillator value. Selling 

momentum if last oscillator value is above the current oscillator value. 

3. Buying momentum if the oscillator value is above a certain value for the last 𝑥 data 

points. Selling momentum if the oscillator value is below a certain value for the last 𝑥 

data points. 

4. Buying momentum if the oscillator value is above the last 𝑥 oscillator values. Selling 

momentum if the oscillator value is below the last 𝑥 oscillator values. 

5. Buying momentum if the oscillator value is above the average of the last 𝑥 oscillator 

values. Selling momentum if the oscillator value is below the average of the last 𝑥 

oscillator values. 
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Chapter 4 – Metrics for Evaluating Performance 

Market participants are continually seeking ways to make money from the financial markets 

by finding profitable trading strategies. Market participants are able to translate their 

trading system into code. The benefit of this is that the system can trade autonomously, 

working without bias from human emotion and in a manner that enables backtesting. 

Before deploying a trading strategy on the live market, it is good practice for market 

participants to test their trading strategy on historical data, a procedure called backtesting. 

Backtesting can help estimate a trading strategy’s potential on unseen market data if done 

correctly and this is usually done by interpreting the performance metrics of the trading 

strategy. 

Trading strategies can also be optimised on insample market data by maximising 

performance metrics such as the Sharpe ratio, see 4.1. Then the trading strategies can be 

evaluated by inspecting the performance metrics on the market data continuing from the 

insample market data called validation market data.  

Performance metrics are critical in the evaluation of trading strategies and traders as they 

quantify risk, profit and general performance. The performance metrics used in this thesis 

are outlined in this chapter. While other metrics are described in the literature, those 

chosen are the most common in trading software (such as e.g. MetaTrader), and the most 

likely to be recognised and trusted by traders.   

Exceptional are the mean squared error (MSE), mean squared root error (RMSE), and mean 

absolute error (MAE). Although these are well-established measures which have been used 

by e.g. Khalifehloo et al,  they do not furnish more decision-making information than 

Pearson’s coefficient (below).  

Note that other performance metrics are described in the literature. The list used in the 

thesis is not exhaustive as there are too many to implement. The most commonly given 

performance metrics in trading software such as MetaTrader were chosen. 
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4.1 Sharpe Ratio 

The Sharpe ratio (Sharpe W. F., 1966; Sharpe W. F., 1994)  is a risk-adjusted return measure 

which is used to compare investments against a risk free asset, and is defined by the 

following formula, 

𝑅 − 𝑟

𝜎𝑅
 

where 𝑅 is the expected return of an investment, 𝑟 is the return on a risk free asset and 

hence equal to the current interest rate, and 𝜎𝑅 is the standard deviation of returns of the 

investment 𝑅. 

If an investment has a positive Sharpe ratio, then the ratio indicates that the returns should 

outperform a risk free asset such as a US treasury bound. If the Sharpe ratio is negative then 

the risk free asset is the better investment. 

The Sharpe ratio is similar to the inverse of the coefficient of variation formula. The formula, 

in the context of investment returns, indicates how much return is expected per unit risk, 

𝜇

𝜎
 

where 𝜇 is the mean and  𝜎 is the standard deviation. 

To maximise the inverse coefficient of variation or the Sharpe ratio, an investment or 

trading strategy needs to produce high returns with low risk. 

4.2 Sortino Ratio 

Another popular performance metric is the Sortino ratio (Sortino, 1994). This ratio is similar 

to the Sharpe ratio but uses the standard deviation of only the negative returns instead of 

for both positive and negative returns: 

𝑅 − 𝑟

𝜎𝑅𝑛𝑒𝑔
 

where, 𝑅 is the expected return of an investment, 𝑟 is the return of a risk free asset, and 

𝜎𝑅𝑛𝑒𝑔 is the standard deviation of negative returns of the investment 𝑅. 
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By using the standard deviation of negative returns, the ratio focuses on downside risk and 

not the risk of all returns. 

4.3 Return Prediction Errors 

Mean squared error (MSE), mean squared root error (RMSE), and mean absolute error 

(MAE) are traditional statistical methods for calculating the performance of a trading 

system. Though this thesis does not use these performance measures, they have been used 

in the creation of machine-learning based trading systems (Khalifehloo, Habibi, Mohammad, 

& Heydari, 2017). The formulas are: 

𝑀𝑆𝐸 =
1

𝑁
∑(�̂�𝑡 − 𝑌𝑡)

2
𝑁

𝑡=1

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(�̂�𝑡 − 𝑌𝑡)

2
𝑁

𝑡=1

 

𝑀𝐴𝐸 = 
1

𝑁
∑|�̂�𝑡 − 𝑌𝑡|

𝑁

𝑡=1

 

where 𝑁 is the number of data points, 𝑌𝑖 is the predicted value from some model (such as 

the return values from a trading strategy) and �̂�𝑖 is the observed value (such as historical 

close price differences). 

To evaluate the performance of a trading system using the mean squared error formula, the 

difference in the predicted returns of the trading system and the asset’s actual returns is 

calculated. The average of all the square differences produces an error value that indicates 

how well the trading system predicted the return. If the mean squared error is 0 then the 

trading system perfectly predicted the future returns of the asset. The further away the 

result is from 0, the greater the forecasting error. By comparing values of several trading 

strategies it is possible to pick the ‘best’ strategy with the least amount of error. 

In forecasting systems such as an artificial neural networks, the mean squared error can be 

used to evaluate the neural network’s performance during the optimisation of its weights 

and to quantitatively judge different forecasting systems (Chaudhuri & Ghosh, 2016). 



80 
 

4.4 Pearson’s Correlation 

Yümlü, Gürgen and Okay (2005) examines the correlation between a trading system’s 

predicted returns and the observed returns of the asset. Pearson’s correlation formula is as 

follows, 

𝑟𝑥𝑦 = 
∑ (𝑥𝑡 − �̂�)(𝑦𝑡 − �̂�)
𝑁
𝑡=1

√∑ (𝑥𝑡 − �̂�)2 
𝑁
𝑡=1 ∑ (𝑦𝑡 − �̂�)2

𝑁
𝑡=1

 

where 𝑁 is the number of data points,  𝑥𝑖 is the predicted return,  �̂� is the mean of the 

predicted returns, 𝑦𝑖 is the observed return and �̂� is the mean of the observed returns. 

4.5 Theil’s Inequality Coefficient 

The Theil inequality coefficients decompose the mean square error into three components: 

bias 𝑈𝑀, unequal variation 𝑈𝑆  and unequal covariation 𝑈𝐶  (Watson & Teelucksingh, 2002). 

Each quantifies a different source of error. Of these, bias 𝑈𝑀 measures systematic error 

which can typically be corrected by adjustment of parameters, and is therefore useful in 

evaluating and correcting the performance of a trading system (assuming that this has been 

correctly modelled). 

4.6 Typical Performance Metrics in Real-World Trading 

The “performance metrics” noted in Table 3, are used by traders to help determine the 

future performance of their trading strategies. These performance metrics are obtainable 

from backtesting reports such those obtained by MetaTrader 4 (MetaQuotes Software), 

which is a software tool that enables buying and selling on financial markets and the ability 

to employ algorithmic trading strategies. Also there are features for optimising trading 

strategy parameters.  

This tool is used widely in trading, making it a good starting point for understanding those 

performance metrics commonly used; these are shown in Table 3. Although traders use 

these metrics to judge whether or not a trading system is likely to perform well in the 

future, they are in all cases retrospective, indicating only how well the trader is performing 

at the moment.  

Nevertheless, their currency means that any model is likely to be judged against them, and 

several will be used in this thesis. 
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Metric Description 

Gross profit Total profit from winning trades 

Gross loss Total losses from losing trades 

Total net profit Total return from all trades 

Profit factor The ratio of gross profit to gross loss 

Expected payoff The average expected return per trade 

Absolute drawdown Largest loss from initial bankroll 

Maximal drawdown Largest bankroll loss 

Relative drawdown Largest bankroll loss expressed as a percentage of initial 

bankroll 

Total trades Total number of trades executed 

Short positions Total number of sell trades 

Percentage of short positions won Total number of profitable sell trades 

Long positions Total number of buy trades 

Percentage of long positions won Total number of profitable buy trades 

Profitable trades Total number of profitable trades 

Percentage of trades that were 

profitable 

Total number of profitable trades expressed as a 

percentage of total trades 

Unprofitable trades Total number of unprofitable trades 

Percentage of trades that were 

unprofitable 

Total number of unprofitable trades expressed as a 

percentage of total trades 

Largest profit trade Largest profit from a single trade 

Largest loss trade Largest loss from a single trade 

Average profit trade Average profit from a profitable trade 

Average loss trade Average loss from a unprofitable trade 

Maximum consecutive wins Longest number of profitable consecutive trades 

Maximum consecutive losses Longest number of unprofitable consecutive trades 

Maximal consecutive profit The largest profit obtained during consecutive trades 

Maximal consecutive loss The largest loss obtained during consecutive trades 

Average winning streak The average number of consecutive trades that were 

profitable 
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Average losing streak The average number of consecutive trades that were 

unprofitable 

Table 3: MetaTrader 4 performance metrics 

 

4.7 Use of Performance Metrics in Machine Learning  

In machine learning, trading systems such as artificial neural networks and support vector 

machines can also be optimised by maximising a performance metric such as the Sharpe 

ratio or Sortino ratio. Other authors’ use of such performance metrics is summarised in 

Table 4. 

Authors Performance Metric 

Nóbrega and Oliveira (2013) Sharpe ratio, root mean squared error, 

return, volatility and the Theil inequality 

coefficient. 

 

The authors the metrics to compare the 

performance of support vector regression 

and their extreme learning machine 

forecasting models with varying linear 

regression models. 

Evans, Pappas and Xhafa (2013) Sharpe ratio, annualized return, trade 

success rate (prediction accuracy) and mean 

absolute error calculations. 

 

The authors report 72.5% prediction 

accuracy and a 23.3% return on foreign 

exchange intra-data market data by using 

neural networks and Genetic Algorithms.  

Qiu, Song, & Akagi (2016) Mean squared error 

 

The authors used a mean squared error 
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function to evaluate the performance of 

their artificial neural network on the Nikkei 

225 index. The mean squared error 

compared the returns of the Nikkei 225 

index and the predicted return of their 

artificial neural network.  

Zhang, Hu, Xie, Wang, Ngai, & Liu (2014) Return, Sharpe ratio, Sortino ratio, 

annualised return and maximum drawdown. 

 

The authors used the performance metrics 

to compare different feature selection 

algorithms and different machine learning 

algorithms. 

Table 4: Performance metrics in literature 

 

4.8 Evaluations of Trading Success in this Thesis 

There are longstanding difficulties with evaluating trading success. Stewart studied grain 

futures over a 9-year period and found that 75% of speculators lost money (Stewart, 1978). 

Hieronymus (1977) studied the closed trades for a single commission house and found that 

65% of the firm’s customers ended the year 1969 with a loss. 

The author's study is not concerned with exploiting trader behaviours as much as identifying 

consistent trends and patterns of these. However, (Barbe & Odean, 2000) presents evidence 

that “overconfidence” leads to excessive trading, in which the better traders would be the 

more cautious ones. Evidence to this effect is being gathered, but remains essentially 

anecdotal. 

In order for a trading strategy to make money reliably, it must perform well across a number 

of performance criteria, including return, risk, number of trades and trade success rate. A 

trading strategy which has been optimised only for profit without considering other 

performance metrics could, for example, trade too often, be extremely risky, and/or be 

overfitted. It is, however, difficult to find the best trade-off between performance metrics 
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that can reliably assess trading strategy and trader performance. Table 5 shows the 

performance metrics implemented and used in this thesis. 

 Metric Name Formula Notes 

1 Profit factor  

 

𝑝

𝑙
 𝑝 is profit, 𝑙 is loss 

2 Normalized profit 

factor  

 

𝑝

𝑝 + 𝑙 + 1
 𝑝 is profit, 𝑙 is loss 

3 Maximal 

Drawdown 

𝐷 𝐷  the decline in the profit 

of a trading strategy 

between its maximum and 

minimum value, over a 

given period. 

4 Return 𝑅 𝑅 the total return 

5 Average trade 

return 

𝑅𝑎𝑣𝑔 𝑅𝑎𝑣𝑔 the average return 

6 Standard 

deviation of trade 

returns 

𝑅𝜎 𝑅𝜎 the standard deviation 

of returns 

7 Number of trades  𝑇𝑡𝑜𝑡𝑎𝑙 𝑇𝑡𝑜𝑡𝑎𝑙 the total number of 

trades 

8 Number of 

unsuccessful 

trades 

𝑇𝑙𝑜𝑠𝑡 𝑇𝑙𝑜𝑠𝑡 the total number of 

unprofitable trades 

9 Number of 

successful trades 

𝑇𝑤𝑜𝑛 𝑇𝑤𝑜𝑛 the total number of 

profitable trades 

10 Trade success rate 

 

𝑇𝑤𝑜𝑛
𝑇𝑙𝑜𝑠𝑡

 
𝑇𝑤𝑜𝑛 is the total number of 

profitable trades and 𝑇𝑙𝑜𝑠𝑡 

the total number of 

unprofitable trades 
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11 Average winning 

streak  

 

𝑇𝑆𝑎𝑣𝑔𝑊𝑖𝑛 𝑇𝑆𝑎𝑣𝑔𝑊𝑖𝑛 The average 

number of consecutive 

profitable trades 

12 Average losing 

streak  

 

𝑇𝑆𝑎𝑣𝑔𝐿𝑜𝑠𝑡 𝑇𝑆𝑎𝑣𝑔𝐿𝑜𝑠𝑡 the average 

number of consecutive 

unprofitable trades 

13 Normalized 

average win/lose 

streak:   

 

𝑇𝑆𝑎𝑣𝑔𝑊𝑖𝑛

𝑇𝑆𝑎𝑣𝑔𝑊𝑖𝑛 + 𝑇𝑆𝑎𝑣𝑔𝐿𝑜𝑠𝑡 + 1
 

𝑇𝑆𝑎𝑣𝑔𝑊𝑖𝑛 The average 

number of consecutive 

profitable trades. 

𝑇𝑆𝑎𝑣𝑔𝐿𝑜𝑠𝑡 the average 

number of consecutive 

unprofitable 

14 Longest winning 

streak  

 

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑊𝑖𝑛 𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑊𝑖𝑛 the longest 

number of consecutive 

profitable trades 

15 Longest losing 

streak  

 

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑡 𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑡 the longest 

number of consecutive 

unprofitable trades 

16 Normalized 

longest win/lose 

streak   

 

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑊𝑖𝑛

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑊𝑖𝑛 + 𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑡 + 1
 
𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑊𝑖𝑛 the longest 

number of consecutive 

profitable trades. 

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑡 the longest 

number of consecutive 

unprofitable trades 

17 Standard 

deviation of 

winning streaks 

𝑇𝑆𝜎𝑊𝑖𝑛𝑠 𝑇𝑆𝜎𝑊𝑖𝑛𝑠 the standard 

deviation of winning streak 

lengths 

18 Standard 

deviation of losing 

streaks 

𝑇𝑆𝜎𝐿𝑜𝑠𝑠𝑒𝑠 𝑇𝑆𝜎𝐿𝑜𝑠𝑠𝑒𝑠 the standard 

deviation of losing streak 

lengths 

19 Largest trade 𝑇𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑃𝑟𝑜𝑓𝑖𝑡 𝑇𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑃𝑟𝑜𝑓𝑖𝑡 the largest 
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profit profitable trade 

20 Largest trade loss 𝑇𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑠 𝑇𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑠 the largest 

unprofitable trade 

21 Average profitable 

trade 

𝑇𝑎𝑣𝑔𝑃𝑟𝑜𝑓𝑖𝑡 𝑇𝑎𝑣𝑔𝑃𝑟𝑜𝑓𝑖𝑡 the average 

profitable trade 

22 Average 

unprofitable trade 

𝑇𝑎𝑣𝑔𝐿𝑜𝑠𝑠 𝑇𝑎𝑣𝑔𝐿𝑜𝑠𝑠 the average 

unprofitable trade 

23 Standard 

deviation of 

profitable trades 

𝑇𝜎𝑃𝑟𝑜𝑓𝑖𝑡𝑠 𝑇𝜎𝑃𝑟𝑜𝑓𝑖𝑡𝑠 the standard 

deviation of profitable 

trades 

24 Standard 

deviation of 

unprofitable 

trades 

𝑇𝜎𝐿𝑜𝑠𝑠𝑒𝑠 𝑇𝜎𝐿𝑜𝑠𝑠𝑒𝑠 the standard 

deviation of unprofitable 

trades 

25 Longest streak 

ratio 

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑊𝑖𝑛

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑠
 

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝑊𝑖𝑛 the longest 

winning streak. 

𝑇𝑆𝑙𝑜𝑛𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑠 the longest 

losing streak 

26 Average streak 

ratio 

𝑇𝑆𝑎𝑣𝑔𝑊𝑖𝑛

𝑇𝑆𝑎𝑣𝑔𝐿𝑜𝑠𝑠
 

𝑇𝑆𝑎𝑣𝑔𝑊𝑖𝑛 the average 

winning streak length. 

𝑇𝑆𝑎𝑣𝑔𝐿𝑜𝑠𝑠 the average 

losing streak length 

27 Standard 

deviation streak 

ratio 

𝑇𝑆𝜎𝑊𝑖𝑛
𝑇𝑆𝜎𝐿𝑜𝑠𝑠

 
𝑇𝑆𝜎𝑊𝑖𝑛 the standard 

deviation of winning streak 

lengths. 𝑇𝑆𝜎𝐿𝑜𝑠𝑠 the 

standard deviation of 

losing streak lengths 

28 Largest trade ratio 𝑇𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑃𝑟𝑜𝑓𝑖𝑡

𝑇𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑠
 

𝑇𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑃𝑟𝑜𝑓𝑖𝑡 the largest 

profitable trade. 

𝑇𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑠 the largest 

unprofitable trade 



87 
 

29 Average trade 

ratio 

𝑇𝑎𝑣𝑔𝑊𝑖𝑛

𝑇𝑎𝑣𝑔𝐿𝑜𝑠𝑠
 

𝑇𝑎𝑣𝑔𝑊𝑖𝑛  the average 

profitable trade. 𝑇𝑎𝑣𝑔𝐿𝑜𝑠𝑠 

the average unprofitable 

trade 

30 Standard 

deviation trade 

ratio 

𝑇𝜎𝑊𝑖𝑛
𝑇𝜎𝐿𝑜𝑠𝑠

 
𝑇𝜎𝑊𝑖𝑛 the standard 

deviation of profitable 

trades. 𝑇𝜎𝐿𝑜𝑠𝑠 the standard 

deviation unprofitable 

trades 

31 Sharpe ratio 𝑇𝑎𝑣𝑔

𝑇𝜎
 

𝑇𝑎𝑣𝑔 the average trade 

return. 𝑇𝜎 the standard 

deviation of trade returns 

32 Sortino ratio 𝑇𝑎𝑣𝑔

𝑇𝜎𝐿𝑜𝑠𝑠𝑒𝑠
 

𝑇𝑎𝑣𝑔 the average trade 

return. 𝑇𝜎𝐿𝑜𝑠𝑠𝑒𝑠 the 

standard deviation of 

unprofitable trades 

33 Winning Sortino 

ratio 

𝑇𝑎𝑣𝑔

𝑇𝜎𝑃𝑟𝑜𝑓𝑖𝑡𝑠
 

𝑇𝑎𝑣𝑔 the average trade 

return. 𝑇𝜎𝑃𝑟𝑜𝑓𝑖𝑡𝑠 the 

standard deviation of 

profitable trades 

34 Expected payoff 𝑅

𝑇𝑡𝑜𝑡𝑎𝑙
 

𝑅 is the return. 

𝑇𝑡𝑜𝑡𝑎𝑙 is the total number 

of trades. 

35 Maximal 

consecutive profit 

𝑇𝑆𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑃𝑟𝑜𝑓𝑖𝑡 𝑇𝑆𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑃𝑟𝑜𝑓𝑖𝑡 is the 

biggest profit made from 

consecutive trades 

36 Maximal 

consecutive loss 

𝑇𝑆𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝐿𝑜𝑠𝑠
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Figure 40 shows the relationship between the number of trades of each technical analysis 

interpretation on historical data against those on future market data. There is a strong 

positive correlation between the number of trades on historical and future market data of 

0.997. The number of trades that a technical analysis interpretation places on historical data 

is therefore very likely to be similar to the number of trades placed on future market data 

over the same number of data points. 

In Figure 40, there is a cluster of technical analysis interpretations that execute more than 

2,250 trades on each of the historical and future datasets. This cluster of interpretations 

makes up 6% of the total set of interpretations. There seem to be clusters of technical 

analysis interpretations with the same number of trades on historical and future market 

data. Figure 41 shows the relationship between the trade success rate of each technical 

analysis interpretation and the number of trades it executes using historical data. This figure 

shows there are clusters of technical analysis interpretations with the same trade success 

rate and number of trades. This perhaps indicates again that different technical analysis 

interpretations can respond similarly to market phenomena.  

Transaction costs are incurred by buying or selling assets, and so technical analysis 

interpretations that execute too many trades face large transaction costs which reduce 

overall profit. In total, 81% of the technical analysis interpretations make 200 or fewer 

trades on each hourly dataset, which spans 5,172 hours. On average, 20% of the technical 

analysis interpretations execute a trade every 26 hours to 52 hours and 61% execute trades 

longer than 52 hours apart. As the correlation between the number of trades of a technical 

analysis interpretation on historical and future market data is strong and positive, then it is 

possible to reduce transaction costs by selecting technical analysis interpretations that trade 

less often on historical data. Choosing technical analysis interpretations that have an 

appropriate number of trades on historical data is vital so that confidence can be placed on 

their analysis.
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Figure 40: Relationship between each technical analysis interpretation’s number of trades on historical and future market data 
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Figure 41: The relationship between each technical analysis interpretation’s trade success rate and the number of trades on historical  data
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5.2 Random Generation of Trading Strategies 

The previous section analysed the performance of technical analysis interpretations. This 

section applies the same analysis to the trading strategy model, which combines technical 

analysis interpretations. First, the structure of this combination is explained. 

5.2.1 Trading Strategy Architecture 

Traders commonly combine technical analysis interpretations to produce profitable trading 

strategies, reaching decisions to buy and sell by taking into account the output of each of 

the interpretations. To mimic real traders, trading strategies in this thesis are represented 

by a decision tree, see Figure 42. The terminating nodes (in red) encapsulate technical 

analysis interpretations, and direct their predictions of buy, sell or do nothing to a decision 

node (in blue). The decision node performs a majority vote decision on the technical 

analysis interpretations' outputs. If there is no majority decision, then the output defaults to 

do nothing. This representation represents the likely decision making process of a trader 

using a set of technical analysis interpretations 

The trading strategies model is therefore a simplification of a trader. The size of a trading 

strategy is denoted by the number of technical analysis interpretations present. 

 

 

Figure 42: Representation of a trading strategy 

 

5.2.2 Forecasting Potential of Trading Strategies 

Figures 43 and 44 show the distributions of return for different sizes of trading strategies. 

These were derived from the AUDUSD historical and future market dataset. For each trading 

strategy size, the returns are calculated from historical AUDUSD market data by the random 
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generation of 10,000 trading strategies which have at least 5 trades, as before. The 

historical distribution of returns implies that the more technical analysis interpretations are 

present in the model, the greater the chance for profit. The distribution of returns derived 

from the future market dataset, however, shows that there is no difference in profit 

between the different sizes of trading strategies. The return distributions from the other 

foreign exchange markets demonstrated that more technical analysis interpretations could 

even lead to a worse return. 

 

Figure 43: Returns of 10,000 trading strategies with varying sizes (from 1 to 11) on 
historical AUDUSD market data 
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Figure 44: Returns of 10,000 trading strategies with varying sizes (from 1 to 11) on future 
AUDUSD market data 

Figure 45 shows the average return generated by each trading strategy size for each 

historical and future market dataset. The figure shows the average profit or loss is magnified 

as the number of technical analysis interpretations in the trading strategy increases. 

Additionally, the average return of trading strategies using the historical market datasets 

does not reflect the average return on future market datasets. 
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Figure 45: Average return of each trading strategy size for each market segment 

Tables 9 and 10 show the average correlation between performance metrics of trading 

strategies on historical and future market datasets using trading strategies of size 2 and 11 

respectively; 'heat' colours emphasize the level of correlation , in order from dark green 

(highest) through light green and yellow to orange (lowest).  The average correlation values 

produced by both trading strategy sizes are similar; the returns of trading strategies of size 2 

have a mean of 0.0296 and a standard deviation of 0.3159 and the returns of trading 

strategies of size 11 have a mean of 0.0243 and a standard deviation of 0.3024. There are 

differences between the average correlations of trading strategies of size 2 and the average 

correlations of single technical analysis interpretations in Table 8 outlined in the Section 5.1.  

By comparing single technical analysis interpretations with trading strategies of size 2, new 

correlations emerge. The standard deviation of returns metric on historical data has a 

moderate positive correlation with the standard deviation of returns, a weak inverse 

correlation with the Sharpe ratio metric, a weak positive correlation with the Sortino ratio 

metric and a moderate inverse correlation with the trade success rate metric on future 

market data. The trade success rate metric using historical data has a moderate inverse 

correlation with the standard deviation of return metric, a weak correlation with the Sharpe 
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ratio metric and a weak inverse correlation with the Sortino ratio metric on future market 

data. There is a weak correlation of 0.29 between the trade success rate metric from 

historical data and the return metric from future data using single technical analysis 

interpretations, and for trading strategies with 2 technical analysis interpretations there is 

only a correlation of 0.19. 

 Return 
Standard 

deviation of 
returns 

Sharpe ratio Sortino ratio 
Trade success 

rate 

Return -0.004859845 0.150953643 -0.009691731 0.005766127 -0.016167893 

Standard 
deviation of 

returns 

-0.149940529 0.640079523 -0.321770071 0.292021906 -0.591804065 

Sharpe ratio 0.001343334 0.165834961 0.029404454 -0.035421465 -0.039597172 

Sortino ratio 0.08089998 -0.217240701 0.140891941 -0.122043822 0.206767018 

Trade 
success rate 

0.190081127 -0.522794418 0.323085371 -0.318795214 0.863110102 

Table 9: Average correlation between metrics of trading strategies of size 2 from historical 
and future market data 

 

 Return 
Standard 

deviation of 
returns 

Sharpe ratio Sortino ratio 
Trade success 

rate 

Return -0.007843202 0.064975802 0.007804762 -0.015849052 0.042753183 

Standard 
deviation of 

returns 
-0.141317054 0.575655138 -0.326920418 0.317257195 -0.545087243 

Sharpe ratio -0.02209507 0.121535358 0.011818742 -0.025494459 -0.022822122 

Sortino ratio 0.087568906 -0.179635965 0.141928404 -0.121615343 0.169035726 

Trade success 
rate 

0.16840483 -0.517964453 0.317372717 -0.338790557 0.845604215 

Table 10: Average correlation between metrics of trading strategies of size 11 from 
historical and future market data 

5.3 Conclusions 

More correlations emerged when using a trading strategy consisting of multiple technical 

analysis interpretations when using one technical analysis interpretation. 

Maximising and minimising historical performance metrics may lead to better performing 

trading strategies, given the correlation values between the historical and future market 

datasets. In fact, traders attempt to find ‘good’ trading strategies by minimising and 
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maximising performance metrics using historical market data. These correlations suggest 

some historical performance metrics may have influence on the future performance of 

trading strategies. However, some correlations have been shown to be weak, suggesting 

that there may be a benefit in combining several performance metrics into one ensemble 

method that demonstrates a stronger correlation (i.e. predicts a given metric more reliably). 

The performance metrics identified in Chapter 4 will be used in subsequent chapters, and 

the idea of combining performance metrics is explored in Chapter 8. 
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Chapter 6 – Generating Trading Strategies using Genetic Algorithms 

In order ultimately to produce and test a classification system for identifying ‘bad’ traders, it 

is necessary first to have some method for producing a pool of trading strategies that mimic 

traders. Traders deploy trading strategies either by manually executing trades or deploying 

automated trading systems. A trader's performance is directly linked to the performance of 

the trading strategies that they deploy. Essentially, in the context of this thesis, traders are 

trading strategies. 

This chapter explores the generation of trading strategies that traders are likely to deploy, 

i.e. ones demonstrating effective performance on historical data.  

6.1 Lipinski’s Research 

While much can be found on the creation and optimisation of trading strategies in the 

literature, very little research is evident in the literature specifically on the combination of 

technical analysis algorithms into trading strategies without optimising the technical analysis 

algorithm’s parameters. The work of one author, Lipinski et al (2010; 2004; 2010), stands 

out in this regard. As the concept of the trading strategy is to be used in this thesis as proxy 

for a trader, the work of that author in Genetic Algorithms offers a good starting point for 

the generation of a pool of effective trading strategies in this thesis. The results of Lipinski 

are therefore reviewed here. 

Lipinski represents a trading strategy by a binary chromosome, in which each gene indexes a 

technical analysis algorithm (as mentioned in Section 2.7.1). If a gene has the value 1, then 

the technical analysis algorithm indexed by that gene is activated; if the value is 0 then the 

technical analysis algorithm is deactivated. The technical analysis algorithms that are 

activated produce buy and sell signals, and the trading strategy containing these technical 

analysis algorithms takes the majority vote of their buy or sell signals to produce the final 

buy or sell decision. 

Their trading strategy representation has no direct control over how many trading rules are 

activated in each trading strategy; the evolutionary process dictates how many are activated 

in each chromosome. The implemented representation of Lipinski et al. also limits the total 

number of genes in a chromosome so that only a predefined set of trading rules are 

considered. Additionally, depending on the crossover algorithm used in the Genetic 
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Algorithm, for example, the single point crossover, the crossover operation is likely to break 

good combinations depending on their positions within the chromosome. In reality traders 

are more likely to deploy trading strategies that contain only a few technical analysis 

algorithms to reduce the chance of overfitting on historical market data. With the approach 

of Lipinski et al., too many technical analysis algorithms can contribute to the final decision 

of the trading strategy, there is therefore an increased chance of overfitting the trading 

strategy by perfectly matching the trades of trading rules with the highs and lows of the 

historical training dataset. 

Discussion will now turn in detail on how the system presented here overcomes the above 

problems by using a different representation and crossover operation with the focus being 

to create the type of trading strategy that traders are likely to create. 

6.2 Genetic Algorithm Configuration 

Genetic Algorithms, as outlined in Chapter 2, find local optima solutions to problems that 

have a vast search space and which cannot be completely enumerated. This section 

attempts to apply Genetic Algorithms to create profitable trading strategies by maximising 

the return performance metric. The goal of this experiment is to determine whether trading 

strategies of the type employed by human traders can be evolved to be as effective. Many 

parameter settings for the Genetic Algorithm are explored and each parameter set is ran 

100 times to report on the parameter set’s average performance. 

The results in this chapter are derived from hourly AUDUSD foreign exchange data from 19th 

of May 2014 to the 23rd of January 2016. The hourly AUDUSD market dataset contains 

10,344 data points. 

The foreign exchange market is split into 3 market datasets as outlined in Table 11. During 

the evolutionary process of the Genetic Algorithm, the insample dataset is used by the 

trading strategies to calculate each trading strategy’s fitness value. The validation dataset is 

a segment of market data that is traded by the trading strategies so that an optimal 

iteration for selecting the best trading strategy can be determined. The validation dataset 

also helps to confirm that the trading strategies in the population have shown to have 

predictive value outside the insample dataset. The outsample dataset is used by the trading 

strategies to test the performance of the trading strategies on future market data. 
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Market data Date from Data to Number of data points 

Insample 19th of May 2014 5th of December 2014 3,448 

Validation 5th of December 2014 1st of July 2015 3,448 

Outsample 1st of July 2015 23rd of January 2016 3,448 

Table 11: Information about the datasets obtained from each foreign exchange market 
dataset  

The main concern is that trading strategies may overfit the insample dataset, which occurs 

when the trading strategies memorise the insample dataset. The purpose of the validation 

dataset is to detect an optimal Genetic Algorithm iteration for choosing a trading strategy 

before the Genetic Algorithm memorises the insample data. Ideally, both insample and 

validation fitness values obtained from a fitness function (described in 6.2.3) should 

increase with iteration. Beyond the optimal iteration, the insample fitness values should 

then continue to increase or converge, whilst the same trading strategies on validation data 

converge or decrease in value. The fitness values obtained by trading the validation market 

data is not seen by the Genetic Algorithm and this decrease or convergence in fitness on 

validation data indicates overfitting where the Genetic Algorithm starts to memorise the 

insample dataset. 

