30,010 research outputs found

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Behavior patterns in hormonal treatments using fuzzy logic models

    Get PDF
    Assisted reproductive technologies are a combination of medical strategies designed to treat infertility patients. Ideal stimulation treatment has to be individualized, but one of the main challenges which clinicians face in the everyday clinic is how to select the best medical protocol for a patient. This work aims to look for behavior patterns in this kind of treatments, using fuzzy logic models with the objective of helping gynecologists and embryologists to make decisions that could improve the process of in vitro fertilization. For this purpose, a real-world dataset composed of one hundred and twenty-three (123) patients and five hundred and fifty-nine (559) treatments applied in relation to such patients provided by an assisted reproduction clinic, has been used to obtain the fuzzy models. As conclusion, this work corroborates some known clinic experiences, provides some new ones and proposes a set of questions to be solved in future experiments.Ministerio de EconomĂ­a y Competitividad TIN2013-46928-C3-3-RMinisterio de EconomĂ­a y Competitividad TIN2016-76956- C3-2-RMinisterio de EconomĂ­a y Competitividad TIN2015-71938-RED

    Comparing the Online Learning Capabilities of Gaussian ARTMAP and Fuzzy ARTMAP for Building Energy Management Systems

    Get PDF
    Recently, there has been a growing interest in the application of Fuzzy ARTMAP for use in building energy management systems or EMS. However, a number of papers have indicated that there are important weaknesses to the Fuzzy ARTMAP approach, such as sensitivity to noisy data and category proliferation. Gaussian ARTMAP was developed to help overcome these weaknesses, raising the question of whether Gaussian ARTMAP could be a more effective approach for building energy management systems? This paper aims to answer this question. In particular, our results show that Gaussian ARTMAP not only has the capability to address the weaknesses of Fuzzy ARTMAP but, by doing this, provides better and more efficient EMS controls with online learning capabilities

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Wavelet-Based Prediction for Governance, Diversification and Value Creation Variables

    Full text link
    We study the possibility of completing data bases of a sample of governance, diversification and value creation variables by providing a well adapted method to reconstruct the missing parts in order to obtain a complete sample to be applied for testing the ownership-structure/diversification relationship. It consists of a dynamic procedure based on wavelets. A comparison with Neural Networks, the most used method, is provided to prove the efficiency of the here-developed one. The empirical tests are conducted on a set of French firms.Comment: 22 page

    An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs

    Get PDF
    Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty. Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed. Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven
    • …
    corecore