2,103 research outputs found

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Design and implementation of sensor systems for control of a closed-loop life support system

    Get PDF
    The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process

    The Efficiency of Refrigeration Capacity Regulation in the Ambient Air Conditioning Systems

    Get PDF
    The Efficiency of Refrigeration Capacity Regulation in the Ambient Air Conditioning Systems / E. Trushliakov, A. Radchenko, M. Radchenko, S. Kantor, O. Zielikov // Proceedings of the 3rd Intern. Conf. on Design, Simulation, Manufacturing: The Innovation Exchange «Advances in Design, Simulation and Manufacturing III». – Kharkiv, 2020. – Vol. 244. – P. 343–353.Abstract. The operation of the ambient air conditioning systems (ACS) is characterized by considerable fluctuations of the heat load in response to the current climatic conditions. It needs the analyses of the efficiency of the application of compressors with frequency converters for refrigeration capacity regulation in actual climatic conditions. A new method and approach to analyzing the effectiveness of ACS cooling capacity adjusting by using the compressor with changing the rotational speed of the motor as an example have been developed, according to which the overall range of changeable heat loads is divided into two zones: the zone of ambient air processing with considerable fluctuations of the current heat load, that requires effective refrigeration capacity regulation by the compressor with frequency converters (from 100% rated refrigeration capacity down to about 50%) and not an adjustable zone of reduced refrigeration capacity below 50% rated refrigeration capacity of the compressor. The magnitudes of threshold refrigeration capacity between both zones are chosen according to the rational value of installed (design) refrigeration capacity on the ACS, required for cooling the ambient air to a target temperature that ensures the maximum annual refrigeration capacity production in actual current climatic conditions. The proposed method and approach to the analysis of the efficiency of the refrigeration capacity regulation of the ACS compressor by distributing the overall range of changes in current heat loads allows increasing the efficiency of utilizing the installed refrigeration capacity in prevailing climatic conditions

    Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensin

    Space Station Biological Research Project: Reference Experiment Book

    Get PDF
    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process

    Industrial-Scale Manufacture of Oleosin 30G for Use as Contrast Agent in Echocardiography

    Get PDF
    In ultrasound sonography, microbubbles are used as contrasting agents to improve the effectiveness of ultrasound imaging. Monodisperse microbubbles are required to achieve the optimal image quality. In order to achieve a uniform size distribution, microbubbles are stabilized with surfactant molecules. One such molecule is Oleosin, an amphiphilic structural protein found in vascular plant oil bodies that contains one hydrophobic and two hydrophilic sections. Controlling the functionalization of microbubbles is a comprehensive and versatile process using recombinant technology to produce a genetically engineered form of Oleosin called Oleosin 30G. With the control of a microfluidic device, uniformly-sized and resonant microbubbles can be readily produced and stored in stable conditions up to one month. Currently, Oleosin microbubbles are limited to the lab-scale; however, through development of an integrated batch bioprocessing model, the overall product yield of Oleosin 30G can be increased to 7.39 kg/year to meet needs on the industrial-scale. An Oleosin-stabilized microbubble suspension as a contrast agent is in a strong position to take a competitive share of the current market, capitalizing on needs unmet by current market leader, Definity®. Based on market dynamics and process logistics, scaled-up production of Oleosin 30G for use as a contrast agent is expected to be both a useful and profitable venture

    Optimization of Oleosin 30G Production for Echocardiography

    Get PDF
    Provided they are uniform in size, monodisperse microbubbles behave as contrast agents to enhance echocardiographic imaging. Compounds like Oleosin 30G with surfactant-like properties help stabilize microbubbles - thereby ensuring their uniform size. Designed herein is an industrial-scale plant to produce medical-grade Oleosin 30G with a process consisting of three steps: 1) upstream production via recombinant E. coli in an integrated batch bioprocessing model, 2) downstream purification, and 3) processing by microfluidic manifolds. Ultimately Oleosin 30G-coated microbubbles are manufactured, ready for injection within one month. Owing to its unique properties and cost-effective production, Oleosin 30G has the potential to outcompete current market leader Definity®. Altogether, overall yield of Oleosin 30G constitutes 7.39 kg/year to provide for 100% market saturation. Financial analysis indicates pursuing Oleosin 30G for echocardiography applications is very profitable with a 296% return on investment and holds potential for production expansion should the market demand increase

    2011 Abstract Book

    Get PDF

    Process Engineering and Chemical Plant Design 2011

    Get PDF
    The 18th International Conference in “Process Engineering and Chemical Plant Design” is taking place in Berlin from september 19th to september 23rd 2011. We are pleased with the successful collaboration which is the result of a meanwhile 30 years continual international cooperation between the Cracow University of Technology and the Berlin Institute of Technology. This relationship has also been intensified by student exchange programs and international transfer of knowledge between the participating universities during the last years. This book contains the abstracts of all contributions and lectures which are presented by the miscellaneous participants within the scope of the conference. Different topics are addressed, concerning industrial problems as well as forward-looking questions and fundamental investigation of special phenomena for the chemical and the power generation industry. Thereby special attention is paid to fundamental research of complex correlations, modelling and simulation, process control and operation, sustainable and efficient energy generation as well as troubleshooting and problems within the operation and control of chemical processes. Printed version available by Universitätsverlag der TU Berlin, ISBN 978-3-7983-2361-
    corecore