The following sections will discuss in detail the Genetic Algorithm implementation for the 

experiments in this chapter.  

6.2.1 Representation 

The representation of a trading strategy used in the Genetic Algorithm experiments was 

outlined in Section 5.2.1. Trading strategies consist of one or more technical analysis 

interpretations that produce buy and sell signals which are forwarded to a majority vote 

decision. Each technical analysis interpretation is a gene. The goal of this thesis is to create 

an early warning detection system for bad traders, and so the idea here is to generate 

trading strategies that replicate the decision making process a trader is likely to follow, 

given a set of technical analysis algorithms.  

This topological representation fixes the number of technical analysis interpretations in 

each trading strategy to closer mimic traders and thus avoids the trading strategy becoming 
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overly complicated which can lead to overfitting. Traders are more likely to use only a few 

technical analysis interpretations per trading strategy.  

6.2.2 Technical Analysis Interpretations 

Technical analysis interpretations with random parameter settings were investigated in 

Section 5.2. Correlations found in that section suggest that parameter settings of technical 

analysis interpretations could be optimised based on historical metrics such as the Trade 

Success Rate metric.  

In the following experiments, a pool of 10,000 technical analysis interpretations is created 

to form the initial pool of trading strategies, and also to be used as a source of new technical 

analysis interpretations during the mutation stage of the Genetic Algorithm. In total there 

are 33 different interpretations of technical analysis models implemented which are 

identified in Section Chapter 3. The pool of 10,000 technical analysis interpretations 

contains equal numbers of each interpretation implemented with the exception of an extra 

technical analysis interpretation randomly generated in the collection. Each technical 

analysis interpretation is created by random selection of parameter values, and only those 

that place at least five trades are included in the pool. 

The trading strategy architecture restricts the number of technical analysis interpretations 

considered in a strategy, while the pool of 10,000 such interpretations ensures a healthy 

source of 'trading rules'. 

6.2.3 Fitness Function 

The fitness function is used to evaluate the performance of a trading strategy during the 

evolutionary process, and is also used during the selection process to evaluate the relative 

performance of trading strategies. Section 5.2 explored the correlations between a trading 

strategy’s metrics on historical and future market data. In the following experiments, the 

Return performance metric will be used as the fitness function to maximise during the 

evolutionary process of the Genetic Algorithm. In the next chapter, which further 

investigates the creation of trading strategies using the Genetic Algorithm, explores using 

the Sharpe ratio, Sortino ratio and Trade Success Rate performance metrics as fitness 

functions in the Genetic Algorithm. 
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6.2.4 Initialisation 

During the initialisation process, a population of trading strategies is created by combining 

random technical analysis interpretations from a pool of 10,000 randomly created technical 

analysis interpretations. Duplicate technical analysis interpretations can be found in a 

trading strategy but this is unlikely. Each trading strategy contains the same number of 

technical analysis interpretations and is given for each experiment. 

6.2.5 Selection, Crossover and Mutation 

During selection, fitness function values are calculated for each trading strategy. The five 

point universal sampling technique and tournament selection described in Section 2.7.1.3 

and 2.7.1.4 respectively is used to select trading strategies for the crossover phase of the 

Genetic Algorithm. Trading strategies are selected until the number of trading strategies 

equals the fixed population size. 

The topological representation of a trading strategy implemented in this thesis is intuitive 

and the crossover operation swaps a random technical analysis interpretation from each 

trading strategy. This enables already good combinations of technical analysis 

interpretations to stay together. An illustration of this is shown in Figures 46 and 47. 

 

Figure 46: Two trading strategies each with a technical analysis interpretation selected to 
swap 
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Figure 47: New trading strategies created by swapping technical analysis interpretations 

Mutation introduces technical analysis interpretations which were not present in the initial 

population of trading strategies and helps avoid early population convergence. A trading 

strategy mutates given some probability, and if the trading strategy is to mutate then a 

random technical analysis interpretation is replaced by another technical analysis 

interpretation in the predefined pool of 10,000 random technical analysis interpretations. 

Duplicate technical analysis interpretations in a trading strategy may arise from mutation 

but it is unlikely. 

6.2.6 Termination Condition 

The population of trading strategies should generally increase in fitness at each iteration of 

the Genetic Algorithm. The Genetic Algorithm in the following experiments terminate after 

a predefined number of iterations, and then an optimal trading strategy can be chosen with 

low bias and low variance using the validation dataset as described in Section 2.3.  
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6.2.7 Genetic Algorithm Pseudocode 

1. SET 'taPool' TO a random set of 10,000 technical analysis interpretations 
2. DECLARE 'population' 
3.  
4. FOR 'i' FROM 1 TO 300 DO 
5.  DECLARE ‘tradingStrategy’ 
6.  ADD 3 random technical analysis interpretations from ‘taPool’ TO ‘tradingStrategy’ 
7.  ADD ‘tradingStrategy’ TO ‘population 
8. END DO 
9.  
10. FOR ‘gaIteration’ FROM 1 TO 100 DO 
11.  DECLARE 'nextGeneration' 
12.  
13.  Calculate fitness values for each trading strategy in 'population' 
14.  Normalise fitness values between 0 and 1 
15.  
16.  FOR 'numberOfTsAdded' FROM 1 TO 300 DO 
17.   SET ‘randValue’ TO a random number from 0 up to but not including 1 
18.   SET 'fitnessIndexValues' TO 5 values uniformly distributed from the value ‘randValue’ between 0 and 1 
19.  
20.   ADD trading strategies corresponding to the values in 'fitnessIndexValues' TO 'nextGeneration'  
21.  END FOR 
22.  
23.  SET 'population' to an empty array 
24.  
25.  FOR 'w' FROM 1 TO 300 BY 2 DO 
26.   SET 'rand' TO a random number from 0 up to but not including 1 
27.  
28.   SET 'strategy1' TO a copy of the trading strategy from 'nextGeneration' at index 'w' 
29.   SET 'strategy2' TO a copy of the trading strategy from 'nextGeneration' at index ('w'+1) 
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30.  
31.   IF 'rand' < 0.8 THEN 
32.    swap a random technical analysis interpretation in 'strategy1' with a random  technical analysis interpretation in 'strategy2' 
33.   END IF 
34.  
35.   ADD 'strategy1' TO 'population' 
36.   ADD 'strategy2' TO 'population' 
37.  END FOR 
38.   
39.  FOR 's' FROM 1 TO 300 DO 
40.   SET 'rand' TO a random number from 0 up to but not including 1 
41.  
42.   IF 'rand' < 0.01 THEN 
43.    SET 'tradingStrategy' TO the trading strategy from 'population' at index 's' 
44.  
45.    replace technical analysis interpretation in 'tradingStrategy' with a technical analysis interpretation in 'taPool' 
46.   END IF 
47.  END FOR 
48. END FOR 
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6.3 Results 

This section investigates whether it is possible to use the Genetic Algorithm to create 

trading strategies that show predictive value on future data. Each experiment adjusts the 

Genetic Algorithm’s configuration slightly to search for good Genetic Algorithm 

configurations. 

Sources of randomness include: 

 The pool of randomly created technical analysis interpretations; 

 The population of randomly created trading strategies; 

 Random selection process with a bias toward trading strategies with higher fitness; 

 Random trading strategy crossovers; 

 Random mutations. 

The Genetic Algorithm inherently has random elements and produces different results in 

each run of the algorithm. To facilitate analysis, the Genetic Algorithm is run 100 times in 

order to generate average performance results. 

6.3.1 Exploring the Parameter Settings of the Genetic Algorithm 

Figure 48 shows the average performance of 100 Genetic Algorithm runs of the fittest 

trading strategy at each iteration of the Genetic Algorithm during using the insample 

dataset. The Genetic Algorithm uses the five point universal sampling selection technique 

and shifts the negative return values into the positive number domain for normalisation. 

The 12 different parameter setting configurations of the Genetic Algorithm which are 

explored are shown in Table 12 (For example, the dark blue line corresponds to a Genetic 

Algorithm configuration that uses a return fitness function, has a population size of 100, a 

crossover probability of 0.8 and a mutation rate of 0.1). The results show that the average 

returns of the fittest trading strategies generally reduce at each iteration of the Genetic 

Algorithm until they begin to oscillate below zero. The average maximum return of 100 runs 

is expected to increase at each iteration of the algorithm before the population converges 

or decreases in fitness. The iteration at which the average return converges or decreases in 

value is the optimal iteration before overfitting occurs. 
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Figure 48: The average maximum return value at each iteration of the Genetic Algorithm 
using insample data 

Stage Parameter Parameters explored 
All Size of technical analysis interpretation pool 10,000 

All Population size 100 and 300 

All Trading strategy size 3 

Selection Fitness function Return 
Crossover Crossover probability 0.3, 0.5 and 0.8 

Mutation Mutation rate 0.01 and 0.1 

Table 12: Genetic Algorithm parameter settings 

Figures 49 and 50 show the average performance of 100 Genetic Algorithm runs of the 

fittest trading strategies from Figure 48 on validation and outsample data respectively. The 

fall and then levelling of performance of trading strategies using insample data is similar to 

the performance of the trading strategies on validation and outsample data. The average 

return drops during the first 30 – 50 iterations before oscillating below zero. 
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The validation dataset is used to spot the optimal iteration before the population begins to 

overfit. Though this is the purpose of the validation dataset, it can also be used as a form of 

out of sample data if the validation dataset cannot be used to spot optimal iterations. To 

pick profitable trading strategies on future data, these results suggest that the trading 

strategy with the highest return value on the insample dataset during the initial iterations of 

the Genetic Algorithm has the best chance of being the most profitable. However, the 

average return of the fittest trading strategies during the initial iterations of the Genetic 

Algorithm is high on validation data and roughly zero on outsample data. 

 

Figure 49: The average maximum return value at each iteration of the Genetic Algorithm 
using validation data 



117 
 

 

Figure 50: The average maximum return value at each iteration of the Genetic Algorithm 
using outsample 

Figure 51 shows the mean (shown as a red line), maximum (green) and minimum (orange) 

return value of the population at each iteration of the Genetic Algorithm for a four separate 

Genetic Algorithm runs. Each graph is derived from insample data and all use different 

Genetic Algorithms parameter settings. The graphs show the population of trading 

strategies converging between 20 and 60 iterations of the Genetic Algorithm. The results 

were obtained from 1,200 Genetic Algorithm runs, and early convergence can be seen in the 

vast majority of Genetic Algorithm runs. The cause of this could be high selection pressure. 

Selection pressure is the tendency to select the fittest trading strategies for the crossover 

stage of the Genetic Algorithm. High selection pressure can reduce the genetic diversity of 

the population which leads to early convergence. A population of trading strategies is 

genetically diverse if it possesses a diverse set of technical analysis interpretations across 

the strategies. Selection pressure guides the search for optimal trading strategies, whilst 

genetic diversity ensures that the search space is adequately explored. 
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Figure 51: The mean (red), maximum (green) and minimum (orange) return values at each 
iteration of the Genetic Algorithm of four Genetic Algorithm runs 

 

6.3.2 Tournament Selection 

The previous Genetic Algorithm configurations did not increase in fitness before converging 

or decreasing in fitness. The fittest trading strategies during the initial iterations of the 

Genetic Algorithm seem to offer the best choice for picking profitable trading strategies 

compared to subsequent iterations. The results of the previous experiment converged early 

possibly due to high selection pressure. To test the assumption that high selection pressure 

is the problem, the selection technique used in the selection stage will be changed.  

Figure 52 shows the average performance of 100 Genetic Algorithm runs of the fittest 

trading strategy individuals at each iteration of the Genetic Algorithm using the insample 

dataset. The Genetic Algorithm now uses the tournament selection technique instead of the 

universal sampling technique for selecting trading strategies during the selection stage of 

the Genetic Algorithm. The 16 different parameter setting configurations of the Genetic 

Algorithm that are explored are shown in Table 13. Figures 53 and 54 show the fittest 
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trading strategies using validation and outsample data. The average fitness values of the 

fittest trading strategies converge much faster than was the case when using the universal 

sampling selection technique. Inspecting individual Genetic Algorithm runs, the population 

generally converged within 5 to 30 iterations. This suggests that the Genetic Algorithm’s 

tournament parameter settings may be causing early convergence with higher selection 

pressure. 

 

 

Figure 52: The average maximum return value at each iteration of the Genetic Algorithm 
using insample data 
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Stage Parameter Parameters explored 
All Size of technical analysis 

interpretation pool 
10,000 

All Population size 100 and 300 

All Trading strategy size 3 

Selection Tournament win probability 
𝑝 

0.75 and 0.9 

Selection Tournament size 𝑘 5% and 20% of the population size parameter 

Selection Fitness function Return 
Crossover Crossover probability 0.8 

Mutation Mutation rate 0.01 and 0.1 

Table 13: Genetic Algorithm parameter settings 

 

 

Figure 53: The average maximum return value at each iteration of the Genetic Algorithm 
using validation data 
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Figure 54: The average maximum return value at each iteration of the Genetic Algorithm 
using outsample data 

To lower the selection pressure, the probability 𝑝 of winning a tournament is reduced to the 

values 0.25 and 0.5. The 16 different parameter setting configurations of the Genetic 

Algorithm parameter settings are given in Table 14. 

In Figure 55, two Genetic Algorithm parameter settings that have a population size of 100, 

tournament size of 5 trading strategies and probability 𝑝 of being selected 0.25, did not 

converge within the 100 iterations of the Genetic Algorithm. The average return of the 

fittest trading strategies slowly decline. 
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Figure 55: The average maximum return value at each iteration of the Genetic Algorithm 
using insample data 

 

Stage Parameter Parameters explored 

All Size of technical analysis 
interpretation pool 

10,000 

All Population size 100 and 300 

All Trading strategy size 3 
Selection Tournament win probability 

𝑝 
0.25 and 0.5 

Selection Tournament size 𝑘 5% and 20% of the population size parameter 
Selection Fitness function Return 

Crossover Crossover probability 0.8 

Mutation Mutation rate 0.01 and 0.1 
Table 14: Genetic Algorithm parameter settings 

Figure 56 shows the average return of 100 Genetic Algorithm runs of the fittest trading 

strategies obtained from insample data on validation data. The two Genetic Algorithm 
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parameter settings that slowly decline on insample data at each iteration of the Genetic 

Algorithm also show some profitable average return values. This result would be beneficial if 

the validation dataset were to be considered as a form of out of sample dataset. Figure 57 

however shows average return values on the outsample dataset are all below zero for all 

the parameter settings explored. 

 

Figure 56: The average maximum return value at each iteration of the Genetic Algorithm 
using validation data 
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Figure 57: The average maximum return value at each iteration of the Genetic Algorithm 
using outsample data 

The Genetic Algorithm configurations used in the last two experiments show early 

convergence for the majority of parameter settings. The average return of two Genetic 

Algorithm parameter settings did not permanently drop below zero return on insample and 

validation data, however all Genetic Algorithm configurations led to negative average return 

on outsample data. 

The fitness at each iteration of the Genetic Algorithm should increase before decreasing or 

converging. None of the Genetic Algorithm configurations were able to improve the initial 

population of trading strategies. Changing the selection process from five point universal 

sampling to tournament selection did not solve the perceived early convergence problem. 

The trading strategies used in previous experiments each contain 3 technical analysis 

interpretations and use a majority vote decision. Changing a technical analysis 

interpretation in a trading strategy may drastically change the trading strategy’s 
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performance and trading strategies with more technical analysis interpretations will be 

explored in the following section. 

6.3.3 Increasing Trading Strategy Size 

The crossover stage of the Genetic Algorithm involves swapping a random technical analysis 

interpretation of one trading strategy with another random technical analysis interpretation 

of another trading strategy. The mutation stage of the Genetic Algorithm involves randomly 

changing a technical analysis interpretation with another random technical analysis 

interpretation. The trading strategies used in the previous Genetic Algorithms contain 3 

technical analysis interpretations per trading strategy. A good combination of two technical 

analysis interpretations within the trading strategy may not be realised by the fitness 

function as the third technical analysis interpretation can have a large impact on the trading 

strategy’s buy and sell decisions. A dramatic change in a trading strategy’s buy and sell 

decisions can completely alter its fitness value. 

Increasing the number of technical analysis interpretations in a trading strategy may 

stabilise the trading strategy’s fitness value as the trading strategy undergoes the 

evolutionary process. The buy and sell decisions and fitness value of a trading strategy 

containing 5 technical analysis interpretations in majority vote that contains a good 

combination of 3 or 4 technical analysis interpretations is unlikely to be severely affected by 

the replacement of a technical analysis interpretation outside the good combination of 

technical analysis interpretations within the trading strategy. Increasing the number of 

technical analysis interpretations per trading strategy should therefore reduce the chance of 

dramatic changes in buy and sell decisions, helping to facilitate the local search process of 

the Genetic Algorithm. 

Figure 58 shows the average performance of 100 Genetic Algorithm runs of the fittest 

trading strategy individuals at each iteration of the Genetic Algorithm using the insample 

dataset. Figures 59 and 60 show the fittest trading strategies using validation and outsample 

data. The figures show the results from trading strategies containing 5 technical analysis 

interpretations; further results obtained from trading strategies consisting of 6 and 7 

technical analysis interpretations are reported in Appendix A. The 72 different parameter 

setting configurations of the Genetic Algorithm that are explored are shown in Table 15. 
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Despite expectations, the results of the Genetic Algorithms using trading strategies with 5, 6 

and 7 technical analysis interpretations all follow the same pattern as the results from 

previous sections. 

 

Figure 58: The average maximum return value at each iteration of the Genetic Algorithm 
using insample data 
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Stage Parameter Parameters explored 
All Size of technical analysis 

interpretation pool 
10,000 

All Population size 100 and 300 

All Trading strategy size 5, 6 and 7 

Selection Tournament win probability 
𝑝 

0.25, 0.5 and 0.75 

Selection Tournament size 𝑘 5% and 20% of the population size parameter 

Selection Fitness function Return 
Crossover Crossover probability 0.8 

Mutation Mutation rate 0.01 and 0.1 

Table 15: Genetic Algorithm parameter settings 

 

 

Figure 59: The average maximum return value at each iteration of the Genetic Algorithm 
using validation data 
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Figure 60: The average maximum return value at each iteration of the Genetic Algorithm 
using outsample data 

Similar to the results in the previous section, two Genetic Algorithm parameter settings that 

have a population size of 100, tournament size of 5 trading strategies and probability 𝑝 of 

being selected 0.25, did not converge within the 100 iterations of the Genetic Algorithm, see 

Figure 61. 
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Figure 61: Results of two Genetic Algorithm configurations that did not converge within 
100 iterations of the Genetic Algorithm 

The Genetic Algorithm configurations used in the previous experiments show early 

convergence for the majority of parameter settings. The average return of two Genetic 

Algorithm parameter settings did not permanently drop below zero return on insample and 

validation data, however all Genetic Algorithm configurations led to negative average return 

on outsample data. 

Increasing the number of technical analysis interpretations per trading strategy did not 

resolve the perceived problem of early convergence. So far none of the Genetic Algorithm 

configurations were able to improve the initial population of trading strategies. The next 

section will explore whether the population size is causing the perceived early convergence. 

6.3.4 Increasing Population Size 

The experiments involving Genetic Algorithms so far are failing to improve on the fitness of 

the fittest trading strategies within the population, and so the population converges rather 
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quickly. Increasing the population size might potentially reduce the chance of premature 

convergence and so could have a positive effect on the population’s fitness results. 

Increasing the population size however increases the runtime of the Genetic Algorithm. 

Figure 62 shows the average performance of 100 Genetic Algorithm runs of the fittest 

trading strategy individuals at each iteration of the Genetic Algorithm using the insample 

dataset. The Genetic Algorithm again uses the tournament selection technique instead of 

the universal sampling technique for selecting trading strategies for the crossover stage. The 

16 different parameter setting configurations of the Genetic Algorithm that are explored are 

shown in Table 16. Figures 63 and 64 show the fittest trading strategies using validation and 

outsample data. The average fitness values of the fittest trading strategies again converge 

quickly on insample, validation and outsample data. Inspecting individual Genetic Algorithm 

runs, the population generally converged within 10 iterations. 

 

Figure 62: The average maximum return value at each iteration of the Genetic Algorithm 
using insample data 
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Stage Parameter Parameters explored 
All Size of technical analysis 

interpretation pool 
10,000 

All Population size 1000 

All Trading strategy size 3 and 7 

Selection Tournament win probability 
𝑝 

0.5 and 0.75 

Selection Tournament size 𝑘 5% and 20% of the population size parameter 

Selection Fitness function Return 
Crossover Crossover probability 0.6 and 0.8 

Mutation Mutation rate 0.01 

Table 16: Genetic Algorithm parameter settings 

 

 

Figure 63: The average maximum return value at each iteration of the Genetic Algorithm 
using validation data 
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Figure 64: The average maximum return value at each iteration of the Genetic Algorithm 
using outsample data 

Increasing the population size from 100 and 300 to 10,000 trading strategies did not resolve 

the perceived problem of early convergence.  

6.4 Conclusions 

The experiments in this chapter explored different parameter settings of the Genetic 

Algorithm, increased the number of technical analysis interpretations per trading strategy, 

increased the population size and explored two different Genetic Algorithm selection 

techniques. The fitness values of the experiments converged quickly and the Genetic 

Algorithm did not improve the population’s return fitness function. The fittest trading 

strategies at each iteration of the Genetic Algorithm using insample data did not increase 

either. As previously mentioned, the fitness value of the fittest trading strategy in the 

population should increase at each iteration of the Genetic Algorithm before converging 

because it is only by fluke chance the population starts with an optimal trading strategy. The 
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fitness values of the trading strategies using validation data drops within the first few 

iterations in a similar way as for the trading strategies using insample data drop. 

Two Genetic Algorithm configurations that used a population size of 100, tournament size of 

5 trading strategies and probability 𝑝 of being selected 0.25, did not converge within the 

100 iterations of the Genetic Algorithm. Though the population did not converge, the fitness 

of the fittest trading strategy in the population decreased with each iteration on insample 

data. 

The difference between a trading strategy’s fitness value and its neighbouring trading 

strategies’ fitness values may be too drastic for the Genetic Algorithm. Neighbouring trading 

strategies are produced by changing a single technical analysis interpretation in a trading 

strategy. The next chapter investigates the landscape of the search space of the Genetic 

Algorithm and how the trading strategies are changed between each iteration of the 

Genetic Algorithm. In attempt to create a Genetic Algorithm that succeeds in evolving 

populations for trading strategies to higher fitness states. The next chapter will also attempt 

to fix the Genetic Algorithm by exploring various fitness functions, exploring different 

market datasets and reducing the pool of technical analysis interpretations.  
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Chapter 7 – Further Investigation into the Generation of Trading 

Strategies using Genetic Algorithms 

The previous chapter described an attempt to produce profitable trading strategies using 

the Genetic Algorithm. Various Genetic Algorithm configurations were explored, but these 

configurations failed to create profitable trading strategies. The fitness of the populations 

for the tested Genetic Algorithm configurations converged within a few iterations, and the 

fitness of the initial population decreased from the outset on insample data. 

This chapter extends the previous chapter, attempting to apply Genetic Algorithms to create 

‘good’ trading strategies by maximising the value of different performance metrics. Traders 

in a similar way attempt to find ‘good’ trading strategies by also maximising and minimising 

the values of desirable performance metrics. This chapter also investigates whether the 

failure to produce ‘good’ trading strategies originates from the magnitude of the differences 

between the fitness values of neighbouring trading strategies. In other words, the landscape 

of the search space being searched for local optima is very uneven. 

7.1 Investigating the Genetic Algorithm’s Local Search 

The Genetic Algorithm attempts to evolve a population of trading strategies by maximising 

some fitness function. The results from the previous chapter showed that the average 

fitness value of the fittest trading strategies on insample data did not increase when 

maximising the return performance metric. The Genetic Algorithm selects trading strategies 

at random with a bias towards picking the fittest trading strategies to breed during the 

selection process. The selection process allows the same trading strategy to be selected 

more than once. The fittest trading strategy is likely to breed multiple times which 

propagates the trading strategy’s good technical analysis interpretation combinations 

throughout the population. When the trading strategies are bred, good combinations of 

technical analysis interpretations are combined with other technical analysis interpretations 

to form new trading strategies. 

In the previous chapter the number of technical analysis interpretations per trading strategy 

was increased to try to reduce the size of a change in a trading strategy’s fitness value 

resulting from the change of a single technical analysis interpretation. In other words, to 

produce a search space that is more even. This can happen during mutation when a 
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technical analysis interpretation is replaced or when a technical analysis interpretation is 

swapped during the crossover stage of the Genetic Algorithm. There was no difference in 

the Genetic Algorithm’s results between using trading strategies made up of seven technical 

analysis interpretations when compared to ones constructed from three technical analysis 

interpretations. 

To investigate whether the fitness value of a trading strategy is significantly affected by a 

single technical analysis interpretation replacement, the differences between the fitness 

value of the trading strategy and those of the neighbouring trading strategies (which are 

trading strategies obtained by replacing one of its technical analysis interpretations) need to 

be explored. Figure 65 shows the frequency distribution of the absolute differences in 

return values of neighbouring trading strategies on AUDUSD insample data. In total 10,000 

technical analysis interpretations were randomly created and 10,000 trading strategies are 

created using the technical analysis interpretations. To obtain neighbouring trading 

strategies, a technical analysis interpretation in the trading strategy is replaced by another 

random technical analysis interpretation; this is done 100 times for each technical analysis 

interpretation in the trading strategy. Each trading strategy and neighbouring trading 

strategy contains 3 technical analysis interpretations and none are given duplicate technical 

analysis interpretations. In total 3,000,000 differences in return of trading strategies and 

neighbouring trading strategies were calculated. 
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Figure 65: Histogram of 100 bins showing the absolute difference in return in pips of 
neighbouring trading strategies of size 3. 

The mean absolute difference between a trading strategy’s return value and neighbouring 

trading strategies is 1,971 pips, the median absolute difference is 1,096 pips and the 

standard deviation of the absolute difference is 2,151 pips. A pip is the smallest price move 

that a given exchange rate makes, it is a practical difference of a price, conventionally 

currency pairs are priced to four decimal places and the smallest change is 1/100 of 1%, or 

one basis point. Pips are being used here as a proxy for absolute return. Neighbouring 

trading strategies have an average of 1,971 pips difference in return but with the high 

standard deviation of 2,151 pips, the difference in return is unreliable.  

The mean is easily influenced by outliers.  Where, as here, there is a considerable difference 

of 44% between the median and mean. The distribution is highly skewed and the median is 

a better measure of central tendency. However, the standard deviation is much greater 

than the median of 1,096. Given that small changes in the trading strategy are not 

guaranteed to produce small changes in return, it is possible that the Genetic Algorithm is 

frequently performing a random search instead of moving to local optimal solutions 
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7.2 Alternative Fitness Functions 

Previous experiments used the return performance metric of a trading strategy as the 

fitness function of the Genetic Algorithm. Other performance metrics may be better suited 

as fitness functions and may evolve ‘good’ trading strategies. Similar to the experiments in 

Chapter 6, this section uses the same AUDUSD hourly data segments for insample, 

validation and outsample datasets and runs the Genetic Algorithm 100 times to produce 

average performance results from the fittest trading strategies in the population at each 

iteration of the algorithm. The section explores the use of different fitness functions, where 

each Genetic Algorithm employs a single metric. The performance metrics used are the 

Sharpe ratio, Sortino ratio and trade success rate performance metrics. These performance 

metrics were chosen because the Sharpe ratio and Sortino ratio are used often in the 

literature and these ratios guide the Genetic Algorithm to create good return per unit risk 

trading strategies which are two desired qualities of a ‘good’ trading strategy. A trading 

strategy with a high trade success rate performance metric is also a desirable quality of a 

‘good’ trading strategy. 

The 24 different parameter setting configurations of the Genetic Algorithm are shown in 

Table 17. As well as the fitness function, the parameter settings of the Genetic Algorithm are 

also uncertain. In order to limit the number of time-consuming experiments, a limited range 

of values centring on crossover = 0.8 and mutation rate = 0.01 are used. These values are 

typical in the literature (Berutich, López, Luna, & Quintana, 2016; Pinto, Neves, & Horta, 

2015; Wang, An, Liu, & Huang, 2016). 

Table 17: Genetic Algorithm parameter settings 

Stage Parameter Parameters explored 
All Size of technical analysis 

interpretation pool 
10,000 

All Population size 300 

All Trading strategy size 3 and 7 

Selection Tournament win probability 
𝑝 

0.5 and 0.75 

Selection Tournament size 𝑘 5% and 20% of the population size parameter 

Selection Fitness function Sharpe ratio, Sortino ratio and Trade success 
rate 

Crossover Crossover probability 0.8 

Mutation Mutation rate 0.01 
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7.2.1 Sharpe Ratio Fitness Function 

Figure 66 shows the average performance of the fittest trading strategy individuals which 

maximise the Sharpe ratio performance metric at each iteration of the Genetic Algorithm 

using the insample dataset. Figures 67 and 68 show the fittest trading strategies using 

validation and outsample data. Similar to the results of the return fitness function, the 

maximum fitness in the population dropped from the initial value and the values converged 

within 15 iterations.  

 

Figure 66: The average maximum Sharpe ratio value at each iteration of the Genetic 
Algorithm using insample data. Vertical axis is fitness function value 
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Figure 67: The average maximum Sharpe ratio value at each iteration of the Genetic 
Algorithm using validation data. Vertical axis is fitness function value 

 

Figure 68: The average maximum Sharpe ratio value at each iteration of the Genetic 
Algorithm using outsample data. Vertical axis is fitness function value 
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Figure 69 shows the return of the trading strategy with the highest Sharpe ratio at each 

iteration of the Genetic Algorithm on validation and outsample data. The return decreased 

within 15 iterations of the Genetic Algorithm and reflects the results found using the Sharpe 

ratio. Similar to the Genetic Algorithm using the return performance metric as a fitness 

function, the Genetic Algorithm did not produce good trading strategies with desirable 

Sharpe ratio values. Unlike the results reported by Lipinski (2010; 2004; 2010), the use of 

the Sharpe ratio alone as a fitness function does not improve on the reduction in fitness 

reported in the previous chapter. 

 

Figure 69: The average maximum return value at each iteration of the Genetic Algorithm 
using validation and outsample data. Vertical axis is average maximum return 

 

7.2.2 Sortino Ratio Fitness Function 

Figure 70 shows the average performance of the fittest trading strategy individuals (those 

which maximise the Sortino ratio performance metric) at each iteration of the Genetic 

Algorithm using the insample dataset. Figures 71 and 72 show the fittest trading strategies 

using validation and outsample data. Similar to the results of the return and Sharpe ratio 

fitness functions the maximum fitness in the population dropped from the initial population 
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and the population converged within 15 iterations. The Sortino ratio values obtained from 

the validation dataset however increased before the population converged below the value 

of 0.1. Even though the there was an increase in fitness during the initial iterations using on 

validation data, the Genetic Algorithm did not produce good trading strategies with 

desirable Sortino values. 

 

 

Figure 70: The average maximum Sortino ratio value at each iteration of the Genetic 
Algorithm using insample data. Vertical axis is fitness function value 
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Figure 71: The average maximum Sortino ratio value at each iteration of the Genetic 
Algorithm using validation data. Vertical axis is fitness function value 

 

Figure 72: The average maximum Sortino ratio value at each iteration of the Genetic 
Algorithm using outsample data. Vertical axis is fitness function value 
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Figure 73 shows the return of the trading strategy with the highest Sortino ratio at each 

iteration of the Genetic Algorithm on validation and outsample data. The return decreased 

within 15 iterations of the Genetic Algorithm and reflects the results showing the Sortino 

ratio. 

