4 research outputs found

    Development of the future generation of smart high voltage connectors and related components for substations, with energy autonomy and wireless data transmission capability

    Get PDF
    The increased dependency on electricity of modern society, makes reliability of power transmission systems a key point. This goal can be achieved by continuously monitoring power grid parameters, so possible failure modes can be predicted beforehand. It can be done using existing Information and Communication Technologies (ICT) and Internet of Things (10T) technologies that include instrumentation and wireless communication systems, thus forming a wireless sensor network (WSN). Electrical connectors are among the most critical parts of any electrical system and hence, they can act as nodes of such WSN. Therefore, the fundamental objective of this thesis is the design, development and experimental validation of a self-powered IOT solution for real-time monitoring of the health status of a high-voltage substation connector and related components of the electrical substation. This new family of power connectors is called SmartConnector and incorporates a thermal energy harvesting system powering a microcontroller that controls a transmitter and several electronic sensors to measure the temperature, current and the electrical contact resistance (ECR) of the connector. These measurements are sent remotely via a Bluetooth 5 wireless communication module to a local gateway, which further transfers the measured data to a database server for storage as well as further analysis and visualization. By this way, after suitable data processing, the health status of the connector can be available in real-time, allowing different appealing functions, such as assessing the correct installation of the connector, the current health status or its remaining useful life (RUL) in real-time. The same principal can also be used for other components of substation like spacers, insulators, conductors, etc. Hence, to prove universality of this novel approach, a similar strategy is applied to a spacer which is capable of measuring uneven current distribution in three closely placed conductors. This novel IOT device is called as SmartSpacer. Care has to be taken that this technical and scientific development has to be compatible with existing substation bus bars and conductors, and especially to be compatible with the high operating voltages, i.e., from tens to hundreds of kilo-Volts (kV), and with currents in the order of some kilo-pm peres (kA). Although some electrical utilities and manufacturers have progressed in the development of such technologies, including smart meters and smart sensors, electrical device manufacturers such as of substation connectors manufacturers have not yet undertaken the technological advancement required for the development of such a new family of smart components involved in power transmission, which are designed to meet the future needs.La mayor dependencia de la electricidad de la sociedad moderna hace que la fiabilidad de los sistemas de transmisión de energía sea un punto clave. Este objetivo se puede lograr mediante la supervisión continua de los parámetros de la red eléctrica, por lo que los posibles modos de fallo se pueden predecir de antemano. Se puede hacer utilizando las tecnologías existentes de Tecnologías de la Información y la Comunicación (1CT) e Internet de las cosas (lo T) que incluyen sistemas de instrumentación y comunicación inalámbrica, formando así una red de sensores inalámbricos (WSN). Los conectores eléctricos se encuentran entre las partes más críticas de cualquier sistema eléctrico y, por lo tanto, pueden actuar como nodos de dicho VVSN. Por lo tanto, el objetivo fundamental de esta tesis es el diseño, desarrollo y validación experimental de una solución IOT autoalimentada para la supervisión en tiempo real del estado de salud de un conector de subestación de alta tensión y componentes relacionados de la subestación eléctrica. Esta nueva familia de conectores de alimentación se llama SmartConnector e incorpora un sistema de recolección de energía térmica que alimenta un microcontrolador que controla un transmisor y varios sensores electrónicos para medir la temperatura, la corriente y la resistencia del contacto eléctrico (ECR) del conector. Esta nueva familia de conectores de alimentación se llama SmartConnector e incorpora un sistema de recolección de energía térmica que alimenta un microcontrolador que controla un transmisor y varios sensores electrónicos para medir la temperatura, la corriente y la resistencia al contacto eléctrico (ECR) del conector. De esta manera, después del procesamiento de datos adecuado, el estado de salud del conector puede estar disponible en tiempo real, permitiendo diferentes funciones atractivas, como evaluar la correcta instalación del conector, el estado de salud actual o su vida útil restante (RUL) en tiempo real. El mismo principio también se puede utilizar para otros componentes de la subestación como espaciadores, aislantes, conductores, etc. Por lo tanto, para demostrar la universalidad de este enfoque novedoso, se aplica una estrategia similar a un espaciador, que es capaz de medir la distribución de corriente desigual en tres conductores estrechamente situados. Hay que tener cuidado de que este desarrollo técnico y científico tenga que sea compatible con las barras y "busbars" de subestación existentes, y sobre todo para ser compatible con las altas tensiones de funcionamiento, es decir, de decenas a cientos de kilovoltios (kV), y con corrientes en el orden de algunos kilo-Amperes (kA). Aunque algunas empresas eléctricas y fabricantes han progresado en el desarrollo de este tipo de tecnologías, incluidos medidores inteligentes y sensores inteligentes, los fabricantes de dispositivos eléctricos, como los fabricantes de conectores de subestación, aún no han emprendido el avance tecnológico necesario para el desarrollo de una nueva familia de componentes intel

