175,138 research outputs found

    An Improved Approach for Contrast Enhancement of Spinal Cord Images based on Multiscale Retinex Algorithm

    Full text link
    This paper presents a new approach for contrast enhancement of spinal cord medical images based on multirate scheme incorporated into multiscale retinex algorithm. The proposed work here uses HSV color space, since HSV color space separates color details from intensity. The enhancement of medical image is achieved by down sampling the original image into five versions, namely, tiny, small, medium, fine, and normal scale. This is due to the fact that the each versions of the image when independently enhanced and reconstructed results in enormous improvement in the visual quality. Further, the contrast stretching and MultiScale Retinex (MSR) techniques are exploited in order to enhance each of the scaled version of the image. Finally, the enhanced image is obtained by combining each of these scales in an efficient way to obtain the composite enhanced image. The efficiency of the proposed algorithm is validated by using a wavelet energy metric in the wavelet domain. Reconstructed image using proposed method highlights the details (edges and tissues), reduces image noise (Gaussian and Speckle) and improves the overall contrast. The proposed algorithm also enhances sharp edges of the tissue surrounding the spinal cord regions which is useful for diagnosis of spinal cord lesions. Elaborated experiments are conducted on several medical images and results presented show that the enhanced medical pictures are of good quality and is found to be better compared with other researcher methods.Comment: 13 pages, 6 figures, International Journal of Imaging and Robotics. arXiv admin note: text overlap with arXiv:1406.571

    Framework for continuous improvement of production processes

    Get PDF
    This research introduces a new approach of using Six Sigma DMAIC (Define, Measure, Analyse, Improve, Control) methodology. This approach integrates various tools and methods into a single framework, which consists of five steps. In the Define step, problems and main Key Performance Indicators (KPIs) are identified. In the Measure step, the modified Failure Classifier (FC), i.e. DOE-NE-STD-1004-92 is applied, which enables to specify the types of failures for each operation during the production process. Also, Failure Mode and Effect Analysis (FMEA) is used to measure the weight of failures by calculating the Risk Priority Number (RPN) value. In order to indicate the quality level of process/product the Process/Product Sigma Performance Level (PSPL) is calculated based on the FMEA results. Using the RPN values from FMEA the variability of process by failures, operations and work centres are observed. In addition, costs of the components are calculated, which enable to measure the impact of failures on the final product cost. A new method of analysis is introduced, in which various charts created in the Measure step are compared. Analysis step facilitates the subsequent Improve and Control steps, where appropriate changes in the manufacturing process are implemented and sustained. The objective of the new framework is to perform continuous improvement of production processes in the way that enables engineers to discover the critical problems that have financial impact on the final product. This framework provides new ways of monitoring and eliminating failures for production processes continuous improvement, by focusing on the KPIs important for business success. In this paper, the background and the key concepts of Six Sigma are described and the proposed Six Sigma DMAIC framework is explained. The implementation of this framework is verified by computational experiment followed by conclusion section

    Recent Achievements in Numerical Simulation in Sheet Metal Forming Processes

    Get PDF
    Purpose of this paper: During the recent 10-15 years, Computer Aided Process Planning and Die Design evolved as one of the most important engineering tools in sheet metal forming, particularly in the automotive industry. This emerging role is strongly emphasized by the rapid development of Finite Element Modelling, as well. The purpose of this paper is to give a general overview about the recent achievements in this very important field of sheet metal forming and to introduce some special results in this development activity. Design/methodology/approach: Concerning the CAE activities in sheet metal forming, there are two main approaches: one of them may be regarded as knowledge based process planning, whilst the other as simulation based process planning. The author attempts to integrate these two separate developments in knowledge and simulation based approach by linking commercial CAD and FEM systems. Findings: Applying the above approach a more powerful and efficient process planning and die design solution can be achieved radically reducing the time and cost of product development cycle and improving product quality. Research limitations: Due to the different modelling approaches in CAD and FEM systems, the biggest challenge is to enhance the robustness of data exchange capabilities between various systems to provide an even more streamlined information flow. Practical implications: The proposed integrated solutions have great practical importance to improve the global competitiveness of sheet metal forming in the very important segment of industry. Originality/value: The concept described in this paper may have specific value both for process planning and die design engineers

    Applying value stream mapping to reduce food losses in supply chains : a systematic review

    Get PDF

    London School of Marketing: review for educational oversight by the Quality Assurance Agency for Higher Education

    Get PDF

    Implementation-effectiveness trial of an ecological intervention for physical activity in ethnically diverse low income senior centers.

    Get PDF
    BackgroundAs the US population ages, there is an increasing need for evidence based, peer-led physical activity programs, particularly in ethnically diverse, low income senior centers where access is limited.Methods/designThe Peer Empowerment Program 4 Physical Activity' (PEP4PA) is a hybrid Type II implementation-effectiveness trial that is a peer-led physical activity (PA) intervention based on the ecological model of behavior change. The initial phase is a cluster randomized control trial randomized to either a peer-led PA intervention or usual center programming. After 18 months, the intervention sites are further randomized to continued support or no support for another 6 months. This study will be conducted at twelve senior centers in San Diego County in low income, diverse communities. In the intervention sites, 24 peer health coaches and 408 adults, aged 50 years and older, are invited to participate. Peer health coaches receive training and support and utilize a tablet computer for delivery and tracking. There are several levels of intervention. Individual components include pedometers, step goals, counseling, and feedback charts. Interpersonal components include group walks, group sharing and health tips, and monthly celebrations. Community components include review of PA resources, walkability audit, sustainability plan, and streetscape improvements. The primary outcome of interest is intensity and location of PA minutes per day, measured every 6 months by wrist and hip accelerometers and GPS devices. Secondary outcomes include blood pressure, physical, cognitive, and emotional functioning. Implementation measures include appropriateness & acceptability (perceived and actual fit), adoption & penetration (reach), fidelity (quantity & quality of intervention delivered), acceptability (satisfaction), costs, and sustainability.DiscussionUsing a peer led implementation strategy to deliver a multi-level community based PA program can enhance program adoption, implementation, and sustainment.Trial registrationClinicalTrials.gov, USA ( NCT02405325 ). Date of registration, March 20, 2015. This website also contains all items from the World Health Organization Trial Registration Data Set

    Processes For Producing Low Cost, High Efficiency Silicon Solar Cells

    Get PDF
    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime Ï„ and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime Ï„ and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiOx.Georgia Tech Research Corporatio
    • …
    corecore