 

Figure 73: The average maximum return value at each iteration of the Genetic Algorithm 
using validation and outsample data. Vertical axis is the average maximum return 

 

7.2.3 Trade Success Rate Fitness Function 

Figure 74 shows the average performance of the fittest trading strategy individuals, i.e. 

those which maximise the trade success rate performance metric at each iteration of the 

Genetic Algorithm using the insample dataset. Figures 75 and 76 show the fittest trading 

strategies using validation and outsample data. Similar to the disappointing results of the 

return, Sharpe ratio and Sortino ratio fitness functions, the maximum fitness in the 

population dropped from the initial population and the population converged within 15 

iterations. 
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Figure 74: The average maximum trade success rate value at each iteration of the Genetic 
Algorithm using insample data. Vertical axis is fitness function value 

 

Figure 75: The average maximum trade success rate value at each iteration of the Genetic 
Algorithm using validation data. Vertical axis is fitness function value 
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Figure 76: The average maximum trade success rate value at each iteration of the Genetic 
Algorithm using outsample data. Vertical axis is fitness function value 

Figure 77 shows the return of the trading strategy with the highest trade success rate 

performance metric at each iteration of the Genetic Algorithm on validation and outsample 

data. The return decreased within 15 iterations of the Genetic Algorithm and reflects the 

results showing the trade success rate metric. 
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Figure 77: The average maximum return value at each iteration of the Genetic Algorithm 
using validation and outsample data. Vertical axis is average maximum return 

 

7.2.4 Summary of the Use of Alternative Fitness Functions 

The experiments in this section investigated the use of the Sharpe ratio, Sortino ratio and 

the trade success rate performance metric as a fitness function for the Genetic Algorithm. 

The previously reported problems with the Genetic Algorithm still persist. The population 

converges quickly and the average fitness converges at a lower value than possessed by the 

initial population. The fittest individuals in the population never increase to desirable fitness 

values on insample data so that it would be worthwhile validating them using validation 

data and then on outsample. 

 

7.3 Reducing the Size of the Pool of Technical Analysis Interpretations 

Suppose that a smaller pool of technical analysis interpretations were to be created. If there 

is a member of the pool possessing dominant good or bad characteristics, that member 

would be expected to typically accelerate the Genetic Algorithm towards a good or bad 
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conclusion. This section explores a smaller pool of only 100 technical analysis 

interpretations where populations of 100 trading strategies are created. The 8 different 

parameter setting configurations of the Genetic Algorithm are shown in Table 18. Figure 78 

shows the average of 100 Genetic Algorithm runs of the fittest trading strategy on AUDUSD 

insample, validation and outsample data. 

Table 18: Genetic Algorithm parameter settings 

The results are similar to previous experiments, albeit with convergence towards a worse 

average fitness population being somewhat slower. The population’s fitness decreases from 

the outset. It seems unlikely from these results that the previous poor convergence 

reported was due to population size, and instead the effectiveness of the fitness function to 

locate optima within its associated search space seems the more likely cause. 

Stage Parameter Parameters explored 

All Size of technical analysis 
interpretation pool 

100 

All Population size 100 

All Trading strategy size 3 

Selection Tournament win probability 
𝑝 

0.5 and 0.75 

Selection Tournament size 𝑘 5% and 15% of the population size parameter 
Selection Fitness function Return 

Crossover Crossover probability 0.8 

Mutation Mutation rate 0.01 and 0.1 
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Figure 78: The average maximum return value at each iteration of the Genetic Algorithm 
using insample, validation and outsample data. 

 

7.4 Changing the Market Dataset 

To ensure that the difficulties reported do not arise, or have been contributed to, by some 

artefact of the AUDUSD dataset, the following experiment applies the Genetic Algorithm 

using the parameter settings in Table 19 to the EURUSD, GBPUSD, USDCAD, USDCHF and 

USDJPY foreign exchange market datasets over the same dates as the AUDUSD dataset used 

in the previous experiments. 
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Table 19: Genetic Algorithm parameter settings 

 

Figure 79 shows the average performance of the fittest trading strategy individuals which 

maximise the return performance metric at each iteration of the Genetic Algorithm using 

the insample dataset. Figures 80 and 81 show the fittest trading strategies using validation 

and outsample data. Similar to previous results, the fitness of the fittest trading strategies 

using insample data decreases and the population converges within 15 iterations. The fittest 

trading strategies used on validation and outsample data did not increase to desirable 

fitness values and fitness remained close to fitness of the initial population. The same occurs 

for the Sharpe ratio, Sortino ratio and Trade Success rate fitness functions, and so the 

results for these are not shown. 

 

Stage Parameter Parameters explored 

All Size of technical analysis 
interpretation pool 

10,000 

All Population size 300 
All Trading strategy size 3 

Selection Tournament win probability 
𝑝 

0.5 and 0.75 

Selection Tournament size 𝑘 5% and 15% of the population size parameter 

Selection Fitness function One of Return, Sharpe ratio, Sortino ratio or 
Trade Success rate 

Crossover Crossover probability 0.8 

Mutation Mutation rate 0.01 
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Figure 79: The average maximum return value at each iteration of the Genetic Algorithm 
using insample data. Vertical axis is fitness function value 
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Figure 80: The average return of the fittest trading strategies on insample data at each 
iteration of the Genetic Algorithm using validation data. Vertical axis is fitness function 

value 
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Figure 81: The average return of the fittest trading strategies on insample data at each 
iteration of the Genetic Algorithm using outsample data. Vertical axis is fitness function 

value 

7.5 Conclusions  

The Genetic Algorithm has many configurable parameter settings. This chapter and the 

previous chapter experimented with many of these settings: different performance metric 

fitness functions, different numbers of technical analysis interpretations per trading strategy 

and different market datasets. The Genetic Algorithm in these experiments failed to 

produce trading strategies with desirable performance metrics on insample data. The 

purpose of the validation dataset is to locate the optimal Genetic Algorithm iteration for 

selecting the best trading strategy before the population memorises the insample dataset. 

The purpose of the outsample dataset is to evaluate the trading strategies performance on 

unseen data. 

The population of trading strategies in the experiments converged quickly (to low values) 

and no obvious increase in insample fitness was observed to show the Genetic Algorithm 
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could be used to create fitter trading strategies than the initial population. The goal of this 

and the previous chapter was to create good trading strategies as substitutes for traders, 

and the goal of this thesis is to create an early warning system for bad traders. Had trade 

histories from real traders been made available for this project, performance metrics could 

indeed have been determined  It is also noted here that real traders can deploy various 

trading strategies which use more complex information beyond the technical analysis 

algorithms employed in this thesis. Audits of real traders trade histories, however, comprise 

sensitive information, hence the use here of trading strategies as substitutes for traders. 

It seems likely that the fitness functions employed are not suitable for locating optima 

within their associated search spaces. Financial data are noisy, and some mechanism that 

would produce a smoother search space landscape would be beneficial. It is plausible that a 

multi objective fitness function would help guide the search, and might employ a weighted 

sum of the Return, Sharpe ratio and Sortino ratio and other performance metrics (as 

described in Chapter 4). Such weighting would reflect a relative importance of the 

performance metrics. 

The literature on optimising trading strategies focuses on tweaking the parameter settings, 

see Section 2.7.1.7. The current work and the work of Lipinski (2010; 2004; 2010) focuses on 

finding combinations of technical analysis interpretations to produce good trading systems. 

Further experimentation could involve changing the representation of the trading strategy 

model to a binary chromosome representation, as was used by Lipinski. However, the 

results presented by Lipinski are not comprehensive and focus on specific and narrow 

ranges of data. It may still be the case that even were encouraging results for insample data 

to be found, overfitting could occur and be detected in validation. The overriding concern at 

this stage is the generation of effective multi objective fitness functions, and the approaches 

taken to modelling strategies here and by Lipinski do not progress towards that goal. 

In the next chapter, a more direct approach to the classification of trading strategies will be 

taken, rather than focusing on the generation of trading strategy pools which can then 

subsequently be classified. This approach will also generate effective multi-objective fitness 

functions from trading strategy performance metrics. 
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Chapter 8 – Classifying Technical Analysis Interpretations using 

Adaboost  

Previous chapters have highlighted the difficulty in analysing noisy data, and the need for 

the generation of effective multi-objective fitness functions informed by trading strategy 

performance metrics. This chapter outlines the system and implementations used for 

classifying technical analysis interpretations based on the Adaboost algorithm. Analysis is 

given here of the effectiveness of Adaboost classifiers for classifying and identifying 

profitable and unprofitable technical analysis interpretations, and thereby assesses the 

effectiveness in classifying simple trading strategies, a proxy for human traders. 

This chapter will first outline the classification systems used experimentally in this project. 

Then the data the systems will be applied to will be described. Special attention is paid to 

the problem of overfitting. This chapter will then examine each of the binary classification 

performance values (described in Section 2.5) found as the Adaboost algorithm iterates, and 

will report the receiver operating characteristic as described in Section 2.6. 

8.1 Adaboost Classification 

Adaboost, unlike other classification methods such as artificial neural networks (Section 

2.4.1) and support vector machines (Section 2.4.2), is a white box approach to classification. 

That is, the mechanisms used are explicit, and decisions can be explained. Decisions made 

by an Adaboost classifier are therefore easier to understand and can be interpreted by 

considering the total weight assigned to each variable, this will be explored in 11.7. This is 

distinct from a black box approach to classification where it is difficult to explain or directly 

interpret a classifier’s decisions (Murphy, 2012). Indeed, it is difficult to see how strategies 

to improve trader performance can be found otherwise. Adaboost will enable direct scrutiny 

of the weighting of metrics employed. The industrial partner has experienced mixed success 

with black-box approaches applied to financial market forecasting and therefore has reason 

to doubt the trading decisions of a black box method. 

8.1.1 Adaboost in the Context of Technical Analysis Interpretations 

The Adaboost algorithm (outlined in Section 2.4.3.2) is an ensemble method that attempts 

to combine many weak classifiers to create a more predictive classifier called a strong 
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classifier. Adaptive boosting (Adaboost for short) adaptively corrects the classification errors 

of the current classifier at each iteration of the algorithm. To achieve this, data points in the 

training set are assigned weights that indicate how important that data point is in being 

classified. These weights are adjusted at each iteration of the algorithm. Adaboost is used to 

construct a strong classifier of the form, 

𝐻 = 𝑠𝑖𝑔𝑛 (∑ ∝𝑖 ℎ𝑖

𝑛

𝑖=0

) 

where αi is the weight of the ith weak classifier, hi is the value of the ith weak classifier, H is 

the strong classifier value, and ‘sign’ is the sign function which indicates whether the 

summation is positive or negative, 

𝑠𝑖𝑔𝑛(𝑥) = {
−1 if 𝑥 < 0
   0 if 𝑥 = 0
   1 if 𝑥 > 0

. 

An individual performance metric with a threshold is considered here to be a weak classifier; 

the threshold, a particular value which is a floor or ceiling to values requiring classification, 

determines whether the weak classifier outputs the value -1 or 1. The weak classifier 

classifies technical analysis interpretations as good or bad based on whether the 

interpretation’s performance metric satisfies the threshold. The final strong classifier is a 

weighted sum of each weak classifier. This translates to a classifier that classifies technical 

analysis interpretations based upon multiple performance metrics, where each performance 

metric has a different impact on the final classification decision; it is intended to be a more 

effective classifier than any of the individual weak classifiers. 

The training dataset consists of performance metrics derived from one segment of historical 

data and a label metric derived from the next segment of data within the historical dataset. 

The performance metrics are outlined in Chapter 4 and are calculated from 10,000 different 

technical analysis interpretations. Each technical analysis interpretation has a random 

parameter setting. 

Adaboost classifiers have clear decision-making advantages over human experts. Adaboost 

can decipher patterns within a training set with many variables, i.e. with a substantial 

number of performance metrics. The Adaboost algorithm is also able to cope with a large 
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data set, i.e. a large number of technical analysis interpretations in the training set. 

Although human experts, on the other hand, can utilise higher-level information such as 

fundamental analysis and charting, they cannot do so systematically, nor can they always 

justify or analyse such essentially intuitive processes. 

8.1.2 Market Data and Validation 

The results in this chapter are derived from hourly AUDUSD, EURUSD, GBPUSD, USDCAD, 

USDCHF and USDJPY foreign exchange data from 19th of May 2014 to the 23rd of January 

2016. Each market dataset contains 10,344 data points and are the same market datasets 

that were outlined in Section 6.2. 

Each of the foreign exchange markets are split into 4 segments as outlined in Table 20. The 

segments are then used to create a training dataset, a validation dataset and a outsample 

dataset to create and test the effectiveness of Adaboost classifiers.  

Segment Date from Data to Number of data points 

1 19th of May 2014 15th of October 2014 2586 

2 15th of October 2014 20th of March 2015 2586 

3 20th of March 2015 20th of August 2015 2586 

4 20th of August 2015 23rd of January 2016 2586 

Table 20: Information about each market data segment 

The training dataset is made up of performance metrics of technical analysis interpretations, 

which are derived from the first segment of market data, and a corresponding performance 

metric label, which is obtained from the second segment. Having created a classifier using 

the training dataset, the classifier can then be used to classify technical analysis 

interpretations using performance metrics derived from the second segment in Table 20 

onwards. In this chapter the classifiers are used on validation data and outsample data. The 

segments used for the training set, validation set and outsample set are outlined in Table 

21.  
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 Derive all metrics from Classify 

Training dataset Segment 1 Segment 2 

Validation dataset Segment 2 Segment 3 

Outsample dataset Segment 3 Segment 4 

Table 21: Segments used for each dataset 

Deploying classifiers that have overfitted the training dataset is a concern and occurs when 

the classifier has memorised the training dataset. The purpose of the validation dataset is to 

detect optimal classifiers by choosing for low bias and low variance (see Section 2.3). The 

outsample dataset is used to test the classification performance of the chosen classifier. 

Combining all the technical analysis interpretations of each market makes a total of 70,000 

technical analysis interpretations. When these 70,000 interpretations were used on the 

segment 1, 41% were found to be profitable, 49% were not profitable and 10% were break 

even. For the segment 2, 26% were profitable, 83% were unprofitable and 1% was neither 

profitable nor unprofitable. For segment 3, 35% were profitable, 64% were unprofitable and 

1% was neither profitable nor unprofitable. The percentage of profitable and unprofitable 

technical analysis interpretations depends on the market segment used. 

8.1.3 Performance Metrics 

As mentioned in Chapter 4, financial traders backtest their trading strategies and judge their 

performance based on performance metrics such as profit factor, drawdown and number of 

trades. In this chapter, the Adaboost classifiers will classify whether a trading strategy is 

‘good’ or ‘bad’ using all of the performance metrics outlined in Section 4.8 for each trading 

strategy. 

In this chapter, technical analysis interpretations are classified here as potentially good or 

bad based on whether or not they are profitable. To do this, the Adaboost algorithm 

attempts to separate the training dataset using the following categorization, 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  {
𝐺𝑜𝑜𝑑   𝑖𝑓 𝑅𝑒𝑡𝑢𝑟𝑛 > 0 𝑝𝑖𝑝𝑠
𝐵𝑎𝑑    𝑖𝑓 𝑅𝑒𝑡𝑢𝑟𝑛 ≤ 0 𝑝𝑖𝑝𝑠

 

The next section will outline the techniques used to reduce overfitting before performing 

the experiments in Section 8.3. 
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8.2 Reducing Overfitting 

Bootstrap aggregation, as described in 2.4.3.1, is a technique used to reduce overfitting and 

which assists in the production of a more generalized classifier. The technique combines the 

classifications of several classifiers and produces a final classification that is the most 

frequent. Each individual classifier is trained on a random subsample of data points with the 

possibility of picking the same data point more than once. 

Feature bagging, as described in 2.4.3.1, is another ensemble method which helps to reduce 

overfitting of high variance models with low bias. It is possible that individual classifiers in 

the ensemble are too similar thus producing almost identical classifications. The random 

subspace method helps to solve this problem by training each classifier in the ensemble on a 

random subset of features (performance metrics) at each iteration of the AdaBoost 

algorithm.  

It would be expected that each of the individual classifiers would overfit in different ways, 

as each individual classifier is trained using a different subsample of data points and/or on a 

different subset of features from the training dataset. Each of the individual classifiers 

should contain parts of the general classification and it is expected that a general 

classification emerges from the combination of individual classifiers. 

Both of these techniques will be used in the experimentation sections of this chapter. 

8.2.1 Illustration of AdaBoost with Bootstrap Aggregation 

A Java application was created to validate the Adaboost code and visualise its classification 

using the bootstrap aggregation technique to reduce overfitting. Figure 82 shows an 

artificially created training dataset of 10,000 data points. The data points in the artificial 

dataset can be categorized into two classifications, red and blue. The classification boundary 

is noisy as there is overlap between the red and blue data points. The data points depend on 

the two variables that mark the x (horizontal) and y (vertical) axes of the image. A decision 

stump is a weak classifier that thresholds a variable (x or y) above or below a particular 

value. 
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Figure 82: Dataset – 10,000 data points 

Individual classifiers created by the Adaboost algorithm using a subsample of 1,000 data 

points from the training dataset are shown in Figure 83. The majority of the blue and red 

regions are classified correctly, but this classification is unreliable as it varies depending on 

the subset of the training dataset used by the Adaboost algorithm. The general classification 

of the overlap of red and blue points is not achieved. 

 

   

Figure 83: 3 individual classifiers each with a subsample of the dataset of 1,000 data 
points 

By combining 100 individual classifiers in a majority vote decision, the resultant classifier is 

able to correctly separate the blue and red data points (see Figure 84). It is important to 

note that each classifier is created from a subsample of 1,000 data points from the initial 
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pool of 10,000 data points otherwise they would produce the same classifier. The blue and 

red classification regions of the image have varying transparencies to reflect the number of 

classifiers that have classified the area as a specific classification (red or blue). The 

classification boundary appears almost white because the number of votes for both the blue 

and red classification are about equal.  

 

Figure 84: 100 individual classifiers combined in majority vote 

Visual inspection shows that the whiter regions lie close to the noisy overlap between the 

blue and red data points. The darker red or blue classification regions of the image contain 

the most votes for a particular classification. This implies that the more votes a data point 

has for a particular classification, the more probable it is that the data point belongs to that 

classification in this example. 

The following experiments in this chapter will use the random subspace method and 

bootstrap aggregation technique to reduce the chance of overfitting.  

8.3 Test and Results 

This section explores the classification of technical analysis interpretations using different 

Adaboost-based classification systems. Experiments for different individual Adaboost 

classifiers are analysed and reported, and also for two classification systems in which 

Adaboost is augmented by mechanisms designed to reduce overfitting (described in Section 

432.4.3.1). The first classification system, called the bootstrap classifier, uses the bootstrap 

aggregation technique to help reduce overfitting. The second classification, called the 
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bootstrap and feature-bagging classifier uses both the bootstrap aggregation and feature 

bagging technique to help reduce overfitting. 

The bootstrap aggregation technique creates a classifier consisting of 51 individual 

Adaboost classifiers. Each of these 51 classifiers is created using a random subsample of 

25% of the technical analysis interpretations from the original training set. Classifiers are 

then combined in majority vote to produce the final classification. 

The feature bagging technique also creates a single classifier consisting of 51 individual 

Adaboost classifiers. Each of these 51 classifiers is created using a random subsample of 

50% of the performance metrics (features) from the original training set. The classifiers are 

then combined in majority vote to produce the final classification. 

The purpose of the experiments in this section is to: 

 investigate ways of choosing an optimal Adaboost iteration for selecting the best 

classification system using the validation dataset;   

 find the best performing Adaboost-based classification system for classifying 

technical analysis interpretations, and in particular to classify unprofitable 

technical analysis interpretations;  

 examine appropriate techniques for reducing overfitting. 

 

8.3.1 Binary Classifier Performance Values 

The results of experiments described here will be analysed in terms of the binary classifier 

performance values introduced in Section 2.5: 

 Accuracy and Receiver Operating Characteristic (ROC); 

 Precision and recall; 

 Negative predictive value and specificity; 

 F1 score. 

 

Taking each of the above binary classifier performance values in turn, first it will be 

established whether, in the training stage, the Adaboost classifier succeeds in learning the 
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data according to the performance values. Then the results will be analysed for the 

classification of validation and outsample data, considering each time the individual 

classifier, the bootstrap aggregation enhancement, and finally the combination of bootstrap 

aggregation with feature bagging. Each graph in this chapter reports seven separate results 

derived from each of the foreign exchange markets. 

8.3.2 Classifier Accuracy and ROC Performance 

This section will report the ROC performance and accuracy of classification systems at each 

iteration of the Adaboost algorithm during training. Then report validation and outsample 

performance for the individual classifier, the bootstrap aggregation classification system, 

and bootstrap aggregation with feature bagging classification system. 

8.3.2.1 Accuracy and ROC Performance on Training Dataset 

The training dataset is used to create the classifier. The results are displayed in two types of 

graphs: the first shows the accuracy of the classifier under consideration at each iteration of 

the Adaboost algorithm using the training dataset; the second shows the receiver operating 

characteristic (ROC, defined in Section 2.6) results obtained by using the classifiers at the 

200th iteration. 

Figure 85 shows the accuracy results of individual Adaboost classifiers and, as expected, the 

accuracy generally increases with iteration.  The ROC curves in Figure 86 are visibly far away 

from the random classifier line, and the areas under the curve (AUC) of the foreign exchange 

markets AUDUSD, EURUSD, GBPUSD, NZDUSD, USDCAD, USDCHF and USDJPY  are 0.83, 

0.86, 0.89, 0.87, 0.83, 0.94 and 0.84 respectively. If the individual Adaboost classifiers were 

random then the AUC would be 0.5 and if the AUC values were below 0.5 the classifiers 

would be performing worse than random. The average AUC however is 0.87 and all 

classifiers report an AUC of 0.83 or above. 
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Figure 85: Accuracy of individual classifiers during training 

 

Figure 86: ROC curve of individual classifiers using the training dataset 

Figure 87 shows the accuracy results of the bootstrap classifiers. Again, as expected, the 

accuracy generally increases with each iteration of the Adaboost. These results are 

smoother than the individual classifier accuracy results which is expected as the 

classifications of 51 individual Adaboost classifiers are combined. Figure 88 shows the ROC 

results obtained by using the bootstrap classifiers at the 200th iteration of the Adaboost 

algorithm. The ROC curves are far away from the random classifier line and the areas under 

the curve (AUC) of the foreign exchange markets AUDUSD, EURUSD, GBPUSD, NZDUSD, 
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USDCAD, USDCHF and USDJPY are 0.83, 0.85, 0.88, 0.85, 0.84, 0.91 and 0.83 respectively. 

The average AUC is 0.86. This shows that the bootstrap classifiers were able to learn the 

training dataset. 

 

Figure 87: Accuracy of classifiers using the bootstrap aggregation technique during 
training 

 

Figure 88: ROC curve of bootstrap classifiers using the training dataset 

Figures 89 and 90 show similar results for the accuracy results of the bootstrap and feature-

bagging classifiers. The latter shows the ROC results obtained at the 200th iteration of the 
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Adaboost algorithm. The AUC values are 0.82, 0.84, 0.88, 0.83, 0.83, 0.89 and 0.81 for the 

respective markets, with an average of 0.84. 

 

Figure 89: Accuracy of classifiers using the bootstrap aggregation & feature-bagging 
technique during training 

 

 

Figure 90: ROC curve of bootstrap and feature-bagging classifiers using the training 
dataset 
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The differences between each AUC value and average AUC of each classification system is 

marginal, e.g. indicating a similar performance in accuracy across all markets. According to 

the accuracy performance measure, the three Adaboost classifiers have successfully learnt 

the training dataset. 

8.3.2.2 Individual Classifier 

Figure 91 shows the accuracy of individual classifiers at each iteration of the Adaboost 

algorithm using the validation dataset. The individual classifiers classified 31,813 technical 

analysis interpretations as profitable and 37,303 as unprofitable. The accuracy of individual 

classifiers using the USDJPY and GBPUSD data increases as the Adaboost algorithm iterates. 

However, accuracy decreases in the classifiers using AUDUSD, NZDUSD, USDCAD and 

USDCHF data. Accuracy increases then slightly decreases in the classifier using EURUSD data, 

which suggests that the optimal classifier is to be found around the 60th iteration. The 

accuracy of classifiers using AUDUSD and USDCAD data experiences a reduction of about 

0.19. This drop suggests that overfitting has occurred in these classifiers. This is likely due to 

the fact that the Adaboost algorithm is forced into learning heavily weighted data points. To 

reduce overfitting, optimal classifiers are chosen at the 137th iteration for the classifier using 

AUDUSD data and the 15th iteration for the classifier using USDCAD data.  

 

Figure 91: Accuracy of constructing individual classifiers on validation data 

Figure 92 shows the accuracy of individual classifiers at each iteration of the Adaboost 

algorithm using the outsample dataset. The individual classifiers classified 22,029 technical 
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analysis interpretations as profitable and 46,920 as unprofitable. There are no sharp 

accuracy drops such as were present in the validation dataset, which suggests that picking 

optimal classifiers before accuracy drops in the validation dataset is not beneficial. After the 

50th iteration, the accuracy values seem to converge, i.e. becoming consistent and 

fluctuating only slightly in value, given 200 iterations of the Adaboost algorithm. 

Additionally, 5 out of the 7 classifiers achieved better than random performance at the final 

iteration of the Adaboost algorithm. 

 

Figure 92: Accuracy of constructing classifiers on outsample data 

Figure 93 shows the average accuracy of classifiers using the validation and outsample 

datasets at each iteration of the Adaboost algorithm. Average accuracy values of classifiers 

using the outsample dataset are fairly consistent. Due to the overfitting seen in Figure 91, 

the average accuracy of classifiers exhibits two sharp drops (corresponding to the drops in 

classifiers for two of the markets). 
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Figure 93: Average accuracy of constructing classifiers on validation and outsample data 

The receiver operating characteristic (ROC) curve of individual classifiers on validation data 

and outsample data can be seen in Figures 94 and 95. The classifiers used on validation data 

separate technical analysis interpretations better than random, but only just, for the 

NZDUSD, EURUSD and USDCHF data and perform randomly or worse on AUDUSD, GBPUSD, 

USDCAD and USDJPY data. However, classifiers used on outsample marginally outperformed 

these by separating the technical analysis interpretations at best slightly better than random 

and at worst randomly. The area under the ROC curve (AUC) values for individual classifiers 

using the training, validation and outsample datasets are summarized in Table 22. The 

average AUC value of classifiers using the training dataset is 0.87 which indicates that the 

classifier has separated the technical analysis interpretations, according to the training set, 

effectively. However, when the classifiers are used on the validation and outsample dataset 

the AUC values are 0.5 and 0.567 respectively, and so the classifiers perform randomly or 

slightly better than randomly. 
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Figure 94: ROC curve of individual classifiers using validation data 

 

Figure 95: ROC curve of individual classifiers using outsample data 

 AUDUSD EURUSD GBPUSD NZDUSD USDCAD USDCHF USDJPY Average 

Insample 0.831 0.857 0.889 0.873 0.833 0.946 0.836 0.867 

Validation 0.510 0.549 0.383 0.623 0.429 0.557 0.459 0.502 

Outsample 0.546 0.643 0.516 0.503 0.609 0.629 0.525 0.567 

Table 22: Area under ROC curve for insample, validation and outsample data 
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8.3.2.3 Bootstrap Aggregation Classifier 

Figure 96 shows the accuracy of bootstrap classifiers at each iteration of the Adaboost 

algorithm using the validation dataset. The bootstrap classifiers classified 29,653 technical 

analysis interpretations as profitable and 39,450 as unprofitable.  Accuracy improves as the 

Adaboost algorithm iterates the EURUSD, USDJPY and GBPUSD data but decreases as it 

iterates the AUDUSD, NZDUSD and USDCAD data. Comparing the accuracy results of 

bootstrap classifiers with the accuracy results of individual Adaboost classifiers during the 

same period (Figure 91), the accuracy of the classifiers using USDCAD data dropped by 0.19 

in both accuracy results. However, for the AUDUSD market data segment the individual 

Adaboost classifier’s accuracy dropped by 0.2 but the accuracy did not drop in the bootstrap 

classifier. The accuracy of the bootstrap classifier using USDCHF data jumps up by 0.05 

which did not occur in the individual Adaboost classifier. The accuracy results of the 

bootstrap classifiers using validation data are smoother than the individual classifiers. 

 

Figure 96: Accuracy of constructing bootstrap classifiers on validation data 

Figure 97 shows the results from bootstrap classifiers at each iteration of the Adaboost 

algorithm using the outsample dataset. The bootstrap classifiers classified 23,078 technical 

analysis interpretations as profitable and 45,862 as unprofitable. There are no sharp 

accuracy drops, which were present in the validation dataset, suggesting that picking 

optimal classifiers before accuracy drops in the validation dataset is not beneficial. The 

accuracy values of all bootstrap classifiers converge by the 50th iteration, fluctuating only 

slightly in value. Using the outsample dataset, 5 out of the 7 bootstrap classifiers achieve 
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better than random performance at the final iteration of the Adaboost algorithm. The 

accuracy of the bootstrap classifier using USDJPY data is random (0.5) at the final iteration, 

and the bootstrap classifier using NZDUSD data is worse than random with a 0.45 accuracy.  

 

Figure 97: Accuracy of constructing bootstrap classifiers on outsample data 

Figure 98 shows the average accuracy of bootstrap classifiers using the validation and 

outsample datasets at each iteration of the Adaboost algorithm. The accuracy values are 

very consistent except for the slight accuracy drop which was experienced in the bootstrap 

classifier using the USDCAD validation dataset segment. 

 

Figure 98: Average accuracy of constructing bootstrap classifiers on validation data and 
outsample data 
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The receiver operating characteristic (ROC) curve of bootstrap classifiers on validation data 

and outsample data can be seen in Figures 99 and 100. The bootstrap classifiers used on 

validation data separated technical analysis interpretations slightly better than random 

using NZDUSD and EURUSD data and performed randomly or worse on AUDUSD, GBPUSD, 

USDCAD, USDCHF and USDJPY data. However, bootstrap classifiers used on outsample data 

performed slightly better than random at separating the technical analysis interpretations 

(and at worst randomly). The area under the ROC curve (AUC) values for bootstrap 

classifiers using the insample, validation and outsample datasets are summarized in Table 

23. The average AUC value on training data is 0.856, which indicates that the bootstrap 

classifiers have separated the technical analysis interpretations effectively for the training 

dataset. However, when the bootstrap classifiers are used on the validation and outsample 

dataset the AUC values are 0.491 and 0.563 respectively, indicating that the classifiers 

perform close to randomly or with a slight edge. 

 

Figure 99: ROC curve of bootstrap classifiers using validation data 
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Figure 100: ROC curve of bootstrap classifiers using outsample data 

 AUDUS
D 

EURUS
D 

GBPUS
D 

NZDUS
D 

USDCA
D 

USDCH
F 

USDJP
Y 

Averag
e 

Insample 0.831 0.851 0.883 0.849 0.840 0.909 0.826 0.856 

Validation 0.518 0.563 0.375 0.636 0.451 0.452 0.443 0.491 

Outsampl
e 

0.582 0.669 0.508 0.479 0.571 0.591 0.541 0.563 

Table 23: Area under ROC curve for insample, validation and outsample data 

 

8.3.2.4 Bootstrap Aggregation and Feature-bagging Classifier 
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of the Adaboost algorithm using the validation dataset. The bootstrap and feature-bagging 

classifiers classified 26,261 technical analysis interpretations as profitable and 42,848 as 
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was overcome in the bootstrap and feature-bagging classifier soon after the classifier 

overfitted. The AUDUSD accuracy drop of 0.19 was not present in the bootstrap and 

feature-bagging classifier but was present in the individual classifier. The bootstrap 

classifier’s accuracy (Figure 96) using USDCHF data fluctuated up and down by 0.05 until a 

final jump of 0.05 was observed. The bootstrap and feature-bagging classifier using USDCHF 

data experienced fluctuations at earlier iterations. 