    Joint transceiver design and power optimization for wireless sensor networks in underground mines

    Get PDF
    Avec les grands développements des technologies de communication sans fil, les réseaux de capteurs sans fil (WSN) ont attiré beaucoup d’attention dans le monde entier au cours de la dernière décennie. Les réseaux de capteurs sans fil sont maintenant utilisés pour a surveillance sanitaire, la gestion des catastrophes, la défense, les télécommunications, etc. De tels réseaux sont utilisés dans de nombreuses applications industrielles et commerciales comme la surveillance des processus industriels et de l’environnement, etc. Un réseau WSN est une collection de transducteurs spécialisés connus sous le nom de noeuds de capteurs avec une liaison de communication distribuée de manière aléatoire dans tous les emplacements pour surveiller les paramètres. Chaque noeud de capteur est équipé d’un transducteur, d’un processeur de signal, d’une unité d’alimentation et d’un émetteur-récepteur. Les WSN sont maintenant largement utilisés dans l’industrie minière souterraine pour surveiller certains paramètres environnementaux, comme la quantité de gaz, d’eau, la température, l’humidité, le niveau d’oxygène, de poussière, etc. Dans le cas de la surveillance de l’environnement, un WSN peut être remplacé de manière équivalente par un réseau à relais à entrées et sorties multiples (MIMO). Les réseaux de relais multisauts ont attiré un intérêt de recherche important ces derniers temps grâce à leur capacité à augmenter la portée de la couverture. La liaison de communication réseau d’une source vers une destination est mise en oeuvre en utilisant un schéma d’amplification/transmission (AF) ou de décodage/transfert (DF). Le relais AF reçoit des informations du relais précédent et amplifie simplement le signal reçu, puis il le transmet au relais suivant. D’autre part, le relais DF décode d’abord le signal reçu, puis il le transmet au relais suivant au deuxième étage s’il peut parfaitement décoder le signal entrant. En raison de la simplicité analytique, dans cette thèse, nous considérons le schéma de relais AF et les résultats de ce travail peuvent également être développés pour le relais DF. La conception d’un émetteur/récepteur pour le relais MIMO multisauts est très difficile. Car à l’étape de relais L, il y a 2L canaux possibles. Donc, pour un réseau à grande échelle, il n’est pas économique d’envoyer un signal par tous les liens possibles. Au lieu de cela, nous pouvons trouver le meilleur chemin de la source à la destination qui donne le rapport signal sur bruit (SNR) de bout en bout le plus élevé. Nous pouvons minimiser la fonction objectif d’erreur quadratique moyenne (MSE) ou de taux d’erreur binaire (BER) en envoyant le signal utilisant le chemin sélectionné. L’ensemble de relais dans le chemin reste actif et le reste des relais s’éteint, ce qui permet d’économiser de l’énergie afin d’améliorer la durée de vie du réseau. Le meilleur chemin de transmission de signal a été étudié dans la littérature pour un relais MIMO à deux bonds mais est plus complexe pour un ...With the great developments in wireless communication technologies, Wireless Sensor Networks (WSNs) have gained attention worldwide in the past decade and are now being used in health monitoring, disaster management, defense, telecommunications, etc. Such networks are used in many industrial and consumer applications such as industrial process and environment monitoring, among others. A WSN network is a collection of specialized transducers known as sensor nodes with a communication link distributed randomly in any locations to monitor environmental parameters such as water level, and temperature. Each sensor node is equipped with a transducer, a signal processor, a power unit, and a transceiver. WSNs are now being widely used in the underground mining industry to monitor environmental parameters, including the amount of gas, water, temperature, humidity, oxygen level, dust, etc. The WSN for environment monitoring can be equivalently replaced by a multiple-input multiple-output (MIMO) relay network. Multi-hop relay networks have attracted significant research interest in recent years for their capability in increasing the coverage range. The network communication link from a source to a destination is implemented using the amplify-and-forward (AF) or decode-and-forward (DF) schemes. The AF relay receives information from the previous relay and simply amplifies the received signal and then forwards it to the next relay. On the other hand, the DF relay first decodes the received signal and then forwards it to the next relay in the second stage if it can perfectly decode the incoming signal. For analytical simplicity, in this thesis, we consider the AF relaying scheme and the results of this work can also be developed for the DF relay. The transceiver design for multi-hop MIMO relay is very challenging. This is because at the L-th relay stage, there are 2L possible channels. So, for a large scale network, it is not economical to send the signal through all possible links. Instead, we can find the best path from source-to-destination that gives the highest end-to-end signal-to-noise ratio (SNR). We can minimize the mean square error (MSE) or bit error rate (BER) objective function by sending the signal using the selected path. The set of relay in the path remains active and the rest of the relays are turned off which can save power to enhance network life-time. The best path signal transmission has been carried out in the literature for 2-hop MIMO relay and for multiple relaying it becomes very complex. In the first part of this thesis, we propose an optimal best path finding algorithm at perfect channel state information (CSI). We consider a parallel multi-hop multiple-input multiple-output (MIMO) AF relay system where a linear minimum mean-squared error (MMSE) receiver is used at the destination. We simplify the parallel network into equivalent series multi-hop MIMO relay link using best relaying, where the best relay ..

