171 research outputs found

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Semi-supervised detection of structural damage using Variational Autoencoder and a One-Class Support Vector Machine

    Full text link
    In recent years, Artificial Neural Networks (ANNs) have been introduced in Structural Health Monitoring (SHM) systems. A semi-supervised method with a data-driven approach allows the ANN training on data acquired from an undamaged structural condition to detect structural damages. In standard approaches, after the training stage, a decision rule is manually defined to detect anomalous data. However, this process could be made automatic using machine learning methods, whom performances are maximised using hyperparameter optimization techniques. The paper proposes a semi-supervised method with a data-driven approach to detect structural anomalies. The methodology consists of: (i) a Variational Autoencoder (VAE) to approximate undamaged data distribution and (ii) a One-Class Support Vector Machine (OC-SVM) to discriminate different health conditions using damage sensitive features extracted from VAE's signal reconstruction. The method is applied to a scale steel structure that was tested in nine damage's scenarios by IASC-ASCE Structural Health Monitoring Task Group

    Structural Health Monitoring in Composite Structures: A Comprehensive Review.

    Full text link
    This study presents a comprehensive review of the history of research and development of different damage-detection methods in the realm of composite structures. Different fields of engineering, such as mechanical, architectural, civil, and aerospace engineering, benefit excellent mechanical properties of composite materials. Due to their heterogeneous nature, composite materials can suffer from several complex nonlinear damage modes, including impact damage, delamination, matrix crack, fiber breakage, and voids. Therefore, early damage detection of composite structures can help avoid catastrophic events and tragic consequences, such as airplane crashes, further demanding the development of robust structural health monitoring (SHM) algorithms. This study first reviews different non-destructive damage testing techniques, then investigates vibration-based damage-detection methods along with their respective pros and cons, and concludes with a thorough discussion of a nonlinear hybrid method termed the Vibro-Acoustic Modulation technique. Advanced signal processing, machine learning, and deep learning have been widely employed for solving damage-detection problems of composite structures. Therefore, all of these methods have been fully studied. Considering the wide use of a new generation of smart composites in different applications, a section is dedicated to these materials. At the end of this paper, some final remarks and suggestions for future work are presented

    Roadmap on measurement technologies for next generation structural health monitoring systems

    Get PDF
    Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots

    Earthquake Engineering

    Get PDF
    The book Earthquake Engineering - From Engineering Seismology to Optimal Seismic Design of Engineering Structures contains fifteen chapters written by researchers and experts in the fields of earthquake and structural engineering. This book provides the state-of-the-art on recent progress in the field of seimology, earthquake engineering and structural engineering. The book should be useful to graduate students, researchers and practicing structural engineers. It deals with seismicity, seismic hazard assessment and system oriented emergency response for abrupt earthquake disaster, the nature and the components of strong ground motions and several other interesting topics, such as dam-induced earthquakes, seismic stability of slopes and landslides. The book also tackles the dynamic response of underground pipes to blast loads, the optimal seismic design of RC multi-storey buildings, the finite-element analysis of cable-stayed bridges under strong ground motions and the acute psychiatric trauma intervention due to earthquakes

    Polycrystalline Silicon Capacitive MEMS Strain Sensor for Structural Health Monitoring of Wind Turbines

    Get PDF
    Wind energy is a fast-growing sustainable energy technology and driven by the need for more efficient energy harvesting, size of the wind turbines has increased over the years for both off-shore and land-based installations. Therefore, structural health monitoring and maintenance of such turbine structures have become critical and challenging. In order to keep the number of physical inspections to minimum without increasing the risk of structural failure, a precise and reliable remote monitoring system for damage identification is necessary. Condition-based maintenance which significantly improves safety compared to periodic visual inspections, necessitates a method to determine the condition of machines while in operation and involves the observation of the system by sampling dynamic response measurements from a group of sensors and the analysis of the data to determine the current state of system health. This goal is being pursued in this thesis through the development of reliable sensors, and reliable damage detection algorithms. Blade strain is the most important quantities to judge the health of wind turbine structure. Sensing high stress fields or early detection of cracks in blades bring safety and saving in rehabilitation costs. Therefore, high performance strain measurement system, consisting of sensors and interface electronics, is highly desirable and the best choice. It has been revealed that the conventional strain gauge techniques exhibit significant errors and uncertainties when applied to composite materials of wind turbine blades. Micro-electro-mechanical system (MEMS) based sensors are very attractive among other sensing techniques owing to high sensitivity, low noise, better scaling characteristics, low cost and higher potential for integration with low power CMOS circuits. MEMS sensors that are fabricated on a chip can be either bonded to the surface of wind turbine blade or embedded into the fiber reinforced composite. Therefore, MEMS technology is selected to fabricate the strain sensor in this work. Two new sensor structures that can be used for strain measurement are designed. While the proposed sensors focus on high sensitivity, they are based on simple operating principle of comb-drive differential variable capacitances and chevron displacement amplification. Device performances are validated both by analytical solutions and finite element method simulations. The transmission of strain fields in adhesively bonded strain sensors is also studied. In strain sensors that are attached to host structures using adhesive layers such as epoxy, complete strain transfer to the sensor is hindered due to the influence of the adhesive layer on the transfer. An analytical model, validated by finite element method simulation, to provide insight and accurate formulation for strain transfer mechanism for bonded sensors is developed. The model is capable of predicting the strain transmission ratio through a sensor gauge factor, and it clearly establishes the effects of the flexibility, length, and thickness of the adhesive layer and sensor substrate. Several fabrication steps were required to realize the MEMS capacitive strain sensor in our lab. Polycrystalline silicon is selected as the structural layer and silicon nitride as the sacrificial layer. Polysilicon is deposited using LPCVD and SiN is deposited by PECVD in our lab. A comprehensive material study of silicon nitride and polycrystalline silicon layers is therefore performed. The whole fabrication process involves deposition, etching, and photolithography of five material layers. Although this process is developed to realize the MEMS strain sensors, it is also able to fabricate other designs of surface micromachining structures as well. The fabricated MEMS capacitive strain sensors are tested on a test fixture setup. The measurement setup is created under the probe station by using a cantilever beam fixed on one side and free on other side where a micrometer applies accurate displacement. The displacement creates bending stress on the beam which transfers to the MEMS sensor through the adhesive bond. Measurement results are in a good match with the simulation results. Finally, a real-time non-destructive health monitoring technique based on multi-sensor data fusion is proposed. The objective is to evaluate the feasibility of the proposed method to identify and localize damages in wind turbine blades. The structural properties of turbine blade before and after damage are investigated and based on the obtained results, it is shown that information from smart sensors, measuring strains and vibrations, distributed over the turbine blades can be used to assist in more accurate damage detection and overall understanding of the health condition of blades. Data fusion technique is proposed to combine the diagnostic tools to improve the detection system with providing a more robust reading and fewer false alarms

    NASA Tech Briefs Index, 1978

    Get PDF
    Approximately 601 announcements of new technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Subject matter covered includes: electronic components and circuits; electron systems; physical sciences; materials; life sciences; mechanics; machinery; fabrication technology; and mathematics and information sciences

    Roadmap on measurement technologies for next generation structural health monitoring systems

    Get PDF
    Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots

    NASA Tech Briefs, March 1988

    Get PDF
    Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences
    • …
    corecore