 

Figure 101: Accuracy of constructing classifiers with bootstrap & feature-bagging using 
validation data 

Figure 102 shows the accuracy of the bootstrap and feature-bagging classifiers using 

outsample data. The bootstrap and feature-bagging classifiers classified 20,937 technical 

analysis interpretations as profitable and 48,016 as unprofitable. When using the outsample 

dataset, at the final iteration this classifier achieved better than random performance in 5 

out of the 7 markets. The classifier using USDJPY data increased to an accuracy of 0.5 at the 

final iteration of the Adaboost algorithm from 0.42 initially. The classifier using NZDUSD 

data converged to an accuracy of 0.44. The accuracy results contain no sharp movements, 

which were evident in the validation dataset. The accuracy converges quickly, only slightly 

fluctuating in value when compared to the classifiers using the bootstrap aggregation 

technique on outsample data. 
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Figure 102: Accuracy of constructing classifiers with bootstrap & feature-bagging using 
outsample data 

Figure 103 shows the average accuracy of bootstrap and feature-bagging classifiers using 

the validation and outsample datasets at each iteration of the Adaboost algorithm. The 

average accuracy of the bootstrap and feature-bagging classifiers on validation and 

outsample data is 0.57 and 0.6 respectively. The fluctuations experienced on USDCAD data 

using validation data are also observed in the average accuracy figure. No clear optimal 

iteration can be determined from the classifiers' accuracy on validation data. The accuracy 

values of classifiers using the outsample dataset converge within 30 iterations. 
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Figure 103: Average accuracy of constructing bootstrap and feature-bagging classifiers on 
validation data and outsample data 

The ROC curve of bootstrap and feature-bagging classifiers on validation and outsample 

data can be seen in Figures 104 and 105. The classifiers used on validation data performed 

slightly better than random at separating technical analysis interpretations using AUDUSD, 

EURUSD and NZDUSD data, and performed randomly or worse on GBPUSD, USDCAD, 

USDCHF and USDJPY data. The AUDUSD classifier dipped to the random classifier line when 

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 reached and surpassed the 0.35 value, which shows that the classifier is 

slightly better than random at classifying and identifying technical analysis interpretations 

when using a low classification threshold see Section 2.6. The classifier using EURUSD data 

performed worse than random when 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 reached and surpassed the 0.8 value. 

The same bootstrap and feature-bagging classifiers used on outsample data performed 

slightly better. The classifiers using AUDUSD, EURUSD, USDCAD and USDCHF data separated 

the technical analysis interpretations slightly better than random, and classifiers using 

GBPUSD and NZDUSD data separated the technical analysis interpretations randomly. The 

classifier using USDJPY data performed slightly worse than random between the values of 0 

and 0.25 on the x axis, then above the value of 0.25 the classifier improved to slightly better 

than random. The AUC values for the bootstrap and feature-bagging classifiers using the 
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insample, validation and outsample datasets are summarized in Table 24. The average AUC 

value on training data is 0.842, which indicates that the classifiers have separated the 

technical analysis interpretations according to the training set effectively. Similarly to the 

bootstrap classifiers, the classifiers using validation and outsample data have AUC values of 

0.506 and 0.578 respectively. The classifiers perform randomly when using validation data 

and with a slight edge when using outsample data.  

 

Figure 104: ROC curve of bootstrap & feature-bagging classifiers using validation data 
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Figure 105: ROC curve of bootstrap & feature-bagging classifiers using outsample data 

 AUDUSD EURUSD GBPUSD NZDUSD USDCAD USDCHF USDJPY Average 

Insample 0.819 0.844 0.881 0.827 0.827 0.888 0.809 0.842 

Validation 0.572 0.546 0.398 0.635 0.519 0.484 0.388 0.506 

Outsample 0.592 0.650 0.514 0.505 0.613 0.625 0.544 0.578 

Table 24: Area under ROC curve for insample, validation and outsample data 
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iterations would risk increasing the variance of the classifier, see Section 2.3. This strategy 

for choosing the optimal Adaboost algorithm iteration is a good trade-off for bias and 

variance. Additional iterations of the Adaboost algorithm did not change or substantially 

benefit the classifier’s accuracy performance. Also, picking an optimal Adaboost iteration 

before overfitting has occurred may be unreliable as no overfitting was seen in the 

outsample dataset. 

The results may have been different if the datasets were created using different time 

periods. However, the results produced are sufficient to warrant further investigation into 

Adaboost classifier construction for improved models of traders. 

The bootstrap classifiers and the bootstrap and feature-bagging classifiers had accuracy 

results that were smoother than individual Adaboost classifier results but this was expected 

as these techniques average the classification of 51 individual Adaboost classifiers. 

The ROC curve results showed that the general performance of the classifiers were either 

random or had a slight advantage at separating unprofitable and profitable technical 

analysis interpretations on outsample data. 

The bootstrap and feature-bagging classifiers performed better than the individual 

classifiers and the bootstrap classifiers, reducing the overfitting that was observed in the 

other classification systems on the validation data. 

8.3.3 Classifier Precision and Recall Performance 

This section will report the precision and recall of classification systems at each iteration of 

the Adaboost algorithm during training. Then report validation and outsample performance 

for the individual classifier, the bootstrap aggregation classification system, and bootstrap 

aggregation with feature bagging classification system. 

8.3.3.1 Training Dataset Results 
Figures 106, 108 and 110 show the precision values, and Figures 107, 109 and 111 show the 

recall values, of the constructing classifiers at each iteration of the Adaboost algorithm using 

the training dataset. The training dataset is used to create the classifier. Each graph reports 

seven separate results derived from each of the foreign exchange markets. 
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Figures 106 and 107 show the results of individual classifiers and, as expected, the precision 

and recall generally increases with each iteration of the Adaboost algorithm. An abnormal 

change in precision and recall is observed at the 16th iteration of the Adaboost algorithm. At 

each iteration, the weights of each technical analysis interpretation during the training 

phase is adjusted, which adds more weight to technical analysis interpretations that are 

incorrectly categorized. The abnormality may be caused by enormous weight values that 

arise from technical analysis interpretations that are consistently misclassified. The accuracy 

of these individual classifiers (Figure 85), however, experienced no abnormal drop or 

increase at iteration 16. 

 

Figure 106: Precision of individual classifiers during training 

 

Figure 107: Recall of individual classifiers during training 
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Figures 108 and 109 show the precision and recall results of bootstrap classifiers. As 

expected, the values generally increase with each iteration of the Adaboost algorithm and 

are smoother than the individual classifier results. The abnormalities at the 16th iteration 

are also present in these results. 

 

Figure 108: Precision of bootstrap classifiers during training 

 

Figure 109: Recall of bootstrap classifiers during training 
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the results are smoother but contain the same abnormality at the 16th iteration. As was the 

case for accuracy (Section 8.3.2.1), this measure supports the view that the classifiers have 

learnt the training data. 

 

Figure 110: Precision of bootstrap and feature-bagging classifiers during training 

 

Figure 111: Recall bootstrap and feature-bagging classifiers during training 
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8.3.3.2 Individual Classifier 

Figure 112 shows the precision values of individual classifiers at each iteration of the 

Adaboost algorithm using validation data. The results are similar to those for accuracy 

(Figure 91) and in particular, the precision of individual classifiers using AUDUSD and 

USDCAD data also dropped significantly by roughly 0.2. The precision results of classifiers at 

the 200th iteration of the Adaboost algorithm achieved a precision value of less than 0.4. 

Prior to the individual classifier using USDCAD data overfitting, the classifier had a precision 

of 0.5. 

 

Figure 112: Precision of constructing individual classifiers on validation data 

Figure 113 shows the recall values of individual classifiers at each iteration of the Adaboost 

algorithm using validation data. The recall value of the classifier using NZDUSD data 
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0.58 and 0.55 for classifiers using GBPUSD, USDJPY and EURUSD respectively; the worst 

recall values are 0.28, 0.35 and 0.35 for classifiers using USDCAD, USDCHF and AUDUSD 

data. The recall value for the classifier using NZDUSD data is 0.49, i.e. close to random. 
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Figure 113: Recall of constructing individual classifiers on validation data 

Figure 114 shows the precision values of individual classifiers at each iteration of the 

Adaboost algorithm using outsample data. While the precision values of the individual 

classifier using NZDUSD data increased at each iteration, those of the other classifiers 

decreased or remained the same. When comparing the precision values of validation and 
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performance from the validation dataset results. For outsample data, both the precision and 
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data on validation data, the recall values of individual classifiers using the validation and 
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Figure 114: Precision of constructing individual classifiers on outsample data 

 

Figure 115: Recall of constructing individual classifiers on outsample data 
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algorithms. The average recall of classifiers at the 200th iteration of the Adaboost algorithm 

on validation data is 0.46 and on outsample data 0.39. 

 

Figure 116: Precision of constructing classifiers on validation data and outsample data 

 

Figure 117: Recall of constructing classifiers on validation data and outsample data 
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8.3.3.3 Bootstrap Aggregation Classifier 

Figure 118 shows the precision values of bootstrap classifiers at each iteration of the 

Adaboost algorithm using validation data. The precision values increase using EURUSD data, 

and there is also a slight increase using AUDUSD data before dropping at the 193rd iteration. 

The precision of the bootstrap classifiers using GBPUSD, USDCHF and USDJPY data show 

only slight variation, but for the classifier using GBPUSD data jumped up 0.03. A significant 

precision drop of 0.2 at iteration 47 is observed in the USDCAD market.  

Comparing the precision results of bootstrap classifiers with the precision results of 

individual classifiers (Figure 112), both show a drop of 0.2 for USDCAD data. However, the 

precision drop of 0.2 in the individual classifier using AUDUSD data is not present in the 

corresponding bootstrap classifier. The precision of the bootstrap classifier using USDCHF 

data increased slightly from 0.17 to 0.2. The individual classifier using the same USDCHF 

data interestingly has a high precision value of 0.72 at iteration 1 of the Adaboost algorithm, 

decreasing to 0.27. The individual classifier outperformed the bootstrap classifier using 

USDCHF data. The precision results of individual classifiers and bootstrap classifiers using 

EURUSD, GBPUSD, NZDUSD, USDCAD and USDJPY data behaved the same. The precision 

values were smoother in the bootstrap classifier results than in the individual classifier 

results. 

 

Figure 118: Precision of constructing classifiers using bootstrap on validation data 
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Figure 119 shows the recall values of the bootstrap classifiers at each iteration of the 

Adaboost algorithm using validation data. The sharp changes seen in the precision values 

are not observed in these results. The recall values of the bootstrap classifiers using 

NZDUSD, USDCAD and USDCHF data increase as Adaboost iterates. For AUDUSD, EURUSD 

and GBPUSD, the recall values quickly converge within 10 iterations. The recall values of the 

bootstrap classifier using USDJPY data decrease slightly before converging, but this classifier 

has the highest recall value. 

Comparing the bootstrap classifier recall results with the individual classifier recall results 

(Figure 113), the recall values of the individual classifier using the NZDUSD market data 

increased from 0.12 at iteration 1 to 0.49 at iteration 200, while those of the bootstrap 

classifier rose from 0.09 to 0.32. The individual and bootstrap classifiers using the same 

foreign exchange market data behaved in largely the same way, but the recall values of the 

bootstrap classifiers are smoother than those of the individual classifiers. 

 

Figure 119: Recall of constructing classifiers using bootstrap on validation data 
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AUDUSD, USDCAD and USDCHF data, and converge after just a few iterations in the 

EURUSD, GBPUSD and USDCAD. 

Comparing the bootstrap classifier precision results with the precision results of individual 

classifiers (Figure 114), similar increases, decreases and convergences of precision values 

are observed. The precision values at the 200th iteration of the Adaboost algorithm are 

slightly lower in the bootstrap aggregation classifiers using AUDUSD, NZDUSD, USDCAD and 

USDCHF data whilst the other precision values are the same. 

 

Figure 120: Precision of constructing classifiers using bootstrap on outsample data 

Figure 121 shows the recall values of bootstrap classifiers at each iteration of the Adaboost 

algorithm using outsample data. The three top performing bootstrap classifiers on validation 

data, i.e. those using EURUSD, GBPUSD and USDJPY data, are also the three top performing 

bootstrap classifiers on outsample data. The recalls of the bootstrap classifiers using 

NZDUSD and USDCHF data increase slowly, whereas the recall values of the bootstrap 

classifiers using USDJPY decrease slowly. The recall values of the other bootstrap classifiers 

quickly converge. 

Comparing the recall results of the bootstrap classifiers with the recall results of the 

individual classifiers (Figure 115), the recall values converge towards the same values except 

for the bootstrap classifier using NZDUSD data which is 0.08 lower. The precision and recall 
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Figure 121: Recall of constructing classifiers using bootstrap on outsample data 

Figures 122 and 123 show the average precision and recall values at each iteration of the 

Adaboost algorithm using validation and outsample data. The average precision value of 

bootstrap classifiers using validation and outsample data converges within 25 iterations. 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1 9

17 25 33 41 49 57 65 73 81 89 97

10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

R
ec

a
ll 

Adaboost iteration 

AUDUSD

EURUSD

GBPUSD

NZDUSD

USDCAD

USDCHF

USDJPY



191 
 

 

Figure 122: Average precision of constructing bootstrap classifiers on validation data and 
outsample data 

 

Figure 123: Average recall of constructing bootstrap classifiers on validation data and 
outsample data 
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using AUDUSD, GBPUSD, USDCAD and USDJPY quickly converge within a few iterations. The 

precision of the classifier using USDCAD data shows a drop in precision but recovers around 

the 150th iteration, suggesting that the classifier recovers from overfitting. The bootstrap 

and feature-bagging classifiers avoided the instances of overfitting that occurred in the 

other classification systems. 

The precision of the bootstrap and feature-bagging classifier using USDCHF data oscillates 

frequently in value decreasing from an initial precision value of roughly 0.75 to 0.3. The 

classifiers using EURUSD, GBPUSD, NZDUSD and USDJPY data all behaved the same as for 

previous classification systems. 

 

Figure 124: Precision of constructing classifiers in bootstrap with feature-bagging on 
validation data 
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value at iteration 60, before decreasing. This indicates that the classifier at iteration 60 

should perform the best on USDCAD outsample data. 

 

Figure 125: Recall of constructing classifiers in bootstrap with feature-bagging on 
validation data 
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Figure 126: Precision of constructing classifiers in bootstrap with feature-bagging on 
outsample data 

Figure 127 shows the recall values of bootstrap and feature-bagging classifiers using 

outsample data. The recall values at iteration 200 of classifiers using AUDUSD, EURUSD, 

NZDUSD, USDCHF, USDJPY data are slightly lower than those of the bootstrap classifiers. The 

recall values are slightly higher in classifiers using USDCAD data compared to the recall 

values of the corresponding bootstrap classifier. 
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Figure 127: Recall of constructing classifiers in bootstrap with feature-bagging on 
outsample data 

No clear optimal iteration can be determined from the precision or recall results of 

bootstrap and feature-bagging classifiers using validation data. Figure 128 shows the 

average precision values of bootstrap and feature-bagging classifiers. The values quickly 

converge in bootstrap and feature-bagging classifiers using outsample data. However, the 

average precision values using validation data oscillate slightly. Around the 150th iteration of 

the Adaboost algorithm, the average precision drops due to the bootstrap and feature-

bagging classifier using USDCAD data overfitting, and the average precision fluctuates 

downwards three times before recovering. The average precision results of bootstrap 

classifiers, Figure 122, shows overfitting that did not recover, around the 45th iteration.  The 

feature-bagging technique appears to have helped the classification system to reduce 

overfitting, as intended. 
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Figure 128: Average precision of constructing bootstrap and feature-bagging classifiers on 
validation data and outsample data 

Figure 129 shows the average recall values of bootstrap and feature-bagging classifiers using 

validation and outsample data. The values behave similarly to those of the bootstrap 

classifiers. The recall values of the bootstrap and feature-bagging classifiers converge within 

60 iterations. 
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Figure 129: Average recall of constructing bootstrap and feature-bagging classifiers on 
validation data and outsample data 

 

8.3.3.5 Summary of Precision and Recall Analyses 

The average precision of the bootstrap and feature-bagging classifiers at iteration 200 is 

0.33 (validation) and 0.41 (outsample), for the bootstrap classifiers is 0.28 (validation) and 

0.38 (outsample), and for the individual classifiers is 0.26 (validation) and 0.4 (outsample). 

The precision of bootstrap and feature-bagging classifiers is higher than those of the other 

classification systems. Correspondingly, the average recall value of the bootstrap and 

feature-bagging classifiers at iteration 200 is 0.41 and 0.38, for the bootstrap classifiers is 

0.43 and 0.4, and for the individual classifiers is 0.46 and 0.39 from validation and 

outsample data respectively. The individual classifiers achieved a better recall value using 

validation data. 

The bootstrap and feature-bagging classifiers avoided most of the overfitting that occurred 

in the individual Adaboost classifier and the bootstrap classifier precision and recall results. 

8.3.4 Negative Predictive Value and Specificity Performance 

This section will report the negative predictive value and specificity of classification systems 

at each iteration of the Adaboost algorithm during training. Then report validation and 
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outsample performance for the individual classifier, the bootstrap aggregation classification 

system, and bootstrap aggregation with feature bagging classification system. 

8.3.4.1 Training Dataset Results 

Figures 130, 132 and 134 show the negative predictive values, and Figures 131, 133 and 135 

show the specificity of the constructing classifiers at each iteration of the Adaboost 

algorithm during the training dataset. The training dataset is used to create the classifier. 

Figures 130 and 131 show the results of individual classifiers and, as expected, the negative 

predictive value and specificity values generally increase with each iteration of the Adaboost 

algorithm. An abnormal change in the negative predictive value and specificity values is 

observed at the 16th iteration of the Adaboost algorithm (as can be observed in the 

precision and recall values in this phase, Figures 106 and 107, but for accuracy, Figure 85). 

This suggests that the Adaboost algorithm was forced into a more predictive state (in 

accuracy) resulting in learning highly weighted data points that affected the negative 

predictive value. 

 

 

Figure 130: Negative predictive value of constructing classifiers during the training phase 
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Figure 131: Specificity of constructing classifiers during the training phase 

Figures 132 and 133 show the negative predictive value and specificity results for the 

bootstrap classifiers at each iteration of the Adaboost algorithm. As expected, the values 

generally increase as Adaboost iterates; the results are smoother than for the individual 

classifiers, but the abnormality at the 16th iteration is also present. 

 

Figure 132: Negative predictive value of constructing classifiers using the bootstrap 
aggregation technique during the training phase 
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Figure 133: Specificity of constructing classifiers using the bootstrap aggregation 
technique during the training phase 

Figures 134 and 135 show the negative predictive value and specificity of the bootstrap and 

feature-bagging classifiers at each iteration of the Adaboost algorithm. These are also 

smoother than for the individual classifiers, and the abnormality at the 16th iteration is also 

present. 

As with the previous measures, the behaviour in negative predictive value and specificity 

support the view that the classifiers are learning the training data. 
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Figure 134: Negative predictive value of constructing classifiers in bootstrap with feature-
bagging during the training phase 

 

Figure 135: Specificity of constructing classifiers in bootstrap with feature-bagging during 
the training phase 
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8.3.4.2 Individual Classifier 

Figure 136 shows the negative predictive values of individual classifiers at each iteration of 

the Adaboost algorithm using validation data. The precision jumps previously observed in 

individual classifiers using AUDUSD and USDCAD data (Figure 112) are also observed in the 

negative predictive value results. The negative predictive values of individual classifiers 

using EURUSD and NZDUSD data increase slightly with iteration, while those using USDCHF 

data did not change. For the classifiers using GBPUSD and USDJPY, a gradual increase is 

observed. The negative predictive value of the individual classifiers at iteration 200 is 

between 0.67 and 0.83, except for the individual classifier using USDCAD data which 

achieves only random performance. 

 

Figure 136: Negative predictive value of constructing individual classifiers on validation 
data 

Figure 137 shows the specificity of individual classifiers at each iteration of the Adaboost 

algorithm using validation data. Large drops in specificity value in individual classifiers using 

AUDUSD and USDCAD data are observed, whereas no drops in recall value were previously 

observed, Figure 113. However, the overall accuracy results of individual classifiers using 

AUDUSD and USDCAD data (shown in Figure 91) did show these large drops. The specificity 

of classifiers using EURUSD and USDJPY generally increase with iteration, but for EURUSD 

data there is a decrease around the 70th iteration. The specificity of classifiers using NZDUSD 

and USDCHF data generally decrease with iteration. The specificity of the classifier using 

GBPUSD data rises slightly before converging. The specificity of individual classifiers at 
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iteration 200 is mixed; for the NZDUSD and USDCHF the value is 0.71 and 0.76 respectively, 

but for AUDUSD, EURUSD and USDCAD performance is random and classifiers using GBPUSD 

and USDJPY data only achieved 0.25 and 0.35 specificity respectively. The drops in specificity 

value in the individual classifiers using AUDUSD and USDCAD are a sign of overfitting; had 

overfitting not occurred, a value above 0.65 might have been expected. 

 

 

Figure 137: Specificity of constructing individual classifiers on validation data 

Figure 138 shows the negative predictive value of individual classifiers at each iteration of 

the Adaboost algorithm using outsample data. Except for the individual classifier using 

USDJPY data, which increases before converging within 50 iterations, the values of 

individual classifiers remain relatively steady.  

The results in the outsample dataset are similar to the results in the validation dataset, in 

that all classifiers converge rather quickly. However, the drops in negative predictive value 

observed in the validation data are not observed in the outsample dataset. The negative 

predictive values of the individual classifiers are 0.45, 0.65, 0.65, 0.69, 0.72, 0.8 and 0.85 on 

outsample data. Only the classifier using NZDUSD data is poor at classifying unprofitable 

technical analysis interpretations; the other classifiers are considerably better than random 

at identifying unprofitable technical analysis interpretations.  
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Figure 138: Negative predictive value of constructing individual classifiers on outsample 
data 

Figure 139 shows the specificity of individual classifiers at each iteration of the Adaboost 

algorithm using outsample data. Except for the worst performing individual classifier that 

used UDSJPY data, for which the specificity gradually increased to 0.32, the specificity of all 

the other individual classifiers converged quickly. At the 200th iteration, two classifiers 

achieved 0.65 specificity and four classifiers achieved around 0.82. Comparing these results 

with the corresponding recall results (Figure 115), individual classifiers are better at 

identifying unprofitable technical analysis interpretations than at identifying profitable 

interpretations. 

 

Figure 139: Specificity of constructing individual classifiers on outsample data 
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Figure 140 shows the average negative predictive value of individual classifiers on validation 

and outsample data. The individual classifiers achieved better than random performance, 

with values of 0.72 and 0.68 for validation and outsample data respectively. Comparing 

these results with the average precision results of 0.26 and 0.40 in Figure 116, individual 

classifiers are better at classifying unprofitable technical analysis interpretations as 

unprofitable, and worse than random at classifying profitable technical analysis 

interpretations as profitable. 

 

Figure 140: Average negative predictive value of constructing individual classifiers on 
validation and outsample data 
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data. The average specificity of individual classifiers at the 200th iteration of the Adaboost 

algorithm is 0.52 and 0.7 for validation and outsample data respectively. The drops in 

specificity of individual classifiers using AUDUSD and USDCAD validation data observed in 

Figure 137 are also produced in the average specificity results. Choosing individual classifiers 

before the specificity drops would produce an average specificity of 0.62 on validation data. 

Comparing the average specificity results with the average recall results of 0.46 and 0.39 in 

Figure 117, it can again be seen that individual classifiers are better at identifying the 

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

1 9
17 25 33 41 49 57 65 73 81 89 97

10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

N
e

ga
ti

ve
 p

re
d

ic
ti

ve
 v

al
u

e
 

Adaboost iteration 

Validation

Outsample



206 
 

unprofitable technical analysis interpretations, and are worse than random at identifying 

the profitable technical analysis interpretations. 

 

Figure 141: Average specificity of constructing individual classifiers on validation and 
outsample data 

 

8.3.4.3 Bootstrap Aggregation Classifier 

Figures 142 and 143 shows the negative predictive value and specificity of bootstrap 

classifiers at each iteration of the Adaboost algorithm using validation data. The negative 

predictive values again converge quickly, with the classifier using USDJPY data being slower, 

taking about 80 iterations. A drop in negative predictive value from 0.62 to 0.52 is observed 

in the bootstrap classifier using USDCAD data, with the other classifiers achieving a value of 

at least 0.7. The corresponding results for individual classifiers (Figure 136) show that the 

individual classifiers using AUDUSD and USDCAD data have drops in this parameter. The 

value dropped in the bootstrap classification system only for USDCAD data. The bootstrap 

classifier using AUDUSD avoided the overfitting that occurred in the individual classifier; this 

is clear also in the specificity results. The results are similar to those for the individual 

classifier (Figure 137). The specificity values are smoother than in the individual classifier 

results. 
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Figure 142: Negative predictive value of constructing classifiers using bootstrap on 
validation data 

 

 

Figure 143: Specificity of constructing classifiers using bootstrap on validation data 

Figures 144 and 145 show the negative predictive value and specificity of bootstrap 

classifiers at each iteration of the Adaboost algorithm on outsample data. The results are 

smoother and follow closely those observed for individual classifiers in Figures 138 and 139. 
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Figure 144: Negative predictive value of constructing classifiers using bootstrap on 
outsample data  

 

 

Figure 145: Specificity of constructing classifiers using bootstrap on outsample data 

Figure 146 shows the average negative predictive values of bootstrap classifiers at each 

iteration of the Adaboost algorithm. Comparing the results with those of the individual 

classifiers (Figure 140), the average negative predictive values are smoother with only one 

drop (rather than two) observed, at the 48th iteration. The bootstrap aggregation technique 

reduced overfitting and slightly increased performance in classifying unprofitable technical 

analysis interpretations; the average negative predictive value rises from 0.72 to 0.73 on 

validation data and rises from 0.68 to 0.69 on outsample data. 
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Figure 146: Average negative predictive value of constructing bootstrap classifiers on 
validation data and outsample data 

Figure 147 shows the average specificity of bootstrap classifiers at each iteration of the 

Adaboost algorithm. Similar to the negative predictive value results, the classifiers using the 

bootstrap aggregation technique produce smoother results compared to the individual 

classifier results (Figure 141), and again only one drop in specificity performance on 

validation data is observed, rather than two. 
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Figure 147: Average specificity of constructing bootstrap classifiers on validation data and 
outsample data 

 

8.3.4.4 Bootstrap Aggregation and Feature-bagging Classifier 

Figure 148 shows the negative predictive value of bootstrap and feature-bagging classifiers 

at each iteration of the Adaboost algorithm using validation data. The values are similar to 

those for the bootstrap classifiers, with both classification systems achieving at least a value 

of 0.7, except for USDCAD data (about 0.5 in both systems).  
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Figure 148: Negative predictive value of constructing classifiers in bootstrap with feature-
bagging on validation data 

Figure 149 shows the specificity values of bootstrap and feature-bagging classifiers at each 

iteration of the Adaboost algorithm using validation data. The specificity results are broadly 

similar to the specificity results of bootstrap classifiers. However, the classifier using 

USDCAD data recovered from a specificity drop from 0.8 to 0.51 back up to 0.8 whilst the 

bootstrap classifier using USDCAD data did not recover from a similar drop. Additionally, the 

specificity value of the bootstrap and feature-bagging classifier using USDCHF data at the 

200th iteration is 0.84 which is much higher than the 0.68 achieved by the of the individual 

Adaboost classifier (Figure 143). 
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Figure 149: Specificity of constructing classifiers in bootstrap with feature-bagging on 
validation data 

Figures 150 and 151 show the negative predictive value and specificity values of bootstrap 

and feature-bagging classifiers at each iteration of the Adaboost algorithm using outsample 

data. The results closely resembled those of the bootstrap classifiers. 

 

Figure 150: Negative predictive value of constructing classifiers in bootstrap with feature-
bagging on outsample data 
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Figure 151: Specificity of constructing classifiers in bootstrap with feature-bagging on 
outsample data 

Figure 152 shows the average negative predictive value of bootstrap and feature-bagging 

classifiers at each iteration of the Adaboost algorithm using validation and outsample data. 

Comparing the results with individual classifier results and the results from bootstrap 

classifiers, the average negative predictive value at the 200th iteration on outsample data is 

the same as the bootstrap classifier and is slightly better than the individual classifier. The 

average negative predictive value results show two instances of overfitting of individual 

classifiers using validation data and one instance of overfitting of a bootstrap classifier using 

validation data. None of the bootstrap and feature-bagging classifiers using validation data 

overfitted. The difference in the average negative predictive value of each classification 

system at the 200th iteration of the Adaboost algorithm is marginal. 
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Figure 152: Average negative predictive value of constructing bootstrap and feature-
bagging classifiers on validation data and outsample data 

Figure 153 shows the average specificity value of bootstrap and feature-bagging classifiers 

at each iteration of the Adaboost algorithm using validation and outsample data. Comparing 

these results with individual classifiers, the bootstrap and feature-bagging classifiers 

performed the same on outsample data but achieved a 0.1 increase in specificity on 

validation data. Comparing these results with bootstrap classifiers, the bootstrap and 

feature-bagging classifiers performed slight better on outsample data but achieved a 0.07 

increase in specificity on validation data. 

The average specificity results show two instances of overfitting of individual classifiers 

using validation data and one instance of overfitting of bootstrap classifiers using validation 

data. The classifiers using the bootstrap aggregation technique and feature-bagging did 

overfit once but recovered. 
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Figure 153: Average specificity of constructing bootstrap and feature-bagging classifiers on 
validation data and outsample data 

 

8.3.4.5 Summary of Negative Predictive Value and Specificity Analyses 

The average negative predictive value of the bootstrap and feature-bagging classifiers at 

iteration 200 is 0.73 (validation) and 0.69 (outsample), for the bootstrap classifiers is 0.73 

(validation) and 0.68 (outsample), and for the individual classifiers is 0.72 (validation) and 

0.68 (outsample). The average negative predictive values of these classification systems are 

very similar. Correspondingly, the average specificity value of the bootstrap and feature-

bagging classifiers at iteration 200 is 0.65 and 0.74, for the bootstrap classifiers is 0.58 and 

0.7, and for the individual classifiers is 0.53 and 0.7 from validation and outsample data 

respectively. The bootstrap and feature-bagging classification system achieved better 

specificity on validation and outsample data. 

The bootstrap and feature-bagging classifiers avoided most of the overfitting that occurred 

in the individual Adaboost classifier and in the bootstrap classifier negative predictive value 

and specificity results. 
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8.3.5 𝑭𝟏 Score results 

The 𝐹1 score (harmonic mean) is a metric that is used to assess the performance of a binary 

classifier, Section 2.5. This section will calculate the 𝐹1 score of the precision and recall 

values and also that of the negative predictive value and specificity value, formulas are give 

in Table 2. The harmonic mean is a measure of central tendency that takes into account the 

distance between the values and favours the lower value when calculating an average. 

Figure 154 shows the harmonic mean (𝐹1 score) of the precision and recall values of each 

classification system at each iteration of the Adaboost algorithm. The bootstrap classifiers 

and bootstrap and feature-bagging classifiers averaged and smoothed the 𝐹1 scores when 

compared to the individual classifier classification system. The bootstrap and feature-

bagging classifier achieved a better 𝐹1 score than the bootstrap classifiers. The bootstrap 

and feature-bagging classifiers successfully avoided the overfitting that occurred with the 

other classification systems using the validation dataset. The individual classifier achieved a 

slightly better 𝐹1 score using outsample data compared to the other classification systems. 

However the 𝐹1 score differences between each classification system are marginal. 

 

Figure 154: Balanced F-scores for each classification system classifying profitable technical 
analysis interpretations 
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Figure 155 shows the harmonic mean (𝐹1 score) of the negative predictive value and 

specificity values of each classification system at each iteration of the Adaboost algorithm. 

The bootstrap classifiers and the bootstrap and feature-bagging classifiers smoothed the 𝐹1 

scores when compared to the individual classifier classification system. The bootstrap and 

feature-bagging classification systems outperformed the other classification systems on 

both validation and outsample data. The overfitting that was present in the other 

classification systems using the validation data occurred once, but this classification system 

recovered from the overfitting. 

 

Figure 155: Balanced F-scores for each classification system classifying unprofitable 
technical analysis interpretations 

 

8.4 Summary 

Three classification systems were created to investigate whether the bootstrap aggregation 

technique and the feature-bagging technique can be used to help reduce the overfitting of 
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When the classifiers were used on validation data, sharp decreases in performance (a sign of 

overfitting) were observed in the accuracy, precision, negative predictive value and 

specificity results. Interestingly no sharp decreases in performance were observed in the 

outsample dataset nor in the recall results when the classifiers were used on validation 

data. The bootstrap and feature-bagging classification system was the only classification 

system to recover from the overfitting observed in the graphs. The results of the 

classification system which used only the bootstrap aggregation technique saw only one 

occurrence of overfitting; this was the bootstrap classifier using USDCAD validation data. 

The results of the classification system which used neither of the techniques to reduce 

overfitting saw two occurrences of overfitting; these were the individual classifiers using 

AUDUSD and USDCAD validation data. 

Unfortunately it is not clear which Adaboost iteration from the validation dataset results 

should be chosen for selecting a classifier with the best trade-off between bias and variance. 

