29,468 research outputs found

    Using security patterns for modelling security capabilities in a Grid OS

    Get PDF

    Two ways to Grid: the contribution of Open Grid Services Architecture (OGSA) mechanisms to service-centric and resource-centric lifecycles

    Get PDF
    Service Oriented Architectures (SOAs) support service lifecycle tasks, including Development, Deployment, Discovery and Use. We observe that there are two disparate ways to use Grid SOAs such as the Open Grid Services Architecture (OGSA) as exemplified in the Globus Toolkit (GT3/4). One is a traditional enterprise SOA use where end-user services are developed, deployed and resourced behind firewalls, for use by external consumers: a service-centric (or ‘first-order’) approach. The other supports end-user development, deployment, and resourcing of applications across organizations via the use of execution and resource management services: A Resource-centric (or ‘second-order’) approach. We analyze and compare the two approaches using a combination of empirical experiments and an architectural evaluation methodology (scenario, mechanism, and quality attributes) to reveal common and distinct strengths and weaknesses. The impact of potential improvements (which are likely to be manifested by GT4) is estimated, and opportunities for alternative architectures and technologies explored. We conclude by investigating if the two approaches can be converged or combined, and if they are compatible on shared resources

    Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    Vulnerability anti-patterns:a timeless way to capture poor software practices (Vulnerabilities)

    Get PDF
    There is a distinct communication gap between the software engineering and cybersecurity communities when it comes to addressing reoccurring security problems, known as vulnerabilities. Many vulnerabilities are caused by software errors that are created by software developers. Insecure software development practices are common due to a variety of factors, which include inefficiencies within existing knowledge transfer mechanisms based on vulnerability databases (VDBs), software developers perceiving security as an afterthought, and lack of consideration of security as part of the software development lifecycle (SDLC). The resulting communication gap also prevents developers and security experts from successfully sharing essential security knowledge. The cybersecurity community makes their expert knowledge available in forms including vulnerability databases such as CAPEC and CWE, and pattern catalogues such as Security Patterns, Attack Patterns, and Software Fault Patterns. However, these sources are not effective at providing software developers with an understanding of how malicious hackers can exploit vulnerabilities in the software systems they create. As developers are familiar with pattern-based approaches, this paper proposes the use of Vulnerability Anti-Patterns (VAP) to transfer usable vulnerability knowledge to developers, bridging the communication gap between security experts and software developers. The primary contribution of this paper is twofold: (1) it proposes a new pattern template – Vulnerability Anti-Pattern – that uses anti-patterns rather than patterns to capture and communicate knowledge of existing vulnerabilities, and (2) it proposes a catalogue of Vulnerability Anti-Patterns (VAP) based on the most commonly occurring vulnerabilities that software developers can use to learn how malicious hackers can exploit errors in software

    Data mining based cyber-attack detection

    Get PDF

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    An Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    Security and Privacy Issues of Big Data

    Get PDF
    This chapter revises the most important aspects in how computing infrastructures should be configured and intelligently managed to fulfill the most notably security aspects required by Big Data applications. One of them is privacy. It is a pertinent aspect to be addressed because users share more and more personal data and content through their devices and computers to social networks and public clouds. So, a secure framework to social networks is a very hot topic research. This last topic is addressed in one of the two sections of the current chapter with case studies. In addition, the traditional mechanisms to support security such as firewalls and demilitarized zones are not suitable to be applied in computing systems to support Big Data. SDN is an emergent management solution that could become a convenient mechanism to implement security in Big Data systems, as we show through a second case study at the end of the chapter. This also discusses current relevant work and identifies open issues.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201
    corecore