    Étude et positionnement utilisant le réseau de capteur sans fil dans un environnement minier souterrain

    Get PDF
    La sécurité et la communication posent des problèmes majeurs auxquels il faut remédier dans les environnements hostiles comme les mines souterraines. Pour une communication fiable ainsi que pour tracer la position exacte d’un objet dans les mines souterraines, différentes technologies ont été déployé. Parmi ces dernières, le réseau de capteurs sans fil est considéré comme un outil prometteur pour les applications basées sur la localisation, à savoir, la surveillance des lieux, le repérage des mobiles et la navigation. En fait, les réseaux de capteur sans-fil fournissent une couverture d’une vaste gamme d’équipements fiables, efficaces, tolérants aux défaillances et évolutives. Cependant, les travaux de recherches précédents ont divisé la localisation en deux parties: les méthodes basées sur la portée et celles non-basées sur la portée. Où la première est précise et coûteuse tandis que la deuxième est présentée pour réduire la quantité d’énergie consommée du côté capteur dont les ressources sont limitées. Notre recherche se focalise sur la localisation basée sur la portée utilisant le réseau de capteurs sans fil dans les milieux internes et mines souterrains. Plusieurs techniques ont été proposées pour la localisation comme la réception de l'indicateur de force de signal (RSSI), le temps d'arrivée (TOA), la différence de temps d'arrivée (TDOA), l'angle d'arrivée (AOA). Bien que plusieurs travaux de recherches utilisant ces techniques aient été exécutés, l'approche de localisation à base de temps pour les environnements complexe comme la mine souterraine demeure limitée. Cette thèse offre de nouvelles solutions pour combler l’écart entre la localisation à base de temps et le réseau de capteurs sans fil à haute précision, pour l’environnement minier souterrain. De plus, nous avons utilisé une technologie émergente, à savoir les communications ultra-large bande, pour booster la performance et l'exactitude. Notre travail de recherche est subdivisé en deux principales parties : une partie simulation et une partie pratique. Dans la première, nous avons utilisé MATLAB pour faire les différentes simulations. La deuxième partie consiste en plusieurs mesures pratiques réalisées dans un environnement intérieur ainsi que dans une mine souterraine. Les résultats montrent une amélioration remarquable et une meilleure précision de la technique UWB à base de temps
    corecore