The results show that choosing a classifier that has overfitted on validation data does not 

necessarily translate to inferior performance on outsample data. The accuracy, precision, 

negative predictive value and specificity values of the classifiers using outsample data 

converge irrespective of the overfitting that occurred in the validation dataset. Choosing an 

Adaboost iteration where the classifier’s performance starts to converge is likely to yield a 

classifier with the best trade-off between bias and variance. Choosing a classifier after 

further iterations is likely to increase the chance of overfitting. 

Classifying bad traders is one of the main focuses of this thesis, and correctly classifying and 

identifying unprofitable technical analysis interpretations is an important step towards 

building a system to detect bad traders. The classification system which used the bootstrap 

aggregation and feature-bagging technique performed best at classifying unprofitable 

technical analysis interpretations and identifying unprofitable technical analysis 

interpretations from the outsample dataset. At the 200th iteration of the Adaboost 

algorithm, the bootstrap and feature-bagging classification system achieved an 𝐹1 score 

(derived from the negative predictive value and specificity) of 0.66 and 0.69 for validation 

data and outsample respectively. The individual Adaboost classifier classification system 

using validation and outsample data achieved 0.59 and 0.67. The bootstrap classification 

system using validation and outsample data achieved 0.62 and 0.67. The differences in 𝐹1 



219 
 

score performance using outsample data are not evidently significant. If the validation 

dataset was used as a form of outsample data, instead of using the validation dataset to pick 

an ‘optimal’ iteration, then the bootstrap and feature-bagging classification system achieved 

a 0.07 and 0.04 𝐹1 score increase compared to the individual classification system and the 

bootstrap classification system respectively. The specificity results of each classification 

system saw the biggest differences. At the 200th iteration of the Adaboost algorithm, the 

specificity is 0.52 for the individual classifier classification system, 0.57 for the bootstrap 

classifier classification system and 0.64 for the bootstrap and feature-bagging classification 

system. The negative predictive value results show no significant difference between the 

classification systems on outsample data. 

The precision values of the classification system using the bootstrap aggregation and 

feature-bagging technique were slightly better but not significantly better than the other 

classification systems. The recall values of individual classifiers without any techniques to 

reduce overfitting were slightly better but not significantly better than the other 

classification systems. Classification systems using the bootstrap aggregation and feature-

bagging technique or just the bootstrap aggregation technique did not significantly improve 

the precision or recall values compared to the individual classifier classification system.  

The classification systems are better at classifying and identifying unprofitable technical 

analysis interpretations than profitable technical analysis interpretations. This may be 

because some of the randomly created technical analysis interpretations are obviously bad. 

(An example might be one which is unprofitable on validation data, placed only two trades 

and has a large drawdown). Bad traders may deviate from their trading systems if they are 

experiencing tilt (fatigue, stress, greed, etc. which can introduce human errors) and the 

classification systems should be able to detect bad trading decisions via the trader’s 

performance metrics. 

It is important to observe that an approach that produces results better than random is 

encouraging, and so the results shown in this chapter indicate that the Adaboost classifier 

approach is suitable for classifying and identifying ‘bad’ technical analysis interpretations. 

The fact that it works well for classifying and identifying bad technical analysis 

interpretations matches well the goal of this thesis, and hence the Adaboost classifier with 



220 
 

bootstrap aggregation and feature-bagging is recommended (which achieved a 12% and 7% 

increase in specificity performance compared to individual Adaboost classifiers and the 

bootstrap classification systems). This constitutes a first model of traders, in which traders 

are represented simply as basing decisions on a single technical analysis interpretation. To 

extend this model, the next chapter will adopt a similar approach to exploring the 

classification of trading strategies composed of multiple technical analysis interpretations. 
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Chapter 9 – Classifying Trading Strategies using Adaboost and Dataset 

Balancing 

The previous chapter investigated the performance of Adaboost-based classification 

systems in classifying profitable and unprofitable individual technical analysis 

interpretations. It was found that the best classification system used the bootstrap 

aggregation and feature bagging techniques, these comprised the only classification system 

that avoided the overfitting seen by the other tested classifications. It was also found that 

the validation dataset which is used to spot the overfitting of classifiers did not pinpoint an 

exact iteration at which to choose a classifier. 

This chapter investigates the performance of classification systems for classifying profitable 

and unprofitable trading strategies that are more complex than individual technical analysis 

interpretations. The successful bootstrap aggregation and feature bagging techniques are 

again employed. An investigation is also presented into the performance differences 

between classification systems derived from a training dataset with roughly equal numbers 

of profitable and unprofitable trading strategies (termed 'balanced' datasets) and those 

derived from 'imbalanced' training datasets. 

9.1 Datasets and Trading Strategy Generation 

The previous chapter created classifiers using performance metrics derived from the trades 

of single technical analysis interpretations. In this chapter, performance metrics are derived 

from trading strategies which combine individual technical analysis interpretations in 

majority vote, as documented in Section 5.2.1. It is important to note that the size of a 

trading strategy is the number of technical analysis interpretations the trading strategy 

contains. The performance of classification systems using trading strategies that contain 

either 1, 3, 5, 11 or 21 technical analysis interpretations is investigated. 

This chapter investigates the effect on the performance of classification system of differing 

balances between profitable and unprofitable strategies in the training datasets employed 

(The assessment of whether a trading strategy is profitable follows the approach to trading 

according to a strategy that is explained in Section 8.1.3)  For imbalanced datasets (skewed 

towards either profitable or unprofitable strategies), technical analysis interpretations are 
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combined randomly in majority vote so that a variable proportion of profitable and 

unprofitable are created. For the balanced datasets, equal numbers of profitable and 

unprofitable trading strategies are created by combining technical analysis interpretations 

randomly in majority vote until equal numbers of profitable and unprofitable trading 

strategies are found. 

The 7 foreign exchange markets and the segments used for training, validation and 

outsample market datasets are again those outlined in Section 8.1.2. A collection of 10,000 

trading strategies is traded on the training, validation and outsample datasets to produce 

performance metrics that are used to train the classification system, choose an optimal 

classification system iteration and test the classification system. 

To summarise, a collection of 10,000 trading strategies are created for each of the 7 foreign 

exchange markets and trading strategy sizes. The 10,000 trading strategies are either  

1. Randomly created for the imbalanced training dataset configuration or 

2. Are first traded on the training dataset to ensure that equal numbers of profitable 

and unprofitable trading strategies are created for the balanced training dataset 

configuration. 

In total, 70 classification systems are created. 

9.2 Imbalanced Training Dataset 

Tables 25 and 26 show the maximum number of trading strategies that were classified as 

profitable across all iterations of the Adaboost algorithm for each classification system on 

imbalanced training, validation and outsample datasets (each dataset contains the same 

10,000 trading strategies). In other words, the number of trading strategies classified as 

profitable is considered at each of the 200 iterations of the Adaboost algorithm, and the 

maximum of these numbers is taken, regardless of whether those classifications are 

consistent or confirmed at the end of the run. The cells that are highlighted in orange 

indicate that fewer than 200 trading strategies were classified as profitable during the 

creation of the classification system, identifying collections that may lead to unreliable 

results. 
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The classification systems using NZDUSD and USDCHF training data derived from trading 

strategies of size 11 and 21 did not classify many or any trading strategies as profitable, 

except for the system using NZDUSD outsample data derived from trading strategies of size 

11 which classified 1,131 trading strategies as profitable. Classification systems for other 

markets using outsample data derived from trading strategies of those sizes found a much 

larger proportion to be profitable. The classification systems using NZDUSD and USDCHF 

training data derived from trading strategies of size 5 classified only 153 and 75 trading 

strategies as profitable, respectively. These two classification systems classified significantly 

fewer trading strategies as profitable using validation and outsample data compared to the 

classification systems using the other markets and validation and outsample datasets 

derived from trading strategies of size 5; these all classified above 7,900 trading strategies 

as profitable. 

As it is possible for classification systems to classify all trading strategies as profitable during 

the initial iterations of the Adaboost algorithm, values in the table that are close to 10,000 

do not indicate that the classification system has classified almost all trading strategies as 

profitable at the end of 200 iterations. At a later iteration of the Adaboost algorithm, the 

classifier may learn to correct the misclassifications of the previous classifier at the previous 

iteration. Very low values for the number of strategies classified as profitable stand out as 

unusual, and may indicate that the classifier is failing to learn how to classify trading 

strategies as profitable (for a given market, strategy size, and the corresponding collection 

of 10,000 trading strategies). 
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1 3 5 

 
Training Validation Outsample Training Validation Outsample Training Validation Outsample 

AUDUSD 2068 2757 2281 4612 6942 4647 7982 9168 9044 

EURUSD 5007 5326 3941 9333 9849 8295 9613 9997 9970 

GBPUSD 6990 7787 3342 9783 9975 9906 9942 9996 9997 

NZDUSD 957 1429 904 453 2253 2280 153 769 1392 

USDCAD 3202 4214 2559 8071 9111 9978 9271 9992 9997 

USDCHF 884 2312 1495 233 8416 1796 75 932 338 

USDJPY 8600 8920 8902 9908 9871 9974 9983 9999 9996 

Table 25: Maximum number of trading strategies classified as profitable for each trading 
strategy size, market and for imbalanced datasets (1 of 2) 

 
11 21 

 
Training Validation Outsample Training Validation Outsample 

AUDUSD 9136 9544 9651 9286 7210 9346 

EURUSD 9834 10000 10000 9786 9978 10000 

GBPUSD 9994 10000 10000 9999 10000 9998 

NZDUSD 11 168 1131 0 1 107 

USDCAD 9741 9696 9998 9733 9008 9990 

USDCHF 22 47 9 0 66 2 

USDJPY 9998 9977 9997 9997 9929 10000 

Table 26: Maximum number of trading strategies classified as profitable for each trading 
strategy size, market and for imbalanced datasets (2 of 2) 

Tables 27 and 28 show the maximum numbers of trading strategies that were classified as 

unprofitable across all iterations of the Adaboost algorithm. The cells that are highlighted in 

red indicate that fewer than 200 trading strategies were classified as unprofitable during the 

creation of the classification system. The cells that are highlighted orange indicate that 

fewer than 200 trading strategies were classified as profitable as copied from Tables 25 and 

26 (to assist in identifying classification systems that did not classify enough profitable or 

unprofitable trading strategies). 

The classification systems using EURUSD, GBPUSD and USDJPY training data derived from 

trading strategies of size 11 or 21 did not classify many trading strategies as unprofitable in 

either the training dataset or outsample dataset. For systems using GBPUSD validation data 

derived from trading strategies of size 11 and 21, only a few trading strategies were 

classified as unprofitable. The classification systems using GBPUSD and USDJPY training data 

derived from trading strategies of size 5 also classified fewer than 200 trading strategies 

respectively as unprofitable, and only a maximum of 170 and 94 trading strategies as 
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unprofitable using the validation dataset. Similarly at size 5, the classification system using 

USDJPY outsample data only classified a maximum of 123 trading strategies as unprofitable.  

 
1 3 5 

 
Training Validation Outsample Training Validation Outsample Training Validation Outsample 

AUDUSD 6018 7929 8283 4692 4746 6904 2521 2940 4363 

EURUSD 4282 5560 7894 1693 2221 5205 566 847 1533 

GBPUSD 2993 3077 7083 557 1125 4196 71 170 1478 

NZDUSD 9149 9288 9310 9802 9640 8660 9983 9972 9723 

USDCAD 6226 7950 7944 2492 2555 3776 1192 759 744 

USDCHF 9473 9258 9263 9956 4411 8663 9999 9856 9997 

USDJPY 2333 3211 3272 289 361 227 120 94 123 

Table 27: Maximum number of trading strategies classified as unprofitable for each 
trading strategy size, market and for imbalanced datasets (1 of 2) 

 
11 21 

 
Training Validation Outsample Training Validation Outsample 

AUDUSD 1164 2329 4479 498 4114 1278 

EURUSD 5 427 0 130 849 0 

GBPUSD 32 47 61 4 33 185 

NZDUSD 9997 9985 9380 10000 9998 9996 

USDCAD 394 456 87 339 2288 20 

USDCHF 9999 10000 9998 10000 10000 10000 

USDJPY 1 375 1 23 1274 0 

Table 28: Maximum number of trading strategies classified as unprofitable for each 
trading strategy size, market and for imbalanced datasets (2 of 2) 

The numbers of trading strategies classified as profitable or unprofitable is tiny in a few 

classification systems, in particular for systems that use a training dataset derived from 

trading strategies containing 11 or 21 technical analysis interpretations. The classification 

systems in the tables denoted by the highlighted cells may have been created from a 

training dataset with a significant imbalance in the number of profitable and unprofitable 

trading strategies, which in turn may have affected the ability of the systems to learn their 

classifications.  

To investigate this further, Table 29 shows the numbers of trading strategies that were 

profitable, unprofitable and neither profitable nor unprofitable for each dataset (using the 

method of trading described in Section 8.1.3). The training, validation and outsample 

datasets derived from trading strategies of size 1, 3 or 5 contain healthy numbers of both 

profitable and unprofitable trading strategies, but less consistency for sizes 11 and 21. 
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1 3 5 11 21 

  
Profitable Unprofitable Neither Profitable Unprofitable Neither Profitable Unprofitable Neither Profitable Unprofitable Neither Profitable Unprofitable Neither 

AUDUSD 

Training 3170 4590 2240 4858 3877 1265 5794 3323 883 6782 2509 709 7269 2101 630 

Validation 2497 7390 113 2579 7413 8 2434 7563 3 2398 7598 4 2492 7508 0 

Outsample 3006 6916 78 2646 7353 1 2573 7427 0 2036 7963 1 1463 8536 1 

EURUSD 

Training 4979 3521 1500 7409 1973 618 8302 1312 386 9140 694 166 8863 923 214 

Validation 2312 7624 64 1320 8677 3 878 9122 0 395 9605 0 184 9816 0 

Outsample 2104 7859 37 1148 8850 2 804 9195 1 245 9755 0 51 9949 0 

GBPUSD 

Training 6087 3079 834 7786 2032 182 8409 1533 58 9158 836 6 9544 455 1 

Validation 2184 7663 153 1469 8522 9 1050 8946 4 403 9597 0 138 9862 0 

Outsample 3798 5938 264 4190 5785 25 4473 5524 3 3424 6576 0 1822 8176 2 

NZDUSD 

Training 2458 7122 420 1998 7955 47 1588 8406 6 854 9145 1 536 9464 0 

Validation 2936 6815 249 3747 6243 10 4276 5721 3 5274 4726 0 5707 4291 2 

Outsample 5171 4625 204 5721 4269 10 5898 4101 1 7012 2988 0 7799 2198 3 

USDCAD 

Training 3988 4206 1806 5948 3249 803 6906 2681 413 7952 1802 246 8331 1496 173 

Validation 4110 5792 98 4886 5114 0 5171 4828 1 5706 4294 0 5578 4421 1 

Outsample 3325 6419 256 4531 5455 14 5209 4788 3 5323 4676 1 4993 5007 0 

USDCHF 

Training 1513 8368 119 884 9115 1 546 9454 0 182 9817 1 31 9969 0 

Validation 2074 7761 165 1366 8631 3 907 9093 0 384 9616 0 121 9879 0 

Outsample 2301 7542 157 1959 8035 6 1646 8354 0 1169 8829 2 758 9242 0 

USDJPY 

Training 6383 3281 336 7888 2055 57 8492 1491 17 8982 1016 2 8991 1006 3 

Validation 2141 7810 49 1506 8490 4 1156 8844 0 574 9425 1 285 9714 1 

Outsample 4109 5840 51 4817 5177 6 5427 4570 3 6244 3753 3 6983 3017 0 

Table 29: Number of profitable, unprofitable and neither profitable nor unprofitable trading strategies for each scenario 
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Now focusing on those classification systems that classified fewer than 200 trading 

strategies as profitable or unprofitable (from Tables 25, 26, 27 and 28), Table 30 shows 

again the numbers of demonstrably profitable, unprofitable and neither profitable nor 

unprofitable trading strategies (as copied from Table 29) with coloured cells linking back to 

the classification results. The highlighted cells indicate whether the classification system 

classified fewer than 200 trading strategies as profitable (orange) or fewer than 200 trading 

strategies as unprofitable (red). The orange highlighted cells for the USDCHF dataset show 

that the number of unprofitable trading strategies outweighs the number of profitable 

trading strategies. The training datasets which are highlighted orange have more 

unprofitable trading strategies than profitable. Similarly, the training datasets which are 

highlighted red have more profitable than unprofitable. 

The imbalance in the proportion of profitable and unprofitable trading strategies in the 

training dataset seems to have produced classification systems that favour one classification 

over the other. For example, the classification system using GBPUSD training data derived 

from trading strategies of size 21 contained 9,544 profitable trading strategies and 455 

unprofitable trading strategies, and fewer than 200 trading strategies were classified as 

unprofitable during training for all iterations of the Adaboost algorithm. The corresponding 

validation and outsample datasets contained 138 and 1,822 profitable trading strategies and 

9,862 and 8,176 unprofitable trading strategies respectively. The classifier classified fewer 

than 200 trading strategies as unprofitable even though the number of unprofitable trading 

strategies significantly outweighed the number of profitable trading strategies. This may 

support the view that a lack of balance of profitable and unprofitable trading strategies 

impacts on the ability of a classifier to learn effectively, leading to experimentation with 

balanced datasets in the next section. 

  



228 
 

 

Table 30: Number of profitable, unprofitable and neither profitable nor unprofitable 
trading strategies for each scenario 

 

9.3 Balanced Training Dataset 

Tables 31 and 32 show the maximum numbers of trading strategies that were classified as 

profitable across all iterations of the Adaboost algorithm (as in Section 9.2, but for balanced 

datasets). The imbalanced training dataset produced some classification systems that 

classified fewer than 200 trading strategies as profitable (Tables 25 and 26). The balanced 

training dataset produced classifiers that classified at least 620 trading strategies as 

profitable across all iterations of the Adaboost algorithm on training, validation and 

outsample data. 

  

  
5 11 21 

  
Profitable Unprofitable Neither Profitable Unprofitable Neither Profitable Unprofitable Neither 

EURUSD 

Training       9140 694 166 8863 923 214 

Validation 
   

395 9605 0 184 9816 0 

Outsample 
   

245 9755 0 51 9949 0 

GBPUSD 

Training 8409 1533 58 9158 836 6 9544 455 1 

Validation 1050 8946 4 403 9597 0 138 9862 0 

Outsample 4473 5524 3 3424 6576 0 1822 8176 2 

NZDUSD 

Training 1588 8406 6 854 9145 1 536 9464 0 

Validation 4276 5721 3 5274 4726 0 5707 4291 2 

Outsample 5898 4101 1 7012 2988 0 7799 2198 3 

USDCAD 

Training       7952 1802 246 8331 1496 173 

Validation 
   

5706 4294 0 5578 4421 1 

Outsample 
   

5323 4676 1 4993 5007 0 

USDCHF 

Training 546 9454 0 182 9817 1 31 9969 0 

Validation 907 9093 0 384 9616 0 121 9879 0 

Outsample 1646 8354 0 1169 8829 2 758 9242 0 

USDJPY 

Training 8492 1491 17 8982 1016 2 8991 1006 3 

Validation 1156 8844 0 574 9425 1 285 9714 1 

Outsample 5427 4570 3 6244 3753 3 6983 3017 0 
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1 3 5 

 
Training Validation Outsample Training Validation Outsample Training Validation Outsample 

AUDUSD 6226 5199 5040 5393 5093 3563 5483 5191 3289 

EURUSD 7984 9780 9856 5972 7315 7758 6185 7633 8073 

GBPUSD 5248 5498 4973 4788 3641 2184 4764 3802 1333 

NZDUSD 4763 8726 8038 5425 8973 8679 5212 9019 8453 

USDCAD 7487 5914 5340 7969 8088 8182 7223 7832 8347 

USDCHF 5015 8818 7795 5612 8259 9285 5714 8428 9561 

USDJPY 5764 5215 5644 5928 6920 5012 6518 7615 5959 

Table 31: Maximum number of trading strategies classified as profitable for each trading 
strategy size, market and for balanced datasets (1 of 2) 

 

 
11 21 

 
Training Validation Outsample Training Validation Outsample 

AUDUSD 5842 3630 6125 5116 2200 4783 

EURUSD 6154 9828 9994 4671 9456 10000 

GBPUSD 5120 3723 2349 5259 4733 4838 

NZDUSD 5506 8984 7905 5475 8403 8226 

USDCAD 5770 4515 4944 4729 620 854 

USDCHF 5605 6627 8752 5352 5979 7439 

USDJPY 5068 6160 9895 4299 1359 9998 

Table 32: Maximum number of trading strategies classified as profitable for each trading 
strategy size, market and for balanced datasets (2 of 2) 

Tables 33 and 34 show the maximum numbers of trading strategies that were classified as 

unprofitable across all iterations of the Adaboost algorithm. While the imbalanced training 

datasets produced some classification systems that classified fewer than 200 trading 

strategies as unprofitable (Tables 25 and 26), the balanced training datasets produced 

classifiers that classified at least 1097 trading strategies as unprofitable across all iterations 

of the Adaboost algorithm on training, validation and outsample data. The only exception 

was the classification system using EURUSD outsample data, derived from trading strategies 

of size 21, which saw the maximum number of trading strategies classified as unprofitable 

as 1. 
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1 3 5 

 
Training Validation Outsample Training Validation Outsample Training Validation Outsample 

AUDUSD 4865 5457 5912 5492 5163 6949 5377 5418 7406 

EURUSD 8564 8886 8214 5272 4757 6222 5105 4379 5590 

GBPUSD 5353 7680 9339 6108 7153 9507 5636 7305 9405 

NZDUSD 6123 5014 2744 5726 3967 2891 5828 5096 3647 

USDCAD 4937 6189 6872 5465 6483 6754 4735 4871 4501 

USDCHF 5272 5366 5285 4910 3767 4078 5140 2796 3582 

USDJPY 4802 6646 6361 4317 6422 6752 4385 5491 6340 

Table 33: Maximum number of trading strategies classified as unprofitable for each 
trading strategy size, market and for balanced datasets (1 of 2) 

 

 
11 21 

 
Training Validation Outsample Training Validation Outsample 

AUDUSD 4855 8066 7376 5191 9058 7247 

EURUSD 5365 3508 1097 5874 2297 1 

GBPUSD 5305 6855 8369 5252 6682 8147 

NZDUSD 5299 3701 3544 6193 7717 9686 

USDCAD 5516 8670 8537 5975 9836 9962 

USDCHF 5011 4728 3295 4758 4936 3533 

USDJPY 5660 6394 3499 6684 9900 1794 

Table 34: Maximum number of trading strategies classified as unprofitable for each 
trading strategy size, market and for balanced datasets (2 of 2) 

Figure 156 shows the maximum numbers of profitable and unprofitable trading 

strategies classified across all iterations of the Adaboost algorithm on validation data 

and also on outsample data, for every classification system, plotting the numbers for 

balanced datasets in blue and imbalanced in red. The results show that the classification 

systems trained using the imbalanced training dataset favoured labelling most of the 

trading strategies as either profitable or unprofitable. The balanced training dataset 

however tended not to label all, or nearly all, trading strategies as profitable or 

unprofitable at any iteration. 
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Figure 156: The maximum number of trading strategies classified as profitable and 
unprofitable for every classification using the validation and outsample datasets 

Table 35 shows the numbers of trading strategies that were profitable, unprofitable and 

neither profitable nor unprofitable for each balanced dataset (a counterpart to Table 29 

for imbalanced datasets, again using the method of trading explained in Section 8.1.3). 

The numbers of profitable trading strategies are lower in the EURUSD, GBPUSD, USDCHF 

and USDJPY validation datasets derived from trading strategies of size 21, and for the 

EURUSD outsample dataset derived from trading strategies of size 21. The EURUSD 

outsample dataset derived from trading strategies of size 21 contained only 11 

profitable trading strategies, the lowest found. Note that the classification system using 

the EURUSD outsample dataset derived from trading strategies of size 21 classified only 

one trading strategy as unprofitable (Table 34) when 9,989 of the trading strategies 

were unprofitable. 

The trading behaviour of a trading strategy with 1 technical analysis interpretation is 

likely to be consistent in the future compared to the trading behaviour of 21 technical 

analysis interpretations in majority vote. Trading strategies that consist of 21 technical 

analysis interpretations contributing to the final decision of the trading strategy may be 

too complex and behave differently in the future because of changing market 

conditions. Additionally, good combinations of technical analysis algorithms may be 
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present in the trading strategy but can also contain randomly performing technical 

analysis interpretations that add noise to the majority vote decision mechanism of the 

trading strategy. 

Comparing the classification systems built from balanced and imbalanced datasets, the 

classification systems built using the imbalanced dataset tended to produce 

classification systems that classified a very low percentage of the validation and 

outsample dataset as a particular classification (profitable or unprofitable) and the a 

very high percentage as the other classification. This is especially true for classification 

systems that used a training dataset of performance metrics derived from trading 

strategies with large numbers of technical analysis interpretations in majority vote.
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1 3 5 11 21 

  
Profitable Unprofitable Neither Profitable Unprofitable Neither Profitable Unprofitable Neither Profitable Unprofitable Neither Profitable Unprofitable Neither 

AUDUSD 

Training 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 

Validation 2995 6887 118 2866 7129 5 2506 7491 3 2318 7679 3 2254 7746 0 

Outsample 3605 6347 48 3614 6385 1 3563 6435 2 3688 6309 3 3714 6285 1 

EURUSD 

Training 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 

Validation 2514 7424 62 1837 8162 1 1464 8536 0 667 9333 0 241 9758 1 

Outsample 1784 8213 3 1047 8953 0 678 9322 0 148 9852 0 11 9989 0 

GBPUSD 

Training 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 

Validation 2215 7773 12 1543 8455 2 1056 8943 1 405 9595 0 79 9921 0 

Outsample 3814 6184 2 4554 5445 1 4868 5132 0 4181 5819 0 2373 7627 0 

NZDUSD 

Training 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 

Validation 2788 7198 14 3629 6370 1 4245 5753 2 4330 5670 0 2938 7062 0 

Outsample 5454 4534 12 5375 4622 3 5729 4268 3 5680 4319 1 5852 4147 1 

USDCAD 

Training 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 

Validation 5091 4880 29 6097 3901 2 6820 3180 0 8062 1937 1 8685 1315 0 

Outsample 3699 6249 52 4618 5382 0 5340 4660 0 5791 4208 1 6021 3979 0 

USDCHF 

Training 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 

Validation 2751 7198 51 2285 7711 4 1920 8077 3 1147 8853 0 621 9379 0 

Outsample 3113 6766 121 3075 6921 4 2820 7179 1 2490 7509 1 1919 8080 1 

USDJPY 

Training 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 5000 5000 0 

Validation 1904 8091 5 1424 8576 0 1045 8955 0 308 9692 0 136 9864 0 

Outsample 4437 5489 74 5440 4556 4 6296 3703 1 7510 2489 1 8187 1812 1 

Table 35: Number of profitable, unprofitable and neither profitable nor unprofitable trading strategies for each scenario
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9.4 Classification System Results 

This section explores the differences between the performance of classification systems that 

are created from an imbalanced training dataset and a balanced training dataset. The 

explored classification systems are outlined in Section 9.1. The figures in this section 

average the binary classification performance results of the 7 foreign exchange markets. 

Some of the classification systems created from an imbalanced training dataset (Section 9.2) 

classified only a few or none of the trading strategies as profitable or unprofitable. This has 

led to misleading results where classification systems have skewed the average 

performance values by producing continuous zeros or ones or producing values that 

oscillate because only a few trading strategies were classified. In such cases, the 

classification system produced ‘divide by zero’ values which cannot be averaged. The 

performance results from the imbalanced training datasets derived from trading strategies 

containing 11 or 21 technical analysis interpretations are removed from all graphs except 

for the accuracy graphs. 

Figure 157 shows the average accuracy of classification systems derived from imbalanced 

training datasets. The classification systems achieved better average accuracy values using 

outsample data compared to using validation data. The classification systems derived from 

trading strategies of size 1 outperformed the others on both validation and outsample 

datasets. For classification systems using validation data derived from trading strategies 

with three or more technical analysis interpretations, average accuracy drops to 0.4 or 

below, whereas for the outsample datasets all are above 0.4. All classification systems using 

outsample data, except those using outsample data derived from trading strategies of size 

1, converge to roughly the same average accuracy value of between 0.38 and 0.4. 

The average accuracy results show no instances of overfitting that lead to a decrease in 

accuracy. Slight dips in accuracy performance are observed in the classification systems 

using validation data derived from trading strategies of size 1 and 3, followed by recovery. 

For size 1, the analysis in Chapter 8 established the use of bootstrap aggregation and 

feature bagging to be responsible for this recovery, and it seems reasonable to speculate 

that these methods may be the cause of the recovery in size 3 as well. 
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The classification systems using outsample data derived from trading strategies of sizes 1 

and 3 performed better than random with accuracy values of 0.6 and 0.54 at the 200th 

iteration of the Adaboost algorithm. 

 

Figure 157: The average accuracy of classification systems using an imbalanced training 
dataset 

Figure 158 shows the average accuracy of classification systems derived from balanced 

training datasets. The average accuracy values of classification systems derived from trading 

strategies of all sizes are closer together than the classification systems using an imbalanced 

training dataset, with all results being nearly random or worse than random by the 200th 

iteration; the lowest results occur for sizes 11 and 12 on validation data, and the system for 

size 21 on outsample data was close behind. 

While the use of balanced datasets seems to have avoided classifications that perform 

extremely badly, the best accuracy results occur for trading strategies containing only one 

technical analysis interpretation which achieved a higher average accuracy value using a 

slightly imbalanced training dataset (Table 29). The numbers of profitable and unprofitable 

trading strategies in the imbalanced and balanced training datasets are not significantly 

different for this size. In contrast, classification systems using an imbalanced training dataset 

derived from trading strategies of size 11 or 21 had larger inequalities, compared to the 
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balanced datasets, in the numbers of profitable and unprofitable trading strategies, 

accounting for the greater differences in average accuracy value. 

 

Figure 158: The average accuracy of classification systems using a balanced training 
dataset 

Figure 159 shows the average precision of classification systems derived from imbalanced 

training datasets. All average precision values are worse than random. The average 

precision of classification systems derived from trading strategies containing one technical 

analysis interpretation outperformed the other classification systems. 
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Figure 159: The average precision of classification systems using an imbalanced training 
dataset 

Figure 160 shows the average precision of classification systems derived from balanced 

training datasets, and again all average precision values are also worse than random and 

again the classification systems derived from trading strategies containing one technical 

analysis interpretation outperformed the other classification systems. The classification 

systems using a balanced training dataset achieve an average precision that clusters around 

0.25 and 0.35 average precision for validation and outsample data respectively. 
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Figure 160: The average precision of classification systems using a balanced dataset 

The average recall measure results are shown in Figure 161 for classification systems 

derived from an imbalanced training dataset. The systems using datasets derived from 

trading strategies with one technical analysis interpretation have a lower average recall 

value than the classification systems using datasets derived from trading strategies of sizes 3 

and 5. Classification systems using trading strategies of size 3 and 5 achieve better than 

random performance and are better at identifying profitable trading strategies when using 

validation data than when using outsample data. 
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Figure 161: The average recall of classification systems using an imbalanced dataset 

The corresponding recall results for the balanced training datasets are shown in Figure 162. 

The average recall values of the classification system using datasets derived from trading 

strategies that contain one technical analysis interpretation are approximately 0.5. The 

same classification systems using an imbalanced training dataset perform far worse. 

However, the imbalanced training datasets which contained trading strategies of size 3 or 5 

outperformed all classification systems using a balanced dataset. This may be because the 

classification systems trained using the imbalanced dataset are more likely to be bias 

towards a particular classification such as profitable. 
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Figure 162: The average recall of classification systems using a balanced dataset 

Figure 163 shows the average negative predictive value of classification systems derived 

from imbalanced training datasets, and all systems can be seen to perform better than 

random. The average negative predictive value is higher in the systems using validation data 

rather than outsample data. 

