983 research outputs found

    Using Localised ‘Gossip’ to Structure Distributed Learning

    Get PDF
    The idea of a “memetic” spread of solutions through a human culture in parallel to their development is applied as a distributed approach to learning. Local parts of a problem are associated with a set of overlappingt localities in a space and solutions are then evolved in those localites. Good solutions are not only crossed with others to search for better solutions but also they propogate across the areas of the problem space where they are relatively successful. Thus the whole population co-evolves solutions with the domains in which they are found to work. This approach is compared to the equivalent global evolutionary computation approach with respect to predicting the occcurence of heart disease in the Cleveland data set. It greatly outperforms the global approach, but the space of attributes within which this evolutionary process occurs can effect its efficiency

    Group Leaders Optimization Algorithm

    Full text link
    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multidimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speed-up over the classical counterpart

    CoBRA: A cooperative coevolutionary algorithm for bi-level optimization

    Get PDF
    International audienceThis article presents CoBRA, a new evolutionary algorithm, based on a coevolutionary scheme, to solve bi-level optimization problems. It handles population-based algorithms on each level, each one cooperating with the other to provide solutions for the overall problem. Moreover, in order to evaluate the relevance of CoBRA against more classical approaches, a new performance assessment methodology, based on rationality, is introduced. An experimental analysis is conducted on a bi-level distribution planning problem, where multiple manufacturing plants deliver items to depots, and where a distribution company controls several depots and distributes items from depots to re- tailers. The experimental results reveal significant enhancements, particularly over the lower level, with respect to a more classical approach based on a hierarchical scheme

    CoBRA: A Coevolutionary Meta-heuristic for Bi-level Optimization

    Get PDF
    This article presents CoBRA, a new parallel coevolutionary algorithm for bi-level optimization. CoBRA is based on a coevolutionary scheme to solve bi-level optimization problems. It handles population-based meta-heuristics on each level, each one cooperating with the other to provide solutions for the overall problem. Moreover, in order to evaluate the relevance of CoBRA against more classical approaches, a new performance assessment methodology, based on rationality, is introduced. An experimental analysis is conducted on a bi-level distribution planning problem, where multiple manufacturing plants deliver items to depots, and where a distribution company controls several depots and distributes items from depots to retailers. The experimental results reveal significant enhancements with respect to a more classical approach, based on a hierarchical scheme.Cet article présente CoBRA, un nouvel algorithme paralléle et coévolutionnaire pour l'optimisation bi-niveau. CoBRA se base sur un modèle coévolutionnaire pour faire face aux problèmes d'optimisation bi-niveau. Il manipule une méta-heuristique à base de population sur chaque niveau, chacune coopérant avec l'autre de manière à garder une vue générale sur le problème complet. De plus, afin d'étudier la pertinence de CoBRA par rapport aux approches plus classique, une nouvelle méthodologie, basée sur la rationalité est introduite. Est conduite ensuite une étude expérimentale sur un problème bi-niveau de distribution-production, dans lequel des usines contrôlées par une entreprise produisent des marchandises pour des dépôts, et une autre entreprise contrôlant les dépôts se charge de livrer les marchandises à des clients. Cet article se conclut sur l'observation d'un réel gain de performance par rapport à une approche plus classique, basée sur un modèle hiérarchique

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed

    Lost in translation: Toward a formal model of multilevel, multiscale medicine

    Get PDF
    For a broad spectrum of low level cognitive regulatory and other biological phenomena, isolation from signal crosstalk between them requires more metabolic free energy than permitting correlation. This allows an evolutionary exaptation leading to dynamic global broadcasts of interacting physiological processes at multiple scales. The argument is similar to the well-studied exaptation of noise to trigger stochastic resonance amplification in physiological subsystems. Not only is the living state characterized by cognition at every scale and level of organization, but by multiple, shifting, tunable, cooperative larger scale broadcasts that link selected subsets of functional modules to address problems. This multilevel dynamical viewpoint has implications for initiatives in translational medicine that have followed the implosive collapse of pharmaceutical industry 'magic bullet' research. In short, failure to respond to the inherently multilevel, multiscale nature of human pathophysiology will doom translational medicine to a similar implosion

    06061 Abstracts Collection -- Theory of Evolutionary Algorithms

    Get PDF
    From 05.02.06 to 10.02.06, the Dagstuhl Seminar 06061 ``Theory of Evolutionary Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey

    Get PDF
    Multi-Objective Evolutionary Algorithms (MOEAs) are powerful search techniques that have been extensively used to solve difficult problems in a wide variety of disciplines. However, they can be very demanding in terms of computational resources. Parallel implementations of MOEAs (pMOEAs) provide considerable gains regarding performance and scalability and, therefore, their relevance in tackling computationally expensive applications. This paper presents a survey of pMOEAs, describing a refined taxonomy, an up-to-date review of methods and the key contributions to the field. Furthermore, some of the open questions that require further research are also briefly discussed
    corecore