 

Figure 163: The average negative predictive value of classification systems using an 
imbalanced dataset 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1

10 19 28 37 46 55 64 73 82 91

10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

A
ve

ra
ge

 r
ec

a
ll 

Adaboost iteration 

1 - Validation

1 - Outsample

3 - Validation

3 - Outsample

5 - Validation

5 - Outsample

11 - Validation

11 - Outsample

21 - Validation

21 - Outsample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

10 19 28 37 46 55 64 73 82 91

10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

A
ve

ra
ge

 n
eg

at
iv

e 
p

re
d

ic
ti

ve
 v

al
u

e
 

Adaboost iteration 

1 - Validation

1 - Outsample

3 - Validation

3 - Outsample

5 - Validation

5 - Outsample



241 
 

The corresponding average negative predictive values for systems derived from balanced 

training datasets are presented in Figure 164. These values are higher for classification 

systems derived from validation data than for those derived from outsample data; the 

values for those two categories appear to cluster close together. 

 

 

Figure 164: The average negative predictive value of classification systems using a 
balanced dataset 

Figure 165 shows the average specificity values of classification systems derived from 

imbalanced training datasets. The average specificity values from classification systems 

using datasets derived from trading strategies with 1 technical analysis interpretation 

identified 64% and 73% of the unprofitable trading strategies in the validation and 

outsample datasets, respectively, at the 200th iteration. At that iteration, the average 

specificity values of classification systems using datasets derived from trading strategies of 

size 5 and from the validation dataset derived from trading strategies of size 3 identified less 

than 38% of the unprofitable technical analysis interpretations in their respective datasets. 

Also at the 200th iteration, the classification systems using outsample data derived from 

trading strategies of size 3 achieved an average specificity value of 0.52, indicating only 

random identification of unprofitable trading strategies. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 19 28 37 46 55 64 73 82 91

10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

A
ve

ra
ge

 n
eg

at
iv

e 
p

re
d

ic
ti

ve
 v

al
u

e
 

Adaboost iteration 

1 - Validation

1 - Outsample

3 - Validation

3 - Outsample

5 - Validation

5 - Outsample

11 - Validation

11 - Outsample

21 - Validation

21 - Outsample



242 
 

 

Figure 165: The average specificity of classification systems using an imbalanced dataset 

Figure 166 shows the average specificity of classification systems derived from a balanced 

training dataset. At the 200th iteration of the Adaboost algorithm all average specificity 

values are 0.52 or less; the values here are closer together than for the imbalanced dataset. 

 

Figure 166: The average specificity of classification systems using a balanced dataset 
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9.5 Summary 

The main focus of this thesis is to detect poor traders by using the performance metrics 

obtained from trading strategies. The average negative predictive value and average 

specificity results are important in summarising a classification system’s performance on 

unprofitable trading strategies. For the balanced datasets, classification systems achieve 

average negative predictive values of roughly 0.6 and 0.75 for the validation dataset and 

outsample dataset at the 200th iteration of the Adaboost algorithm, and these classification 

systems are particularly good at classifying trading strategies as unprofitable. Unfortunately 

the average specificity results show that these classification systems identified only 53% of 

the unprofitable trading strategies at best. The validation dataset is used to identify the 

optimal iteration before a classification system overfits. However, the validation dataset has 

little bearing on the classification system’s subsequent performance on outsample data. 

The binary classification performance results of classification systems derived from a 

balanced dataset produce more reliable performance results compared to classification 

systems derived from an imbalanced dataset. Additionally, the performance results of 

classification systems using balanced training datasets from trading strategies of different 

sizes were more similar compared to classification systems trained from a imbalanced 

dataset. Only one classification system derived from a balanced dataset incorrectly classifies 

almost all trading strategies as profitable. Many of the classification systems derived from 

an imbalanced dataset, in particular datasets derived from trading strategies of sizes 11 and 

21, classify almost all the training dataset as either entirely profitable or entirely 

unprofitable. These classifiers went on to classify the trading strategies in the validation and 

outsample datasets as the same classification. These flawed classification systems were 

removed from the reported performance results to avoid reporting misleading results. The 

classification systems using the balanced datasets tend to have similar average performance 

values across validation and outsample datasets. 

Classification systems derived from an imbalanced dataset are unable to produce reliable 

classifiers from training datasets derived from trading strategies containing 5, 11 or 21 

technical analysis interpretations. Those using training datasets derived from trading 

strategies containing 1 or 3 technical analysis interpretations do not seem to have the same 

flaw of classifying a future dataset as all profitable or all unprofitable. This suggests that 
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trading strategies containing many technical analysis interpretations may be too complex to 

produce trading strategies that behave similarly in the future. These trading strategies may 

contain good combinations of technical analysis interpretations. However there may be 

technical analysis interpretations that add noise to the majority vote decision of the trading 

strategy. 

While the balanced datasets produce the most reliable classification systems and perform 

well at classifying unprofitable trading strategies, the results fall short of a sufficient 

mechanism for detecting poor traders on outsample data. The average negative predictive 

value for trading strategies of size 1, 3 and 5 are 0.63, 0.59 and 0.57 respectively at the 200th 

iteration at the Adaboost algorithm on outsample data which is better than random 

performance. The validation dataset is used to find an optimal iteration to choose a 

classification system that begins to converge. As financial markets are non-stationary 

(Schmitt, Chetalova, Schäfer, & Guhr, 2013) and change over time, the validation dataset 

which continues on from the market data used to create the training dataset is more likely 

to exhibit market conditions and behaviour of the training dataset. If the validation dataset 

can be used as a form of outsample dataset then the classification system achieves average 

negative predictive values between 0.73 and 0.8. 

The training datasets used so far are all derived from trading strategies using the same 

historical period of market data. Market conditions may be highly volatile or the market may 

be in a long term downtrend or uptrend, and hence the validation and outsample periods of 

market data may show different market conditions. To reduce this problem, a classification 

system should be created using a training dataset containing many market datasets or 

different periods of market data. A training dataset derived from different markets will be 

explored in the next chapter. 
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Chapter 10 – Classification Systems using Multimarket Training 

Datasets 

The previous chapter investigated the performance of Adaboost-based classification 

systems at classifying profitable and unprofitable trading strategies. Each classification 

system used the same bootstrap aggregation and feature bagging techniques to avoid 

overfitting. The experiments varied the number of technical analysis interpretations used in 

each trading strategy, and also investigated the performance of the classification systems 

using both imbalanced and balanced datasets. It was shown that imbalanced datasets had 

some tendency, particularly for strategies of larger size, to produce classification systems 

that incorrectly classified all trading strategies as profitable or all as unprofitable; balanced 

datasets reduced that tendency. In particular, classification systems created from an 

imbalanced training dataset derived from trading strategies containing 11 or 21 technical 

analysis interpretations were likely to have a greater difference between the number of 

profitable and unprofitable trading strategies. These systems also produced classifications 

that mimicked those made on the training dataset (for example, the classification system 

using a imbalanced training dataset derived from trading strategies of size 21 trading the 

GBPUSD market, had an overwhelming number of profitable trading strategies in the 

training dataset, then classified the validation and outsample dataset as also being 

predominately profitable, despite future datasets actually containing the opposite 

proportion of profitable and unprofitable trading strategies). It was also shown that the use 

of balanced datasets reduced the above problem, but in both balanced and imbalanced 

dataset cases it is important to note that the proportions of profitable and unprofitable 

strategies observed in the training dataset may not reflect the proportions in the validation 

and outsample dataset. 

As concluded from the previous chapter, market conditions may be highly volatile or the 

market may be in a long term downtrend or uptrend. Market conditions may therefore 

differ between the training dataset and future validation and outsample datasets. To 

attempt to reduce this problem, this chapter investigates classification systems that use a 

balanced dataset consisting of multiple sources of market data over the same time period. 

This chapter also investigates the use of trading strategies composed of different numbers 
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of technical analysis interpretations, and compares their results with classification systems 

derived from a balanced dataset using one market (from the previous chapter). 

10.1 Multimarket Datasets 

Previous experiments (Chapters 8 and 9) used a training dataset consisting of performance 

metrics derived from technical analysis interpretations or trading strategies trained on a 

single market. In this chapter the training dataset is built from performance metrics derived 

from trading strategies using all seven of the foreign exchange market datasets, AUDUSD, 

EURUSD, GBPUSD, NZDUSD, USDCAD, USDCHF or USDJPY. Each of the datasets contains 

10,000 randomly created trading strategies, using equal numbers of trading strategies 

derived from each of the foreign exchange market datasets. The strategies derived from 

each market are also balanced - selecting equal numbers of profitable and unprofitable 

strategies (establishing profitability on the training data relating to the segment of data for 

that market, by trading in the way described in Section 8.1.3). Each trading strategy is given 

a particular market from which to derive performance metrics, and uses the same market to 

calculate future performance on the validation and outsample datasets. 

10.2 Classification System Results 

Figure 167 shows the average accuracy performance of classification systems trained on 

multimarket data when used on the validation dataset, for trading strategies of different 

sizes. At the 200th iteration of the Adaboost algorithm, the classification system using the 

performance metrics derived from trading strategies of size 1 achieved an accuracy value of 

0.6. For sizes greater than 1, however, lower accuracy values are achieved, ranging from 

0.45 to 0.52. The equivalent results for the outsample dataset are presented in Figure 168. 

At the 200th iteration of the Adaboost algorithm, the classification systems using 

performance metrics derived from trading strategies of size 1, 3 and 5 achieved accuracy 

values of 0.56, 0.56 and 0.54 respectively. Those for size 7, 9, 11 and 21 achieved lower 

accuracy values (less than 0.47). These accuracy results suggest that performance metrics 

derived from smaller size trading strategies create better classification systems, and 

specifically of size 1 in relation to the validation dataset. 

Comparing the above accuracy results with those for classification systems which use only 

one market to derive performance metrics, in the previous chapter (Figure 158), it is clear 
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that the outsample accuracy values are better in the multimarket classification system. The 

validation accuracy values are similar for all classification systems using performance 

metrics derived from trading strategies of size 3 or above. At the 200th iteration of the 

Adaboost algorithm, the classification system using performance metrics derived from 

trading strategies of size 1 from many markets achieved an accuracy value of 0.6, whereas 

the same classification systems built from single markets achieved only an average accuracy 

value of 0.48. 

The validation dataset showed no optimal iteration for choosing the best classification 

system which would in turn lead to an optimal classification on outsample data. 

 

Figure 167: Accuracy of classification systems of different trading strategy sizes trained on 
multimarket data and used on validation data 
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Figure 168: Accuracy of classification systems of different trading strategy sizes trained on 
multimarket data and used on outsample data 

Figure 169 shows the average precision performance of classification systems trained on 

multimarket data when used on the validation dataset, for trading strategies of different 

sizes. At the 200th iteration of the Adaboost algorithm, the systems of size 1 achieved an 

average precision value of 0.35 which is higher than the results for systems using trading 

strategies of sizes greater than 1. The corresponding results on the outsample dataset are 

shown in Figure 170. At the 200th iteration of the Adaboost algorithm, the classification 

systems using performance metrics derived from trading strategies of size 1, 3 and 5 

achieved precision values of 0.43, 0.45 and 0.45 respectively. Those using trading strategies 

of size 7, 9, 11 and 21 achieved lower precision values (between 0.37 and 0.4). This again 

supports the view that performance metrics derived from trading strategies using fewer 

technical analysis interpretations create better classification systems. Using the precision 

results obtained from the validation dataset, classification systems appear to be more 

successful when derived from trading strategies of size 1. 

These outsample precision values are higher than the average precision values of the 

classification systems using individual markets (Figure 160 in the previous chapter). At the 

200th iteration of the Adaboost algorithm, all precision values of the classification systems 

using performance metrics derived from multiple markets are above 0.37; when using 

performance metrics derived from single markets, all average results are below 0.37 except 

for those from trading strategies of size 1 (average precision value 0.38). However, the latter 
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result is still bettered by the average precision value of 0.43 achieved in the classification 

systems using the same trading strategy configuration but performance metrics derived 

from multiple markets. Again, use of the multiple market dataset achieves better results 

but, in terms of precision, all the classification systems using validation and outsample data 

perform worse than random. The validation dataset showed no optimal iteration for 

choosing an optimal classification system on outsample data. 

 

 

Figure 169: Precision of classification systems of different trading strategy sizes trained on 
multimarket data and used on validation data 

 

Figure 170: Precision of classification systems of different trading strategy sizes trained on 
multimarket data and used on outsample data 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 9

17 25 33 41 49 57 65 73 81 89 97

10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

P
re

ci
si

o
n

 

Adaboost iteration 

1s

3s

5s

7s

9s

11s

21s

0

0.1

0.2

0.3

0.4

0.5

0.6

1 9

17 25 33 41 49 57 65 73 81 89 97

10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

P
re

ci
si

o
n

 

Adaboost iteration 

1s

3s

5s

7s

9s

11s

21s



250 
 

Figures 171 and 172 show the average recall performance of classification systems trained 

on multimarket data when used on the validation dataset and the outsample dataset 

respectively, for trading strategies of different sizes. During the initial iterations of the 

Adaboost algorithm, the precision values peak between the 10th and 20th iteration before 

each declining and converging to individual long-term values. This suggests that the 

validation dataset can be used to find an optimal classification on outsample data. 

The systems using performance metrics derived from trading strategies of size 21 achieved a 

higher recall value on both the validation and outsample datasets than the other 

classification systems. The recall performance of classification systems using the outsample 

dataset increases with the number of technical analysis interpretations per trading strategy. 

For validation data, average results are lowest when the performance metrics are derived 

from trading strategies of size 1, and highest when the performance metrics are derived 

from trading strategies of size 21. 

Comparing these recall results with the average recall results of classification systems each 

of which used only one market to derive performance metrics (see Figure 162 in the 

previous chapter), the recall values are similar. However, the recall value of the classification 

system using multiple markets has an optimum between the 10th and 20th iteration for 

selecting a classification system before the classification system overfits. 

At the 10th iteration of the Adaboost algorithm, the recall values are 0.55 or above and 0.5 

or above for all classification systems on validation data and outsample data respectively. 
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Figure 171: Recall of classification systems of different trading strategy sizes trained on 
multimarket data and used on validation data 

 

Figure 172: Recall of classification systems of different trading strategy sizes trained on 
multimarket data and used on outsample data 

Figure 173 shows the average negative predictive value performance of classification 

systems trained on multimarket data when used on the validation dataset for trading 

strategies of different sizes. The values for each classification system are at their highest at 

around the 10th iteration of the Adaboost algorithm, after which they each either decline or 

converge. Systems using performance metrics derived from trading strategies of size 21 

outperformed the other classification systems in this measure, with a value of roughly 0.85 

around the 10th iteration of the Adaboost algorithm. All of the negative predictive values 

across all 200 iterations of the Adaboost algorithm are above 0.72. Figure 174 presents the 
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equivalent results when applied to the outsample dataset. The average negative predictive 

values converge within a few iterations, unlike those of classification systems using 

validation data. The optimal classification system iteration chosen from the negative 

predictive value results obtained from validation data did not increase negative predictive 

value performance, in that all systems achieved about the same negative predictive value 

across all iterations of the Adaboost algorithm. 

Comparing these results with those of classification systems each of which use only one 

market to derive performance metrics (Figure 164 in the previous chapter), the negative 

predictive values at the 200th iteration of the Adaboost algorithm are similar when used on 

outsample data. The lowest average negative predictive value were the systems using 

performance metrics derived from trading strategies of size 21 that we using individual 

market datasets. The equivalent classification systems using multiple markets behaved 

similarly to the classification systems for other sizes. The negative predictive values of 

classification systems using validation data behaved similarly. Systems using performance 

metrics derived from trading strategies of size 11 and 21, however, did better when the 

performance metrics were sourced from multiple markets instead of a single market. 

 

Figure 173: Negative predictive value of classification systems of different trading strategy 
sizes trained on multimarket data and used on validation data 
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Figure 174: Negative predictive value of classification systems of different trading strategy 
sizes trained on multimarket data and used on outsample data 

Lastly, Figure 175 shows the average specificity performance of classification systems 

trained on multimarket data when used on the validation dataset, for trading strategies of 

different sizes. At the 200th iteration of the Adaboost algorithm, the specificity value of the 

classification system using performance metrics derived from trading strategies of size 1 is 

0.66 whereas the other classification systems have specificity values less than 0.54. Figure 

176 shows the corresponding results for the outsample dataset. The specificity values of the 

classification systems using performance metrics derived from trading strategies of size 1, 3 

and 5 achieve specificity values of 0.64, 0.64 and 0.6 respectively; the systems for sizes 7, 9, 

11 and 21, however, performed worse than random by this measure, obtaining specificity 

values less than 0.45.  The classification systems using performance metrics derived from 

trading strategies of size 21 had the lowest specificity value (0.32) at the 200th iteration of 

the Adaboost algorithm. 

Comparing these specificity values with the average specificity values of classification 

systems each of which use only one market to derive performance metrics (Figure 166 in 

the previous chapter), the specificity values of classification systems using trading strategies 

of size 1, 3 and 5 on outsample data were higher when using performance metrics built 

from multiple markets. At the 200th iteration of the Adaboost algorithm, classification 
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values of 0.6 or slightly higher, whereas the average specificity values are 0.52 or less for 

classification systems using performance metrics obtained from a single market. 

 

Figure 175: Specificity of classification systems of different trading strategy sizes trained 
on multimarket data and used on validation data 

 

 

Figure 176: Specificity of classification systems of different trading strategy sizes trained 
on multimarket data and used on outsample data 
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10.3 Summary 

The purpose of this chapter was to investigate whether classification systems derived from 

performance metrics obtained from multiple markets would outperform performance 

metrics derived from a single market. Trading strategies use a segment of market data to 

produce performance metrics for each dataset, and so it is possible that a market segment 

consists of only one market condition, for example high volatility or long-term downtrend. A 

classification system trained on one market may be biased towards classifying trading 

strategies as profitable if the trading strategy mimics the market conditions in that single 

market segment. Thus, the classification system would be unable to classify trading 

strategies if market conditions change. 

Classification systems using performance metrics that were sourced from multiple markets 

are shown to outperform classification systems using performance metrics sourced from 

only a single market. The classification systems using multiple markets produced the same 

or higher accuracy, precision, recall, negative predictive value and specificity values; 

although the negative predictive value results were marginally improved, this binary 

classification metric shows the best results overall, for both multimarket and single market 

data. These results suggest, as hoped, that using multiple markets over the same time 

period increases the chances that a variety of market conditions are observed by the 

classification system, so producing a classifier that has greater generality. 

The difference in the performance of classification systems using performance metrics 

derived from trading strategies of different sizes is interesting. In this chapter, performance 

metrics derived from trading strategies of size 1, which is equivalent to a technical analysis 

interpretation model, were better at classifying future performance. Compared to the other 

classification systems, the systems using performance metrics derived from trading 

strategies of size 1 had the best accuracy, precision and specificity values in the validation 

dataset, and the best negative predictive value in the outsample dataset. This classification 

system was also amongst the best in accuracy, precision and specificity in the outsample 

dataset. A negative predictive value of 0.75 and 0.65 was obtained on validation and 

outsample data respectively, but the classification system was amongst the worst for recall 

performance in both the validation and outsample datasets. 
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The purpose of this thesis is to derive a method by which a 'bad' trader may be classified as 

such. Throughout the thesis, it is assumed that trading strategies can be used as a model of 

traders, and that a ‘bad’ trader is an unprofitable trader. The trading strategy model is 

somewhat simplistic and does not include money management components such as 

position sizing, take profit levels and stop loss levels. Traders may also employ very 

sophisticated trading systems. Ideally, real trader performance metrics are needed to train 

the classification systems. The notion that a ‘bad’ trading strategy is unprofitable may be 

false, in that e.g. current market conditions may be exceptional, or an otherwise good 

strategy may be inappropriately applied or insufficiently funded. Therefore, an alternative 

criterion such as significant negative returns or a Sharpe ratio below 1 might be a better 

decision metric and boundary. The next chapter will explore various classification system 

decision metrics and boundaries. Nevertheless, this and the previous chapter have 

established the benefits of using balanced datasets comprising data from multiple markets. 
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Chapter 11 – Exploring Trading Strategy Categorisations 

The previous chapter compared the performance of classification systems derived from 

performance metrics obtained from trading strategies using seven different foreign 

exchange markets, with those relating to a single foreign exchange market. It was found 

that the use of multimarket data improved performance. Results were produced for trading 

strategies containing different numbers of technical analysis interpretations. It was found 

that classification systems using trading strategies containing only one technical analysis 

interpretation performed better than classification systems using trading strategies of three 

interpretations or more. 

Previous chapters categorized a trading strategy as ‘bad’ if the trading strategy was not 

profitable and as ‘good’ if the trading strategy was profitable. The performance metric 

values of a trading strategy are subject to variance as the performance is evaluated on an 

arbitrary segment of market data. Additionally, a trading strategy may buy and sell 

randomly which should, on average, create a return of zero (as the experiments do not 

include transaction costs) within some standard deviation. Adaboost may overfit due to the 

existence of this variance and noise. This chapter will explore the use of other 

categorizations for ‘good’ and ‘bad’ trading strategies by changing the classification metric 

and threshold value used in classification systems that define the decision boundary. 

11.1 Trading Strategy Categorisations 

The Adaboost algorithm is a supervised learning algorithm which uses a training dataset. 

This training dataset is made up of performance metrics of trading strategies obtained from 

the first segment of market data (Section 8.1.2) and labelled using the classification system’s 

categorisation metric and value on the second segment of market data. The classification 

systems produced in experiments in the previous chapters attempt to categorise trading 

strategies as 'profitable' and 'unprofitable'. This is achieved by using the return metric 

(Section 8.1.3) as the label with a threshold such that if the return is above zero the trading 

strategy is profitable and if below zero the trading strategy is unprofitable. That is, the 

Adaboost algorithm would learn the training dataset and would create a decision boundary 

that attempts to distinguish between profitable and unprofitable trading strategies. 
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The categorisation of trading strategies can be performed in several ways. Categorisation 

based upon whether a trading strategy is profitable or unprofitable may be subject to noise 

due to the performance of randomly generated trading strategies, and because the 

performance metrics are dependent on the character of the market segment. The following 

experiments change the labels within the datasets, in order to investigate the performance 

of classification systems under different categorisation metrics and values. The following 

experiments investigate the binary categorisations outlined in Table 36. 

Label metric Label value 
Expected Payoff -100, -500,  0,  100 and 500 

Profit Factor 0.25, 0.5, 0.75, 1,  1.5 and 2 

Return -10000, -1000, 0, 1000 and 10000 

Sharpe Ratio -0.5, 0, 0.5, 1 
Sortino Ratio -0.5, 0, 0.5, 1 

Trade Success Rate 0.3, 0.4, 0.5, 0.6 and 0.7 

Table 36: The classification system categorisation performance metric and values explored 

The return, profit factor and expected payoff performance metrics (defined in Section 4.8) 

all represent the profitability of trading strategies but in different ways. The Sharpe ratio 

and Sortino ratio metrics (defined in Sections 4.1 and 4.2 respectively) both represent how 

much return is expected per unit risk; the Sortino ratio is a variant which uses downside risk 

instead of the Sharpe ratio’s standard deviation of returns (a proxy for risk). Both the Sharpe 

ratio and Sortino ratio metrics are used when maximising an objective function in an 

evolutionary process (Chapter 6). The trade success rate metric (defined in Section 4.8) 

represents how often the trading strategy’s buy and sell predictions are profitable. 

The performance of each classification system is reported using the accuracy, precision, 

recall, negative predictive value and specificity values. Any trading strategy above any of the 

investigated categorisation metrics and values in Table 36 can naturally be labelled ‘good’ 

therefore all precision and recall results show the classification system’s performance at 

classifying and identifying trading strategies above the classification system’s categorisation 

metric value. 

11.2 Training, Validation and Outsample Dataset Categorisations 

The balanced training dataset consists of performance metrics obtained from 10,000 trading 

strategies each of which uses one of the seven foreign exchange market datasets (as 
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described in Section 10.1). Equal numbers of trading strategies are created for each of the 

foreign exchange market datasets. To generate a balanced dataset, each training dataset is 

tailored to a classification system by labelling the training data using that classification 

system’s categorisation metric and value. Half of the trading strategies in the resultant 

balanced training dataset are above the categorisation metric value and the other half 

below. 

While the training sets are balanced, there is no guarantee that there will be balance under 

the different market conditions of subsequent market segments. Table 37 shows the 

number of trading strategies that are below and above each classification system’s 

categorisation metric value on validation and outsample (trading on the datasets in the 

manner described in Section 8.1.2, but with different metrics for success and failure). The 

table is coloured from red (lowest quintile) to green (highest quintile) to visualise the 

imbalances in the number of trading strategies above and below the categorisation metric 

value. It is noted that these imbalances are similar on both validation and outsample data. 

The imbalance is less severe when using the trade success rate metric. Creating a balanced 

training dataset using the expected payoff metric at value -500 resulted in a heavily 

imbalanced dataset for validation and outsample data; only 175 and 262 trading strategies 

out of the 10,000 trading strategies fell below the metric value on validation and outsample 

data respectively. 
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Validation Outsample 

 

Below Above Below Above 

Expected Payoff -100.0 479 9207 643 9184 

Expected Payoff -500.0 175 9337 262 9413 

Expected Payoff 0.0 7032 2921 6290 3665 

Expected Payoff 100.0 9550 363 9529 408 

Expected Payoff 500.0 9778 120 9745 105 

Profit Factor 0.75 5264 4683 4581 5364 

Profit Factor 0.25 2030 7810 2159 7742 

Profit Factor 1.0 7023 2924 6369 3582 

Profit Factor 1.5 8768 1181 8180 1788 

Profit Factor 2.0 9345 612 8935 1026 

Profit Factor 0.5 3944 5958 3843 6077 

Return -1000.0 6710 3285 5912 4084 

Return -10000.0 866 9130 668 9327 

Return 0.0 7059 2893 6239 3710 

Return 10000.0 9898 98 9787 209 

Return 1000.0 7952 2043 7435 2561 

Sharpe Ratio 1.0 9631 275 9281 478 

Sharpe Ratio 0.5 9490 449 9277 596 

Sharpe Ratio -0.5 1756 8103 1961 7938 

Sharpe Ratio 0.0 7166 2781 6271 3691 

Sortino Ratio 1.0 8311 1399 8218 1333 

Sortino Ratio 0.0 2926 6998 3564 6363 

Sortino Ratio -0.5 709 9198 1366 8551 

Sortino Ratio 0.5 6174 3695 6071 3740 

Trade Success Rate 0.7 7558 2338 7587 2275 

Trade Success Rate 0.3 5347 4570 5025 4900 

Trade Success Rate 0.5 6552 3229 6437 3342 

Trade Success Rate 0.6 7233 2646 7209 2626 

Trade Success Rate 0.4 5975 3893 5730 4131 

Table 37: Number of trading strategies below and above each classification system’s 
categorisation metric and value in the validation dataset and outsample datasets 

(coloured with the lowest red to the highest green)  

 

11.3 Classification System Categorisation 

Table 38 shows the number of trading strategies that were classified below and above each 

classification system’s categorisation metric value on training, validation and outsample 

data. The classification systems were obtained from the 200th iteration of the Adaboost 

algorithm. As in previous chapters, the classification systems use the bootstrap aggregation 

and feature bagging techniques; they are trained using a balanced multimarket dataset of 
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10,000 trading strategies and the trading strategies use one technical analysis 

interpretation. The table cells are coloured from red to green (as previously) indicating 

imbalances in the numbers of trading strategies above and below the categorisation metric 

value. 

Almost equal numbers of trading strategies were classified above and below each 

classification system’s categorisation metric value on training data. This reflects the 

numbers of trading strategies above and below the categorisation metric value in the 

balanced training dataset. Unfortunately, the numbers of trading strategies classified above 

and below the categorisation metric value on validation and outsample data do not reflect 

the imbalances evident in Table 37. However, it is also worth noting that the classification 

systems are not biased towards classifying trading strategies in the dataset as all above or all 

below the categorisation metric value.  
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Training Validation Outsample 

 

Below Above Below Above Below Above 

Expected Payoff -100.0 5009 4987 6808 3188 6959 3037 

Expected Payoff -500.0 5066 4930 6896 3100 6727 3269 

Expected Payoff 0.0 5033 4963 6799 3197 6486 3510 

Expected Payoff 100.0 4847 5149 4211 5785 3609 6387 

Expected Payoff 500.0 4873 5123 3318 6678 3182 6814 

Profit Factor 0.75 5408 4588 7514 2482 6906 3090 

Profit Factor 0.25 5210 4786 7188 2808 6709 3287 

Profit Factor 1.0 4979 5017 6738 3258 5810 4186 

Profit Factor 1.5 4674 5322 6866 3130 4540 5456 

Profit Factor 2.0 4758 5238 6910 3086 4286 5710 

Profit Factor 0.5 5229 4767 6909 3087 6233 3763 

Return -1000.0 5051 4945 6850 3146 7043 2953 

Return -10000.0 4788 5208 7617 2379 7709 2287 

Return 0.0 5030 4966 6954 3042 6263 3733 

Return 10000.0 5272 4724 4826 5170 3211 6785 

Return 1000.0 5030 4966 5733 4263 5294 4702 

Sharpe Ratio 1.0 4932 5064 3228 6768 3076 6920 

Sharpe Ratio 0.5 4895 5101 3462 6534 3346 6650 

Sharpe Ratio -0.5 5191 4805 7318 2678 7095 2901 

Sharpe Ratio 0.0 4857 5139 6556 3440 5908 4088 

Sortino Ratio 1.0 4815 5181 2559 7437 3155 6841 

Sortino Ratio 0.0 4978 5018 3210 6786 3840 6156 

Sortino Ratio -0.5 5092 4904 2921 7075 5364 4632 

Sortino Ratio 0.5 4671 5325 2429 7567 2894 7102 

Trade Success Rate 0.7 5223 4773 3543 6453 4202 5794 

Trade Success Rate 0.3 5271 4725 4948 5048 5103 4893 

Trade Success Rate 0.5 5023 4973 4607 5389 4933 5063 

Trade Success Rate 0.6 5178 4818 3586 6410 4312 5684 

Trade Success Rate 0.4 5184 4812 4687 5309 5051 4945 

Table 38: Number of trading strategies classified as below or above the classification 
system’s categorisation metric value on the training dataset, validation dataset and 

outsample dataset. The classifiers in the classification system were obtained from the 
200th iteration of the Adaboost algorithm (coloured by quintile, with red the lowest and 

green the highest) 

 

11.4 Analysis of Classification System Results by Performance Measure 

Table 39 shows the standard performance measures of each classification system on 

validation and outsample data. The classifiers were obtained at the 200th iteration of the 

Adaboost algorithm. The results are again coloured by quintile (red low, green high). 
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The following sections will discuss the performance of the classification systems in Table 39. 

Subsequent sections will inspect the classification systems at each iteration of the Adaboost 

algorithm to locate optimal classification system iterations from results created from 

validation data.
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Accuracy Precision Recall NPV Specificity 

 

Validation Outsample Validation Outsample Validation Outsample Validation Outsample Validation Outsample 

Expected Payoff -100.0 0.37 0.36 1.00 0.99 0.33 0.32 0.07 0.09 1.00 0.96 
Expected Payoff -500.0 0.33 0.35 1.00 0.99 0.32 0.33 0.03 0.04 1.00 0.90 
Expected Payoff 0.0 0.59 0.58 0.31 0.43 0.34 0.41 0.71 0.67 0.69 0.68 
Expected Payoff 100.0 0.45 0.40 0.06 0.06 0.94 0.98 0.99 1.00 0.44 0.38 

Expected Payoff 500.0 0.34 0.33 0.02 0.02 0.92 0.97 1.00 1.00 0.34 0.32 

Profit Factor 0.75 0.62 0.58 0.68 0.70 0.36 0.40 0.60 0.53 0.85 0.80 
Profit Factor 0.25 0.45 0.51 0.94 0.94 0.33 0.40 0.26 0.29 0.92 0.91 
Profit Factor 1.0 0.59 0.56 0.33 0.40 0.36 0.47 0.72 0.67 0.69 0.61 
Profit Factor 1.5 0.65 0.46 0.13 0.17 0.33 0.53 0.88 0.81 0.69 0.45 

Profit Factor 2.0 0.67 0.46 0.07 0.11 0.35 0.63 0.94 0.91 0.69 0.44 
Profit Factor 0.5 0.63 0.64 0.88 0.84 0.45 0.52 0.52 0.52 0.90 0.85 

Return -1000.0 0.50 0.54 0.23 0.41 0.22 0.30 0.63 0.59 0.64 0.71 
Return -10000.0 0.24 0.29 0.82 0.98 0.21 0.24 0.06 0.08 0.51 0.94 
Return 0.0 0.59 0.55 0.31 0.40 0.32 0.40 0.72 0.64 0.70 0.64 

Return 10000.0 0.49 0.33 0.02 0.02 0.95 0.78 1.00 0.99 0.49 0.32 
Return 1000.0 0.56 0.57 0.23 0.31 0.48 0.57 0.81 0.79 0.59 0.57 

Sharpe Ratio 1.0 0.35 0.35 0.04 0.07 0.93 0.93 0.99 0.99 0.33 0.32 
Sharpe Ratio 0.5 0.39 0.38 0.07 0.08 0.98 0.90 1.00 0.98 0.36 0.35 
Sharpe Ratio -0.5 0.43 0.47 0.97 0.96 0.32 0.35 0.23 0.26 0.96 0.95 
Sharpe Ratio 0.0 0.57 0.55 0.29 0.41 0.35 0.45 0.72 0.65 0.66 0.61 

Sortino Ratio 1.0 0.38 0.44 0.18 0.19 0.95 0.96 0.97 0.98 0.29 0.36 
Sortino Ratio 0.0 0.59 0.56 0.71 0.66 0.69 0.64 0.32 0.39 0.34 0.42 
Sortino Ratio -0.5 0.68 0.48 0.93 0.87 0.71 0.47 0.08 0.15 0.29 0.57 
Sortino Ratio 0.5 0.56 0.60 0.45 0.48 0.93 0.91 0.89 0.88 0.34 0.41 

Trade Success Rate 0.7 0.59 0.65 0.36 0.39 1.00 1.00 1.00 1.00 0.46 0.54 

Trade Success Rate 0.3 0.85 0.86 0.81 0.86 0.89 0.85 0.90 0.86 0.82 0.87 
Trade Success Rate 0.5 0.77 0.80 0.59 0.64 0.98 0.94 0.98 0.96 0.67 0.72 
Trade Success Rate 0.6 0.62 0.69 0.41 0.45 1.00 0.98 1.00 0.99 0.49 0.58 
Trade Success Rate 0.4 0.81 0.83 0.69 0.75 0.94 0.89 0.95 0.91 0.73 0.79 

Table 39: Performance values of each classification system at the 200th iteration of the Adaboost algorithm on validation and outsample data (coloured by 
quintile, with red the lowest and green the highest)
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11.4.1 Trade Success Rate Results 

The classification systems with the highest accuracy values used the trade success rate 

categorisation metric. Before discussing the performance of the classification systems using 

the trade success rate categorisation metric, it is important to note that it is possible to 

create profitable trading strategies that make more losing trades than winning trades. For 

example, a trading strategy with a trade success rate of 0.1 could make nine losing trades 

out of ten, each of -£10, but make a £150 profit from a winning trade. This trading strategy 

is expected to average a £6 profit per trade. The trade success rate categorisation metric 

would label such a trading strategy as 'bad' (whereas a 'good' label would have being given 

with the return metric used in previous chapters). 

The classification system using the trade success rate categorisation metric at value 0.3 

obtained the highest accuracy values of 0.85 and 0.86 on validation and outsample data. 

The classification system’s negative predictive value is 0.9 and 0.86 and the specificity is 

0.82 and 0.87 on validation and outsample data. This indicates that the classification system 

is good at classifying trading strategies with a trade success rate less than 0.3 and can 

identify most of them. The classification system’s precision values are 0.81 and 0.86 and the 

classification system’s recall is 0.89 and 0.85 on validation and outsample data. This 

indicates that the classification system is good at classifying trading strategies with a trade 

success rate greater than 0.3 and can identify most of them. 

The classification systems using the trade success rate categorisation metric at value 0.4 and 

0.5 also achieve above random accuracy, precision, recall, negative predictive value and 

specificity. These classification systems had lower accuracy, precision and specificity 

performance than that using the trade success rate categorisation metric at value 0.3. These 

systems, however, obtained higher recall and negative predictive value performance. 

Similarly, the classification systems using the trade success rate categorisation metric at 

value 0.6 and 0.7 had lower accuracy, precision and specificity than the systems using a 

lower categorisation metric value, but achieved higher recall and negative predictive value 

performance. The classification systems using the trade success rate metric at values 0.6 

and 0.7 saw precision and specificity values drop to random or worse than random 

performance on validation and outsample data. 
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As the trade success rate metric categorisation value increased, the classification systems 

achieved better classification performance at classifying trading strategies below the 

categorisation value and were better at identifying trading strategies above the 

categorisation value. However as the trade success rate metric categorisation value 

increased, the classification systems perform worse at classifying trading strategies above 

the categorisation value and worse at identifying trading strategies below the categorisation 

value. 

The classification system with the trade success rate categorisation metric and 

categorisation value of 0.3 is particularly good at classifying and identifying the trading 

strategies above and below the categorisation metric value. Traders with low trade success 

rate performance are mathematically more likely to experience large losing streaks. As 

previously mentioned, it is possible for trading strategies to have many small losses but that 

these losses can be offset by infrequent large profitable trades. If the trader is discouraged 

by the losing streaks then it is possible that the trader may abandon the strategy before the 

profitable trade. These classification systems can be deployed to help identify traders that 

may need additional monitoring as their mental state can affect their ability to execute a 

trading strategy. These classification systems can also help identify traders that may need 

extra education to increase their confidence and understanding of their trading style, as 

these traders are the most likely to experience long losing streaks. 

11.4.2 Expected Payoff, Profit Factor and Return Results 

Similar to the classification systems used in the previous chapters, the classification systems 

using the expected payoff, profit factor and return categorisation metrics at values 0, 1 and 

0 respectively all attempt to separate the trading strategies into profitable and unprofitable 

categorisations. These systems achieved negative predictive values of 0.71, 0.72 and 0.72 on 

validation data and 0.67, 0.67 and 0.65 on outsample data, and also achieved specificity 

values of 0.69, 0.69 and 0.7 on validation data and 0.68, 0.61 and 0.64 on outsample data. 

These classification systems were better than random at classifying and identifying 

unprofitable trading strategies. However, they are worse than random at classifying and 

identifying profitable trading strategies. 
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The specificity values of the classification systems using the profit factor categorisation 

metric with value 0.75 and 0.5 achieve between 0.8 and 0.9 specificity. However, the 

negative predictive value of these classification systems is random or just above random. 

These two systems can identify a large proportion of trading strategies with values below 

the categorisation value, but incorrectly classifies trading strategies that score above the 

categorisation value. The classification systems using the profit factor categorisation metric 

at values 0.25, 0.5 and 0.75 have precision values of 0.94, 0.88 and 0.68 on validation data 

and 0.94, 0.84 and 0.7 on outsample data. These classification systems are good at 

classifying trading strategies above the categorisation metric, but only 33% to 52% of the 

trading strategies scoring above the categorisation metric are correctly identified. 

None of classification systems using the expected profit, profit factor and return 

categorisation metrics achieved above random performance on both precision and recall. 

Those using negative expected payoff categorisation values, profit factor categorisation 

values less than one and the return categorisation value of -10,000 had positive precision 

but only obtained recall values of between 0.21 to 0.52. 

Classification systems using the expected payoff categorisation value of 100 and 500, and 

the system using the return categorisation metric value of 10,000 were able to identify most 

of the trading strategies above their respective categorisation value. The recall values range 

from 0.92 to 0.98 on validation and outsample data, and the classification system using the 

return categorisation metric value of 10,000 had a recall of 0.78 on outsample data. Though 

these classification systems are poor at classifying trading strategies above their 

categorisation value, they are good at identifying those strategies that exist above the 

categorisation value. 

None of the classification systems using expected profit, profit factor or return 

categorisation metrics had above random performance for all of the performance values. 

11.4.3 Sharpe Ratio and Sortino Ratio Results 

Classification systems using the Sharpe ratio categorisation metric with values 1 and 0.5 and 

the Sortino ratio categorisation metric with value 1 have negative predictive values of 0.97 

or above using validation and outsample data; the system using the Sortino ratio 

categorisation value of 0.5 achieved 0.89 and 0.88 on validation and outsample data. The 
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specificity of these four classification systems however only ranged between 0.29 and 0.41. 

These systems are very good at classifying trading strategies that have values below the 

categorisation value but do not identify the majority of them. 

The specificity of the classification system using the Sharpe ratio categorisation metric value 

of -0.5 is 0.96 and 0.95 on validation and outsample data, indicating that the classification 

system is good at identifying most of the trading strategies below the categorisation value. 

However, the negative predictive values of this classification system are only 0.23 and 0.26 

on validation and outsample data respectively. 

As previously mentioned, classification systems using the Sharpe ratio and Sortino ratio 

categorisation metrics with values 1 and 0.5 have high negative predictive values on both 

validation and outsample data. These classification systems also have recall values of 0.9 or 

above, but have very poor precision performance. These systems are able to identify most 

of the trading strategies above their respective categorisation values. However, the majority 

of trading strategies are mislabelled as being above this categorisation metric value. The 

classification system using the Sortino ratio categorisation metric at value 0.5, however, has 

a precision value of 0.45 and 0.48 on validation data and outsample data, and so slightly 

more than a half of the trading strategies are mislabelled above the categorisation metric 

value. 

None of the classification systems using the Sharpe ratio or Sortino ration categorisation 

metrics had above random performance for any of the performance values. The 

classification system using the Sharpe ratio categorisation metric at value 0 achieved above 

random performance on both negative predictive value and specificity for both the 

validation and outsample datasets. The classification system using the Sortino ratio 

categorisation metric at value 0 achieved above random performance on both precision and 

recall for both the validation and outsample datasets. 

11.5 Performance at Different Iterations of the Adaboost Algorithm 

The following sections analyse each classification system’s performance at each iteration of 

the Adaboost algorithm to attempt to locate an optimal iteration, using validation dataset 

results, for choosing the classification system to be used on outsample data. Only those 
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results illustrating the concern of the individual sections are quoted. Full results can be 

found in Appendix B. 

11.5.1 Accuracy 

Figures 177 and 178 show the accuracy performance of classification systems using different 

categorisations on validation and outsample data. Using validation data, the accuracy values 

of some classification systems increase before converging (on individual values - there is no 

general convergence), with convergence occurring between the 50th and 100th iteration of 

the Adaboost algorithm. The accuracy values of the classification systems on outsample 

data, however, converge more quickly. The validation dataset is used to find optimal 

classification systems for use on outsample data. No classification systems showed accuracy 

values that increased to a state of low bias then decrease to a state of high variance. This 

may be due to bootstrap aggregation and random features technique stopping the 

classification system from reaching a state of high variance within the 200 iterations of the 

Adaboost algorithm. 

The classification systems categorising trading strategies using the trade success rate metric 

at values 0.3, 0.4 and 0.5 obtain the best accuracy performance values at the 200th iteration 

of the Adaboost algorithm, which are 0.77 or above on both validation and outsample data. 

The accuracy performance converges within a few iterations.  

At the 200th iteration of the Adaboost algorithm, the classification system using the return 

metric categorization metric at value -10,000 obtains the lowest accuracy values of the 

tested classification systems, with accuracy values of 0.24 and 0.29 on validation and 

outsample data respectively. Out of the classification systems using the return metric, the 

classification system with the highest accuracy values categorised trading strategies using 

the return value of 1,000 pips. At the 200th iteration of the Adaboost algorithm, this 

classification system achieved an accuracy value of 0.56 and 0.57 on validation and 

outsample data respectively. The classification system, however, seems to have overfitted 

on validation data.  The classification system’s accuracy jumped up and down from 0.63 to 

0.56 multiple times before dropping to an accuracy value of 0.56, though this accuracy 

movement is not observed on outsample data. The accuracy of the classification system 



270 
 

using the return categorisation metric at value -1,000 increases with iteration to accuracy 

values of 0.5 and 0.54 on validation and outsample data respectively. 

At the 200th iteration of the Adaboost algorithm, the highest accuracy classification systems 

are those using the profit factor metric categorization metric at  values of 0.5 and 0.75. 

These classification systems obtain an accuracy value of 0.63 and 0.62 on validation data 

and 0.64 and 0.58 for outsample data. At the 200th iteration of the Adaboost algorithm, the 

classification systems using the profit factor categorisation values of 1.5 and 2 achieve 

accuracy values of 0.65 and 0.67 on validation data but perform worse than random on 

outsample data. At the 200th iteration of the Adaboost algorithm, the accuracy values of the 

classification system using the profit factor value of 1 to categorise trading strategies is 0.59 

on validation data but demonstrates near random performance with an accuracy value of 

0.56 on outsample data.  

The classification systems using the expected payoff metric to categorise trading strategies 

shows similar accuracy values between the validation dataset and outsample dataset. At the 

200th iteration of the Adaboost algorithm, the classification systems using the expected 

payoff metric value categorization metric of value 0 has an accuracy value of 0.59 and 0.58 

on validation and outsample data respectively. The classification systems using the expected 

payoff metric of values -500, -100, 100 and 500 all have accuracy values worse than random 

on both validation and outsample data. The classification system using the expected payoff 

metric value of 100 improves with each iteration and does not converge on validation and 

outsample data.  

The classification systems using the Sharpe ratio categorisation metric also have similar 

accuracy values on the validation dataset and the outsample dataset, with classification 

systems using the categorization values of -0.5, 0.5 and 1 showing worse than random 

performance. At the 200th iteration of the Adaboost algorithm, the classification system 

using the Sharpe ratio categorisation metric at value 0 have near random accuracy values of 

0.57 and 0.55 on validation and outsample data.  

At the 200th iteration of the Adaboost algorithm, the accuracy values of the classification 

systems using the Sortino ratio categorization metric values of 0 and 0.5 are (respectively) 

0.59 and 0.56 on validation data and 0.56 and 0.6 on outsample data. The system using the 
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Sortino categorization metric value of -0.5 at the 200th iteration of the Adaboost algorithm 

shows an accuracy value of 0.68 on validation data but an accuracy value of only 0.48 on 

outsample data. For the classification system using the categorisation metric value of 1, at 

the 200th iteration of the Adaboost algorithm, the accuracy values are worse than random.
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Figure 177: Accuracy of classification systems on validation data using different categorisation metrics and values 
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Figure 178: Accuracy of classification systems on outsample data using different categorisation metrics and values 
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11.5.2 Precision 

Figures 179 and 180 show the precision performances of classification systems using 

different categorisation metrics and values on validation and outsample data. On validation 

data, the precision values of some classification systems increase before converging before 

the 50th iteration of the Adaboost algorithm. The precision values of the classification 

systems on outsample data, however, converge more quickly. 

For the trade success rate categorisation metric, precision increases with decreasing metric 

value. The precision values are worse than random in classification systems using the trade 

success rate categorisation metric at values 0.6 and 0.7. The systems using the trade success 

rate categorisation metric at values 0.3, 0.4 and 0.5, however, perform better than random 

at the 200th iteration of the Adaboost algorithm with precision values of 0.81, 0.69 and 0.59 

on validation data and 0.86, 0.75 and 0.64 on outsample data respectively.  

The classification systems using the return metric values of -1,000, 0, 1,000 and 10,000 to 

categorise trading strategies have precision values worse than random. At the 200th 

iteration of the Adaboost algorithm, the system using the return metric categorisation value 

of 10,000 performs the worst, with a precision value of 0.02 on both the validation and 

outsample data. The precision values of these classification systems using the return metric 

indicates how successful the classification system is at classifying trading strategies above 

the return metric values. The system using the return categorisation metric value of -10,000 

obtains 0.82 and 0.98 precision at the 200th iteration of the Adaboost algorithm. The system 

using a metric value of 1,000 seems to have overfitted on validation data, as evidenced by 

the irregular 'jumping' in precision values.  

The precision of the classification systems using the profit factor metric values of 1, 1.5 and 

2 to categorise trading strategies is worse than random, and as the categorisation value of 

the profit factor metric increases, the precision decreased. The precision of the systems 

using the profit factor metric values of 0.25, 0.5 and 0.75, however, have precision values of 

0.94, 0.88 and 0.68 on validation data and 0.94, 0.84 and 0.7 on outsample data.  

At the 200th iteration of the Adaboost algorithm, the precision values of the classification 

systems using the expected payoff metric value of 100 and 500 to categorise trading 

strategies are worse than random for both validation and outsample data. Table 37, above, 
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showed the number of trading strategies above and below the categorisation value in the 

validation and outsample dataset. The classification systems using the expected payoff 

categorisation metric of values 100 and 500 have few trading strategies in the validation and 

outsample datasets that are above the categorisation value, and this could decrease the 

precision performance of the classification system. The precision values at the 200th 

iteration of the Adaboost algorithm are near perfect for the classification systems using the 

expected payoff categorization metric of values -500 and -100. In contrast, the classification 

systems using the expected payoff categorisation metric of value -500 and -100 have many 

trading strategies in the validation and outsample datasets that are above the 

categorisation value, which could increase the precision performance of the classification 

system. 

Precision values for systems using the Sharpe ratio metric values of 0.5 and 1 show that they 

are poor at classifying trading strategies above these values, perhaps explained, from Table 

37, by there being few trading strategies above the categorisation metric value in the 

validation and outsample datasets. The classification system using the Sharpe ratio metric 

value of 0 has worse than random precision, but the system using a metric value of -0.5 

achieves precision values of 0.97 and 0.96 on validation and outsample data respectively. 

From Table 37, 81% and 79% of the trading strategies are above the categorisation metric 

value on validation and outsample data. 

The precision of the classification systems using the Sortino ratio categorization metric 

values of 0.5 and 1 indicates worse than random performance. The classification system 

using the Sortino ratio categorization metric value of 0 achieved precision values of 0.71 and 

0.66 on validation and outsample data respectively. For a metric value of -0.5, far better 

precision values of 0.93 and 0.87 on validation and outsample data are achieved. From 

Table 37, there are 92% and 86% of the trading strategies are above the categorisation 

value.
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Figure 179: Precision of classification systems on validation data using different categorisation metrics and values 
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Figure 180: Precision of classification systems on outsample data using different categorisation metrics and values
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11.5.3 Recall 

Figures 181 and 182 show the recall performance of classification systems using different 

categorisation metrics and values on validation and outsample data. Using validation data, 

the recall values of some classification systems increase before converging between the 20th 

to 100th iteration.. Again, convergence is quicker on outsample data. The recall values of the 

classification system using the profit factor categorisation metric at value 2 increase around 

the 13th iteration before decreasing, for both datasets, suggesting this iteration as providing 

the optimal classification system. 

Classification systems using the trade success rate metric at values 0.3, 0.4, 0.5, 0.6 and 0.7 

to categorise trading strategies all obtain very high recall values at the 200th iteration of the 

Adaboost algorithm: 0.89, 0.94, 0.97, 0.998 and 0.997 (respectively) on validation data and 

0.85, 0.89, 0.94, 0.98 and 0.995.  

The recall values of the classification systems using the return categorisation metric at 

values -10,000, -1,000 and 0 indicate worse than random performance on both validation 

and outsample data. The classification system using the return categorisation metric of 

value 1,000 achieves a random recall performance value of 0.48 on validation, with slightly 

better than random performance of 0.57 on outsample data at the 200th iteration of the 

Adaboost algorithm. The recall of the classification system using the return categorization 

metric at value 10,000 is high, at 0.95 on validation data and 0.78 on outsample data at the 

200th iteration of the Adaboost algorithm. Returning to Table 37, the number of trading 

strategies above the return categorisation metric value of 10,000 is only 98 and 209 out of 

10,000 trading strategies in the validation and outsample dataset and the precision of the 

classification system on validation and outsample data is 0.02. This indicates that the 

classification system found the majority of trading strategies with a return greater than 

10,000 on validation and outsample data. However, the classification system misclassified a 

lot of trading strategies above the categorization metric value. 

The recall values for all classification systems using the profit factor categorisation metric 

indicate random or worse than random performance at identifying trading strategies above 

the categorisation value. The only outlier is the classification system using a categorisation 

metric at value 2, for which an optimal Adaboost iteration can be chosen. On validation 
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data, the recall of the classification system at each iteration of the Adaboost algorithm 

increases to 0.74 at the 11th iteration of the Adaboost algorithm before declining to 0.36. On 

outsample data, this classification system’s recall value rises to 0.7 at the 11th iteration 

before declining to 0.64 at the 200th iteration of the Adaboost algorithm. 

The recall values of the classifications systems using the expected payoff metric at values -

500, -100 and 0 indicate worse than random performance on both validation and outsample 

data. In contrast, the systems using the expected payoff categorisation metric at values 100 

and 500 obtain recall values of 0.94 and 0.92 (respectively) on validation data and 0.98 and 

0.97 on outsample data at the 200th iteration of the Adaboost algorithm. It is noted that for 

categorisation metric values of 100 and 500, the numbers of trading strategies above the 

categorisation metric are 363 and 120 (respectively) on validation data and 408 and 105 on 

outsample data and the precision of the classification system on validation and outsample 

data is 0.06 and 0.02 (see Tables 37 and 39). 

For classification systems using the Sharpe ratio classification metric at values -0.5 and 0, 

the recall values indicate worse than random performance on validation and outsample 

data. The recall values of the systems using the Sharpe ratio metric at values 0.5 and 1, 

however, achieve 0.98 and 0.93 respectively on validation data and 0.9 and 0.93 on 

outsample data at the 200th iteration of the Adaboost algorithm.  

Tables 37 and 39 show the following for the classification systems using the Sharpe ratio 

categorisation metric value of 0.5 and 1. The number of trading strategies above the 

categorisation metric are 449 and 275 respectively on validation data, and 596 and 478 on 

outsample data. The precision of the classification system is 0.07 and 0.04 respectively on 

validation data and 0.08 and 0.07 on outsample data. 

The recall values of the classification systems using the Sortino ratio metric at values 0, 0.5 

and 1 to categorise trading strategies all achieve high recall performance of 0.69, 0.93 and 

0.95 respectively on validation data and 0.64, 0.91 and 0.96 on outsample data at the 200th 

iteration of the Adaboost algorithm. For a metric of -0.5, random recall performance is 

evident on outsample data, but a recall value of 0.71 is achieved on validation data at the 

200th iteration of the Adaboost algorithm. 
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Figure 181: Recall of classification systems on validation data using different categorisation metrics and values 
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Figure 182: Recall of classification systems on outsample data using different categorisation metrics and values 
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11.5.4 Negative Predictive Value 

Figures 183 and 184 show the negative predictive value performance of classification 

systems using different categorisation metrics and values on validation and outsample data. 

When using validation data, the negative predictive values of some classification systems 

increase within the first 50 iterations, before converging..  

The classification systems using the trade success rate metric at values 0.3, 0.4, 0.5, 0.6 and 

0.7 to categorise trading strategies all achieve good values for this performance measure at 

the 200th iteration of the Adaboost algorithm. For the validation dataset, the values are 0.9, 

0.95, 0.98, 0.999 and 0.998 respectively.   For the outsample dataset, values of 0.86, 0.91, 

0.96, 0.99 and 0.998 are achieved for trade success rate metric values 0.3, 0.4, 0.5, 0.6 and 

0.7 respectively. 

At the 200th iteration of the Adaboost algorithm, the negative predictive value of the 

classification system using the return categorisation metric at value -10,000 obtains 

negative predictive values of 0.06 and 0.08 for validation and outsample data respectively. 

The other classification systems using the categorisation metric at values -1,000, 0, 1,000 

and 10,000 achieve performance measure values of 0.63, 0.72, 0.81 and 0.999 on validation 

data and 0.59, 0.64, 0.79 and 0.985 on outsample data at the 200th iteration of the 

Adaboost algorithm. The negative predictive value of the classification system using the 

return categorisation metric at value 10,000 converges at around the 50th iteration using 

both validation and outsample data.  

The negative predictive value of the classification system using the profit factor 

categorisation metric at value 0.25 performs worse than random, and at value 0.5 the 

performance is merely random. For a profit factor categorisation metric value of 0.75, a 

performance measure value of 0.6 is achieved on validation data, but random performance 

is indicated on outsample data. The negative predictive value of the classification systems 

using the profit factor metric at 1, 1.5 and 2 indicate good performance, with values of 0.72, 

0.88 and 0.94 respectively on validation data and 0.67, 0.81 and 0.91 on outsample data at 

the 200th iteration of the Adaboost algorithm. 

The negative predictive value of the classification system using the expected payoff metric 

at values -500 and -100 indicates much worse than random performance, while the system 
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using the expected payoff metric at value 0 achieves a negative predictive value of 0.71 and 

0.67 for validation and outsample data respectively at the 200th iteration of the Adaboost 

algorithm. The systems using the expected payoff metric at value 100 and 500 to categorise 

trading strategies achieve negative predictive values of 0.99 for both validation data and 

outsample data at that final iteration. 

The system using the Sharpe ratio metric at value -0.5 is indicated to perform worse than 

random for this performance measure. The system using the Sharpe ratio metric at value 0 

achieves a negative predictive value of 0.72 and 0.65 for validation and outsample data 

respectively at the 200th iteration of the Adaboost algorithm.  Sharpe ratio metric values of 

both 0.5 and 1 have a negative predictive value of 0.99 using validation data. These same 

Sharpe ratio metric values achieve negative predictive values of 0.99 and 0.98 respectively 

on outsample data at the 200th iteration of the Adaboost algorithm. 

The negative predictive value of the classification system using the Sortino ratio metric at 

values 0 and -0.5 to categorise trading strategies indicates worse than random performance. 

The classification systems using the Sortino ratio metric at value 0.5 and 1 to categorise 

trading strategies achieve negative predictive values of 0.89 and 0.97 respectively on 

validation data and a negative predictive value of 0.97 and 0.98 on outsample data at the 

200th iteration of the Adaboost algorithm. 

.
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Figure 183: Negative predictive value of classification systems on validation data using different categorisation metrics and values 
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Figure 184: Negative predictive value of classification systems on outsample data using different categorisation metrics and values 
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11.5.5 Specificity 

Figures 185 and 186 show the specificity performance of classification systems using 

different categorisation metrics and values on validation and outsample data. The specificity 

values of some classification systems increase, between the 50th to 100th iteration, before 

converging when using validation data, with faster convergence again evident for outsample 

data.  

The specificity of the classification system using the trade success rate metric at values 0.6 

and 0.7 shows slightly worse than random performance on validation data and slightly 

better than random performance with a specificity value of 0.58 and 0.54 on outsample 

data. The systems using the trade success rate metric at values 0.3, 0.4 and 0.5 achieve 

specificity of 0.82, 0.73 and 0.67 respectively on validation data and of 0.87, 0.79 and 0.72 

on outsample data at the 200th iteration of the Adaboost algorithm. 

The specificity values of the classification systems using the return categorisation metric at 

values -10,000 and 10,000, at the 200th iteration of the adaboost algorithm, show random 

performance on validation data. However, the classification systems achieve specificity 

values of 0.94 and 0.32 respectively on outsample data. For metric values of -1,000, 0 and 

1,000, specificity values of 0.64, 0.7 and 0.59 respectively are obtained on validation data 

and a specificity of 0.71, 0.64 and 0.57 on outsample data at the 200th iteration of the 

Adaboost algorithm.  

The classification systems using the profit factor metric at value 0.25, 0.5 and 0.75 achieve a 

specificity of 0.92, 0.9 and 0.85 respectively on validation data and of 0.91, 0.85 and 0.8 on 

outsample data at the 200th iteration of the Adaboost algorithm. A specificity value of 0.69 is 

achieved for the classification systems using the profit factor metric at both values 1.5 and 2 

on validation data, but slightly worse than random performance is observed on outsample 

data at the 200th iteration of the Adaboost algorithm. The specificity of the classification 

system using the profit factor categorisation metric at value 1 indicates better than random 

performance with a specificity value of 0.69 on validation data and a specificity of 0.61 on 

outsample at the 200th iteration of the Adaboost algorithm. The specificity of the 

classification system using the profit factor categorisation metric at value 2 changes sharply 

multiple times, indicating overfitting on validation data, but not on outsample data.  
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By the specificity measure, the classification system using the expected payoff metric at 

value 0 performs better than random, with a value of 0.69 on validation data and 0.68 on 

outsample data at the 200th iteration of the Adaboost algorithm. The classification systems 

using the expected payoff metric at values 100 and 500 perform worse than random. The 

specificity of the classification systems using the expected payoff metric at values -500 and -

100 have near perfect specificity performance. However, from Tables 35 and 37, 175 and 

479 trading strategies were below the categorisation value on validation data and 262 and 

643 were below on outsample data. Additionally, the negative predictive value of the these 

classification systems is less than 0.1 for the validation and outsample dataset.  

For the Sharpe ratio metric at values 0.5 and 1, performance by specificity is worse than 

random. The classification systems using the Sharpe ratio metric at values -0.5 and 0 achieve 

specificity of 0.96 and 0.66 respectively on validation data, and 0.95 and 0.61 on outsample 

data at the 200th iteration of the Adaboost algorithm. For metric value at -0.5, specificity is 

0.23 on validation data and 0.26 on outsample data. The other classification system, using 

the Sharpe ratio categorisation metric at value 0, has better than random specificity and 

negative predictive value performance of 0.72 and 0.65 on validation and outsample data.  

The specificity of the classification systems using the Sortino ratio metric at value 0, 0.5 and 

1 show worse than random performance. The system using the Sortino ratio metric at value 

-0.5 to categorise trading strategies achieves a specificity of 0.29 on validation data and a 

specificity of 0.57 on outsample data at the 200th iteration of the Adaboost algorithm. 
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Figure 185: Specificity of classification systems on validation data using different categorisation metrics and values 
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Figure 186: Specificity of classification systems on outsample data using different categorisation metrics and values 
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11.6 Summary 

It was previously demonstrated that classification systems using a balanced multimarket 

training dataset, the return categorisation metric at value 0, and the bootstrap aggregation 

and feature bagging technique, was promising for the detection of bad trading strategies. 

This chapter explored the development of systems that use different classification metrics 

and values. Each of the trading strategies used to derive the performance metrics contain a 

single technical analysis interpretation, this size having proved the most consistently 

effective in previous experiments. As before, the experiments in this chapter also showed 

that having a balanced training dataset (containing equal numbers of trading strategies 

above and below each classification system’s respective categorisation metric value) offers 

no assurance of similar balance in the validation and outsample datasets, due to changing 

market conditions in the consecutive market segments. 

Of the tested categorisation metrics and values, the classification systems using the trade 

success rate categorisation metric experienced least imbalance. In contrast, classification 

systems that used the return categorisation metric at 10,000 and the expected payoff 

categorisation metric value of 500 had less than 2% of the 10,000 trading strategies in the 

dataset above the categorisation metric. 

Naturally trading strategies that are above the tested categorisation metrics are seen to be 

more desirable than trading strategies that are below the tested categorisation metrics. 

The higher the categorisation metric value the fewer the number of trading strategies above 

the categorisation metric value on validation and outsample data, and the lower the 

categorisation metric value the fewer the number of trading strategies below the 

categorisation metric value on validation and outsample data. 

The performances of most of the tested classification systems were similar on validation and 

outsample data, with convergence evident in some systems within 50 to 100 iterations on 

both validation data and outsample results. The choice for the optimal iteration for these 

classification systems, therefore, would be between the 50th and the 100th iterations as the 

classification system has low bias and low variance between these iterations. Further 

iterations would risk overfitting of the classification system, though the bootstrap 

aggregation and feature bagging techniques would be expected to mitigate against this. 
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The primary aim of this thesis is create a classification system that can classify and identify 

‘bad’ traders. To achieve this aim, classification systems that have above random negative 

predictive value and specificity performance on outsample data is needed. The classification 

systems proposed in this chapter that obtain above random performance in both 

performance measures are those using the following: 

 The expected payoff categorisation metric at value 0 

 The profit factor categorisation metric at value 1 

 The return categorisation metric at values -1,000, 0 and 1,000 

 The Sharpe ratio categorisation metric at value 0 

 

Classification systems that have high specificity performance but poor or random negative 

predictive value (between 0.2 and 0.55) can also be useful as decision support systems that 

narrow the pool of traders that are potentially bad. The classification systems proposed in 

this chapter that employ these performance measures are those using: 

 The profit factor categorisation metric at values 0.25, 0.5 and 0.75 

 The Sharpe ratio categorisation metric at value -0.5 

 

Classification systems using the trade success rate categorisation metric at values 0.3, 0.4 

and 0.5 showed above random accuracy, precision, recall, negative predictive value and 

specificity performance.  As pointed out above, traders with low trade success rate 

performance are mathematically more likely to experience large losing streaks. They are 

also more likely to be discouraged by these, and to abandon a strategy that might be in a 

longer term be successful by reason of infrequent large gains. These classification systems 

help identify such traders, and to target programs of education and encouragement. 
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11.7  Visualising Adaboost’s Decision Criterion 

With the methodology established, and suggestions made for viable classification systems 

and associated performance metrics, this section explores how Adaboost’s decision criteria 

can be visualised in the proposed system. This section first formalises the model of a trader 

with respect to the Adaboost formula. The effectiveness of using Adaboost as a tool for 

improving a trader's understanding of performance metrics is then explored. Finally, graphic 

illustrations of the relative importance of different performance metrics in respect of the 

Adaboost derived classifiers are given. These are intended to clarify and further explain the 

benefit of the work of this thesis for the partner company, and for trading companies more 

generally. 

11.7.1 Trader Decision Making Process 

Traders use general 'rules of thumb' (heuristics) to help predict whether a trading strategy 

will be profitable on future market data. These heuristics are based upon performance 

metrics derived from historical and/or simulated data. For example, traders seek trading 

strategies with profit factors above a predetermined threshold, and drawdowns which do 

not exceed a specified magnitude. Whether formulated explicitly or not, traders effectively 

assign a weight to each performance metric to indicate its relative importance. Implicitly, 

traders are employing a scoring mechanism to predict whether a trading strategy is likely to 

be profitable on future market data, based on the trader’s past experience, bias and 

knowledge. Formulating this explicitly, the scoring mechanism for a trading strategy is here 

taken to be of the following form, 

𝑅 =∝1 ℎ1 +∝2 ℎ2 +⋯+ ∝𝑛 ℎ𝑛 

where, h is the performance metric heuristic, α  is the weight of importance, and R is the 

trading strategy score. 

Each performance metric heuristic ℎ𝑖 outputs the value one (1), if the trading strategy 

satisfies the heuristic and negative one (-1) if the trading strategy does not satisfy the 

heuristic. The weight of importance ∝𝑖 for each heuristic is a positive real number.  
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Traders seek trading strategies that maximise this function R to increase the likelihood of 

future profits. The function R can be thought of as a set of criteria which, if maximised, 

generates the trader’s optimal trading strategy. 

Trading strategies that are found by maximising only one performance metric, such as the 

profit factor, may produce trading strategies that have large drawdowns or have 

undesirable Sharpe ratios, etc. It is essential, but particularly hard to find, the correct trade-

off between the different performance metrics given a set of current market conditions. A 

trader’s decision-making criteria, used to judge whether a trading strategy will be profitable 

in the future, needs to possess this optimal trade-off between performance metric 

heuristics. 

11.7.2 Using Adaboost as a Regression Function 

As described in the Section 2.4.3.2, Adaboost produces a weighted function of the form, 

𝐻 = 𝑠𝑖𝑔𝑛(∝1 ℎ1 +∝2 ℎ2 +⋯+ ∝𝑛 ℎ𝑛) 

where h is the weak classifier value, α is the weight, H is the strong classifier value, and the 

‘sign’ function indicates whether the summation is positive or negative. The goal of 

Adaboost is to create a strong classifier, H.  

The 𝑠𝑖𝑔𝑛 function provides the classification threshold. If 𝐻 is positive then the trading 

strategy is good, if 𝐻 is negative then the trading strategy is bad. Notice that Adaboost’s 

strong classifier contains the exact scoring mechanism that a trader was taken to employ in 

the previous section, 

𝐻 = 𝑠𝑖𝑔𝑛(𝑅) 

By removing the 𝑠𝑖𝑔𝑛 function from Adaboost’s strong classifier, the result is a regression 

function that intended to behave similarly to the way a trader scores trading strategies. In 

addition to the advantages stated previously, through this regression function Adaboost can 

effectively automate the work of the trader using a substantial number of performance 

metrics, trading strategies and market data. 
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11.7.3 Visualising Adaboost 

Figures 187, 188 and 189 show “user-friendly” visualisations intended to help managers and 

traders understand how important each performance metric is in the classifier’s decision 

making process. Figure 187 shows the importance of each performance metric on the 

AUDUSD market using 51 Adaboost classifiers using the bootstrap aggregation and random 

features technique. The chart reports the average, minimum, maximum, the lower standard 

deviation of the average, and upper standard deviation of the average of proportion of 

weight assigned to each performance metric. The performance metrics on the y axis are 

sorted from highest to the lowest average value. The results show that the largest 

consecutive trade loss, number of unsuccessful trades and average trade loss performance 

metrics are on average the most important. The results also show the standard deviation of 

trade loss performance metric is has the highest minimum proportion of weight across all 51 

Adaboost classifiers. Figure 188 displays the average importance of each performance 

metric on each of the 7 foreign exchange markets and reports the average importance. 

Figure 189 reports the same average importance of each performance metric in pie chart 

form. 
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Figure 187: Summary of the importance of each metric for classifying trading strategies in the AUDUSD market 
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Figure 188: Summary of the average importance of each metric across the 7 forex markets 
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Figure 189: Summary of the average importance of each metric across the 7 forex markets
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Managers can use these visualisations to give themselves a greater intuition regarding, and 

hence more confidence in, the classification system’s decision-making process. In particular, 

the manager can see that the classification system considers a variety of different 

performance metrics and their weights. Further work might consider only the weak 

classifiers of a single performance metric in the classification system to find the optimal value 

for the performance metric.  

From these visualisations and further investigation, managers could advise individual traders 

in improving a set of performance metrics that would increase their score. For newer traders, 

managers could target areas in which the trader is under-performing to increase their score 

to an acceptable level. 
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Chapter 12 – Conclusions and Future Work 

This chapter explains how the aims and objectives of this project, presented in Section 1.4,  

have been met, and highlights the contributions of the work to trading studies more 

generally (Section 12.1). While the development was conducted in accordance with the 

specific needs of the project partner, it is also discussed how the outcomes have broader 

applicability within the sector. Attention is drawn to the potential of the methodology as a 

topic for further development and as a framework for application to other functions. These 

themes are elaborated in the section Future Work (Section 12.2). 

12.1 Conclusions 

The primary aim of the project described in this thesis was to ‘construct a decision support 

system for the classification of traders and thereby the early detection of bad traders’ 

(Section 1.4). 

In developing a methodology for the detection of bad traders, it was first established in 

Chapter 5 that sector-standard performance metrics obtained from trading strategies traded 

on historical data can be correlated to future values. This correlation is based on such a large 

dataset that it can be taken to be significant. This suggests limited but practical predictive 

applications for the metrics, and in particular for the intended decision support system of 

this project. The experiments presented in Chapter 8 suggested the suitability of Adaboost as 

a machine learning technique for learning classifiers that can distinguish between good and 

bad trading strategies; the bootstrap aggregation and feature bagging techniques were also 

shown to be effective in reducing overfitting. Of the various measures employed to evaluate 

binary classifiers (described in Section 2.5), negative predictive value and specificity were also 

suggested as the most important in meeting the project aims, as they are particularly 

effective in the classification and identification of bad traders. These first experiments in the 

use of Adaboost also highlighted the difficulty in identifying an optimal iteration for choosing 

the eventual classification system. The effectiveness of learning is dependent on the training 

dataset, specifically the extent to which this is representative of trading strategies. A training 

dataset that is greatly imbalanced between numbers of good and bad trading strategies was 

shown to impact adversely on learning in Chapter 9, with the worst results occurring for 

trading strategies of larger sizes (where the performance of larger sized trading strategies is 

less reliable generally). That chapter details experiments that demonstrated the benefits of 
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using balanced training datasets. The effectiveness of learning is also adversely impacted 

upon by changes in market conditions.  

The classification systems developed up to this point were all trained on individual foreign 

exchange markets. Chapter 10 employed training datasets comprised of all 7 markets 

considered in this thesis to create more general classifiers. The classifiers created on these 

multimarket training datasets were shown to improve on previous results, and trading 

strategies of size 1 were shown to be the most reliably classified. All of the above 

experiments employed the return performance metric, but experiments in Chapter 11 with 

different metrics established the usefulness of trade success rate (with a metric value of 0.3) 

for the classification of potentially high-risk trading strategies – and through that the early 

detection of poor trading decision-making. The italicised terms define the proposed and 

implemented decision support system for the classification of bad trading strategies, and 

through this the identification of poor traders. (It is repeated here from Chapter 11, 

however, that the question of the choice of performance metric is still open.) 

The principle findings (see Chapter 11) may be summarised as follows. 

 

Distribution of trading strategies 

It was observed that the higher the categorisation metric value the fewer the number of 

trading strategies above this on validation and outsample data, and the lower the 

categorisation metric value the fewer the number of trading strategies below this on 

validation and outsample data. 

 

Optimal iteration for choosing classification systems 

The choice for the optimal iteration for these classification systems was found to be between 

the 50th and the 100th iterations in that the classification system has both low bias and low 

variance between these. Further iterations would risk overfitting of the classification system, 

though the bootstrap aggregation and feature bagging techniques would be expected to 

mitigate this. 
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Effective classification system settings 

In pursuing this thesis’ primary aim, classification systems having above random negative 

predictive value and specificity performance were those employing: 

 The expected payoff categorisation metric at value 0 

 The profit factor categorisation metric at value 1 

 The return categorisation metric at values -1,000, 0 and 1,000 

 The Sharpe ratio categorisation metric at value 0 

 

Classification systems that have high specificity performance but poor or random negative 

predictive value (between 0.2 and 0.55) can also be useful as decision support systems that 

narrow the pool of traders that are potentially bad. Such classification systems were: 

 The profit factor categorisation metric at values 0.25, 0.5 and 0.75 

 The Sharpe ratio categorisation metric at value -0.5 

 

Novelty of proposed methodology 

It was reported in Chapter 2 that, to the best of the current author’s knowledge, no proposal 

has been made in the literature to use Adaboost for the classification of trading strategies or 

traders. Hence the proposed methodology, and the implementation and analysis of this, 

constitute the most significant novel contribution of this thesis. 

The pragmatic approach taken to the development of the decision support system is rooted 

in quantitative financial trading logic familiar to those in the financial trading sector. This 

focus has typically been lacking in academic work to date, and results in the developed 

system having greater immediate value to the project partner. Specifically, the work employs 

technical analysis algorithms and performance metrics typically employed by traders and 

therefore understood by their managers. While these techniques have been used in AI-based 

forecasting tools previously, their use in a system for classifying trading strategies is novel. 
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Datasets and rigour of testing 

It is also noted that the results presented have been based on large datasets and 

comprehensive testing which is less evident in the literature for market forecast systems (the 

only extant work of relevance to this project). For each classification system, a total of 10,000 

technical analysis interpretations were used, and for experiments that used trading 

strategies, 10,000 such strategies were also created. In total, 36 features (performance 

metrics) were used in the training datasets to create the classification systems, and 33 

technical analysis interpretations were used from each of the 7 foreign exchange markets 

(AUDUSD, EURUSD, GBPUD, NZDUSD, USDCAD, USDCHF and USDJPY). Lastly, for experiments 

that used multiple markets, all 7 foreign exchange market datasets were used. 

 

Additional findings arising from analysis 

The analysis of the results of the experiments performed has contributed several interesting 

findings. The first of these related to the potential for changes in market conditions across 

the contiguous market segments used for training, validation and outsample datasets. The 

proposal in Section 8.1.2 was to train the classification system on the training dataset, and 

then apply it to the validation dataset in order to determine the optimal iteration for 

selecting the eventual classifier to be used on outsample data. The experiments highlighted 

the difficulty in selecting an optimal iteration; the evidence presented is against the 

existence of a single optimal iteration. It is suggested here that it may be more appropriate 

to skip the validation stage and simply select the classifier from the 100th iteration of the 

Adaboost algorithm in training. Chapter 10 also highlighted an improved performance of that 

classifier on validation data as opposed to outsample, which perhaps might be expected as 

market conditions change progressively over time – a classifier is more likely to be useful on 

the very next market segment. 

Secondly, the term ‘bad’ is loosely defined, and must be understood in the context of the 

relationship between the performance metric and the datasets on which the classifier is 

trained and used. The approach taken in the methodology presupposes that a single metric 

has been well-chosen for the judgement that a trade is ‘bad’ in the given context. Chapter 11 
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speculated that classification systems using different classification metrics could be built in 

combination, to create more general systems. This is examined in the passage on Future 

Work below. 

Thirdly, while results are promising for the reliable detection of consistently poor trading 

strategies (those that are poor under many market conditions), distinguishing between 

potentially good and consistently good strategies more difficult. Consistently good traders 

can be taken to employ more and better strategies which apply under a broad range of 

market conditions. Potentially good traders may employ a similar number of comparably 

sound strategies, which are not currently returning well due to market conditions; these are 

likely to improve with experience. It takes considerable data to distinguish apparently good 

traders from these; such traders are in fact using fewer and/or less sound strategies which 

happen to be returning better than random results due to statistical reasons. However, bad 

traders will certainly return no better than random results in the long term. Moreover, such 

results are likely to be inconsistent, ending even if similar market conditions continue or 

return. 

Last, while Section 5.2.1 suggested that a trading strategy comprising multiple technical 

analysis interpretations might constitute a good model for a trader, the above methodology 

was more successful with strategies of size 1. Smaller trading strategies are more likely to 

behave similarly on future data, with larger sized strategies being potentially too complex to 

be effective in modelling market behaviour. It is noted here, however, that many traders do 

employ simple predictive market models, and so the model of a trader employed within the 

methodology is still realistic. 

 

Evaluation of the usefulness of Genetic Algorithms 

The secondary aim of the project was to ‘generate trading strategies, as models of traders, 

by combining the buy and sell signals from technical analysis interpretations’. 

Due to the commercial sensitivity of the project partner’s actual trader history data, and the 

need for a large volume of trade histories, it was decided that a pool of trading strategies (as 

models of traders) would need to be created artificially. The initial plan for the generation of 
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this pool of trading strategies was to create chromosomes for use in the Genetic Algorithm, 

which represented trading strategies as combinations of 3 or more technical analysis 

interpretations combined through majority vote. The initial pool was created randomly, and 

then the Genetic Algorithm forced to evolve more effective strategies through increasing 

population fitness (Chapters 6 and 7). This pool was to be subsequently used to train the 

classification systems. However, the Genetic Algorithm approach was not successful in 

improving fitness by use of the return metric (Chapter 6), nor by alternative standard metrics 

(Chapter 7).  It was considered likely that single metrics were not suitable for locating optima 

within their search spaces, but it was not clear how multi-objective fitness functions could be 

built. The novel approach taken to modelling traders within the chromosomes may also have 

contributed to the observed failure. Nevertheless, this work prompted consideration of the 

Adaboost algorithm as a mechanism for creating a multi-objective fitness function through 

training on labelled data. 

The approach taken as an alternative to generating the pool was to create random trading 

strategies, of different sizes and balanced between ‘good’ and ‘bad’ in relation to a given 

performance metric, and to develop classification systems trained on these using the 

Adaboost methodology described above.  

Section 1.4 also detailed two objectives for the work. The first objective was to ‘identify a set 

of criteria by which the success or otherwise of a trading strategy may be judged, i.e. the 

trader who fails to meet these criteria, or a subset of these criteria, can be considered a bad 

trader.’ This addresses the issue of the definition of ‘bad’ mentioned above. The experiments 

that established the methodology for the decision support system identified such a set of 

criteria, as described above. 

 

Ranking of trading strategies 

The second objective was to ‘score trading strategies so that they can be ranked and 

compared to other trading strategies. The propriety trading company employing the traders 

can therefore make better decisions about the amount of funds to allocate to each trader 

relative to other traders. ’The project partner is very keen on the use of a white box approach 
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to categorise traders, as they wish to understand how the classification system makes its 

decisions. It is difficult to decipher the decision-making processes of artificial neural 

networks and support vector machines, as these are black boxed approaches to classification 

and regression. Adaboost, in contrast, is a white boxed approach. The training process results 

in a classification system which constitutes a weighted sum of contributions from many weak 

classifiers (which are themselves performance metrics relying on thresholds, i.e. on outputs 

above or below a specified value). The regression version of the Adaboost formula (explained 

in Section 11.7.1) makes explicit this weighted sum. It is interesting to note that this formula 

is, in effect, a multi-objective fitness function that could be employed by local search 

algorithms; this is considered in future work, below. Chapter 11 concludes with a brief 

discussion on how the ranking of trading strategies enabled through Adaboost could 

contribute to decision-making by a trading company on the allocation of funds to traders. 

Classification of a trader as ‘bad’ would provide justification to reduce those funds allocated 

to the trader, hence reducing risk to capital, while classification of a trader as ‘good’ might 

encourage the allocation of more capital to increase return. 

 

Broader value of the work 

While the contributions described above have been framed primarily in terms of their value 

to the project partner, other trading companies would benefit similarly. Moreover, the 

project outcomes could be extended to other practical applications.  

Within the finance sector, the algorithm can identify weaknesses in strategy that will inform 

training programmes. The approach taken enables a trading company to access and engage 

with the classification mechanism. The weighted sum of contributions from many weak 

classifiers output by Adaboost can provide managers and traders with insights into the trade-

offs between the different performance metrics. 

More generally, the approach to employing Adaboost for classification could be applied to 

any sector that generates data on which decisions must be made, and in which poor 

decisions must be avoided. Investments in the public sector comprise several varied 

strategies, with measurable outcomes such as pass rates in schools, recovery rates in 
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hospitals, changes in employment figures etc. A weighting amongst alternative strategies 

would be valuable in determining those with the poorest return. In the private sector, 

underperforming factories, retail outlets, or entertainment franchises could be identified in 

terms of their strategies of personnel allocation and resource consumption. 

12.2 Future Work 

To extend the work presented in this thesis, more experiments can be performed to 

investigate whether classification systems using performance metrics derived from a 

different timeframe than the hourly timeframe used might prove better for classifying and 

identifying ‘bad’ traders; daily, 5-minute and 1-minute market data are possibilities. 

Changing the length and dates of the market segments may also yield interesting results. In 

regard to datasets, unfortunately, OSTC were unable to provide trade histories of their 

traders (due to reasons of sensitivity and confidentiality). These might have constituted a 

better training dataset for the classification systems described in this thesis, although it is 

noted that the volume of data might have been insufficient. 

It was suggested in the concluding remarks of Chapter 11 that a final classification system 

could be created from a combination of multiple classification systems that use different 

performance metrics and boundaries. This final classification system could be constructed 

using the Adaboost algorithm or another machine learning classification or regression 

algorithm which could make sense of the different component classification systems. 

Trading strategies in this thesis are, in essence, forecasting the future as they are technical 

analysis interpretations that attempt to model some continuing or recurrent aspect of the 

financial market. The model of trading strategies can be extended to include take profit 

levels which trigger the end of a trade when the asset has achieved a particular price or 

profit, and conversely to include stop losses which limit losses if the asset goes against the 

trading strategy’s position (as described in Section 5.1). Further mechanisms for risk 

management such as time limits on trades could also be investigated. 

Some traders deploy a data driven process for the creation of trading strategies and trade 

thousands of trading strategies in parallel. The creation of thousands of trading strategies in 

a data-driven approach, are likely to by chance have a proportion of trading strategies that 

pass the trader’s criterion, filters and tests that indicate that the trading strategy is not ‘bad’ 
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and should be traded. Classification systems for determining whether a trader is ‘good’ or 

‘bad’ (which is itself a data-driven model), could be adapted to act as an additional filter for 

rejecting trading strategies. 

In this thesis the classification systems were created using the Adaboost algorithm. The 

project partner, OSTC, prefer such a white box approach to classification in which the 

decisions of the classification system can be inspected. Further work on the visualisation and 

inspection of the Adaboost-based classification systems in this thesis could be explored. 

Going beyond the preference of the project partner, comparisons between the Adaboost 

classification systems of this thesis with black box classification systems, such as Artificial 

Neural Networks and Support Vector Machines, would be interesting. Hybrid classification 

systems of these types might also produce better classification performance. 

Genetic Algorithms have been used to create formulae that act as trading strategies and 

have been used by Lipinski (2010; 2010; 2004) to evolve a population of trading strategies 

that are reported to be profitable on future market data. While Lipinski’s work modelled 

trading strategies as a binary chromosome, the representation of a trading strategy in this 

thesis was a treelike structure. Future work would involve attempting to duplicating Lipinski’s 

work, and then changing the representation of a trading strategy to determine whether 

controlling the number of technical analysis interpretations per trading strategy can 

overcome overfitting. 

The methodology proposed results in a formula which is, in effect, a multi-objective fitness 

function; this function is produced by ignoring the ‘sign’ function that turns the Adaboost 

regression into a classification. Other local search algorithms such as Simulated Annealing 

and Tabu search, and the Genetic Algorithm, could be constructed to employ that multi-

objective fitness to explore the search space of trading strategies.  This might prove 

particularly interesting in the case of the Genetic Algorithm, returning to the work of 

Chapters 6 and 7 in generating pools of artificial trading strategies.  
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Appendix A – Further Genetic Algorithm results 

This appendix presents further results relating to Table 15 in Section 6.3.3, where each series 

represents a different Genetic Algorithm configuration. Figures 190, 191 and 192 show the 

average maximum fitness value of 100 Genetic Algorithm runs using a population of trading 

strategies consisting of 6 technical analysis interpretations  

 

Figure 190: Genetic Algorithm results obtained from insample data 

 

 

Figure 191: Genetic Algorithm results obtained from validation data 
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Figure 192: Genetic Algorithm results obtained from outsample data 

Figures 193, 194 and 195 show the average maximum fitness value of 100 Genetic Algorithm 

runs using a population of trading strategies consisting of 7 technical analysis interpretations.  

 

Figure 193: Genetic Algorithm results obtained from insample data 
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Figure 194: Genetic Algorithm results obtained from validation data 

 

Figure 195: Genetic Algorithm results obtained from outsample data 
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Appendix B – Classification System Performance Results 

This appendix presents the full performance metric results for classification systems 

produced in Section 11.5, in relation to different trading strategy categorisations. 
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Figure 196: Accuracy of classification systems on validation data using different 
categorisation metrics and values 
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Figure 197: Accuracy of classification systems on outsample data using different 
categorisation metrics and values 
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Figure 198: Precision of classification systems on validation data using different 
categorisation metrics and values 
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Figure 199: Precision of classification systems on outsample data using different 
categorisation metrics and values 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

11 21 31 41 51 61 71 81 91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

P
re

ci
si

o
n

 

Adaboost iteration 

Expected Payoff -100.0

Expected Payoff -500.0

Expected Payoff 0.0

Expected Payoff 100.0

Expected Payoff 500.0

Profit Factor 0.75

Profit Factor 0.25

Profit Factor 1.0

Profit Factor 1.5

Profit Factor 2.0

Profit Factor 0.5

Return -1000.0

Return -10000.0

Return 0.0

Return 10000.0

Return 1000.0

Sharpe Ratio 1.0

Sharpe Ratio 0.5

Sharpe Ratio -0.5

Sharpe Ratio 0.0

Sortino Ratio 1.0

Sortino Ratio 0.0

Sortino Ratio -0.5

Sortino Ratio 0.5

Trade Success Rate 0.7

Trade Success Rate 0.3

Trade Success Rate 0.5

Trade Success Rate 0.6

Trade Success Rate 0.4



330 
 

 

Figure 200: Recall of classification systems on validation data using different 
categorisation metrics and values 
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Figure 201: Recall of classification systems on outsample data using different 
categorisation metrics and values 
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Figure 202: Negative predictive value of classification systems on validation data using 
different categorisation metrics and values 
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Figure 203: Negative predictive value of classification systems on outsample data using 
different categorisation metrics and values 
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Figure 204: Specificity of classification systems on validation data using different 
categorisation metrics and values 
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Figure 205: Specificity of classification systems on outsample data using different 
categorisation metrics and values 
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Appendix C – MaTool 

MaTool is a program that was developed by the current author, which explores and 

encapsulates most of the research undertaken during this PhD into a graphical user 

interface. MaTool is split into many workspaces and the main features are outlined in the 

following sections. 

Market Workspace 

This part of the software allows the user to access and examine market data such as share 

and option prices. The market data used in this thesis was downloaded from Forex’s 

MetaTrader 4 application. 

Main functionality: 

1. Visualise and load market data (see Figure 206). Market data can be loaded into 

MaTool via the ‘File’ menu 

2. Ability to see technical analysis information (see Figure 207). Technical analysis 

algorithms can be shown via the ‘Tools’ menu 

3. Ability to zoom in and out and adjust the x-axis by using the mouse 

4. Ability to overlay trading strategy decisions on the market data (see Figure 208). The 

trading strategy can be loaded in via the ‘Market’ menu 

5. Ability to view the perfect buy and sell decisions for short term and long term trends 

(see Figure 209). This can be shown via the ‘Market’ menu and selecting the ‘Show 

trends’ menu item 
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Figure 206: Market workspace loaded with FOREX exchange rate market data 

 

Figure 207: Technical analysis information on AUDUSD market data 
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Figure 208: A loaded trading strategy's buy (green) and sell (red) decisions 

 

Figure 209: 'Perfect' buy and sell decisions with a dialog which adjusts the view from short 
term to long term decisions  
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Model Workspace 

This part of the software allows the user to manipulate and inspect trading strategies (see 

Figure 210). 

Main functionality: 

1. Load and save trading strategies. This is achieved via the ‘File’ menu 

2. Manually create or edit trading strategies using the mouse 

3. Inspect trading strategies and their components. This is done by double clicking a 

node of the trading strategy; if it was the root node then the user would be 

inspecting the whole trading strategy 

4. View the equity curve of a trading strategy and its components (see Figure 211). This 

can be done by first selecting a node or nodes then selecting ‘Show equity curve’ via 

the ‘Tools’ menu 

 

Figure 210: Model workspace showing a trading strategy 
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Figure 211: Equity curve of a trading strategy algorithm  
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Optimisation Workspace 

This part of the software finds the ‘best’ parameter settings for technical analysis algorithms 

given a user specified objective function (see Figure 212). 

Main functionality: 

1. Allows the user to find the best technical analysis parameter settings 

2. Allows the user to create a weighted objective function so that it can maximise it 

when finding the best parameter settings 

3. Allows the user to specify constraints which must be satisfied 

4. Allows the user to save the technical analysis algorithms and save the objective 

function with constraints. This can be done via the ‘File’ menu 

 

Figure 212: Technical analysis parameter optimisation 
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Trading Strategy Manager 

This part of the software visualises a collection of trading strategies using three dimensional 

scatter graphs with user specified axis variables (see Figure 213). The main purpose was to 

give insights into the relationship between different metrics and currently only works with 

older directories. 

Main functionality: 

 Creates and saves trading strategies 

 Creates and saves boosted classifiers 

 Allows the user to create on three dimensional graph scatter plots of trading 

strategies which depend on user specified metrics 

 

 

Figure 213: Trading strategy manager workspace 
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Monte Carlo Simulation Workspace 

This part of the software gives the user access to artificial market data which can be used in 

Monte Carlo simulation tests (see Figure 214). 

Main functionality: 

 Allows the user to specify the number of simulation days 

 Allows the user to specify the number of simulations 

 Allows the user to save the artificial data 

 Simulates market data using the conditional discrete price change distribution 

 Visually shows the artificial market data simulation 

 

 

Figure 214: Simulations of market data 
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Adaboost Workspace 

This part of the software contains functionality relating to the investigation and application 

of Adaboost to classifying trading strategies (see Figures 215 and 216). 

Main functionality: 

 Plots the classification performance of created and constructing strong classifiers on 

insample, validation and outsample data 

 Plots the classification performance of the bootstrap classifier made up of many 

strong classifiers 

 Reports the results of the bootstrap classifier 
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Figure 215: Overview of the boosting workspace 
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Figure 216: Overview of the boosting workspace continued 
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Technical Analysis Combiner Workspace 

This part of the software visualises the search space of all possible trading strategies given a 

set of technical analysis algorithms (see Figure 217). 

Main functionality: 

 Visualise trading strategy search space 

 Save the trading strategy scatter results 

 

 

Figure 217: Overview of the technical analysis combiner workspace  
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Genetic Algorithm Workspace 

This part of the software creates trading strategies by evolving random trading strategies 

using the Genetic Algorithm methodology (see Figure 218). 

Main functionality: 

 Shows mean, min, max and median fitness values of the population during each 

iteration of the Genetic Algorithm 

 Allows the user to adjust the parameters of the Genetic Algorithm 

 Allows the user to save the results to a file 

 

 

Figure 218: Overview of the Genetic Algorithm workspace  
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Live Trading Workspace 

This part of the software interfaces with MetaTrader 4 (see Figure 219). 

Main functionality: 

1. Allows the user to trade trading strategies created in MaTool on MetaTrader 4. This 

is done by using an Expert advisor in MetaTrader 4 which talks to the MaTool 

application 

2. Allows the user to configure the lot size and stop loss of the trading strategy 

3. Allows the user to stop the trading strategy from trading 

4. Allows the user to see the equity curve of the traded trading strategies 

 

 

Figure 219: Overview of the live trading workspace 
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Portfolio Manager 

This part of the software shows the relationship between the risk and reward of many 

markets from their equity curves (see Figure 220). 

 

Figure 220: Overview of the portfolio manager workspace 
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Appendix D – Trader Classification Tool 

Chapters 8-11 explored the development of Adaboost classification systems for the 

classification of trading strategies. Trading strategies were used in this project as a proxy for 

actual trader data which, for reasons of commercial sensitivity, were not available. The 

project partner would benefit from having a program, with a usable interface, to appraise 

the performance of actual traders, using metrics of their trading performance. 

The program described in this appendix is intended to assist managers to judge whether a 

trader is ‘bad’, and can indicate tilting. Tilt is a state of mental or emotional confusion or 

frustration where a trader deviates from their optimal trading system. A bad trade, 

problems outside of work and stress are a few things that lead to tilting. This program 

enables managers to help spot traders that are tilting, and early intervention would reduce 

the risk of losses of the company’s capital. In addition to spotting ‘bad’ and tilting traders, 

this program can be used to help judge the amount company capital to invest into each 

trader as the performance of each trader can be scored and compared to other traders 

relatively. 

This program can be used to classify and identify ‘bad’ trading strategies using the results in 

Chapter 11. Chapter 7 attempted to create potentially ‘good’ trading strategies, each of 

which contain a combination of technical analysis interpretations. The Genetic Algorithm 

suffered from early population convergence and later experiments used a random set of 

trading strategies. This program could benefit from including a ‘potentially good’ set of 

trading strategies using techniques described in the literature. The classification system may 

also benefit from a different trading strategy model, perhaps even trading strategies using 

artificial neural networks or support vector machines.   

Figure 221 shows the user the raw performance metric data which is loaded into the 

program from the file system. The program loads the data from comma separated files (csv) 

in the folders “Test data” and “Real data” which are created relative to the program’s 

current directory. The raw data is shown to ensure that the data is properly formatted 
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Figure 221: The interface for viewing raw data of traders or trading strategies 
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Figure 222 is a simplified interface which the user uses to classify traders and trading 

strategies. To create the classification system and then classify the traders or trading 

strategies in the outsample dataset, the user has to do the following: 

 Choose which dataset to use. Use the test data directory or real data directory. 

 Sort the data files from oldest to newest to ensure the validation set contains the 

newest dataset and the final file represents the more recent performance metrics 

and is used as the outsample file. 

 Specify what proportion of the historical dataset is training data (used to create the 

classification system) and validation data. 

 Specify the performance metric to classify and the value which separates the two 

classifications. For example, the user may want to separate traders into potentially 

profitable traders and potentially unprofitable traders. The user must specify the 

metric to classify as the profit factor metric and the decision boundary for the 

classification to be of the value of 1. 
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Figure 222: The interface which classifies traders and trading strategies 

In this program, many parameter settings of the Adaboost based classification system using 

the bootstrap aggregation and feature bagging techniques are attempted. The resultant 

classification system with the highest overall classification rate in the validation set is used 

to classify the traders or trading strategies in the last dataset (the outsample dataset which 

attempts to predict future performance). The results of the final classification can be shown 

in the “Algorithm output” part of the program. 

Figure 223 shows the classifier’s score for each trader on the last data file provided by the 

user. The score is from -1 to 1 where -1 predicts below the classification decision boundary, 

0 is the decision boundary and 1 is above the decision boundary. The closer the trader or 

trading strategy score is to -1 or 1. 

 



355 
 

 

Figure 223: Results of the program's classification on test data 


